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Abstract
Objectives T here is growing recognition that 
simultaneously assessing multiple exposures may 
reduce false positive discoveries and improve 
epidemiological effect estimates. We evaluated the 
performance of statistical methods for identifying 
exposure–outcome associations across various data 
structures typical of environmental and occupational 
epidemiology analyses.
Methods  We simulated a case–control study, 
generating 100 data sets for each of 270 different 
simulation scenarios; varying the number of exposure 
variables, the correlation between exposures, sample size, 
the number of effective exposures and the magnitude of 
effect estimates. We compared conventional analytical 
approaches, that is, univariable (with and without 
multiplicity adjustment), multivariable and stepwise 
logistic regression, with variable selection methods: 
sparse partial least squares discriminant analysis, 
boosting, and frequentist and Bayesian penalised 
regression approaches.
Results T he variable selection methods consistently 
yielded more precise effect estimates and generally 
improved selection accuracy compared with conventional 
logistic regression methods, especially for scenarios with 
higher correlation levels. Penalised lasso and elastic 
net regression both seemed to perform particularly 
well, specifically when statistical inference based on 
a balanced weighting of high sensitivity and a low 
proportion of false discoveries is sought.
Conclusions I n this extensive simulation study 
with multicollinear data, we found that most variable 
selection methods consistently outperformed 
conventional approaches, and demonstrated how 
performance is influenced by the structure of the data 
and underlying model.

To better estimate the modifiable components 
of disease risk, environmental and occupational 
epidemiologists are increasing their efforts to 
capture the myriad of exposures humans come in 
contact with. Researchers are using a variety of 
tools to perform multifaceted exposure assessment 
in observational epidemiology studies, including 
using data from questionnaires, sensors, geospa-
tial modelling, job  exposure matrices, biomoni-
toring and high-throughput molecular analyses. 
As researchers gather increasingly richer data sets, 
they may find themselves confronted with complex 
exposure profiles that render identification of 

exposure–outcome associations using conventional 
statistical analyses challenging.

Studies often assess one exposure, or sometimes 
one chemical class or closely related group of expo-
sures, in relation to a health outcome. A shift from 
single-exposure modelling to multiple-exposure 
(multipollutant or chemical mixture) modelling has 
been advocated to better identify and estimate the 
independent effects of exposures.1 Selection and 
estimation using conventional methods for multi-
pollutant modelling, such as stepwise regression 
and multiple regression, may suffer from locally 
rather than globally optimal models, influenced by 
the order variables enter the model, or may yield 
unstable estimates if exposures are multicollinear. 
Use of more advanced statistical methods has 
gained traction in the past few years, particularly 
in chemical contaminant and air pollution epide-
miology.2–5 Several (families of) variable selection 
methods have more recently been developed (see 
Chadeau-Hyam et al6 for a review). However, there 
are limited data on the relative efficacy of these 
methods for analysis of data generally relevant for 
occupational and environmental epidemiologists; 
that is, with a limited number of observations, rela-
tively few true associations, complex correlation 
structures and modest effect sizes.

Recently published simulation analyses have 
evaluated methods for the analysis of continuous 

What this paper adds

►► It is well established that assessing associations 
between multiple exposures and a binary health 
outcome using standard logistic regression 
models can result in false positive and imprecise 
effect estimates.

►► There is limited empirical support for the 
performance of alternative statistical 
approaches; particularly for low-dimensional 
scenarios (fewer exposures than study 
participants) with moderately to highly 
correlated exposures.

►► This simulation study demonstrates how nine 
statistical approaches perform under a wide 
range of scenarios.

►► Penalised regression models, which shrink 
regression coefficients towards or to zero, 
performed well and offer an attractive 
approach.
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outcomes considering data structures inspired by the pregnancy 
exposome7 and air pollution epidemiology.8 We extended this 
work by (1) studying a binary outcome, as much of epidemiolog-
ical research deals with data from case–control studies and pres-
ence/absence of disease, (2) focusing on a larger set of simulation 
scenarios, and (3) by exploring in what way different character-
istics of the simulated exposure matrix and the strength of the 
exposure–outcome association affect the performance of vari-
able selection methods.

We evaluated dimension reduction, penalisation and boosting 
approaches which are readily implemented in standard software, 
and pursued the scenario in which there are no prior hypoth-
eses regarding candidate associations, or where this informa-
tion is ignored; so following a data-driven approach to variable 
selection.

Methods
Variable selection methods
We briefly describe each method used to estimate associations 
between simulated exposures and a binary health outcome. 
Additional details are provided in table 1 and the online supple-
mentary appendix 1. We used R software V.3.2.1 (R Founda-
tion for Statistical Computing, Vienna, Austria) to simulate and 
analyse our data.

Univariable(-FDR) and multivariable. The most frequently 
used strategy for binary classification in epidemiology is to assess 
separate single-exposure logistic regression models (possibly 
adjusted for a limited set of known or suspected confounders), 
referred to as univariable (or univariate) regression. Another 
strategy is multivariable (or multiple) regression, in which all 
exposure variables are included in one logistic regression model. 
We fit generalised linear models with the logit link function and 
maximum likelihood estimation. Selection of exposures was 
based on p values, with a value of 0.05 considered as the cut-off. 
We also evaluated univariable regression with selection based on 
controlling the false discovery rate (FDR <0.05, using the Benja-
mini-Hochberg method9). This approach is increasingly being 
applied to adjust for multiplicity, and has been applied in the 
so-called environment-wide association study approach.10

Stepwise. We implemented forward-backward stepwise logistic 
regression in which one variable is successively added or deleted 
at each step, based on minimising the Akaike information crite-
rion. This is a widely used automated selection procedure.

sPLS-DA. Partial least squares (PLS) regression11 is a dimen-
sion reduction method which projects the outcome and exposure 
variables onto a smaller number of orthogonal latent variables, 
called components, maximising their covariance. Sparse PLS 
(sPLS) regression12 13 introduces variable selection by indirectly 

imposing an L1 (lasso type) penalty on the direction (loading) 
vector defining the projection, so that only a subset of the most 
informative exposure variables contributes to the components. 
sPLS can be used for classification problems by inputting the 
outcome as a dummy matrix in the PLS algorithm, and using 
the resulting component scores in a linear discriminant analysis 
(DA). Model complexity is determined by the number of compo-
nents (K) and the level of penalisation (η), which were tuned 
using two-dimensional cross-validation. We selected the model 
which corresponded to the minimum misclassification error rate 
in the primary analyses, and modified the default cross-valida-
tion within the R package to include an intercept-only model.

Lasso. Penalisation approaches, also referred to as regu-
larisation or shrinkage methods, shrink coefficients towards 
zero, with the amount of shrinkage inversely proportional to 
the contribution of the variable to the overall model fit (ie, 
important variables are shrunken less). This shrinkage intro-
duces bias but also decreases the variance and generally leads to 
more stable models, especially for multicollinear data. The most 
popular penalty is the lasso (least absolute shrinkage and selec-
tion operator) penalty, which is proportional to the sum of the 
absolute values of the coefficients.14 Variable selection (sparsity) 
is achieved because coefficients for a subset of variables may be 
shrunk exactly to zero.

Elastic net. Elastic net regression is similar to lasso regression, 
but uses a weighted sum of lasso and ridge regression penalties.15 
The ridge regression penalty is proportional to the sum of the 
squared regression coefficients, which results in shrinkage of the 
coefficients towards zero, but not to zero exactly, and for coef-
ficients for highly correlated variables towards a common value. 
Whereas lasso regression tends to select only one variable from 
a group of correlated variables, elastic net can coselect a group 
of correlated variables (due to the ridge penalty), while still 
performing variable selection (due to the lasso penalty). A second 
tuning parameter (α) controls the balance between the lasso and 
ridge penalties; we optimised α and the amount of penalisation 
(λ) using two-dimensional cross-validation. For both lasso and 
elastic net regression, we selected the most parsimonious model 
which corresponded to the minimum plus one SE in binomial 
deviance in the primary analyses—a more stringent optimisation 
criterion than the minimum, and one that has been advocated 
for variable selection.16

Bayesian lasso. Variable selection in Bayesian models can be 
achieved using independent Laplace (or double exponential) 
prior distributions centred at zero to estimate regression coef-
ficients, also referred to as regularised logistic regression.17 18 A 
hyperprior controls the shape of these Laplace priors, where the 
optimal amount of shrinkage is adaptively determined from the 

Table 1  Methods applied for analysis of multiple exposures and a binary health outcome

Method R package: function(s) Implementation

Univariable logistic regression stats: glm Selection: p<0.05

Univariable-FDR logistic regression9 stats: glm, p.adjust Selection: FDR<0.05

Multivariable logistic regression stats: glm Selection: p<0.05

Stepwise logistic regression stats: step, glm Selection: smallest Akaike information criterion

sPLS-DA12 13 spls: cv.splsda, splsda Model (K, η) tuned via CV. Selection: β ≠ 0

Lasso regression14 42 glmnet: cv.glmnet, glmnet Model (λ) tuned via CV. Selection: β ≠ 0

Elastic net regression15 42 glmnet: cv.glmnet, glmnet Model (α, λ) tuned via CV. Selection: β ≠ 0

Bayesian lasso regression17 reglogit: reglogit 500 burn-in plus 1000 iterations. Selection: If 95% highest posterior density interval did 
not include 0.

Boosted regression19 43 mboost: cvrisk, glmboost ≤1500 iterations; CV to determine the stopping iteration. Selection: β ≠ 0

CV, cross-validation; FDR, false discovery rate; sPLS-DA, sparse partial least squares discriminant analysis.
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data itself, achieving approximate multiplicity control. A vari-
able was considered to be selected if its 95% highest posterior 
density interval did not include 0.

Boosted. We fitted generalised linear models using a compo-
nent-wise gradient boosting algorithm,19 20 which is an iter-
ative technique that aims to optimise predictive accuracy by 
combining a set of weak classifiers. With each iteration step, the 
variable that results in the greatest reduction in error based on 
the negative binomial log-likelihood loss function is selected. A 
small proportion (here 10%) of the fit for the selected variable 
is added to the current estimate, and the residuals are then used 
in subsequent iterations. Estimates for the variable selected at 
each iteration are aggregated. Variable selection is achieved by 
restricting the number of boosting iterations, and cross-valida-
tion with the minimum binomial deviance criterion was used to 
determine the optimal number of iterations.

Simulation study
We designed our simulation study to be representative of data 
structures that are common in environmental and occupational 
epidemiology. We performed a Monte Carlo simulation, varying 
five aspects of the data (listed in table  2), resulting in a total 
of 270 different scenarios. For each scenario we simulated 100 
data sets, yielding a total of 27 000 different data sets.

First, the matrix of continuous exposures X was simulated 
by sampling 100 000 observations from a multivariate normal 
distribution with a mean of zero, SD of 1, and covariance matrix 
with off-diagonal elements with a uniform correlation level of 
ρ. X was column mean  centred and standardised to unit vari-
ance. Second, the case/control status for the outcome vector Y 
was simulated from a Bernoulli distribution, with probability 
Pr(Y=1∣X)=1/{1+exp[−(β0+ βXX)]}. Parameter β0 was chosen 
as to be sufficiently large to ensure that the simulation resulted 
in enough cases and controls for the scenario-specific study size, 
while βX was fixed according to the magnitude of the desired 
effect estimate, the OR=exp(βX). An equal number of cases 
and controls were sampled without replacement and used to 
construct the final data set for the analyses.

Evaluation criteria
To assess the relative classification performance of the variable 
selection methods, we tallied the number of true positive, false 
positive, true negative and false negative associations (see online 
supplementary table S1) across simulations, and computed:
1.	 The sensitivity: the proportion of true associations that were 

correctly identified, also referred to as recall. No value for 

sensitivity was computed when the number of true associa-
tions equalled zero.

2.	 The false discovery proportion (FDP): the proportion of 
positive findings (associations identified as significant) that 
were incorrectly identified. FDP was defined as zero when 
the number of positive findings was zero. The complement 
of FDP (1–FDP) is equivalent to the positive predictive value, 
also referred to as precision.

The simulation design is imbalanced in that the number of 
true negatives exceeds the number of true positives. As such, we 
compare 1–FDP to the sensitivity, akin to a precision-recall curve, 
rather than comparing the sensitivity to the false positive rate 
(the proportion of true null associations identified incorrectly 
as significant), as is shown in receiver  operating characteristic 
curves commonly used to assess the performance of classi-
fiers.21 We also consider various weightings of the F measure, 
the weighted harmonic mean of sensitivity and 1–FDP, where 
either metric can be assigned greater importance (differential 
weighting) or equal importance (balanced weighting).22

3.	 The mean squared error (MSE): to assess the estimation per-
formance, we computed a combination of the (squared) bias 
of the estimated coefficients plus its variance across s simula-

tions, 
‍
1
s
∑(

β̂ − β
)2

‍
.

We evaluated the overall performance of the methods, across 
all simulation scenarios, and across all parameter levels. We focus 
on the results obtained upon varying the three parameters that 
may be known or assessed in advance by the researcher (ie, the 
sample size, the number of exposure variables and the correla-
tions between exposure variables), as opposed to the parameters 
that are estimated but remain uncertain in most real-life analyses 
(ie, the number of true associations and the effect sizes).

As a sensitivity analysis we repeated all 27 000 simulations 
using a blocked correlation structure (instead of a single, 
uniform correlation structure), where we subdivided the correla-
tion matrix into two equally sized submatrices that had the 
same uniform correlation between exposures within the same 
submatrix (ρ=0.4 or ρ=0.8), but where there was no correlation 
between exposures in different submatrices (ρ=0.0). Addition-
ally, we retested sPLS-DA and frequentist penalisation models 
with alternative optimisation criteria; the minimum plus one SE 
and the minimum cross-validation error, respectively.

Results
Overall performance
We used nine different selection strategies to analyse the 27 000 
simulated data sets. The overall results, averaged across all simu-
lation scenarios, are presented in figure 1A. A higher sensitivity 
and lower FDP indicate superior performance in selecting true 
associations and fewer false associations, thus if a researcher 
considers sensitivity to be equally as important as FDP, then 
methods located in the upper right quadrant of the plot (ie, 1–
FDP-sensitivity or precision-recall space) are more favourable. 
The area of the bubbles is proportional to the median MSE of 
the coefficient estimates, and smaller bubbles therefore reflect 
more stable and precise estimation of the true magnitude of asso-
ciations. The lasso and elastic net regression methods appear to 
be the best performing methods overall for achieving a sensi-
tivity:FDP balanced selection performance, with the elastic 
net achieving slightly higher sensitivity and lasso regression 
achieving a somewhat lower FDP, and both yielding nearly the 
lowest MSE values. When we examine these three performance 
criteria separately (online supplementary figure S1), we note that 

Table 2  Parameters tested in simulation scenarios*

n† p‡ ρ§ q¶ OR**

200 (9000) 10 (9000) 0.0 (9000) 0 (2700) 1.0 (2700)

500 (9000) 20 (9000) 0.4 (9000) 1 (8100) 1.2 (8100)

1000 (9000) 50 (9000) 0.8 (9000) 2 (8100) 1.5 (8100)

5 (8100) 2.0 (8100)

*Parameter levels and (the number of simulated data sets generated per level). 100 
simulations were generated for each of the 270 [=3×3×3×(1+3×3)] simulation 
scenarios, where effect size 1.0 only applies to simulations with 0 effective variable.
†The sample sizes.
‡The number of exposure or predictor variables.
§The correlation levels in a square diagonal matrix whose diagonal elements 
are 1.0 with uniform correlations between exposures (boxed correlations were 
simulated in a sensitivity analysis).
¶The number of effective or truly associated exposures.
**The effect sizes.
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the conventional modelling approach, univariable regression, 
has both the best sensitivity and worst FDP ranking. Univariable 
with FDR control yields an improved selection performance, 
although the estimation performance remains unchanged. A 
far greater proportion of MSE values are large for univariable 
regression compared with the other methods (the 75th percen-
tile was 0.31 for univariable and univariable-FDR vs 0.06 for 
multivariable and 0.01 for elastic net regression).

Researchers may value sensitivity more highly than FDP 
or vice versa, depending on the focus of research question. If 

we consider a composite of sensitivity and 1–FDP, the median 
F measure across simulation scenarios, then lasso and elastic net 
regression have the highest ranking whether sensitivity and 1–
FDP have a balanced weighting (F1) or whether sensitivity is a 
quarter or half as important (F0.25, F0.5) or twice or four times 
as important (F2, F4) as 1–FDP. The ranking of the methods 
across all simulations at F1 (elastic net>lasso>sPLS-DA>boost-
ed>stepwise>multivariable>univariable>univariable-FDR>-
Bayesian lasso) is fairly consistent across F0.25 to F4 differential 
weightings (with only boosted, stepwise and multivariable 

Figure 1  Performance of the variable selection methods (A) across all 270 simulation scenarios and stratified by (B) sample size, (C) number of 
exposure variables and (D) correlation levels. The mean sensitivity is plotted against 1 minus the mean false discovery proportion (1–FDP), where the size 
of each bubble is proportional to the median mean squared error (MSE). Error bars represent half SD values of sensitivity and 1–FDP. Note that the axes 
are truncated at 0.2, and the scaling of MSE values is relative and differs between plots. FDR, false discovery rate; sPLS-DA, sparse partial least squares 
discriminant analysis.
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swapping the middle-ranking positions; online supplementary 
table S2).

Influence of parameters on performance
We examined the performance across varying levels of the simu-
lation parameters, starting with those that are likely to be known 
by researchers before the statistical analyses (figure  1B–D). 
Bayesian lasso consistently occupied the upper  left quadrant, 
displaying very low FDP, but poor overall sensitivity. The other 
methods clustered between a 1–FDP ranging from around 
0.2 to 0.8, and sensitivity around 0.4–0.9. The relative posi-
tion of the methods in the FDP and sensitivity space generally 
remained consistent upon varying the parameters. The penal-
ised regression methods (lasso, elastic net and Bayesian lasso) 
and boosted regression consistently displayed the smallest MSE 
values across the levels of the parameters (see also online supple-
mentary figure S3). Mean sensitivity improved substantially with 
increasing sample size for all methods, and most so for Bayesian 
lasso (+0.44 from n=200 to n=1000) and multivariable regres-
sion (+0.34). The FDP was less affected by sample size; most 
methods showed minor improvements (up to  +0.11 in mean 
1–FDP), and Bayesian lasso and univariable(-FDR) showed a 
minimal decline. The median MSE for multivariable regression 
at the smallest sample size (n=200) was 1.8 times larger than the 
next largest MSE (univariable(-FDR) at n=200).

Sensitivity was minimally affected by the number of exposure 
variables (≤–0.13 for an increase from 10 to 50), whereas the 
1–FDP was strongly affected for conventional methods (–0.31 
to –0.48) and moderately affected for univariable-FDR (–0.13) 
and most of the variable selection methods (–0.08 to –0.20; 
except for the Bayesian lasso, which was negligibly affected). 
This may have been expected since there was no direct multi-
plicity adjustment in variable selection methods, except for the 
adaptable prior in Bayesian lasso, and this clearly demonstrates 
that cross-validation is no substitute.

For increasing correlation levels, the patterns were less consis-
tent across methods. Most methods seemed tolerant to small-to-
moderate correlations, with the sensitivity and/or FDP affected 
more seriously when the correlation levels increase from 
ρ=0.4 to ρ=0.8, as compared with an increase from ρ=0.0 to 
ρ=0.4. The exceptions were univariable and univariable-FDR, 
which showed a large drop in 1–FDP from the uncorrelated to 
correlated scenarios. With respect to the F measure, elastic net 
and lasso had the highest F0.25–4 measure rankings upon stratifica-
tion by correlation level, with the exception of univariable-FDR 
in the uncorrelated scenarios (which had the highest ranking at 
ρ=0.0; online supplementary table S2).

We also examined the performance for parameters that may be 
estimated but remain uncertain (online supplementary figure S2). 
As the number of effective (truly associated) exposures increased 
from 1 to 5, there was a moderate increase in the proportion 
of false discoveries for most methods, except the penalised 
regression methods. The sensitivity consistently increased across 
methods as the strength of the association increased.

To gain more insight into the behaviour of the methods, 
we stratified by all three parameters which can be assessed in 
advance by the researcher. In figure 2 we compare the perfor-
mance of more conventional methods, univariable-FDR and 
stepwise regression, with the less  frequently applied elastic 
net regression (results for each method are presented in online 
supplementary figure S3). Methods located at the top of the 
panel, with one panel for each performance metric, indicate 
superior performance. Elastic net clearly outperforms stepwise 

with respect to FDP, and also outperforms univariable-FDR in 
scenarios with a higher number of exposures (p=20 and p=50). 
All three methods exhibit a similar sensitivity with p=20 expo-
sures, whereas stepwise has the highest sensitivity with p=10 and 
univariable-FDR with p=50. The MSE values are lowest for 
elastic net, modestly reduced compared with stepwise and mark-
edly reduced compared with univariable-FDR in scenarios with 
p=20 and p=50 exposures.

Sensitivity analyses
Upon repeating the simulation analysis using a blocked correla-
tion structure, the selection and estimation performance was 
similar to the simulations with a uniform correlation structure, 
with the exception of a marked decrease in MSE for univari-
able(-FDR) with correlated exposures in a blocked structure 
(online supplementary figure S4). Optimising the sPLS-DA model 
based on the minimum plus one SE cross-validation prediction 
error, rather than the minimum error, led sPLS-DA to have a 
negligible FDP but poor sensitivity. The changes in performance 
for lasso and elastic net with a switch to optimisation based on 
the minimum error were less substantial; a moderate increase 
in FDP and minor increase in sensitivity were observed (online 
supplementary figure S5). As a post hoc analysis, we evaluated 
multivariable regression with FDR control, a relatively infre-
quently applied approach. It showed a similar performance as 
Bayesian lasso. There was a pronounced improvement in FDP 
and a moderate drop in sensitivity compared with the primary 
multivariable analyses without correction for multiplicity (online 
supplementary figure S6).

Discussion
In this simulation study, based on a case–control design, modern 
variable selection approaches nearly always outperformed 
conventional logistic regression approaches in recovering the 
underlying causal model when exposures were correlated. 
Single-exposure models (univariable either with or without 
FDR  control) and stepwise regression showed high FDP  and 
MSE values in many scenarios, partly attributable to lack 
of control for confounding by correlated exposures for the 
single-exposure models and overfitting for the stepwise regres-
sion models. Boosted regression also had a high FDP, although 
the average MSE was low. Full multivariable regression model-
ling yielded high MSE and moderately high FDP, especially with 
higher correlations among exposures. The Bayesian lasso had a 
very low FDP, although at the cost of greatly reduced sensitivity. 
Elastic net and lasso regression, and sPLS-DA performed best on 
average with respect to identifying associations across the wide 
array of simulation scenarios, for a balance of sensitivity and low 
FDP, and also across more lenient exploratory versus more strin-
gent confirmatory statistical inference rankings (ie, F0.25 to F4), 
although elastic net and lasso regression performed better with 
respect to estimation performance (ie, lower MSE).

Compared with lasso regression, elastic net regression was 
slightly more sensitive but also had a slightly higher FDP. The 
two-dimensional cross-validation often resulted in α close to 
1 (the lasso setting), so the general similarity is not surprising. 
Fixing α to a smaller value, such as 0.5, led to slightly higher 
sensitivity accompanied by greater increases in FDP for elastic 
net compared with lasso in scenarios with correlated exposures 
(data not shown). A more complex correlation structure may 
also have resulted in more divergent results between elastic net 
and lasso regression. The MSE values were smaller than for 
most other methods, which indicates that associations were 
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estimated more precisely, even though penalisation results in 
estimates that are biased towards the null. Alternative penalties 
have been developed which reduce this shrinkage bias for larger 
coefficients, such as non-convex and adaptive penalties (online 
supplementary appendix 1).

A drawback of frequentist penalisation methods is that these 
do not yield valid SEs or other uncertainty measures. Inference 
based on p values conditional on the selected subset (postselec-
tion inference), sequential FDR control and selection based on 
subsampling  stability have recently been explored,23–25 but are 

computationally demanding or are not yet available in standard 
statistical packages and were therefore not included in our simu-
lation study. The Bayesian lasso does provide (samples from) the 
full posterior for effect estimates, which can be used to draft 
credible intervals.26 The Bayesian lasso showed a very low sensi-
tivity in the present simulation study, particularly in scenarios 
with a smaller sample size (n=200) or a larger number of expo-
sure variables (q=50), reflecting that the prior corrects for multi-
plicity,27 in line with multivariable regression with FDR control. 
Using a slightly lower threshold for variable selection resulted 

Figure 2  Sensitivity and false discovery proportion (FDP; mean values) and mean squared error (MSE; median values) stratified by the three a priori known 
simulation scenario parameters for univariable regression with false discovery rate (FDR) correction, stepwise regression and elastic net regression.
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in behaviour more similar to the frequentist penalised methods 
(data not shown). In addition to selection criteria, the choice 
of the sampling (ie, Markov chain Monte Carlo) algorithm 
and (hyper)prior have been shown to influence performance of 
Bayesian variable selection approaches.28 29 Other simulation 
studies with a higher range of effective variables30 and high-di-
mensional scenarios17 found that Bayesian lasso outperformed 
frequentist lasso. sPLS-DA performed nearly as well at selecting 
associations in the present simulation study, although MSE 
values were somewhat larger than for the penalised regression 
models. The selection performance of sPLS-DA was much more 
sensitive to the model optimisation criteria than the penalised 
regression methods. The coefficient for each selected variable in 
a sPLS-DA model is calculated by summing over latent compo-
nents, and this renders the resulting coefficient difficult to inter-
pret unless the latent components have a direct interpretation. 
Another difficulty with sPLS-DA (and most other dimension 
reduction methods) is that there is no direct way to adjust for 
confounding. One option is to first preadjust the outcome and 
exposure variables for the confounding variables,31 and use the 
residuals from these models as input for the sPLS-DA model.  
(s)PLS-DA may prove more useful for predictive modelling, 
pattern recognition or delineating clusters than for variable 
selection.

Boosted  regression exhibited an undesirably high FDP. This 
may be because we relied on minimisation of the cross-validated 
risk for that method, which is known to result in models that 
have good predictive ability, but that often include too many vari-
ables, especially when the signal-to-noise ratio is low. We demon-
strated that several methods (lasso and elastic net and especially 
sPLS-DA) are sensitive to the model optimisation criteria. This 
deserves more attention in future simulation studies.32

There are many other methods for variable selection (also 
called model selection), and the battery of available approaches 
is expected to rapidly evolve; for instance, Bayesian kernel 
machine regression33 has recently been proposed as a suitable 
approach. Selection methods have more frequently been eval-
uated for high-dimensional data (p>>n), as variable selec-
tion methods have proven particularly useful for these data 
structures, such as genetics and omics data.34 These simula-
tions have limited generalisability because environmental and 
occupational exposure sets are often characterised by denser 
correlations than most genomics data  sets.35 There are also 
more evaluations of linear regression than of other link func-
tions, as they are generally computationally less demanding 
and have relatively high power. In a recent simulation based 
on a low-dimensional pregnancy exposome data set (p=237 
exposures and q=0–25 truly associated) and linear modelling, 
Agier et al7 found that deletion/substitution/addition36 and 
a stochastic search algorithm, Graphical Unit Evolutionary 
Stochastic Search,37 performed best; we did not include these 
methods because either a current R package was not avail-
able or the method was too computationally demanding for 
a large simulation study, and the latter method cannot be 
applied in a logistic regression framework. They also found 
that elastic net performed reasonably well. In an evaluation 
of multipollutant linear modelling (p=4–20), Sun et al8 
also report that lasso regression performed well. We evalu-
ated a relatively small number of exposures compared with 
the higher dimensional model  space that is expected to be 
considered in future environment/exposome-wide association 
studies. Nevertheless, the patterns in performance—notably 
in the presence of correlated exposures—would apply for the 
conventional methods and also be expected to apply for the 

more novel variable selection methods in scenarios with many 
more exposures.

A limitation of the present study is that simulation results 
entail some uncertainty; however, increasing the number 
of simulations (presently 100 per scenario aggregated over 
various combinations of scenarios) would not be expected to 
alter the trends or overall inferences. Not unexpectedly, we 
found that performance was highly dependent on most of the 
parameters we included in the design of the simulations. We 
observed that the sample size and strength of the association 
had the greatest influence on the sensitivity of methods, and 
selection performance of modern variable selection methods 
was generally more robust to changes in correlation levels. We 
tested parameters that we hypothesised would be most influ-
ential. Future work could assess others that are highly rele-
vant in environmental and occupational epidemiology, such 
as the effect of measurement error (due to, eg, limitations in 
the precision of analytical assays or error in exposure assess-
ment models), skewed exposure distributions, interactions or 
effect modification by other exposure variables, non-linear 
associations, mixed models and more complex correlation 
structures. It has been shown that measurement error, and 
correlated measurement error, usually attenuate effect esti-
mates in two-exposure modelling of chemical biomarkers and 
air pollutants.38 39 Furthermore, model mis-specification, for 
instance due to inclusion of a variable that improves predic-
tion irrespective of the causal structure, can induce bias due to 
omitted variable bias and collider stratification bias. Although 
the magnitude of this bias amplification might often be 
expected to be relatively minor compared with the reduction 
in residual confounding bias from correlated coexposures, 
the cumulative bias is a complex function of many factors 
including covariance and the strength of each association, and 
this is an area of methodological development that warrants 
further attention in variable selection modelling.40 41

Simultaneously assessing multiple exposures in an epide-
miological analysis, as in the recently championed environ-
ment-wide association study approach, reduces selective 
reporting and publication bias. Variable selection approaches, 
which mitigate the problem of multicollinearity, can comple-
ment or perhaps replace the single-exposure approach to 
environment-wide association studies. This study offers some 
guidance for choosing among various modelling approaches 
considering the structure of the data and whether the aim of 
the analysis is exploratory with a preference for sensitivity 
or confirmatory with a preference for specificity. While no 
single method was infallible in the presence of correlations, 
we demonstrated that several variable selection approaches 
yielded improved effect estimation and selection accuracy, 
and that penalised regression approaches in particular were an 
attractive option across an array of analytical scenarios.
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