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Circular data is data that is measured on a circle in degrees or radians. It is fundamentally

different from linear data due to its periodic nature (0◦ = 360◦). Circular data arises

in a large variety of research fields. Among others in ecology, the medical sciences,

personality measurement, educational science, sociology, and political science circular

data is collected. The most direct examples of circular data within the social sciences

arise in cognitive and experimental psychology. However, despite numerous examples of

circular data being collected in different areas of cognitive and experimental psychology,

the knowledge of this type of data is not well-spread and literature in which these types

of data are analyzed using methods for circular data is relatively scarce. This paper

therefore aims to give a tutorial in working with and analyzing circular data to researchers

in cognitive psychology and the social sciences in general. It will do so by focusing on

data inspection, model fit, estimation and hypothesis testing for two specific models for

circular data using packages from the statistical programming language R.

Keywords: tutorial, circular data, general linear models, mixed-effects models, projected normal distribution

1. INTRODUCTION

Circular data arises in almost all fields of research, from ecology where data on the movement
direction of animals is investigated (Rivest et al., 2015) to the medical sciences where protein
structure (Mardia et al., 2006) or neuronal activity (Rutishauser et al., 2010) is investigated using
periodic and thus circular measurements. The most direct examples of circular data within the
social sciences arise in cognitive and experimental psychology. For example, in experiments on
cognitive maps the human sense of direction is investigated through asking participants in a study
to point north (Brunyé et al., 2015) or to walk to a target object (Warren et al., 2017). The closer the
participants’ pointing or walking direction was to the actual north or target object, the better their
sense of direction. Other examples include the visual perception of space (Matsushima et al., 2014),
visual working memory (Heyes et al., 2016) and sensorimotor synchronization in music making
(Kirschner and Tomasello, 2009).

However, despite the fact that circular data is being collected in different areas of cognitive and
experimental psychology, the knowledge of this type of data is not well-spread. Circular data is
fundamentally different from linear data due to its periodic nature. On the circle, measurements at
0◦ and 360◦ represent the same direction whereas on a linear scale they would be located at opposite
ends of a scale. For this reason circular data require specific analysis methods. Some less technical
textbooks on analysis methods for circular data have been written (Batschelet, 1981; Fisher, 1995;
Pewsey et al., 2013). However, these works are not part of the “standard” texts on statistical analysis
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in psychology or the social sciences in general nor are they very
well known amongst social scientific researchers.

Therefore, this paper aims at giving a tutorial in working
with and analysing circular data to researchers in cognitive
psychology and the social sciences in general. The main goal
of this tutorial is to explain how to inspect and analyse your
data when the outcome variable is circular. We will discuss data
inspection, model fit, estimation and hypothesis testing in general
linear models (GLM) and mixed-effects models. In this tutorial
we decide to mainly focus on one particular approach to the
analysis of circular data, the embedding approach. We do so
for the flexibility of this approach and the resulting variety in
types of models that have already been outlined in the literature
on circular data for this approach. Note that for an optimal
understanding of the paper, the reader should ideally have some
knowledge on R (R Core Team, 2017) and on GLM and mixed-
effects models in the linear setting. The reader does not need to
be familiar with circular data.

The structure of the tutorial is such that the reader is guided
by two examples throughout the paper. One is an example for
an ANOVA model and the other for a mixed-effects model.
First however, we give a short introduction to circular data in
general. Then we introduce the ANOVA example after which
descriptive methods for circular data are explained through a
section on data inspection for this example. After that we will
continue with an analysis of the example datasets. First we analyse
the ANOVA dataset using a method for circular GLM and give
interpretation guidelines for this model. Subsequently we will
introduce and analyse the mixed-effects example data. Again, we
analyse this data and include guidelines for interpretation. The
analyses of both datasets, the ANOVA and mixed-effects dataset,
are performed using the R package bpnreg (Cremers, 2018).
For both models, the GLM and the mixed-effects model for a
circular outcome, we write a short technical section in which the
mathematical details of the respective models are given. Lastly,
we give a summary of the paper and additional references to
literature on other models for circular data in the concluding
remarks.

2. CIRCULAR DATA

In the introduction we have briefly mentioned that circular
data is data of a periodic nature. The most intuitive form of
circular data comes in the form of directions on a compass. For
example, a participant in an experiment could be instructed to
move or point to a certain target. We can then measure the
direction, North, South, East or West on a scale from 0 to 360◦.
A plot with simulated data containing such measurements for
several participants is shown in Figure 1. In this plot we can
easily see the periodicity of the data, 0◦ represents the same
datapoint as 360◦. Furthermore, we can see what happens if
we would treat this data in the “usual” linear way. Participants
that moved North-East have a score of 45◦ and participants
that moves South-East have a score of 315◦. On the circle we
can see that this is only 90◦ apart, while on a linear scale it
is much further apart at 315◦–45◦ = 270◦. More importantly

however, there is a difference between the circular and linear
means for this data. In Figure 1 we see that the circular
mean direction is 0◦. The linear mean however is 180◦ and is
opposite to the actual mean direction of the data. Clearly, a
linear treatment of the data in Figure 1 can lead to incorrect
conclusions.

Clock times are another type of circular data. We might
for instance be interested at what time of day a certain event
takes place, e.g., the time of day at which positive affect is
highest. Figure 2 shows simulated data for the time of day at
which positive affect is highest for two groups of participants,
e.g., two groups of psychiatrical patients who are being treated
for depression at different clinics. From the plots we clearly
see that the peak of positive affect for the two groups is at
roughly the same time of day, one slightly before 12 p.m. and
one slighly after. However, if we were to analyze this data
using standard statistics for linear data and we would compare
the means of the two groups, 11 p.m. and 1 a.m. we would
reach a completely different conclusion. The two means are
namely at the two opposite ends of a linear scale from 00.00
a.m. to 12.00 p.m., and we would conclude that the time of
day at which positive affect is highest is different for the two
groups.

The two examples of circular data that we have just given
illustrate why it is important to treat circular data differently
from linear data. This goes both for describing your data,
e.g., computing circular means, as well as analyzing them,
e.g., testing whether the circular means of two groups differ. In
the next section we will introduce an example dataset on which
we will show several ways to inspect and compute descriptive
measures for circular data.

3. INSPECTING YOUR DATA

In the previous section we have seen that the computation of a
circular mean differs from that of a linear mean.Methods for data
inspection, the computation of descriptive statistics and plotting
methods, are different for circular data. Because data inspection
shoud be done before performing inference of any kind we
will outline a basic way to inspect circular data using the R

packages bpnreg (Cremers, 2018) and circular (Agostinelli
and Lund, 2017). We will discuss plots and several descriptive
measures for circular data using an example dataset, the motor
resonance data.

3.1. The Motor Resonance Data
In this section we introduce data from an article by Puglisi et al.
(2017) on humanmotor resonance. From now on we will call this
data the motor resonance data. Motor resonance is a response in
the brain in the primary motor cortex and spinal circuits that is
caused by observation of others’ actions. In their research Puglisi
et al. (2017) conduct an experiment in which “observers” are
asked to either look at the movement of a hand of a “mover”
or at another object in order to evaluate the role of attention in
motor resonant response. The experiment has three conditions:
the “explicit observation” condition (n = 14), where observers
are explicitly instructed to observe the hand, the “semi-implicit
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FIGURE 1 | Data from participants in an experiment that were instructed to move East. The plot on the left shows the data on a 0◦ −360◦ scale. The plot on the right

shows the data on the compass.

FIGURE 2 | Data for the hour at which positive affect is highest for two groups of psychiatrical patients who are being treated for depression at different clinics.

observation” condition (n = 14) where the observers have to
perform a task that requires the implicit observation of the hand
of the mover and the “implicit observation” condition (n = 14),
where observers have to perform a task that is independent of
the observation of the hand of the mover. The idea of motor
resonance is that the “observer” starts moving his or her hand in
the samemanner as the “mover” because he or she is implicitly or
explicitly observing the hand of the “mover.” This is the resonant
response. This resonant response is hypothesized to be strongest
and more synchronized with the hand movement of the mover
in the explicit condition and smallest in the implicit condition.
In each condition the hand movements of the observers were
measured and the phase difference between movement of the
observers’ hand and the hand of the mover was calculated. A
phase difference can be expressed in degrees or time and is
formally defined as the difference at a specific point in time
between two waves that have the same frequency. In the motor
resonance data the phase difference is a measurement of the
strength of the resonant response and a circular variable. It
can thus be described and analyzed using circular statistics. In

addition to the phase difference the average amplitute of the
hand movement of the observer was computed. Note that in
the original article there was also a baseline condition (n = 14)
without a mover. In this condition, observers had to look at an
inanimate object thatmoves in an identical manner to the hand of
the mover in other conditions. The baseline condition is however
not included in the example data since no resonant response
was observerd in the observers’ hand according to the original
research.

The motor resonance data can be found in the package
bpnreg as the dataframe Motor. Motor is a dataframe with
42 rows and seven variables. The variable Cond indicates the
condition (explicit, semi-implicit and implicit) a participant was
placed in, the AvAmp variable contains the average amplitude,
and the PhaseDiff and Phaserad variables contain the
measured phase difference between “observer” and “mover” in
degrees and radians, respectively. Note that circular data can
be represented both in degrees on a scale from 0◦ to 360◦ and
in radians on a scale from 0 to 2π (1 degree = 1 * π/180◦

radians).
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3.2. Plots for Circular Data
The main question of interest for the motor resonance
data is whether the phase difference between the three
experimental conditions differs. To be more precise whether
there is a smaller phase difference in the explicit condition
than in the other two. Differences that are observed in
the phase difference are interpreted as differences in the
strength of the resonant response (Puglisi et al., 2017).
A smaller phase difference indicates a stronger and more
synchronized resonant response. A first step to investigating
the question of interest is plotting the phase differences
of the three conditions. We can do so using the package
circular.

Figure 3 shows the plots of the phase differences of each
condition. We see that the phase differences in the explicit
condition are much less spread out on the circle than the phase
differences in the other two conditions. Also the average phase
differences seem to differ between the conditions. In the next
section we show measures for the mean and variance of a sample
of circular data.

3.3. Circular Mean, Resultant Length, and
Variance
Table 1 shows descriptives for the motor resonance data. For
each group, the table contains sample statistics for the circular
mean and mean resultant length of the phase difference. The
circular population mean, µ, indicates the average direction
of a certain variable in the population. The population mean
resultant length, ρ, is a statistic between 0 and 1 that gives
us information on the spread of a circular variable in the
population. It is interpreted as a precision measure where 0
means that the spread is large and 1 means that all data
are concentrated at a single value. Sample statistics for these
values are θ̄ for the mean and R̄ for the mean resultant
length.

Graphically we can illustrate the computation of θ̄ and R̄ as
shown in Figure 4. On the left side of this figure we see two sets
of circular data. We represent a circular datapoint as a vector
composed of the cosine and sine of the datapoint instead of
one value measured in degrees (or radians). Example for a score
of 90◦ we have the following vector (cos(90◦), sin(90◦)). The
solid vectors in Figure 4 each represent one circular datapoint.
To compute the mean directions and resultant lengths for the
datasets on the left we place the vectors head to toe, as in
the right side of Figure 4. We then connect the toe of the
first vector to the head of the last vector. This results in the
dotted vectors on the right side of Figure 4. The direction
of the dotted vector is the mean direction, θ̄ of the vectors
from which it was created. The length of the dotted vector
is the resultant length. The mean resultant length, R̄ is the
length of this vector divided by the number of vectors from
which it was created. In Figure 4 we see that the data in the
bottom left figure are much more concentrated on the circle
than the data in the upper left figure. This translates to the
resultant length in the bottom right being larger than the
resultant length (length of the dotted vector) in the upper right.

Formulae for the computation of θ̄ and R̄ can be found in Fisher
(1995).

In Table 1 we see that in the motor resonance data the
circular mean of the phase difference for the explicit observation
condition is highest with 49.55◦. The mean phase differences
for the semi-implicit and implicit observation conditions are
lower at 18.45◦ and 31.94◦. Moreover, the mean resultant
lengths of the three groups differ. The phase differences of
the individuals in the explicit observation condition are most
concentrated with R̄=0.77. The phase differences differ more
between the individuals in the semi-implicit and implicit
observation conditions where the spread is larger at R̄’s of 0.54
and 0.56, respectively.

Table 1 also shows a circular variance and standard deviation.
The sample value,Vm for the circular variance is defined as 1− R̄.
Its interpretation is exactly opposite to the interpretation of the
mean resultant length. A variance of one means that a variable
has a very large spread and a variance of 0 means that all data are
concentrated at one point. Note that unlike a linear variance the
circular variance is bounded between 0 and 1. A sample circular
standard deviation, v, can also be computed (Fisher, 1995). This
deviation runs from 0 to infinity where higher values indicate a
larger dispersion.

We have seen that both the average phase difference and
variances of the phase difference seem to be different for the three
conditions in the motor resonance data. To test whether these
differences in circular means also exist in the population, we can
use a projected normal circular GLM. In the next section we will
introduce this model and fit it to the motor resonance data.

4. A GENERAL LINEAR MODEL WITH A
CIRCULAR OUTCOME

In this section we will introduce a projected normal circular
regression model. Note that because it is a regression model
we can also fit AN(C)OVA type models with it, we can thus
refer to it as a projected normal (PN) circular GLM. The PN
circular GLM falls within the embedding approach to circular
data. The embedding approach is characterized by the fact that
it takes an indirect approach to modeling circular data. Instead
of directly defining a model on the circular outcome θ we
use a mathematical trick that allows us to define a model in
bivariate linear space. The results of the model in bivariate linear
space can then be translated back to the circle. Next, we will
outline the theoretical background to the PN circular GLM and
the embedding approach. Subsequently we will continue to fit
an ANOVA to the motor resonance data. At the end of this
section we will shortly consider different methods for circular
ANOVA.

4.1. The Embedding Approach to Circular
Data
In the previous section, at the computation of the circular mean,
we have seen that a circular variable θ , e.g., the phase difference
in the motor resonance data, can be expressed as a unit vector u
composed of the sine and the cosine of an angle u=(cos θ , sin θ).
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FIGURE 3 | Plots of the phase differences for each condition of the motor resonance data.

TABLE 1 | Descriptives for the motor resonance data with mean direction (θ̄ ),

mean resultant length (R̄), circular variance (Vm) and circular standard deviation (v)

of the phase difference for each condition.

Phase difference θ̄ R̄ Vm v

Explicit 49.55◦ 0.77 0.23 41.39◦

Semi.implicit 18.45◦ 0.54 0.46 63.82◦

Implicit 31.94◦ 0.56 0.44 61.72◦

FIGURE 4 | The computation of a circular mean and (mean) resultant length

(right) for two sets of circular data (left). The solid lines are vectors

representing the circular datapoints. The direction of the dotted vector is the

mean direction and the length of the dotted vector is the resultant length.

If we translate this to bivariate real space the cosine is the x-
component and the sine is the y-component of an angle. In the
embedding approach we assume that u origins from a bivariate
normal variable y. This bivariate variable is not measured, and

FIGURE 5 | A set of circular datapoints (closed dots) connected to two sets of

datapoints in bivariate space (open dots) that could have produced them.

can thus be regarded as a latent variable. Figure 5 depicts the
relation between u and y for a dataset with sample size n=10.
It shows that the circular datapoints could have originated from
different sets of bivariate datapoints y. Because the y are not
observed we need special inference methods such as expectation
maximization techniques in a frequentist approach or auxiliary
variable techniques in a Bayesian approach to estimate a model.
In this paper we will use a Bayesian approach. The reason to
choose a Bayesian approach instead of a frequentist one is that
it allows for the modeling of more complex data, e.g., there is
no frequentist version of the circular mixed-effects model we
will use in section 5. More details on the Bayesian approach
can be found in Nuñez-Antonio et al. (2011) and Cremers et al.
(2018).

From the assumption that y has a bivariate normal
distribution it follows that θ has a projected normal distribution
(Presnell et al., 1998). When fitting a model using the PN
distribution we model the mean vector µ of the underlying
bivariate data y.

Because y is bivariate the mean vector µ has two components,
denoted with the superscripts I and II. These superscripts
therefore refer to the x and y axis of the Cartesian plane or
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the cosine and sine component in u, respectively. In a multiple
regression model this µ is specified as follows:

µi =

(

µI
i

µII
i

)

=

(

(βI)txIi

(βII)txIIi

)

, (1)

where i=1, . . . , n, xi is a vector of predictor values for individual i
and each β is a vector with intercept and regression coefficients.
The superscript t for βI

0 and βII
0 denotes that the transpose of

these vectors is taken. To be able to estimate an intercept, the first
component of xi equals 1. Note that the vectors xi are allowed to
differ for the two components I and II. In the next section we will
fit this type of model to the motor resonance data.

In terms of the interpretation of the circular effect of a variable
the two component structure in (1) poses a problem. Note that we
could rotate and shift the components (axes) in bivariate space
such that for a categorical predictor the x-component points to
the mean of the reference category and the beta weights of the y-
component refer to a deviation from this reference mean. This
way we could test whether the means of the groups differ in
bivariate space. However, this still does not lead to means or
effects that are interpretable on the circle. The two components
do not necessarily have a useful interpretation for each type of

fit.Motor <- bpnr(pred.I = Phaserad ~ 1 + Cond, data = Motor,

its = 10000, burn = 100, n.lag = 3, seed = 101)

circular data, e.g., we cannot talk of a 12 o’clock (sine component)
and 3 o’clock axis (cosine component) in Figure 2. To be able to
interpret effects on the circle we transform the effects on the two
components to an effect on the circle. This transformation was
introduced by Cremers et al. (2018) and will be applied in both
example datasets.

4.2. Fitting an ANOVA Model to the Motor
Resonance Data
In this section we will fit a circular ANOVA model to the motor
resonance data using the PN circular GLM from the package
bpnreg. Note that the model from this package is in fact a
regression model that we can speficy in such a way that it
is mathematically equivalent to an ANOVA. First we will give
the details on this model and subsequently we will discuss and
interpret the results.

4.2.1. Fitting the Model
To investigate the effect of condition on the phase difference we
specify the prediction equation for the mean vector in the PN
circular GLM as follows:

µi =

(

µI
i

µII
i

)

=

(

βI
0 + βI

1semi.impliciti + βI
2impliciti

βII
0 + βII

1 semi.impliciti + βII
2 impliciti

)

, (2)

where the variables semi.implicit and implicit are dummy
variables indicating condition membership, βI

0 and βII
0 are the

intercepts and βI
1, β

I
2, β

II
1 and βII

2 are the regression coefficients

of the model. Note that in this model we take the explicit
observation condition as the reference condition. When we
translate this to the ANOVA context, the intercepts, βI

0 and βII
0 ,

represent themean for the explicit condition, βI
0+βI

1 and βII
0 +βII

1
are expressions for the mean of the semi-implicit condition and
βI
0+βI

2 and βII
0 +βII

2 are expressions for the mean of the implicit
condition.

We use the package bpnreg to fit the model. Because this is
a Bayesian method we have to specify some parameters for the
Markov Chain Monte Carlo (MCMC) sampler that estimates the
parameters of the model. MCMC methods are iterative and we
thus need to specify the number of iterations that we want to
run. We choose a relatively high number of the output iterations
(its = 10000) to make sure that the sampler converges and
that we don’t need to run it again in case it did not. We choose
the burn-in period to consist of 100 iterations (burn = 100).
This means that we throw away the first 100 iterations to make
sure that the iterations we keep are those at which the sampler
has reached its equilibrium. We also choose the lag, that is how
many iterations we want to keep, in this case every third iteration
(n.lag = 3). We set a lag to prevent possible auto-correlation
between the parameter estimates. In the next section we will
elaborate further on how to check convergence and choose these
MCMC parameters wisely. But first, we fit the model:

4.2.2. Convergence
In a Bayesian model that uses MCMC sampling for estimation
we always have to assess convergence of the MCMC chain for
all parameters in the model. A traceplot is one way to assess the
convergence of a parameter. As an illustration we only show the
traceplot for the MCMC chains for one of the parameters of the
model in Figure 6.

From the traceplot in Figure 6 we may conclude that the
MCMC chain converged within 10,000 iterations and a burn-in
of 100. In general if the traceplot shows proper convergence there
are no flat parts, where the chain stays in the same state for too
long, or parts with too many steps in one direction. We want
to see a pattern in which the chain moves from below a certain
equilibrium to above and vice versa in just a few iterations. The
traceplot will then look like a so-called “fat-caterpillar” meaning
that the chain has reached an equilibrium around a particular
value and has thus converged. In case an MCMC chain does
not converge we could add more iterations, a larger n.lag or
more burn-in iterations. We can also evaluate other convergence
diagnostics. The focus of this paper however does not lie on
Bayesian data analysis and therefore we refer to other works
(e.g., Gelman et al., 2014), for more information on assessing
convergence.

4.2.3. Results
To answer the question whether the phase differences in the three
conditions of the motor resonance data differ we investigate their
circular means. To do so we use methods from Cremers et al.
(2018) to transform the results from the two components of µ
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FIGURE 6 | A traceplot showing convergence of the parameter β I2 of the model fit to the motor resonance data.

TABLE 2 | Posterior estimates of the circular means of the phase difference for

the three conditions of the motor resonance data.

Condition Mode Mean sd LB HPD UB HPD

Explicit 42.70◦ 45.56◦ 11.67◦ 22.26◦ 67.99◦

Semi-implicit 21.08◦ 19.40◦ 18.36◦ –18.27◦ 55.22◦

Implicit 37.22◦ 33.47◦ 17.77◦ –2.25◦ 68.22◦

to the circle. Note that investigating the regression coefficients
on the two bivariate components separately might lead to wrong
conclusions about the effect on the circle, the phase difference.
This is due to the fact that even though there is an effect of
a variable on each of the two components this does not mean
that we can also see an effect on the circle. For a more detailed
explanation we refer to Cremers et al. (2018).

Because we use a Bayesian method we get the posterior
distributions of the three circular means. Philosophically, in
Bayesian statistics each parameter is said to have its own
distribution. The posterior distribution is the result of the prior
knowledge we have about a parameter before conducting a study,
formalized as a “prior” distribution (in this paper we choose
non-informative priors for the parameters) and the information
that lies in the data obtained from a study, formalized as the
likelihood. The fact that we obtain the distribution of a parameter
is convenient for inference purposes since this means that we
do not just have a point estimate of a parameter (the mean or
mode of the posterior distribution) but we also automatically get
an uncertainty estimates (the standard deviation of the posterior
distribution). For more background on Bayesian statistics (see
e.g., Gelman et al., 2014).

Summary statistics for the posterior distributions of the
circular means for each condition are shown in Table 2. This
table shows the posterior mean, mode, standard deviation (sd)
and the lower and upper bound of the 95% highest posterior
density interval (HPD). The standard deviation of a posterior is
an estimate for the standard error of the parameter. The HPD
interval is the smallest interval in which 95% of the posterior
distribution is located. In terms of interpretation, it is different
from a frequentist confidence interval since HPD intervals allow

for probability statements. For example, if the 95% HPD interval
for a parameterµ runs from 2 to 4 we can say that the probability
that µ lies between 2 and 4 is 0.95.

HPD intervals can also be used to test whether a parameter
is different from a certain value or whether two parameter
estimates are different. In Table 2 we see that the HPD intervals
of the circular means for the three conditions in the motor
resonance data overlap. The circular mean of the phase difference
is estimated at 47.70◦ (22.26◦; 67.99◦) for the explicit condition,
37.22◦ (–2.25◦; 68.22◦) for the implicit condition and 21.08◦

(–18.27◦; 55.22◦) for the semi-implicit condition. Because the
HPD intervals of these estimates overlap, we conclude that there
is not enough evidence to reject the null hypothesis that the
circular means for the three conditions do not differ and that
there is no effect of condition on the average phase difference.
Note that the fact that no difference was found may be due a lack
of power caused by the relatively small sample size (N = 14).

In addition to testing whether the circular means of the three
conditions are different, the circular ANOVA also allows us to test
whether there is an effect of condition on the circular variances
of the phase differences. Table 3 shows summary statistics for the
posterior distributions of the circular variance for each condition.
As expected the estimated circular variance for the explicit
condition is lowest. However, the variances of the three groups
do not significantly differ; their HPD intervals overlap. We thus
conclude that there is no evidence for an effect of condition on the
variance of the phase difference. Note that a function to compute
these variances has not yet been implemented in version 1.0.0
of bpnreg. It is however possible to get the MCMC estimates
from the fit object and subsequently use Equation 3 from Kendall
(1974) on the estimated mean vector for each of the groups to
compute the variances.

4.3. Other Approaches to Circular ANOVA
In the previous section we have tested whether the average phase
differences of the three conditions of the motor resonance data
differ in the population using a Bayesian PN circular GLM.
We can also do this using a frequentist ANOVA for circular
data that tests the hypothesis H0 :µexplicit=µsemi−implicit=µimplicit .
One of such tests is the Watson-Williams test. This test can
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TABLE 3 | Posterior estimates of the circular variances of the phase difference for

the three conditions of the motor resonance data.

Condition Mode Mean sd LB HPD UB HPD

Explicit 0.21 0.26 0.09 0.09 0.45

Semi-implicit 0.37 0.44 0.13 0.19 0.36

Implicit 0.36 0.42 0.13 0.18 0.68

be performed using the function watson.williams.test

in the circular package and is similar to an ANOVA for
linear data interpretation-wise. Note that the Watson-Williams
test falls within a different approach to modeling circular data,
the intrinsic approach. In this approach we directly model the
circular data instead of making use of a mathematical trick that
allows us to model the data in bivaraite space and then translate
the results back to the circle. For simple models, such as the
ANOVA, this modeling approach works fine. However, for more
complex data structures we have a much larger choice of models
in the embedding approach. For example, a disadvantage of the
Watson-Williams test is that it does not allow for the addition of
covariates and thus cannot estimate AN(C)OVAmodels. The PN
circular GLM does allow for the addition of covariates.

As in ANOVA models for linear data, we have to meet
a set of assumptions for this test to be valid. Firstly, in the
Watson-Williams test the samples from the different conditions
are assumed to be von-Mises distributed. Like the projected
normal distribution this is a distribution for circular data.
It is unimodal with mean µ and concentration κ . Secondly,
the samples are assumed to have the same circular variance.
This assumption of homogeneity of variance is tested within
the watson.williams.test function itself. For the motor
resonance data this assumption was met. The assumption of von-
Misesness can be tested using e.g., the Watson’s goodness of
fit test for the von Mises distribution. If we perform this test
on the phase differences of the three subgroups we conclude
that only the phase differences from the semi.implicit and
the implicit condition are von-Mises distributed (H0 is not
rejected). This means that it is not completely valid to perform
the Watson-Williams test on the motor resonance data.

For educational purposes however we do decide to conduct
this test. Similar to the projected normal circular GLM we
conclude from this test that the average phase differences of the
three conditions are not significantly different: [F(2, 39) = 1.02, p
> 0.05].

5. MIXED-EFFECTS MODELS WITH A
CIRCULAR OUTCOME

An advantage of employing the embedding approach to circular
data over the intrinsic approach is that it is easier to model
more complex data, e.g., repeated measures data, since we can
“borrow” methods from the bivariate linear context. In this
section we will introduce such a method: the circular mixed-
effects model. We will first introduce a new dataset, the cognitive
maps data, and give descriptive statistics. Then, we will shortly

outline the theoretical background to the mixed-effects model
and fit it to the cognitive maps data.

5.1. The Cognitive Maps Data
The cognitive maps data is a subset of data from a study by
Warren et al. (2017) on the geometry of humans’ knowledge of
navigation space. In their study Warren et al. (2017) amongst
others conduct an experiment in which a total of 20 participants
used virtual reality headsets to navigate through one of two
virtual mazes. The navigation task consisted of walking from a
start object to a target object. In a training phase they had learned
to navigate between different pairs of start and target objects
in one of two versions of the maze. The number of trials each
participant completed in this training phase was recorded. In the
test phase of the experiment participants first walked to a start
object. When they had reached this object the maze dissappeared
and only a “textured groundplane” of the maze remained visible.
The participants then turned toward the location of the target
object that they had remembered during the training phase and
started to walk toward the target. The angular difference between
the initial walking direction of a participant from the start object
and the location of the target object, that is, the angular error, was
recorded as an outcome variable in the experiment.

The type of maze is a between-subjects factor, participants
either had to navigate through a “Euclidean” maze or a “non-
Euclidean” maze. The Euclidean maze is the standard maze and
is a maze just as we know it in the real world. The other version of
the maze, the non-Euclidean maze, has exactly the same layout as
the standard maze but it has virtual features that do not exist in
reality. It namely contains wormholes by which participants can
be “teleported” from one place in the maze to another.

In the test phase of the experiment all participants had to
complete 8 trials. In each of these trials participants had to walk
to a specific target object. A within-subjects factor is the type
of target object. Pairs of start and target objects were of two
types: probe and standard. The probe objects were located near
the entrance and exit of a wormhole in the non-Euclidean maze
whereas the standard objects were located at some distance from
the wormholes. For each of these two types of objects participants
had to find 4 different targets resulting in a total of 8 trials per
participant.

For this experiment we could be interested in the question
whether the participants in the non-Euclidean maze make use of
the wormholes when navigating to the target objects and whether
this is true for both the probe and standard target objects. Due
to the design of the mazes the expected angular error was larger
if a participant used the wormhole to walk to the target object
in the non-Euclidean maze. We can thus use the angular error,
our outcome variable, to differentiate between participants that
used the wormhole and those that took another path to the target
object. Additionally we can control for the amount of trials that a
participant completed in the training phase.

5.2. Descriptive Statistics
The cognitive maps data is incorporated in the package bpnreg
as the dataframe Maps. This dataframe has 160 rows; there are 20
subjects that each completed 8 trials. The data contains an index
variable for the subject Subject (N = 20) and trial number
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TABLE 4 | Descriptives for the cognitive maps data with mean direction (θ̄ ) and

mean resultant length (R̄) of the angular error for each condition.

Maze Trial.type θ̄ R̄

Angular error Euclidean Standard –4.91◦ 0.89

Probe 4.46◦ 0.92

non-Euclidean Standard –17.59◦ 0.78

Probe 37.34◦ 0.93

Trial.no (n = 8). It also includes variables indicating the
type of maze Maze, a between-subjects factor, and type of trial
Trial.type, a within-subjects factor. The variable Learn

indicates the amount of learning trials completed. L.c is a
centered version of this variable. The angular error is contained
in the variables Error and Error.rad in degrees and radians,
respectively. Descriptives for this data are shown in Table 4. Note
that we averaged over subjects and the trials of each type. The
circular mean of the angular error for the standard trials in the
Euclidean maze is thus an average over 10 participants and 4
trials. We see that the average angular errors, θ̂ , for the non-
Euclidean maze deviate more from 0◦ (direction of the target
object) than for the Euclidean maze.

5.3. Fitting a Mixed-Effects Model to the
Cognitive Maps Data
In this section we will first introduce a circular mixed effects
model and fit this model to the cognitive maps data. Next we
discuss the output produced by the bpnreg package. We will
discuss the interpretation of fixed and random effects and model
fit.

fit.Maps <- bpnme(pred.I = Error.rad ~ Maze + Trial.type + L.c + (1|Subject),

data = Maps,

its = 10000, burn = 1000, n.lag = 3, seed = 101)

5.3.1. The Embedding Approach for Mixed-Effects

Models
The circular mixed-effects model from the package bpnreg is
also based on the embedding approach to circular data. The
basic idea behind this approach is the same as outlined before.
In a real dataset we have a set of outcome vectors uij, one for
each measurement j within a higher level observation i. We
however estimate a model to the underlying bivariate data yij.
The Bayesianmethod used in the packagebpnreg for estimating
circular mixed-effects models is outlined in Nuñez-Antonio and
Gutiérrez-Peña (2014).

For the cognitive maps data with i=1, . . . , 20 individuals and
j=1, . . . , 8 measurements per individual we fit a mixed-effects
model to investigate the influence of the type ofMaze, type of trial
and amount of learning trials on the angular error. The prediction
for the mean vector in this model, µ, is specified as follows:

µij =





µI
ij

µII
ij



 =





βI
0 + βI

1Mazei + βI
2Trial.typeij + βI

3L.ci + bI0i

βII
0 + βII

1 Mazei + βII
2 Trial.typeij + βII

3 L.ci + bII0i



 ,

(3)

TABLE 5 | Posterior estimates of the circular mean of the angular error for each

condition.

Maze Trial.type Mode Mean Sd LB HPD UB HPD

Angular

error

Euclidean standard –12.97◦ –13.48◦ 3.9◦ –21.42◦ –6.06◦

Probe 11.38◦ 11.78◦ 3.29◦ 5.26◦ 18.30◦

non-Euclidean Standard –1.42◦ –2.04◦ 6.68◦ –15.75◦ 10.49◦

Probe 31.04◦ 30.37◦ 4.31◦ 22.03◦ 38.92◦

where the variables Maze and Trial.type are dummy
variables, βI

0 and βII
0 are the fixed intercepts, bI0i and bII0i are

the random intercepts and βI
1, βI

2, βI
3, βII

1 , βII
2 and βII

3 are the
fixed regression coefficients of the model. Note that in this model
we take the Euclidean maze and standard trials as reference
conditions.

The interpretation problems caused by the two component
structure in (3) is of a similar nature as the one in the GLM
model. Cremers et al. (Submitted) introduce new tools that solve
the interpretation of circular effects in PN mixed-effects models.
In this tutorial we will also use these tools.

5.3.2. Fitting the Model
To fit the model in (3) we use the bpnme() function from the
package bpnreg. We also need to specify some parameters for
the MCMC sampler that estimates the model. We specify the
output iterations (10,000), the amount of burn-in (1000) and how
many iterations we want to keep (n.lag = 3). Convergence
was checked in the same manner as for the ANOVA model in
the previous section and was reached using the settings for the
MCMC algorithm we just specified.

Note that the syntax for the model specification in this function
is similar to that of the package lme4 for fitting (non-circular)
mixed-effects models.

5.3.3. Fixed Effects
Next we investigate the coefficients of the fixed effects for this
model. First we show results for the categorical variables type of
maze (Maze) and type of trial (Trial.type).

Table 5 shows summary statistics of the posterior of the
average angular error for each of the categories. Note that
because there is a continuous predictor in themodel the posterior
estimates represent a marginal effect, they are the effect for an
individual with a 0 score on the continuous predictor L.c.
Because we centered this predictor this means that this is the
effect for an individual that has completed an average number
of training trials.

By looking at the 95% HPD intervals of the angular errors
in Table 5 we can test whether the type of maze and type of
trial on average has an influence on the angular error and
thus whether participants make use of the wormhole. For the
standard trials we see that the HPD intervals of the angular
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error in the Euclidean and non-Euclidean overlaps and that
thus the angular error is not different. This means that in
the standard trials the participants on average did not make
use of the wormholes in the non-Euclidean maze. For the
probe trials however, the HPD intervals of the Euclidean and
non-Euclidean do not overlap and thus the angular error is
different. This means that in the probe trials, the participants
on average did make use of the wormholes in the non-Euclidean
maze.

For the continuous variable L.c we get a set of parameters,
bc, SAM and AS, describing its effect on the circle. How these
parameters are computed is described in Cremers et al. (2018)
and Cremers et al. (Submitted) In this paper we will only focus
on how to interpret them.

In Figure 7 a circular regression line for the effect of a
predictor x on the circular outcome is shown. Because the
outcome variable is measured on a circular scale, the slope of this
line (the effect of x) is not constant but different for different
x values. The regression line can be described using the three
circular coefficients bc, SAM andAS. The coefficient bc represents
the slope of the circular regression line at the inflection point (the
square in Figure 7). However, this may not be a representative
effect for each dataset as the inflection point can lie in the
extremes of the data (as in Figure 7) or even completely outside
the range of the predictor x. Therefore, two additional circular
coefficients were developed by Cremers et al. (2018), the slope at
the mean SAM and the average slope AS. The coefficient SAM
represents the slope of the circular regression line at the average
of the predictor (x̄) and the coefficients AS represents the average
slope over all values of x.

For the effect of L.c on the angular error in the cognitive
maps data, the HPD intervals for all three circular coefficients,
bc, SAM and AS include 0 (see Table 6). Thus, we do not find
evidence that at the inflection point, at the average predictor value
and on average the number of training trials (L.c) influences the
angular error. Note that there not being evidence for influence
is a good thing, since it indicates that the training phase of the
experiment worked to get all participants at the same level. We
do however need to be wary of making all to strong conclusions,

we are essentially trying to find evidence for a null-hypothesis
with a small sample (n = 20). If the sample had been larger we
would have had more power to reject the hypothesis, possibly
resulting in the opposite conclusion. For educational purposes
we continue to give the interpretation of the coefficients. The
SAM is interpreted as follows: at the average L.c, for a 1
unit increase in L.c the angular error increases with 0.58
degrees. The AS can be interpreted as: on average, for a 1 unit
increase in L.c the angular error decreases with 0.63 degrees
on average. The bc can be interpreted as: at the inflection point,
for a 1 unit increase in L.c the angular error decreases with
0.89 degrees.

5.3.4. Random Effects
In mixed-effects models we are also interested in evaluating the
variance of the random effects. In the model for the cognitive
maps data we included a random intercept. This means that
we estimate a separate intercept for each participant. How to
compute random effect variances on the circle is outlined in
Cremers et al. (Submitted) For the cognitive maps data the
posterior mode of the intercept variance on the circle is estimated
at 3.5 ∗ 10−5 and its HPD interval is (4.2 ∗ 10−6; 1.4 ∗ 10−3).
This variance is very low which means that the participants do
not differ a lot in their individual intercept estimates. Note that
this is not necessarily problematic. In some cases we are not
interested in the variances of the random effects but simply want
to fit a mixed-effects model because we have within factors, such
as Trial.type, that cannot be properly incorporated in a
standard regression model.

TABLE 6 | Posterior estimates of the coefficients of the effect of L.c on the

angular error.

Coefficient Mode Mean Sd LB HPD UB HPD

bc –0.89◦ –0.21◦ 1.73◦ –2.84◦ 2.55◦

SAM 0.58◦ –0.84◦ 90.80◦ –11.51◦ 12.73◦

AS –0.63◦ –1.11◦ 92.44◦ –13.17◦ 13.14◦

FIGURE 7 | Predicted circular regression line for the relation between a linear predictor x and a predicted circular outcome θ together with the original datapoints. The

square indicates the inflection point of the regression line.
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5.3.5. Model Comparison
When fitting mixed-effects (or multilevel) models we often fit a
set of nested models to our data and follow a model building
strategy (Hox, 2002). We do this in case we have no specific
model in mind that we want to test and want to explore the
individual contributions of variables or groups of variables to the
model. Such a model building strategy can be done top-down,
starting with the most complex model, or bottom-up, starting
with the simplest model. Here we use a bottom-up strategy and
start with the so called intercept-only model, a model containing
only a fixed and random intercept:

fit.MapsIO <- bpnme(pred.I = Error.rad ~ (1|Subject),

data = Maps,

its = 10000, burn = 1000, n.lag = 3, seed = 101)

We then update this model with fixed effects for the predictors
at the lowest level (within-subjects factors), in this case
Trial.type. We do this to check whether the set of predictors
improved the fit of the model and can explain a part of the
random intercept variance from the intercept-only model.

fit.Maps1p <- bpnme(pred.I = Error.rad ~ Trial.type + (1|Subject),

data = Maps,

its = 10000, burn = 1000, n.lag = 3, seed = 101)

We then add fixed effects for the predictors at the higher level
(between-subjects factors), in this case Maze and L.c. Again we
do this to check whether they improve the fit of the model and
whether they can explain a part of the random intercept variance.

fit.Maps <- bpnme(pred.I = Error.rad ~ Maze + Trial.type + L.c + (1|Subject),

data = Maps,

its = 10000, burn = 1000, n.lag = 3, seed = 101)

Because we have already seen that the effect of L.c was not
different from 0 we also fit the model with only the Maze and
Trial.type predictors.

fit.Maps2 <- bpnme(pred.I = Error.rad ~ Maze + Trial.type + (1|Subject),

data = Maps,

its = 10000, burn = 1000, n.lag = 3, seed = 101)

Additional steps, such as adding random slopes for first level
predictors and cross-level interactions, can be taken. In this paper
we will however restrict the analysis to the previous three models.

Model Fit

To assess the fit of the models we look at 4 different model
fit criteria: two version of the deviance information criterion
(DIC and DICalt) and two versions of the Watanabe-Akaike
information criterion (WAIC1 and WAIC2). We choose these
four criteria because they are specifically useful in Bayesian
models where MCMC methods have been used to estimate the
parameters. All four criteria have a fit part consisting of ameasure
based on the loglikelihood and include a penalty in the form of
an effective number of parameters. For all criteria lower values
indicate better fit. Gelman et al. (2014) describes how to compute

these criteria. Table 7 shows the results of these criteria for four
different models.

In the results for the example we see that the fit improves in
all 4 model diagnostics for each model except for the last one.
This means that the predictor Trial.type improves the fit of
the model over the intercept-only model and that the predictors
Maze and Trial.type together improve the fit of the model
over the model with only the Trial.type predictor. Because
the variable L.c had no effect it is as expected that this predictor
does not improve the fit of the most right model over the model
with the Maze and Trial.type predictors. We conclude that

the model with the predictors Trial.type and Maze fits best.
Explained Variance

Apart from information about whether adding predictors
improves the fit of the model we are also interested in
whether these predictors explain a part of the random

effect variances. For the cognitive maps data we are interested
in whether the Maze and Trial.type predictors
explain a part of the variance in individual intercepts.
To assess this we compare the posterior estimates of the

circular random intercept for the intercept-only model
and the model with the Maze and Trial.type

predictors.

The posterior mode of the intercept variance in the intercept-
only model equals 6.61 ∗ 10−5(8.20 ∗ 10−6; 3.62 ∗ 10−3). This
means that there is almost no random intercept variance. The
posterior mode of the circular variance is very close to 0. This

TABLE 7 | Model fit criteria for several models fit to the cognitive maps data.

Criterion Intercept-

only

Trial.type Trial.type

+ Maze

Trial.type +

Maze + L.c

DIC 304.61 267.91 253.97 257.94

DICalt 324.33 286.97 257.14 260.78

WAIC1 308.41 271.61 255.00 258.41

WAIC2 308.43 271.77 255.40 259.02
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also means that there is hardly any intercept variance that the
Maze and Trial.type predictors can explain. For illustrative
purposes however we continue to assess the intercept variance
in the model with the Maze and Trial.type predictors. The
posterior mode of the intercept variance in the model with Maze
and Trial.type equals 3.25 ∗ 10−5(4.40 ∗ 10−6; 1.59 ∗ 10−3).
As expected, there is hardly any change in estimates for the
variance in the model with Maze and Trial.type compared
to the intercept-only model. Furthermore, their HPD intervals
have a very large overlap. We thus conclude that the variables
Maze and Trial.type did not explain any variance in the
random intercepts.

6. CONCLUDING REMARKS

In this paper we have given a tutorial for researchers in cognitive
psychology on how to analyse circular data using the package
bpnreg.We have covered data inspection in section 3, the fitting
of a Bayesian circular GLM in section 4 and the fitting of a
Bayesain mixed-effects model in section 5. We have also given
a short introduction into the theoretical background of these
models in sections 4.1 and 5.3.1.

Apart from the embedding approach to circular data, as used
in this tutorial, there are two other approaches to the analysis
of circular data. In the wrapping approach the data on the
circle is assumed to have originated from wrapping a univariate
distribution on the real line onto the circle. In the intrinsic
approach distributions, such as the von Mises distribution, are

directly defined on the circle. For both approaches models have
been described in the literature (Fisher and Lee, 1992; Gill and
Hangartner, 2010; Ravindran and Ghosh, 2011; Lagona, 2016;
Mulder and Klugkist, 2017). The regression model using the
intrinsic approach from Fisher and Lee (1992) is a frequentist
method and is implemented in the package circular and
the circular general linear model from Mulder and Klugkist
(2017) is a Bayesian method which is implemented in the
package circglmmbayes. For neither approach however a
detailed tutorial describing how to analyze circular data using
the functions from their package has been written thus far.
Furthermore, the PN approach to circular modeling has the
additional advantage that it is relatively easy to fit more complex
models, e.g., the mixed-effects model in this tutorial.
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