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Abstract

We present new conditions for asymptotic stability and exponential stability of a class of stochastic 
recurrent neural networks with discrete and distributed time varying delays. Our approach is based on the 
method using fixed point theory, which do not resort to any Liapunov function or Liapunov functional. 
Our results neither require the boundedness, monotonicity and differentiability of the activation functions 
nor differentiability of the time varying delays. In particular, a class of neural networks without stochastic 
perturbations is also considered. Examples are given to illustrate our main results.
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1. Introduction and main results

Neural networks have received an increasing interest in various areas [3,5]. The stability of 
neural networks is critical for signal processing, especially in image processing and solving some 
classes of optimization problems [4,13,32,33]. For the stochastic effects to the dynamical behav-
iors of neural networks, Liao and Mao [11,12] initiated the study of stability and instability of 
stochastic neural networks.

Due to the finite switching speed of neurons and amplifiers, time delays which may lead to 
instability and bad performance in neural processing and signal transmission are commonly en-
countered in both biological and artificial neural networks. In addition, neural networks usually 
have a spatial extent due to the presence of a multitude of parallel pathways with a variety of 
axon sizes and lengths [27]. Thus there will be a distribution of conduction velocities along these 
pathways and a distribution of propagation delays [34]. In these circumstances the signal prop-
agation is not instantaneous and may not be suitably modeled with discrete delays. Therefore, 
a more appropriate way which incorporates continuously distributed delays in neural network 
models has been used. Further, due to random fluctuations and probabilistic causes in the net-
work, noises do exist in a neural network. Thus, it is necessary and rewarding to study stability 
properties of stochastic delayed neural networks.

Liapunov’s direct method has long been viewed the main classical method of studying stabil-
ity problems in many areas of differential equations. The success of Liapunov’s direct method 
depends on finding a suitable Liapunov function or Liapunov functional. However, it may be 
difficult to look for a good Liapunov functional for some classes of stochastic delay differential 
equations. Therefore, an alternative may be explored to overcome such difficulties.

It was proposed by Burton [2] and his co-workers to use a fixed point method to study the 
stability problem for deterministic systems. Luo [16] and Appleby [1] have applied this method 
to deal with the stability problems for stochastic delay differential equations, and afterwards, 
a great number of classes of stochastic delay differential equations are investigated by using 
fixed point methods, see, for example, [3,17,18,21,22]. It turns out that the fixed point method is a 
powerful technique in dealing with stability problems for deterministic and stochastic differential 
equations with delays. Moreover, it has an advantage that it can yield the existence, uniqueness 
and stability criteria of the considered system in one step.

In this paper, we consider a general class of stochastic neural networks with discrete and 
distributed varying delays which is described by

dxi(t) =
⎡
⎢⎣−cixi(t) +

n∑
j=1

aijfj (xj (t)) +
n∑

j=1

bij gj (xj (t − τ(t))) +
n∑

j=1

lij

t∫
t−r(t)

hj (xj (s)) ds

⎤
⎥⎦ dt

+
n∑

j=1

σij (t, xj (t), xj (t − τ(t))) dwj (t), (1)

or

dx(t) =
⎡
⎢⎣−Cx(t) + Af (x(t)) + Bg(x(t − τ(t))) + W

t∫
t−r(t)

h(x(s)) ds

⎤
⎥⎦ dt

+σ(t, x(t), x(t − τ(t))) dw(t),
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for i = 1, 2, 3, · · · , n, where x(t) = (x1(t), x2(t), · · · , xn(t))
T ∈R

n is the state vector associated 
with the neurons; C = diag(c1, c2, · · · , cn) > 0 where ci > 0 represents the rate with which the 
ith unit will reset its potential to the resting state in isolation when disconnected from the net-
work and the external stochastic perturbations; A = (aij )n×n, B = (bij )n×n and W = (lij )n×n

represent the connection weight matrix, delayed connection weight matrix and distributed de-
layed connection weight matrix, respectively; fj , gj , hj are activation functions, f (x(t)) =
(f1(x(t)), f2(x(t)), · · · , fn(x(t)))T ∈ R

n, g(x(t)) = (g1(x(t)), g2(x(t)), · · · , gn(x(t)))T ∈ R
n, 

h(x(t)) = (h1(x(t)), h2(x(t)), · · · , hn(x(t)))T ∈ R
n, where τ(t) and r(t) denote discrete time 

varying delay and the bound of a distributed time varying delay, respectively, τ(t) and r(t)
are nonnegative continuous functions. Moreover, w(t) = (w1(t), w2(t), · · · , wn(t))

T ∈ R
n is an 

n-dimensional Brownian motion defined on a complete probability space (�, F, P) with natu-
ral complete filtration {Ft }t≥0 (i.e. Ft = completion of σ {ω(s) : 0 ≤ s ≤ t}) and σ = (σij )n×n :
R

+ ×R
n ×R

n →R
n×n is the diffusion coefficient matrix. Denote ϑ = inft≥0{t − τ(t), t − r(t)}.

The initial condition for the system (1) is given by

x(t) = φ(t), t ∈ [ϑ,0], (2)

where t �→ φ(t) = (φ1(t), φ2(t), · · · , φn(t))
T ∈ C

(
[ϑ,0],Lp

F0
(�;Rn)

)
with the norm defined 

by

‖φ‖p = sup
ϑ≤s≤0

{
E

n∑
i=1

|φi(s)|p
}

,

where E denotes expectation with respect to the probability measure P and p ≥ 2.
Many interesting articles [6–8,14,24,28] have considered the special cases of (1). Hu et al. [6]

and Wan and Sun [28] studied a class of stochastic neural networks with the delays constant and 
discrete. The activation functions appearing in [6] are required to be bounded. Liao and Mao [14]
investigated exponential stability of a class of stochastic delay interval systems via Razumikihin-
type theorems, several exponential stability results were provided. However, the results are not 
only difficult to verify but also restrict to the case of the interval matrices Ã = B̃ = C̃ = 0. Sun 
and Cao [24] investigated the pth moment exponential stability of a class of stochastic differential 
equations with discrete bounded delays by using the method of variation parameter, inequality 
technique and stochastic analysis. This method was firstly used in [28], which does not require 
the boundedness, monotonicity and differentiability of the activation functions. However, the 
stability criteria in [24] requires that the delay functions are bounded, differentiable and their 
derivatives are simultaneously required to be not greater than 1. This may impose a very strict 
constraint on model because time delays sometimes vary dramatically with time in real circuits 
(see [31]). Huang et al. [7,8] investigated the exponential stability of stochastic differential equa-
tions with discrete time-varying delays with the help of a Liapunov function and Dini derivative. 
However, the use of their criteria depends very much on the choice of positive numbers kij etc. 
and a positive diagonal matrix M (see Theorem 3.3 in [7] and Theorem 3.3 in [8]).

The aim of this paper is to study the exponential stability and asymptotic stability of the 
stochastic delayed neural networks (1) with initial condition (2) by using a fixed point method. 
To obtain our main results, we suppose the following conditions are satisfied:
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(A1) The delays τ(t), r(t) are continuous functions such that t − τ(t) → ∞ and t − r(t) → ∞
as t → ∞.

(A2) The mappings fj (·), gj (·) and hj (·) satisfy f (0) ≡ 0, g(0) ≡ 0, h(0) ≡ 0, σ(t, 0, 0) ≡ 0
and are globally Lipschitz functions with Lipschitz constants αj , βj and γj , respectively, 
where j = 1, 2, 3, · · ·n.

(A3) For each i, j = 1, 2, · · · , n, there exist nonnegative constants μj and νj such that

(σij (t, x, y) − σij (t, u, v))2 ≤ μj (xj − uj )
2 + νj (yj − vj )

2.

Denote by x(t, 0, φ) a solution of the system (1) with the initial condition (2). The local Lipschitz 
condition and the linear growth condition on the functions f (·), g(·), h(·) and σ(t, ·, ·) guarantee 
the existence and uniqueness of a global solution for the system (1), we refer to [19] for detailed 
information. Clearly, system (1) admits a trivial solution x(t, 0) ≡ 0.

Definition 1.1. The trivial solution of system (1) is said to be stable in pth (p ≥ 2) moment if 
for arbitrary given ε > 0, there exists a δ > 0 such that ‖φ‖p < δ yields that

E‖x(t,0, φ)‖p < ε, t ≥ 0,

where φ ∈ C
(
[ϑ,0],Lp

F0
(�;Rn)

)
. In particular, when p = 2, the trivial solution is said to be 

mean square stable.

Definition 1.2. The trivial solution of system (1) is said to be asymptotically stable in pth (p ≥ 2)

moment if it is stable in pth moment and there exists a scalar δ > 0, such that ‖φ‖p < δ implies

lim
t→∞E‖x(t,0, φ)‖p = 0,

where φ ∈ C
(
[ϑ,0],Lp

F0
(�;Rn)

)
.

Definition 1.3. The trivial solution of system (1) is said to be pth (p ≥ 2) moment exponentially 
stable if there exists a pair of constants λ, C > 0 such that

E‖x(t,0, φ)‖p ≤ CE‖φ‖pe−λt , t ≥ 0,

holds for φ ∈ C
(
[ϑ,0],Lp

F0
(�;Rn)

)
. Especially, when p = 2, we speak of exponentially stable 

in mean square.

Different choices of norms can be considered on spaces of stochastic processes. The norms 
we choose should be such that the space under consideration is complete and the equation yields 
a contraction mapping with respect to the norm. For the system (1) with initial condition (2), we 
consider the following two different complete spaces which are defined by using two types of 
norms.
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Define Sφ the space of all Ft -adapted processes ϕ(t, ω) : [ϑ, ∞) × � → R
n such that ϕ ∈

C
(
[ϑ,∞),L

p

F0
(�;Rn)

)
. Moreover, we set ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0] and E 

∑n
i=1 |ϕi(t)|p → 0

as t → ∞. If we define a norm by

‖ϕ‖p := sup
t≥ϑ

(
E

n∑
i=1

|ϕi(t)|p
)

, (3)

then Sφ is a complete space. Using a contraction mapping defined on the space Sφ and applying 
a contraction mapping principle, we obtain our first result which is proved in Section 2.

Theorem 1.4. Suppose that the assumptions (A1)–(A3) hold. If the following conditions are 
satisfied,

(i) the function r(t) is bounded by a constant r (r > 0);
(ii) and such that

5p−1
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

+ 5p−1
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

(4)

+5p−1
n∑

i=1

(
r

ci

)p
⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q

+ 5p−1np−1
n∑

i=1

c
−p/2
i

(
μp/2 + νp/2

)
< 1,

where μ = max{μ1, μ2, · · · , μn}, ν = max{ν1, ν2, · · · , νn}, then the solution of (1)–(2) exists 
uniquely and is asymptotically stable in pth moment.

Consider the case when both the discrete delay τ(t) and r(t) in the distributed delay are 
bounded by a constant τ (τ > 0). Let φ ∈ L

p

F0
(�, C([ϑ, 0], Rn)), define Cφ to be the space of 

all Ft -adapted processes ϕ(t, ω) : [−τ, ∞) × � → R
n such that ϕ ∈ Lp(�, C([ϑ, ∞), Rn)). 

Moreover, we set ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0], ϕ(t, ·) = φ(ϑ) for t ∈ [−τ, ϑ] (in case −τ < ϑ ), 
and 

∑n
i=1 E supt−τ≤s≤t |ϕi(s)|p → 0 for t → ∞. If we define a norm by

‖ϕ‖p = sup
t≥0

[
n∑

i=1

E

(
sup

t−τ≤s≤t
|ϕi(s)|p

)]
, (5)

then Cφ is a complete space. Using a contraction mapping defined on the space Cφ and applying 
a contraction mapping principle, we obtain our second result which is proved in Section 3.

Theorem 1.5. Suppose that the assumptions (A1)–(A3) hold. If the following conditions are 
satisfied,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);
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(ii) and such that

5p−1ecτ c−p
n∑

i=1

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

+ 5p−1ecτ c−p
n∑

i=1

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

+5p−1τpecτ c−p
n∑

i=1

⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q

+5p−1npepcτ qpc1−p/2(2c)−1
(
μp/2 + νp/2

)
< 1, (6)

where c = min{c1, c2, · · · , cn}, μ = max{μ1, μ2, · · · , μn}, ν = max{ν1, ν2, · · · , νn};

then the solution of (1)–(2) exists uniquely and is asymptotically stable in pth moment. More than 
that, for every ε > 0, there exists a δ > 0 such that ‖φ‖ < δ implies∑n

i=1 E supt−τ≤s≤t |xi(s)|p < ε and limt→∞
{
E
(
supt−τ≤s≤t ‖x(s,0, φ)‖p

)}= 0.

Remark 1.6. In some papers, see, for example, [15,16,29,30], the norm for the space of stochastic 
process is defined by

‖ϕ‖[0,t] =
[
E

(
sup

s∈[0,t]
|ϕ(s,ω)|2

)]1/2

.

As in [16], in order to show P(S) ⊆ S , we need to estimate E sups∈[0,t] |I5(s)|2, where

I5(s) =
s∫

0

e− ∫ s
z h(u) du [c(z)x(z) + e(z)x(z − δ(z))] dw(z).

However, I5(s) is not a local martingale (see Section 8 for its proof). Hence, Burkholder–Davis–
Gundy Inequality can not be applied directly.

Define Bφ the space of all Ft -adapted processes ϕ(t, ω) : [ϑ, ∞) × � → R
n such that

ϕ ∈ C
(
[ϑ,∞),L

p

F0
(�;Rn)

)
. Moreover, we set ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0] and

eλt
E 
(∑n

i=1 |ϕi(t)|p
)→ 0 as t → ∞, where λ < min{c1, c2, · · · , cn}. Then Bφ is a complete 

space with respect to the norm (3). Using a contraction mapping defined on the space Bφ and ap-
plying a contraction mapping principle, we obtain our third result, which is proved in Section 4.

Theorem 1.7. Suppose that the assumptions (A1)–(A3) hold. If the following conditions are 
satisfied,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);
(ii) and such that
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5p−1
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

+ 5p−1
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

(7)

+5p−1
n∑

i=1

(
τ

ci

)p
⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q

+ 5p−1np−1
n∑

i=1

c
−p/2
i

(
μp/2 + νp/2

)
< 1,

where μ = max{μ1, μ2, · · · , μn}, ν = max{ν1, ν2, · · · , νn},

then the trivial solution of (1) is exponentially stable in pth moment.

Remark 1.8. Theorem 1.7 can, for example, be applied to establish exponential stability in 
pth moment of a two dimensional stochastically perturbed Hopfield neural network with time-
varying delay, the delay is bounded but not differentiable, see Example 7.3 for details.

Remark 1.9. Many articles, see, for example, [23,24] have studied the case and special case of 
stochastic neural network (1). However, they impose the following condition on the delays:

(H) the discrete delay τ(t) is differentiable function and r(t) in the distributed delay is non-
negative and bounded, that is, there exist constants τM , ζ , rM such that

0 ≤ τ(t) ≤ τM, τ ′(t) ≤ ζ, r(t) ≤ rM. (8)

In our results, condition (H) is replaced by other assumptions, which may be satisfied when (H)
is not.

Consider the case when there are no stochastic effects on the system (1), which then comes 
down to the following neural network described by

dxi(t)

dt
= −cixi(t) +

n∑
j=1

aijfj (xj (t)) +
n∑

j=1

bij gj (xj (t − τ(t))) +
n∑

j=1

lij

t∫
t−r(t)

hj (xj (s)) ds,

i = 1,2,3, · · · , n, (9)

or

dx(t)

dt
= −Cx(t) + Af (x(t)) + Bg(x − τ(t)) + D

t∫
t−r(t)

h(x(s)) ds, (10)

where x(·) = (x1(·), x2(·), · · · , xn(·))T is the neuron state vector of the transformed system (9).
The initial condition for the system (9) is

x(t) = φ(t), t ∈ [ϑ,0], (11)

where φ is a continuous function with the norm defined by ‖φ‖ = supϑ≤s≤0
∑n |φi(s)|.
i=1
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Assume that (A1)–(A3) are satisfied, then (9) and (11) admit a trivial solution x = 0. De-
note by x(t, 0, φ) = (x1(t, 0, φ1), · · · , xn(t, 0, φn))

T ∈ R
n the solution of (9) with initial condi-

tion (11).

Definition 1.10. For the system (9) with initial condition (11), we have that

(i) the trivial solution of (9) is said to be stable if for any ε > 0, there exists δ > 0 such that 
‖φ‖ < δ yields that ‖x(t, 0, φ)‖ < ε for t ≥ 0, where φ ∈ C([ϑ, 0], Rn);

(ii) the trivial solution of (9) is said to be asymptotically stable if it is stable and there exists a 
δ > 0 such that ‖φ‖ < δ implies that limt→∞ ‖x(t, 0, φ)‖ = 0, where φ ∈ C([ϑ, 0], Rn);

(iii) the trivial solution of (9) is said to be globally exponentially stable if there exists a pair 
of constants λ > 0 and C > 0 such that ‖x(t, 0, φ)‖ ≤ Ce−λt‖φ‖ for t ≥ 0, where φ ∈
C([ϑ, 0], Rn).

Define Hφ =H1φ ×H2φ × · · ·×Hnφ , where Hiφ is the space consisting of continuous func-
tions t �→ ϕi(t) : R+ → R such that ϕi(θ) = φi(θ) for ϑ ≤ θ ≤ 0 and ϕi(t) → 0 as t → ∞, 
i = 1, 2, · · · , n. For any ϕ = (ϕ1, ϕ2, · · · , ϕn) ∈ Hφ and η = (η1, η2, · · · , ηn) ∈ Hφ , if we define 
the metric as

d(ϕ,η) = sup
t≥ϑ

n∑
i=1

|ϕi(t) − ηi(t)|, (12)

then Hφ becomes a complete metric space. Using a contraction mapping defined on the space 
Hφ and applying a contraction mapping principle, we obtain our fourth result. Its proof is given 
by Section 5.

Theorem 1.11. Suppose that the assumptions (A1)–(A3) hold. If the following conditions are 
satisfied,

(i) the function r(t) is bounded by a constant r (r > 0);
(ii) and such that

n∑
i=1

1

ci

max
j=1,2,··· ,n |aijαj | +

n∑
i=1

1

ci

max
j=1,2,··· ,n |bijβj | +

n∑
i=1

r

ci

max
j=1,2,··· ,n |lij γj | < 1; (13)

then the solution of (9)–(11) exists uniquely and is asymptotically stable.

Define Kφ = K1φ ×K2φ × · · · ×Knφ , where Kiφ is the space consisting of continuous func-
tions t �→ ϕi(t) : R+ → R such that ϕi(θ) = φi(θ) for ϑ ≤ θ ≤ 0 and eλtϕi(t) → 0 as t → ∞, 
i = 1, 2 · · · , n, where λ < min{c1, c2, · · · , cn}. Then Kφ is a complete metric space with respect 
to the metric (12). Using a contraction mapping defined on the space Kφ and applying a contrac-
tion mapping principle, we obtain our fifth result, which is proved in Section 6.

Theorem 1.12. Suppose that the assumptions (A1)–(A3) hold. If the following conditions are 
satisfied,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);
(ii) and such that
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n∑
i=1

1

ci

max
j=1,2,··· ,n |aijαj | +

n∑
i=1

1

ci

max
j=1,2,··· ,n |bijβj | +

n∑
i=1

τ

ci

max
j=1,2,··· ,n |lij γj | < 1; (14)

then the trivial solution of (9) with initial condition (11) is exponentially stable.

Remark 1.13. Several exponential stability results [10,25,26] were provided for the system (9), 
by constructing an appropriate Liapunov functional and employing linear matrix inequality
(LMI) method. However, the delays in those results should satisfy the following condition (H). 
From our results, we provide other assumptions. The delays in our results are required to be 
bounded. Furthermore, Theorem 1.11 is an extension and improvement of the result in Lai and 
Zhang [9].

Remark 1.14. From Theorem 1.11 and Theorem 1.12, we find that the terms with f , g, h in 
equation (10) can be viewed as perturbations of the stable equation dx(t)/dt = −Cx(t). Condi-
tion (ii) in Theorem 1.11 and condition (ii) in Theorem 1.12 require the perturbation to be small 
relative to the stabilizing force of C. Theorem 1.12 can, for example, be applied to establish 
exponential stability of a two dimensional cellular neural network with time-varying delay, see 
Example 7.1 for details.

The paper is organized as follows. In Section 2, we present a proof of Theorem 1.4. The proof 
of Theorem 1.5 is presented in Section 3 and the proof of Theorem 1.7 is given in Section 4. 
We present the proofs of Theorem 1.11 and Theorem 1.12 in Section 5 and Section 6, respec-
tively. Examples to illustrate our main results are given in Section 7 and an appendix is given in 
Section 8.

2. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. We start with some preparations.

Lemma 2.1. ([28]) If w(t) = (w1(t), w2(t), · · · , wn(t))
T is a n-dimensional Brownian motion 

defined on a complete probability space (�, F, P), then we have the following formula

E

⎛
⎝ t∫

0

fi(s) dwi(s)

t∫
0

fj (s) dwj (s)

⎞
⎠= E

t∫
0

fi(s)fj (s) d〈wi,wi〉s ,

where 〈wi, wi〉s = δij s are the cross-variations, δij is correlation coefficient, fi is adapted and 
fi ∈ L2(� × [0, t]), i, j = 1, 2, · · · , n.

If we multiply both sides of (1) by eci t and integrate from 0 to t , we obtain that for t ≥ 0, 
i = 1, 2, 3, · · · , n,

xi(t) = e−ci t xi(0) +
t∫

0

e−ci (t−s)
n∑

j=1

aijfj (xj (s)) ds

+
t∫
e−ci (t−s)

n∑
j=1

bij gj (xj (s − τ(s))) ds (15)
0
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+
t∫

0

e−ci (t−s)

n∑
j=1

lij

s∫
s−r(s)

hj (xj (u)) duds

+
t∫

0

e−ci (t−s)
n∑

j=1

σij (s, xj (s), xj (s − τ(s))) dwj (s).

Lemma 2.2. Define an operator by (Qϕ)(t) = φ(t) for t ∈ [ϑ, 0], and for t ≥ 0, i =
1, 2, 3, · · · , n,

(Qϕ)i(t) = e−ci tϕi(0) +
t∫

0

e−ci (t−s)
n∑

j=1

aijfj (ϕj (s)) ds

+
t∫

0

e−ci (t−s)
n∑

j=1

bij gj (ϕj (s − τ(s))) ds (16)

+
t∫

0

e−ci (t−s)
n∑

j=1

lij

s∫
s−r(s)

hj (ϕj (u)) duds

+
t∫

0

e−ci (t−s)

n∑
j=1

σij (s, ϕj (s), ϕj (s − τ(s))) dwj (s)

:= J1i (t) + J2i (t) + J3i (t) + J4i (t) + J5i (t).

Suppose that the assumptions (A1)–(A3) hold. If conditions (i) and (ii) in Theorem 1.4 are satis-
fied, then Q : Sφ → Sφ and Q is a contraction mapping.

Proof. Step 1. From the definition of the metric space Sφ , we have that E 
∑n

i=1 |ϕi(t)|p < ∞, 
for all t ≥ 0, ϕ ∈ Sφ .

Step 2. We prove the continuity in pth moment of Qx on [0, ∞) for x ∈ Sφ . Let x ∈ Sφ , t1 ≥ 0, 
and let r ∈R with |r| sufficiently small and r > 0 if t1 = 0, we have

E

n∑
i=1

|J2i (t1 + r) − J2i (t1)|p = E

n∑
i=1

∣∣∣∣∣
t1∫

0

(
e−ci (t1+r−s) − e−ci (t1−s)

) n∑
j=1

aij fj (xj (s)) ds

+
t1+r∫
t1

e−ci (t1+r−s)
n∑

j=1

aij fj (xj (s)) ds

∣∣∣∣∣
p

→ 0 as r → 0.

Similarly, we have that
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E

n∑
i=1

|J3i (t1 + r) − J3i (t1)|p → 0 as r → 0,

E

n∑
i=1

|J4i (t1 + r) − J4i (t1)|p → 0 as r → 0.

In the following, we check the continuity of J5i(t).

E

n∑
i=1

|J5i (t1 + r) − J5i (t1)|p

= E

n∑
i=1

∣∣∣∣∣∣
t1∫

0

(
e−ci (t1+r−s) − e−ci (t1−s)

) n∑
j=1

σij (s, xj (s), xj (s − τ(s))) dwj (s)

+
t1+r∫
t1

e−ci (t1+r−s)
n∑

j=1

σij (s, xj (s), xj (s − τ(s))) dwj (s)

∣∣∣∣∣∣
p

≤ np−1
n∑

i=1

n∑
j=1

E

∣∣∣∣∣∣
t1∫

0

(
e−ci (t1+r−s) − e−ci (t1−s)

)
σij (s, xj (s), xj (s − τ(s))) dwj (s)

+
t1+r∫
t1

e−ci (t1+r−s)
n∑

j=1

σij (s, xj (s), xj (s − τ(s))) dwj (s)

∣∣∣∣∣∣
p

≤ (2n)p−1
n∑

i=1

n∑
j=1

E

∣∣∣∣∣∣
t1∫

0

(
e−ci (t1+r−s) − e−ci (t1−s)

)
σij (s, xj (s), xj (s − τ(s))) dwj (s)

∣∣∣∣∣∣
p

+(2n)p−1
n∑

i=1

n∑
j=1

E

∣∣∣∣∣∣
t1+r∫
t1

e−ci (t1+r−s)σij (s, xj (s), xj (s − τ(s))) dwj (s)

∣∣∣∣∣∣
p

= (2n)p−1
n∑

i=1

n∑
j=1

⎧⎪⎨
⎪⎩E

⎡
⎣ t1∫

0

(
e−ci (t1+r−s) − e−ci (t1−s)

)2
σ 2

ij (s, xj (s), xj (s − τ(s))) ds

⎤
⎦

p/2

+E

⎡
⎣ t1+r∫

t1

e−2ci (t1+r−s)σ 2
ij (s, xj (s), xj (s − τ(s))) ds

⎤
⎦

p/2
⎫⎪⎬
⎪⎭→ 0 as r → 0.

Thus, Q is continuous in pth moment on [0, ∞).

Step 3. We prove that Q(Sφ) ⊆ Sφ .

E

n∑
|(Qϕ)i(t)|p = E

n∑∣∣∣∣∣∣
5∑

Jji(t)

∣∣∣∣∣∣
p

≤ 5p−1
5∑

E

n∑
|Jji(t)|p. (17)
i=1 i=1 j=1 j=1 i=1
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Now, we estimate the terms on the right sides of the above inequality.

E

n∑
i=1

|J2i (t)|p ≤
n∑

i=1

E

⎧⎪⎨
⎪⎩
⎡
⎣ t∫

0

e−ci (t−s) ds

⎤
⎦

p/q t∫
0

e−ci (t−s)

⎡
⎣ n∑

j=1

|aij ||fj (ϕj (s))|
⎤
⎦

p

ds

⎫⎪⎬
⎪⎭

≤
n∑

i=1

c
−p/q
i E

⎧⎨
⎩

t∫
0

e−ci (t−s)

⎡
⎣ n∑

j=1

|aij ||αj ||ϕj (s)|
⎤
⎦

p

ds

⎫⎬
⎭

≤
n∑

i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q t∫
0

e−ci (t−s)
E

⎡
⎣ n∑

j=1

|ϕj (s)|p
⎤
⎦ ds. (18)

Since ϕ(t) ∈ Sφ , we have that limt→∞ E 
∑n

i=1 |ϕi(t)| = 0. Thus for any ε > 0, there exists 
T1 > 0 such that t ≥ T1 implies E 

∑n
i=1 |ϕi(t)| < ε, combining with (18), we obtain that

E

n∑
i=1

|J2i (t)|p ≤
n∑

i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q T1∫
0

e−ci (t−s)
E

⎡
⎣ n∑

j=1

|ϕj (s)|p
⎤
⎦ ds

+
n∑

i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q t∫
T1

e−ci (t−s)
E

⎡
⎣ n∑

j=1

|ϕj (s)|p
⎤
⎦ ds

<

n∑
i=1

c
−p
i e−ci t

(
eciT1 − 1

)⎛⎝ n∑
j=1

|aij |q |αj |q
⎞
⎠

p/q

sup
0≤s≤T1

⎧⎨
⎩E

⎡
⎣ n∑

j=1

|ϕj (s)|p
⎤
⎦
⎫⎬
⎭

+ε

n∑
i=1

c
−p
i

⎡
⎣ n∑

j=1

|aij |q |αj |q
⎤
⎦

p/q

Hence, from the fact that ci > 0 (i = 1, 2, · · · , n), we obtain that E 
∑n

i=1 |J2i (t)|p → 0
as t → ∞.

With the similar computation as (18), we obtain that

E

n∑
i=1

|J3i (t)|p ≤
n∑

i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q t∫
0

e−ci (t−s)
E

⎡
⎣ n∑

j=1

|ϕj (s − τ(s)))|p
⎤
⎦ ds

E

n∑
i=1

|J4i (t)|p ≤
n∑

i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q t∫
0

e−ci (t−s)
E

⎡
⎢⎣ n∑

j=1

∣∣∣∣∣∣∣
s∫

s−r(s)

ϕj (u) du

∣∣∣∣∣∣∣
p⎤
⎥⎦ ds

≤
n∑

i=1

(
r

ci

)p/q
⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q t∫
0

e−ci (t−s)

s∫
s−r(s)

E

⎡
⎣ n∑

j=1

|ϕj (u)|p
⎤
⎦ duds.

(19)
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Using Lemma 2.1 and Hölder inequality, we obtain that

E

n∑
i=1

|J5i (t)|p

≤ np−1
n∑

i=1

n∑
j=1

E

⎧⎪⎨
⎪⎩
⎡
⎣ t∫

0

e−ci (t−s)|σij (s, ϕj (s), ϕj (s − τ(s)))|dwj (s)

⎤
⎦

2
⎫⎪⎬
⎪⎭

p/2

(20)

= np−1
n∑

i=1

n∑
j=1

E

⎡
⎣ t∫

0

e−2ci (t−s)σ 2
ij (s, ϕj (s), ϕj (s − τ(s))) ds

⎤
⎦

p/2

≤ np−1
n∑

i=1

n∑
j=1

E

⎡
⎣ t∫

0

e−2ci (t−s)
(
μjϕ

2
j (s) + νjϕ

2
j (s − τ(s))

)
ds

⎤
⎦

p/2

≤ np−12p/2−1
n∑

i=1

n∑
j=1

E

⎡
⎢⎣
⎛
⎝ t∫

0

e−2ci (t−s)μjϕ
2
j (s) ds

⎞
⎠

p/2

+
⎛
⎝ t∫

0

e−2ci (t−s)νjϕ
2
j (s − τ(s)) ds

⎞
⎠

p/2
⎤
⎥⎦

≤ np−12p/2−1
n∑

i=1

n∑
j=1

E

⎡
⎢⎣
⎛
⎝ t∫

0

e−2ci (t−s) ds

⎞
⎠

p/2−1 t∫
0

e−2ci (t−s)μ
p/2
j |ϕj (s)|p ds

⎤
⎥⎦

+np−12p/2−1
n∑

i=1

n∑
j=1

E

⎧⎪⎨
⎪⎩
⎛
⎝ t∫

0

e−2ci (t−s) ds

⎞
⎠

p/2−1 t∫
0

e−2ci (t−s)ν
p/2
j |ϕj (s − τ(s))|p ds

⎫⎪⎬
⎪⎭

≤ np−1
n∑

i=1

c
1−p/2
i

⎧⎨
⎩μp/2

t∫
0

e−2ci (t−s)
E

⎛
⎝ n∑

j=1

|ϕj (s)|p
⎞
⎠ ds

+νp/2

t∫
0

e−2ci (t−s)E

⎛
⎝ n∑

j=1

|ϕj (s − τ(s))|p
⎞
⎠ ds

⎫⎬
⎭

≤ np−1
n∑

i=1

c
1−p/2
i

⎧⎨
⎩μp/2

t∫
0

e−ci (t−s)
E

⎛
⎝ n∑

j=1

|ϕj (s)|p
⎞
⎠ ds

+νp/2

t∫
e−ci (t−s)E

⎡
⎣ n∑

j=1

|ϕj (s − τ(s))|p
⎤
⎦ ds

⎫⎬
⎭ .
0
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Since E 
∑n

i=1 |ϕi(t)| → 0, t − τ(t) → ∞ and t − r(t) → ∞ as t → ∞, for each ε > 0, there 
exists T2 > 0 such that t ≥ T2 implies E 

∑n
i=1 |ϕi(t − τ(s))| < ε and E 

∑n
i=1 |ϕi(t − r(t))| < ε. 

From (19), we obtain that

E

n∑
i=1

|J3i (t)|p <

n∑
i=1

(
1

ci

)p/q

e−ci t

T2∫
0

ecis ds

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

× sup
ϑ≤s≤T2

⎡
⎣E
⎛
⎝ n∑

j=1

|ϕj (s − τ(s)))|p
⎞
⎠
⎤
⎦+ ε

n∑
i=1

c
−p
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

E

n∑
i=1

|J4i (t)|p <

n∑
i=1

re−ci t

(
r

ci

)p/q
⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q

× sup
ϑ≤u≤T2

⎡
⎣E
⎛
⎝ n∑

j=1

|ϕj (u)|p
⎞
⎠
⎤
⎦ T2∫

0

ecis ds

+
n∑

i=1

εr

ci

(
r

ci

)p/q
⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q

.

Further, from (20), we obtain

E

n∑
i=1

|J5i (t)|p < np−1
n∑

i=1

c
1−p/2
i

⎧⎨
⎩μp/2 sup

0≤s≤T2

⎡
⎣E
⎛
⎝ n∑

j=1

|ϕj (s)|p
⎞
⎠
⎤
⎦

+νp/2 sup
ϑ≤s≤T2

⎡
⎣E

⎛
⎝ n∑

j=1

|ϕj (s)|p
⎞
⎠
⎤
⎦
⎫⎬
⎭

T2∫
0

e−ci (t−s) ds

+np−1
n∑

i=1

c
1−p/2
i

[
ε(μp/2 + νp/2)

ci

]
.

Hence, let t → ∞, from the fact that ci > 0 (i = 1, 2, · · · , n), we obtain that

E

n∑
i=1

|J3i (t)|p → 0, E

n∑
i=1

|J4i (t)|p → 0, and E

n∑
i=1

|J5i (t)|p → 0.

Thus, combining with (17), we obtain that E 
∑n

i=1 |(Qϕ)i(t)|p → 0 as E 
∑n

i=1 |ϕi(t)|p → 0. 
Therefore, Q : Sφ → Sφ .

Step 4. We prove that Q is a contraction mapping. For any ϕ, ψ ∈ Sφ , from (18)–(20), we obtain
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sup
s≥ϑ

{
E

n∑
i=1

|(Qϕ)i(s) − (Qψ)i(s)|p
}

≤ 4p−1 sup
s≥ϑ

n∑
i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q s∫
0

e−ci (s−u)
E

⎛
⎝ n∑

j=1

|ϕj (u) − ψ(u)|p
⎞
⎠ du

+4p−1 sup
s≥ϑ

n∑
i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

×
s∫

0

e−ci (s−u)
E

⎛
⎝ n∑

j=1

|ϕj (u − τ(u))) − ψj (u − τ(u)))|p
⎞
⎠ du

+4p−1 sup
s≥ϑ

n∑
i=1

(
τ

ci

)p/q
⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q s∫
0

e−ci (s−u)

×
u∫

u−r(u)

E

⎛
⎝ n∑

j=1

|ϕj (v) − ψj (v)|p
⎞
⎠ dv du

+4p−1np−1 sup
s≥ϑ

⎧⎨
⎩

n∑
i=1

c
1−p/2
i

⎡
⎣μp/2

s∫
0

e−ci (s−u)
E

⎛
⎝ n∑

j=1

|ϕj (u) − ψj(u)|p
⎞
⎠ du

+νp/2

s∫
0

e−ci (s−u)E

⎛
⎝ n∑

j=1

|ϕj (u − τ(u)) − ψj(u − τ(u))|p
⎞
⎠ du

⎤
⎦
⎫⎬
⎭

≤ 4p−1

⎧⎪⎨
⎪⎩

n∑
i=1

c
−p
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

+
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

+
n∑

i=1

(
r

ci

)p
⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q

+ np−1
n∑

i=1

c
−p/2
i

(
μp/2 + νp/2

)⎫⎪⎬
⎪⎭ sup

s≥ϑ

⎧⎨
⎩E

n∑
j=1

|ϕj (s) − ψj(s)|p
⎫⎬
⎭ .

From (4), we obtain that Q : Sφ → Sφ is a contraction mapping. �
We are now ready to prove Theorem 1.4.
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Proof. From Lemma 2.2, by the contraction mapping principle, we obtain that Q has a unique 
fixed point x(t), which is a solution of (1) with x(t) = φ(t) as t ∈ [ϑ, 0] and E 

∑n
i=1 |xi(t)|p → 0

as t → ∞.
Now, we prove that the trivial solution of (1) is pth moment stable. Let ε > 0 be given and 

choose δ > 0 (δ < ε) such that 5p−1δ < (1 − α)ε, where α is the left hand side of (4).
If x(t) = (x1(t), x2(t), · · ·xn(t))

T is a solution of (1) with the initial condition (2) satisfying 
E 
∑n

i=1 |φi(t)|p < δ, then x(t) = (Qx)(t) defined in (16). We claim that E 
∑n

i=1 |xi(t)|p < ε for 
all t ≥ 0. Notice that E 

∑n
i=1 |xi(t)|p < ε for t ∈ [ϑ, 0], we suppose that there exists t∗ > 0 such 

that E 
∑n

i=1 |xi(t
∗)|p = ε and E 

∑n
i=1 |xi(t)|p < ε for ϑ ≤ t < t∗, then it follows from (4), we 

obtain that

E

n∑
i=1

|xi(t
∗)|p ≤ 5p−1

E

n∑
i=1

e−pci t
∗ |xi(0)|p

+5p−1
n∑

i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q t∗∫
0

e−ci (t
∗−s)

E

⎛
⎝ n∑

j=1

|xj (s)|p
⎞
⎠ ds

+5p−1
n∑

i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

×
t∗∫

0

e−ci (t−s)
E

⎛
⎝ n∑

j=1

|xj (s − τ(s)))|p
⎞
⎠ ds

+5p−1
n∑

i=1

(
r

ci

)p/q
⎡
⎣ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q t∗∫
0

e−ci (t
∗−s)

×
s∫

s−r(s)

E

⎛
⎝ n∑

j=1

|xj (u)|p
⎞
⎠ duds

+5p−1np−1
n∑

i=1

c
1−p/2
i

⎡
⎣μp/2

t∗∫
0

e−ci (t
∗−s)

E

⎛
⎝ n∑

j=1

|xj (s)|p
⎞
⎠ ds

+νp/2

t∗∫
0

e−ci (t−s)E

⎛
⎝ n∑

j=1

|xj (s − τ(s))|p
⎞
⎠ ds

⎤
⎦

≤
⎡
⎢⎣5p−1

n∑
i=1

c
−p
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

+ 5p−1
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

+5p−1
n∑(

r

ci

)p
⎛
⎝ n∑

|lij |q |γj |q
⎞
⎠

p/q
i=1 j=1
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+5p−1np−1
n∑

i=1

c
−p/2
i

(
μp/2 + νp/2

)⎤⎥⎦ ε + 5p−1δ

< (1 − α)ε + αε = ε,

which is a contradiction. Therefore, the trivial solution of (1) is asymptotically stable in pth 
moment. �
Corollary 2.3. Suppose that the assumptions (A1)–(A3) hold. If the following conditions are 
satisfied,

(i) the function r(t) is bounded by a constant r (r > 0);
(ii) and such that

5
n∑

i=1

c−2
i

⎛
⎝ n∑

j=1

a2
ij α

2
j

⎞
⎠+ 5

n∑
i=1

c−2
i

⎛
⎝ n∑

j=1

b2
ij β

2
j

⎞
⎠+ 5

n∑
i=1

(
r

ci

)2
⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

+ 20n

n∑
i=1

c−1
i (μ + ν) < 1,

where μ, ν are defined as in Theorem 1.4, then the trivial solution of (1) is asymptotically stable 
in mean square.

Consider the stochastic neural networks without distributed delays

dxi(t) =
⎡
⎣−cixi(t) +

n∑
j=1

aij fj (xj (t)) +
n∑

j=1

bij gj (xj (t − τ(t)))

⎤
⎦ dt

+
n∑

j=1

σij (t, xj (t), xj (t − τ(t))) dwj (t) (21)

for i = 1, 2, 3, · · · , n.

Corollary 2.4. Suppose that the assumptions (A1)–(A3) hold. The trivial solution of (21) is 
asymptotically stable in pth moment if the following inequality holds,

4p−1
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

+ 4p−1
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

+ 4p−1np−1
n∑

i=1

c
−p/2
i

(
μp/2 + νp/2

)
< 1, (22)

where μ, ν are defined as in Theorem 1.4.
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Remark 2.5. Condition (A3) can be relaxed. In fact, if p = 2, then

(A3′) ∀i,

n∑
j=1

(
σij (t, x, y) − σij (t, u, v)

)2 ≤
n∑

j=1

μj (xj − uj )
2 + νj (yj − vj )

2 (23)

is sufficient, as can be easily observed from the proof of Theorem 1.4. If p ≥ 2, then (A3) can 
also be replaced by (A3′), but the factor np−1 in front of the last term in (4) has to be replaced by 
n(3p/2)−2. This can be seen from the proof of Theorem 1.4 with the aid of a few more applications
of the Hölder inequality.

3. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. We start with some preparations.

Lemma 3.1. Define an operator by (Pϕ)(t) = φ(t) for t ∈ [−τ, 0], and for t ≥ 0, (Pϕ)(t) is 
defined by the right hand side of (16), if the conditions (i) and (ii) in Theorem 1.5 are satisfied, 
then P : Cφ → Cφ is a contraction mapping.

Proof. Observe that all terms at the right hand side of (16) have continuous paths, almost surely. 
Now, we prove that P(Cφ) ⊆ Cφ .

n∑
i=1

E

[
sup

t−τ≤s≤t
|(Pϕ)i(s)|p

]
=

n∑
i=1

E

⎡
⎣ sup

t−τ≤s≤t

∣∣∣∣∣∣
5∑

j=1

Jji(s)

∣∣∣∣∣∣
p⎤
⎦

≤ 5p−1
5∑

j=1

n∑
i=1

E

[
sup

t−τ≤s≤t
|Jji(s)|p

]
.

We estimate the terms on the right-hand side of the above inequality. Let c = min{c1, c2, c3, · · · ,

cn} and let q be such that 1/p + 1/q = 1,

E

[
n∑

i=1

sup
t−τ≤s≤t

|J2i (s)|p
]

≤ c−p/q
E

⎧⎨
⎩

n∑
i=1

sup
t−τ≤s≤t

⎡
⎣ s∫

0

e−c(s−u)

⎛
⎝ n∑

j=1

|aij |αj |ϕj (u)|
⎞
⎠

p

du

⎤
⎦
⎫⎬
⎭

≤ c−p/q
n∑

i=1

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

E

⎧⎨
⎩ sup

t−τ≤s≤t

⎡
⎣ s∫

0

e−c(s−u)

⎛
⎝ n∑

j=1

|ϕj (u)|p
⎞
⎠ du

⎤
⎦
⎫⎬
⎭

≤ c−p/q

n∑
i=1

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q
n∑

j=1

E

⎧⎨
⎩ sup

t−τ≤s≤t

⎡
⎣ s∫

e−c(s−u)|ϕj (u)|p du

⎤
⎦
⎫⎬
⎭

0
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≤ c−p/q
n∑

i=1

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q
n∑

j=1

E

⎧⎨
⎩ sup

t−τ≤s≤t

⎡
⎣ s∫

0

e−c(s−u)

(
sup

u−τ≤v≤u
|ϕj (v)|p

)
du

⎤
⎦
⎫⎬
⎭

≤ ecτ c−p/q
n∑

i=1

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q
n∑

j=1

E

⎡
⎣ t∫

0

e−c(t−u)

(
sup

u−τ≤v≤u
|ϕj (v)|p

)
du

⎤
⎦ . (24)

Since 
∑n

j=1 E supt−τ≤s≤t |ϕj (s)|p → 0 as t → ∞, then for any ε > 0, there exists such that 
t ≥ T1 implies

n∑
j=1

E

[
sup

t−τ≤s≤t
|ϕj (s)|p

]
< ε,

which yields that

E

⎡
⎣ t∫

0

e−c(t−u)

(
sup

u−τ≤v≤u
|ϕj (v)|p

)
du

⎤
⎦=

T1∫
0

e−c(t−u)
E

(
sup

u−τ≤v≤u
|ϕj (v)|p

)
du

+
t∫

T1

e−c(t−u)
E

(
sup

u−τ≤v≤u
|ϕj (v)|p

)
du

≤
T1∫

0

e−c(t−u)

(
sup

ϑ≤v≤T1

|ϕj (v)|p
)

du + ε

c
.

Then combining with (24), we obtain that E 
∑n

i=1 supt−τ≤s≤t |J2i (s)|p → 0 as t → ∞. Simi-
larly, we obtain that

E

n∑
i=1

sup
t−τ≤s≤t

|J3i (s)|p

≤ c−p/q

n∑
i=1

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

E

⎧⎨
⎩ sup

t−τ≤s≤t

⎡
⎣ s∫

0

e−c(s−u)

⎛
⎝ n∑

j=1

|ϕj (u − τ(u))|p
⎞
⎠ du

⎤
⎦
⎫⎬
⎭

≤ c−p/q

n∑
i=1

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q
n∑

j=1

E

⎧⎨
⎩ sup

t−τ≤s≤t

⎡
⎣ s∫

0

e−c(s−u)|ϕj (u − τ(u))|p du

⎤
⎦
⎫⎬
⎭

≤ c−p/q

n∑
i=1

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q
n∑

j=1

E

⎧⎨
⎩ sup

t−τ≤s≤t

⎡
⎣ s∫

0

e−c(s−u) sup
u−τ≤v≤u

|ϕj (v)|p du

⎤
⎦
⎫⎬
⎭

≤ ecτ c−p/q

n∑
i=1

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q
n∑

j=1

E

⎡
⎣ t∫

e−c(t−u) sup
u−τ≤v≤u

|ϕj (v)|p du

⎤
⎦ (25)
0
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E

[
n∑

i=1

sup
t−τ≤s≤t

|J4i (s)|p
]

≤ c−p/q
n∑

i=1

⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q

E

⎧⎪⎨
⎪⎩ sup

t−τ≤s≤t

⎡
⎢⎣

s∫
0

e−c(s−u)
n∑

j=1

∣∣∣∣∣∣∣
u∫

u−r(u)

ϕj (v) dv

∣∣∣∣∣∣∣
p

du

⎤
⎥⎦
⎫⎪⎬
⎪⎭

≤ c−p/q
n∑

i=1

⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q
n∑

j=1

E

⎧⎪⎨
⎪⎩ sup

t−τ≤s≤t

⎡
⎢⎣

s∫
0

e−c(s−u)

∣∣∣∣∣∣∣
u∫

u−r(u)

ϕj (v) dv

∣∣∣∣∣∣∣
p

du

⎤
⎥⎦
⎫⎪⎬
⎪⎭

≤ τpc−p/q
n∑

i=1

⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q
n∑

j=1

E

⎧⎨
⎩ sup

t−τ≤s≤t

⎡
⎣ s∫

0

e−c(s−u) sup
u−τ≤v≤u

|ϕj (v)|p du

⎤
⎦
⎫⎬
⎭

≤ τpecτ c−p/q
n∑

i=1

⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q
n∑

j=1

E

⎡
⎣ t∫

0

e−c(t−u) sup
u−τ≤v≤u

|ϕj (v)|p du

⎤
⎦ . (26)

Let μ = max{μ1, μ2, · · · , μn}, ν = max{ν1, ν2, · · · , νn}. Due to the fact that

∣∣∣∣∣
s∫

0

e−ci (s−u)σij (u,ϕj (u),ϕj (u − τ(u))) dwj (u)

∣∣∣∣∣
p

is a submartingale and the supremum of submartingale is also a submartingale, using Doob’s 
inequality for positive submartingale, we obtain that

E

[
n∑

i=1

sup
t−τ≤s≤t

|J5i (s)|p
]

≤ np−1
n∑

i=1

n∑
j=1

E

⎡
⎣ sup

t−τ≤s≤t

∣∣∣∣∣∣
s∫

0

e−ci (s−u)σij (u,ϕj (u),ϕj (u − τ(u))) dwj (u)

∣∣∣∣∣∣
p⎤
⎦

≤ np−1
n∑

i=1

n∑
j=1

E

⎧⎨
⎩ sup

t−τ≤s≤t

⎡
⎣ sup

t−τ≤r≤t

∣∣∣∣∣∣
s∫

0

e−c(r−u)σij (u,ϕj (u),ϕj (u − τ(u))) dwj (u)

∣∣∣∣∣∣
p⎤
⎦
⎫⎬
⎭

≤ np−1
n∑

i=1

n∑
j=1

qp sup
t−τ≤s≤t

⎧⎨
⎩E
⎡
⎣ sup

t−τ≤r≤t

∣∣∣∣∣∣
s∫

0

e−c(r−u)σij (u,ϕj (u),ϕj (u − τ(u))) dwj (u)

∣∣∣∣∣∣
p⎤
⎦
⎫⎬
⎭

≤ np−1epcτ

n∑
i=1

n∑
j=1

qp sup
t−τ≤s≤t

⎡
⎣E
∣∣∣∣∣∣

s∫
e−c(t−u)σij (u,ϕj (u),ϕj (u − τ(u))) dwj (u)

∣∣∣∣∣∣
p⎤
⎦

0
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≤ np−1epcτ

n∑
i=1

n∑
j=1

qp sup
t−τ≤s≤t

⎡
⎢⎣E
⎛
⎝ s∫

0

e−2c(t−u)σ 2
ij (u,ϕj (u),ϕj (u − τ(u))) du

⎞
⎠

p/2
⎤
⎥⎦

≤ np−1epcτ

n∑
i=1

n∑
j=1

qp2p/2−1 sup
t−τ≤s≤t

⎧⎪⎨
⎪⎩E

⎡
⎢⎣
⎛
⎝ s∫

0

e−2c(t−u) du

⎞
⎠

p/2−1

×
⎛
⎝ s∫

0

e−2c(t−u)μ
p/2
j |ϕj (u)|p du +

s∫
0

e−2c(T −u)ν
p/2
j |ϕj (u − τ(u))|p du

⎞
⎠
⎤
⎦
⎫⎬
⎭

≤ npepcτ qpc1−p/2(μp/2 + νp/2)

t∫
0

e−2c(T −u)

n∑
j=1

E

[
sup

u−τ≤v≤u
|ϕj (v)|p du

]
. (27)

Using the similar arguments as for the term (24) and combining with (25), (26) and (27), we 
obtain that

n∑
i=1

E

[
sup

t−τ≤s≤t
|(Pϕ)i(s)|p

]
→ 0 as t → ∞.

Thus, P(Cφ) ⊆ Cφ .
Finally, we prove that P is a contraction mapping. For any ϕ, ψ ∈ Cφ , from (24)–(27), we 

obtain that

sup
t≥0

{
E

[
n∑

i=1

sup
t−τ≤s≤t

|(Pϕ)i(s) − (Pψ)i(s)|p
]}

≤ 4p−1 sup
t≥0

⎧⎨
⎩E

⎡
⎣ n∑

i=1

sup
t−τ≤s≤t

∣∣∣∣∣∣
s∫

0

e−ci (s−u)

n∑
j=1

aij

(
fj (ϕj (u)) − fj (ψj (u))

)
du

∣∣∣∣∣∣
p⎤
⎦
⎫⎬
⎭

+4p−1 sup
t≥0

{
E

[
n∑

i=1

sup
t−τ≤s≤t

∣∣∣∣∣
s∫

0

e−ci (s−u)

n∑
j=1

bij

(
gj (ϕj (u − τ(u)))

−gj (ψj (u − τ(u)))
)

du

∣∣∣∣∣
p]}

+4p−1 sup
t≥0

⎧⎪⎨
⎪⎩E

⎡
⎢⎣ n∑

i=1

sup
t−τ≤s≤t

∣∣∣∣∣∣∣
s∫

0

e−ci (s−u)
n∑

j=1

lij

s∫
s−r(s)

(
hj (ϕj (v)) − hj (ψj (v))

)
dv du

∣∣∣∣∣∣∣
p⎤
⎥⎦
⎫⎪⎬
⎪⎭

+4p−1 sup
t≥0

⎧⎨
⎩E

⎡
⎣ n∑

i=1

sup
t−τ≤s≤t

∣∣∣∣∣
s∫
e−ci (s−u)

n∑
j=1

[σij (u,ϕj (u),ϕj (u − τ(u)))
0
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− σij (u,ψj (u),ψj (u − τ(u)))]dωj (u)

∣∣∣∣∣
p
⎤
⎦
⎫⎬
⎭

≤ 4p−1

{
ecτ c−p

n∑
i=1

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

+ ecτ c−p
n∑

i=1

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

+τpecτ c−p

n∑
i=1

⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q

+npepcτ qpc1−p/2(2c)−1
(
μp/2 + νp/2

)}
sup
t≥0

n∑
j=1

E

[
sup

t−τ≤s≤t
|ϕj (s) − ψj(s)|p

]
.

From (6), we obtain that P : Cφ → Cφ is a contraction mapping. �
We are now ready to prove Theorem 1.5.

Proof. From Lemma 3.1, by a contraction mapping principle, we obtain that P has a 
unique fixed point x(t), which is a solution of (1) with x(t) = φ(t) as t ∈ [−τ, 0] and ∑n

i=1 E 
(
supt−τ≤s≤t |xi(s)|p

)→ 0 as t → ∞.
We prove that the trivial solution of (1) is pth moment stable. Let ε > 0 be given, we suppose 

that there exists t∗ > 0 such that

n∑
i=1

E

(
sup

t∗−τ≤s≤t∗
|xi(s)|p

)
= ε,

n∑
i=1

E

(
sup

t−τ≤s≤t
|xi(s)|p

)
< ε for ϑ ≤ t < t∗,

choose 0 < δ < ε satisfying 5p−1e−pct∗δ < (1 − α)ε, where α is the left hand side of (6). If 
x(t) = (x1(t), x2(t), · · ·xn(t))

T is a solution of (1) with the initial condition satisfying ‖φ‖p < δ, 
then x(t) = (Px)(t) defined in (16). We claim that ‖x‖p < ε for all t ≥ 0. It follows from (6), 
we obtain that

n∑
i=1

E

[
sup

t∗−τ≤s≤t∗
|xi(s)|p

]

≤ 5p−1e−pct∗δ + 5p−1

⎧⎪⎨
⎪⎩ecτ c−p

n∑
i=1

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

+ ecτ c−p

n∑
i=1

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

+τpecτ c−p
n∑

i=1

⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q

+ npepcτ qpc1−p/2(2c)−1
(
μp/2 + νp/2

)⎫⎪⎬
⎪⎭ ε

< (1 − α)ε + αε = ε,

which is a contradiction. Thus, the proof follows. �
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4. Proof of Theorem 1.7

In this section, we prove Theorem 1.7. Define an operator (Qϕ)(t) = φ(t) for t ∈ [ϑ, 0] and 
for t ≥ 0, (Qϕ)(t) is defined by the right hand side of (16). Following the proof of Theorem 1.4, 
we find that to show Theorem 1.7, we only need to prove that eλt

E 
∑n

i=1 |(Qϕ)i(t)|p → 0 as 
t → ∞. It follows from (16) that

eλt
E

n∑
i=1

|(Qϕ)i(t)|p = eλt
E

n∑
i=1

∣∣∣∣∣∣
5∑

j=1

Jji(t)

∣∣∣∣∣∣
p

≤ 5p−1eλt

5∑
j=1

E

(
n∑

i=1

|Jji(t)|p
)

. (28)

Now, we estimate the right-hand terms of (28). First, by using Hölder inequality,

eλt
E

n∑
i=1

|J2i (t)|p ≤
n∑

i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q t∫
0

e(λ−ci )(t−s)eλs
E

⎛
⎝ n∑

j=1

|ϕj (s)|p
⎞
⎠ ds.

(29)

With the similar computation as (29), we obtain that

eλt
E

n∑
i=1

|J3i (t)|p ≤ eλτ
n∑

i=1

c
−p/q
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

×
t∫

0

e−(ci−λ)(t−s)eλ(s−τ(s))
E

⎡
⎣ n∑

j=1

|ϕj (s − τ(s)))|p
⎤
⎦ ds. (30)

eλt
E

n∑
i=1

|J4i (t)|p ≤ eλτ

n∑
i=1

(
τ

ci

)p/q
⎛
⎝ n∑

j=1

|lij |q |γj |q
⎞
⎠

p/q t∫
0

e−(ci−λ)(t−s)

×
s∫

s−r(s)

eλu
E

⎛
⎝ n∑

j=1

|ϕj (u)|p
⎞
⎠ duds. (31)

Using Lemma 2.1 and Hölder inequality, we obtain that

eλt
E

n∑
i=1

|J5i (t)|p

≤ np−1
n∑

i=1

c
1−p/2
i

⎡
⎣μp/2

t∫
0

e−(ci−λ)(t−s)eλs
E

⎛
⎝ n∑

j=1

|ϕj (s)|p
⎞
⎠ ds

⎤
⎦ (32)

+ eλτ np−1
n∑

i=1

c
1−p/2
i

⎡
⎣νp/2

t∫
e−(ci−λ)(t−s)eλ(s−τ(s))

E

⎛
⎝ n∑

j=1

|ϕj (s − τ(s))|p
⎞
⎠ ds

⎤
⎦ .
0
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Since E 
∑n

i=1 |ϕi(t)| → 0, t − τ(t) → ∞ and t − r(t) → ∞ as t → ∞. Thus, from (28) to (32), 
we obtain that eλt

E 
∑n

i=1 |(Qϕ)i(t)|p → 0 as eλt
E 
∑n

i=1 |ϕi(t)|p → 0. Hence, combining the 
proof of Theorem 1.4, there exists a unique fixed point ϕ(·) of Q in Bφ , which is a solution of 
the system (1) such that eλt

E 
∑n

i=1 |ϕi(t)|p → 0 as t → ∞. This completes the proof.

Corollary 4.1. Suppose that the assumptions (A1)–(A3) hold. If the following conditions are 
satisfied,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);
(ii) and such that

5
n∑

i=1

c−2
i

n∑
j=1

a2
ij α

2
j + 5

n∑
i=1

c−2
i

n∑
j=1

b2
ij β

2
j + 5τ 2

n∑
i=1

c−2
i

n∑
j=1

l2
ij γ

2
j

+ 20n

n∑
i=1

c−1
i (μ + ν) < 1,

where μ, ν are defined as in Theorem 1.4, then the trivial solution of (1) is exponentially stable 
in mean square.

Corollary 4.2. Let p ≥ 2. Suppose that the assumptions (A1)–(A3) hold. If the following condi-
tions are satisfied,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);
(ii) and such that

4p−1
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|aij |q |αj |q
⎞
⎠

p/q

+ 4p−1
n∑

i=1

c
−p
i

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

+ 4p−1np−1
n∑

i=1

c
−p
i (μp/2 + νp/2) < 1,

where μ, ν are defined as in Theorem 1.4, then the trivial solution of (21) is exponentially stable 
in pth moment.

5. Proof of Theorem 1.11

In this section, we prove Theorem 1.11. We start with some preparations. Multiply both sides 
of (9) by eci t and integrate from 0 to t , we obtain that for t ≥ 0, i = 1, 2, 3, · · · , n,

xi(t) = e−ci t xi(0) +
t∫

0

e−ci (t−s)
n∑

j=1

aij fj (xj (s)) ds +
t∫

0

e−ci (t−s)
n∑

j=1

bij gj (xj (s − τ(s))) ds

+
t∫
e−ci (t−s)

n∑
j=1

lij

s∫
hj (xj (u)) duds. (33)
0 s−r(s)
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Lemma 5.1. Define an operator by (Px)(θ) = φ(θ), for ϑ ≤ θ ≤ 0, and for t ≥ 0, i =
1, 2, 3, · · · , n,

(Px)i(t) = e−ci t xi(0) +
t∫

0

e−ci (t−s)

n∑
j=1

aij fj (xj (s)) ds

+
t∫

0

e−ci (t−s)
n∑

j=1

bij gj (xj (s − τ(s))) ds

+
t∫

0

e−ci (t−s)
n∑

j=1

lij

s∫
s−r(s)

hj (xj (u)) duds := I1(t) + I2(t) + I3(t) + I4(t).

(34)

If the conditions (i) and (ii) in Theorem 1.11 are satisfied, then P : Hφ → Hφ and P is a con-
traction mapping.

Proof. First, we prove that PHφ ⊆ Hφ . In view of (34), we have that, for fixed time t1 ≥ 0, 
it is easy to check that limr→0 [(Px)i(t1 + r) − (Px)i(t1)] = 0, i = 1, 2, 3, · · · , n. Thus, P is 
continuous on [0, ∞). Note that (Px)(θ) = φ(θ) for ϑ ≤ θ ≤ 0, we obtain that P is continuous 
on [ϑ, ∞).

Next, we prove that limt→∞(Px)i(t) = 0 for xi(t) ∈ Hiφ , i = 1, 2, 3, · · · , n. Since xi(t) ∈
Hiφ , we have that limt→∞ xi(t) = 0. Then for any ε > 0, there exists Ti > 0 such that s ≥ Ti

implies |xi(s)| < ε. Choose T = maxi=1,2,··· ,n{Ti}, combining with condition (A2), we obtain 
that

|I2(t)| ≤
T∫

0

e−ci (t−s)
n∑

j=1

|aij kj ||xj (s)|ds +
t∫

T

e−ci (t−s)
n∑

j=1

|aijαj ||xj (s)|ds

≤ e−ci t

n∑
j=1

|aijαj | sup
0≤s≤T

|xj (s)|
T∫

0

e−ci s ds + ε

ci

n∑
j=1

|aijαj |. (35)

From the fact that ci > 0 (i = 1, 2, · · · , n) and the estimate (35), we have that I2(t) → 0 as 
t → ∞.

Since xi(t) → 0 and t − τ(t) → ∞ as t → ∞, for each ε > 0, there exists T ′
i > 0 such that 

s ≥ T ′
i implies |xi(s − τ(s))| < ε for i = 1, 2, · · · , n. Choose T ′ = maxi=1,2,···n{T ′

i }, we obtain

|I3(t)| ≤
T ′∫

0

e−ci (t−s)
n∑

j=1

|bijβj ||xj (s − τ(s))|ds +
t∫

T ′
e−ci (t−s)

n∑
j=1

|bij kj ||xj (s − τ(s))|ds

≤ e−ci t

n∑
j=1

|bijβj | sup
ϑ≤s≤T ′

|xj (s)|
T ′∫

ecis ds + ε

ci

n∑
j=1

|bijβj |. (36)
0
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From the fact that ci > 0 (i = 1, 2, · · · , n) and the estimate (36), we have that I3(t) → 0 as 
t → ∞.

Since xi(t) → 0 and t − r(t) → ∞ as t → ∞, for each ε > 0, there exists T ∗
i > 0 such that 

s ≥ T ∗
i implies |xi(s − r(s))| < ε for i = 1, 2, · · · , n. Choose T ∗ = maxi=1,2,···n{T ∗

i }, we obtain

|I4(t)| ≤
T ∗∫
0

e−ci (t−s)
n∑

j=1

|lij γj |
s∫

s−r(s)

|xj (u)|duds + εr

t∫
T ∗

e−ci (t−s)
n∑

j=1

|lij γj |ds

≤ r

n∑
j=1

|lij γj | sup
ϑ≤u≤T ∗

|xj (u)|
T ∗∫
0

e−ci (t−s) ds + εr

ci

n∑
j=1

|lij γj |. (37)

From the fact that ci > 0 (i = 1, 2, · · · , n) and the estimate (37), we have that I4(t) → 0 as 
t → ∞. From the above estimate, we conclude that limt→∞(Px)i(t) = 0 for xi(t) ∈ Hiφ , i =
1, 2, 3, · · · , n. Therefore, P : Hφ → Hφ .

Now, we prove that P is a contraction mapping. For any x, y ∈Hφ , from (35)–(37), we obtain 
that

n∑
i=1

|(Px)i(t) − (Py)i(t)|

≤
n∑

i=1

max
j=1,2,··· ,n |aijαj |

t∫
0

e−ci (t−s)

n∑
j=1

|xj (s) − yj (s)|ds

+
n∑

i=1

max
j=1,2,··· ,n |bijβj |

t∫
0

e−ci (t−s)

n∑
j=1

|xj (s − τ(s)) − yj (s − τ(s))|ds

+
n∑

i=1

max
j=1,2,··· ,n |lij γj |

t∫
0

e−ci (t−s)

n∑
j=1

s∫
s−r(s)

|xj (u) − yj (u)|duds

≤
n∑

i=1

{
1

ci

max
j=1,2,··· ,n |aijαj | + 1

ci

max
j=1,2,··· ,n |bijβj | + r

ci

max
j=1,2,··· ,n |lij γj |

}

× sup
ϑ≤s≤t

n∑
j=1

|xj (s) − yj (s)|.

From (13), we obtain that P is a contraction mapping. �
We are now ready to prove Theorem 1.11.

Proof. Let P be defined as in Lemma 5.1, by a contraction mapping principle, P has a unique 
fixed point x ∈ Hφ with x(θ) = φ(θ) on ϑ ≤ θ ≤ 0 and x(t) → 0 as t → ∞.
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To obtain asymptotically stable, we need to prove that the trivial equilibrium x = 0 of (9)
is stable. For any ε > 0, choose 0 < δ < ε satisfying the condition δ + εα < ε, where α is the 
left hand side of the inequality (13). If x(t, 0, φ) = (x1(t, 0, φ), x2(t, 0, φ), · · · , xn(t, 0, φ)) is 
the solution of (9) with the initial condition ‖φ‖ < δ, then we claim that ‖x(t, 0, φ)‖ < ε for all 
t ≥ 0. Indeed, we suppose that there exists t∗ > 0 such that

n∑
i=1

|xi(t
∗,0, φ)| = ε, and

n∑
i=1

|xi(t,0, φ)| < ε for 0 ≤ t < t∗. (38)

From (13) and (33), we obtain

n∑
i=1

|xi(t
∗,0, φ)| ≤

n∑
i=1

[
|e−ci t

∗
xi(0)| +

t∗∫
0

e−ci (t
∗−s)

n∑
j=1

|aijfj (xj (s))|ds

+
t∗∫

0

e−ci (t
∗−s)

n∑
j=1

|bij gj (xj (s − τ(s)))|ds

+
t∗∫

0

e−ci (t
∗−s)

n∑
j=1

|lij
s∫

s−r(s)

hj (xj (u))|duds

]

< δ + ε

(
n∑

i=1

1

ci

max
j=1,2,··· ,n |aijαj | +

n∑
i=1

1

ci

max
j=1,2,··· ,n |bijβj |

+
n∑

i=1

r

ci

max
j=1,2,··· ,n |lij γj |

)
≤ δ + εα < ε,

which contradicts (38). Therefore, ‖x(t, 0, φ)‖ < ε for all t ≥ 0. This completes the proof. �
Let lij ≡ 0 for i, j = 1, 2, · · · , n, the system is reduced to

dxi(t)

dt
= −cixi(t) +

n∑
j=1

aijfj (xj (t)) +
n∑

j=1

bij gj (xj (t − τ(t))), (39)

which is the description of cellular neural network with time-varying delays. Following the result 
of Theorem 1.11, we have the following corollary.

Corollary 5.2. Suppose that the assumptions (A1)–(A3) hold. If the following condition is satis-
fied,

n∑
i=1

1

ci

max
j=1,2,··· ,n |aijαj | +

n∑
i=1

1

ci

max
j=1,2,··· ,n |bijβj | < 1, (40)

then the trivial solution of (39) is asymptotically stable.
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Remark 5.3. Note that the delay in Corollary 5.2 can be unbounded. Lai and Zhang [9] studied 
the asymptotic stability (39) as well. However, the additional condition

max
i=1,2,··· ,n

⎡
⎣ 1

ci

n∑
j=1

|aij kj | + 1

ci

n∑
j=1

|bij kj |
⎤
⎦<

1√
n

(41)

is needed in Theorem 4.1 of [9]. It is clear that Corollary 5.2 is an improvement of the result 
in [9].

6. Proof of Theorem 1.12

Proof. In this section, we prove Theorem 1.12. Define an operator (Pϕ)(t) = φ(t) for t ∈ [ϑ, 0]
and for t ≥ 0, (Pϕ)(t) is defined by the right hand side of (34). Following the proof of Theo-
rem 1.11, we only need to show that eλt (Pϕ)i(t) → 0 as t → ∞, i = 1, 2, · · · , n. We estimate 
the right-hand terms of (34),

eλt

∣∣∣∣∣∣
t∫

0

e−ci (t−s)
n∑

j=1

aij fj (ϕj (s)) ds

∣∣∣∣∣∣
≤ max

j=1,2,··· ,n |aijαj |
t∫

0

e−(ci−λ)(t−s)eλs
n∑

j=1

|ϕj (s)|ds

eλt

∣∣∣∣∣∣
t∫

0

e−ci (t−s)

n∑
j=1

bij gj (ϕj (s − τ(s))) ds

∣∣∣∣∣∣
≤ eλτ max

j=1,2,··· ,n |bijβj |
t∫

0

e−(ci−λ)(t−s)eλ(s−τ(s))
n∑

j=1

|ϕj (s − τ(s))|ds

eλt

∣∣∣∣∣∣∣
t∫

0

e−ci (t−s)
n∑

j=1

lij

s∫
s−r(s)

hj (ϕj (u)) duds

∣∣∣∣∣∣∣
≤ eλτ max

j=1,2,··· ,n |lij γj |
t∫

0

e−(ci−λ)(t−s)

s∫
s−r(s)

eλu

n∑
j=1

|ϕj (u)|duds.

From the fact that λ < min{c1, c2, · · · , cn}, ci > 0 (i = 1, 2, · · · , n) and the above estimate, we 
obtain that eλt (Pϕ)i(t) → 0 as t → ∞. �

For the cellular neural network (39), we have the following result.

Corollary 6.1. Suppose that the assumptions (A1)–(A3) hold. If the following conditions are 
satisfied,
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(i) the discrete delay τ(t) is bounded by a constant τ (τ > 0);
(ii) and such that

n∑
i=1

1

ci

max
j=1,2,··· ,n |aij kj | +

n∑
i=1

1

ci

max
j=1,2,··· ,n |bij kj | < 1,

then the trivial solution of (39) with initial condition (11) is exponentially stable.

7. Examples

Example 7.1. Consider the following two-dimensional cellular neural network

dx(t)

dt
= −Cx(t) + Ag(x(t)) + Bg(x − τ(t)),

where

C =
(

c1 0
0 c2

)
=
(

3 0
0 3

)
, A =

(
a11 a12
a21 a22

)
=
(

6/7 3/7
−1/7 −1/7

)
,

B =
(

b11 b12
b21 b22

)
=
(

6/7 2/7
3/7 1/7

)
.

The activation function is described by gi(x) = tanh(x), for i = 1, 2. The time-varying delay 
τ(t) is continuous and |τ(t)| ≤ τ , where τ is a constant.

It is clear that αi = βi = 1 for i = 1, 2. We check the condition (40) in Corollary 5.2,

2∑
i=1

1

ci

max
j=1,2

|aijαj | +
2∑

i=1

1

ci

max
j=1,2

|bijβj | ≤ 1

3
×
(

6

7
+ 1

7
+ 6

7
+ 3

7

)
= 16

21
< 1.

Hence, by Corollary 5.2, the trivial equilibrium x = 0 of this cellular neural network is asymp-
totically stable. See Fig. 1.

However, the condition (41) becomes

max
i=1,2

⎧⎨
⎩ 1

ci

2∑
j=1

|aijαj | + 1

ci

2∑
j=1

|bijβj |
⎫⎬
⎭= 17

21
>

1√
2
.

Hence, Theorem 4.1 of [9] is not applicable.

Example 7.2. Consider the two-dimensional stochastic recurrent neural network with time-
varying delays
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Fig. 1. The solution of Example 7.1.

dx(t) = −
(

6 0
0 5

)(
x1(t)

x2(t)

)
dt +

(
2 0.4

0.6 1

)(
0.2 tanh(x1(t))

0.2 tanh(x2(t))

)
dt

+
(−0.8 2

1 2

)(
0.2 tanh(x1(t − τ1(t)))

0.2 tanh(x2(t − τ2(t)))

)
dt

+
(

1 2
2 1

)( ∫ t

t−r(t)
0.2 tanh(x1(s)) ds∫ t

t−r(t)
0.2 tanh(x2(s)) ds)

)
dt

+σ(t, x(t), x(t − τ(t))) dw(t), (42)

where τ(t), r(t) are continuous functions such that t − τ(t) → ∞ as t → ∞ and |r(t)| ≤ 1, 
σ :R+ ×R

2 ×R
2 → R

2 ×R
2 satisfies

trace
[
σT (t, x, y)σ (t, x, y)

]
≤ 0.003(x2

1 + x2
2 + y2

1 + y2
2).

We suppose p = 2, and take μi = νi = 0.003 for i = 1, 2, by simple computation, we have 
αi = 0.2, for i = 1, 2, c = min{c1, c2} = 5, μ = ν = 0.003. By Corollary 2.3, we have that

5
2∑

i=1

c−2
i

⎡
⎣ 2∑

j=1

a2
ij α

2
j

⎤
⎦+ 5

2∑
i=1

c−2
i

⎡
⎣ 2∑

j=1

b2
ij α

2
j

⎤
⎦+ 5

2∑
i=1

(
τ

ci

)2
⎡
⎣ 2∑

j=1

l2
ij α

2
j

⎤
⎦

+ 20 × 2 ×
2∑

i=1

c−1
i (μ + ν) < 0.256 < 1.

Then the trivial solution of (42) is mean square asymptotically stable. See Fig. 2.
If τ(t) is bounded, by Corollary 4.1, we obtain that the trivial solution of (42) is mean square 

exponentially stable.
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Fig. 2. The solution of Example 7.2.

Example 7.3. Consider a two-dimensional stochastically perturbed HNN with time-varying de-
lays,

dx(t) = [−Cx(t) + Af (x(t)) + Bg(xτ (t))]dt + σ(t, x(t), xτ (t)) dω(t), (43)

where f (x) = 1
5 arctanx, g(x) = 1

5 tanhx = 1
5 (ex − e−x)/(ex + e−x), τ(t) = 1

2 sin t + 1
2 ,

C =
(

5 0
0 4.5

)
, A =

(
2 0.4

0.6 1

)
and B =

(−0.8 2
1 4

)
.

In this example, let p = 3, take αj = 0.2, βj = 0.2, j = 1, 2, σ : R+ × R
2 × R

2 → R
2 × R

2

satisfies

σi1(t, x, y)2 ≤ 0.01(x2
1 + y2

1) and σi2(t, x, y)2 ≤ 0.01(x2
2 + y2

2), i = 1,2,

and w(t) is a two dimensional Brownian motion.

Note that the exponential stability of (43) has been studied in Sun and Cao [24] by employing 
the method of variation parameter, inequality technique and stochastic analysis.

Now, we check the condition in Corollary 4.2,

4p−1c−(1+p/q)

2∑
i=1

⎡
⎣ n∑

j=1

|aij |q |αj |q
⎤
⎦

p/q

+ 4p−1c−(1+p/q)

2∑
i=1

⎛
⎝ n∑

j=1

|bij |q |βj |q
⎞
⎠

p/q

+ 4p−12pc−p/2(μp/2 + νp/2) < 0.18 < 1.

By Corollary 4.2, the trivial solution of (43) is exponentially stable. See Fig. 3.
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Fig. 3. The solution of Example 7.3.

8. Appendix

In this section, we first show that I5(s) in [16] is not a local martingale and then we present 
some examples about Banach spaces.

Definition 8.1. A real valued Ft -adapted process M = {M(t) : t ≥ 0} is a martingale if 
E|M(t)| < ∞ for all t ≥ 0 and

E[M(t)|Fs] = M(s), a.s. for all 0 ≤ s < t < ∞.

Lemma 8.2. For continuous function σ(t), 
∫ t

0 e−c(t−s)σ (s) dw(s) is not a martingale.

Proof. In fact, for 0 ≤ u ≤ t ,

E

⎡
⎣ t∫

0

e−c(t−s)σ (s) dw(s) |Fu

⎤
⎦= E

⎡
⎣ u∫

0

e−c(t−s)σ (s) dw(s) |Fu

⎤
⎦

+E

⎡
⎣ t∫

u

e−c(t−s)σ (s) dw(s) |Fu

⎤
⎦

=
u∫

0

e−c(t−s)σ (s) dw(s) �=
u∫

0

e−c(u−s)σ (s) dw(s). �
(44)
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Lemma 8.3. ([20]) If M(t) is a local martingale and for every t , E sups∈[0,t] |M(s)| < ∞, then 
M(t) is a martingale.

Lemma 8.4. For continuous function σ(t), 
∫ t

0 e−c(t−s)σ (s) dw(s) is not a local martingale.

Proof. We suppose that 
∫ t

0 e−c(t−s)σ (s) dw(s) is a local martingale. For every t , we have that

E sup
s∈[0,t]

∣∣∣∣∣∣
s∫

0

e−c(s−u)σ (u)dw(u)

∣∣∣∣∣∣≤ E sup
s∈[0,t]

∣∣∣∣∣∣
s∫

0

ecuσ (u)dw(u)

∣∣∣∣∣∣
≤ K1E

⎛
⎝ t∫

0

e2cuσ 2(u) du

⎞
⎠

1/2

≤ K1

⎛
⎝ t∫

0

e2cu
Eσ 2(u) du

⎞
⎠

1/2

< ∞.

From Lemma 8.3, we obtain that M is a martingale. However, from Lemma 8.2, we know that ∫ t

0 e−c(t−s)σ (s) dw(s) is not a martingale, which is a contradiction. �
Example 8.5. The space C([a, b]) of continuous, real-valued (or complex-valued) functions on 
[a, b] with the sup-normed is a Banach space. More generally, we have the following examples.

(i) If X is a Banach space, the space C([a, b]; X) of continuous, X-valued functions on [a, b]
equipped with the sup-norm is a Banach space.

(ii) If X is a Banach space, the space BC([a, b]; X) := {ϕ | ϕ ∈ C([a, b];X), ‖ϕ‖ < ∞} of 
bounded continuous, X-valued functions on [a, b] equipped with the sup-norm is a Banach 
space.

(iii) If X is a Banach space, the space {ϕ | ϕ ∈ C([a, b]; X), limt→∞ ϕ(t) = 0} and the space{
ϕ | ϕ ∈ C([a, b];X),‖ϕ‖ = sup

s∈[a,b]
|ϕ(s)| is bounded and lim

t→∞ϕ(t) = 0

}

are Banach spaces with respect to the sup-norm. Clearly, the space

C0([a, b];Lp(�,Rn)) :=
{
ϕ | ϕ ∈ C([a, b];Lp(�,Rn)), lim

t→∞E|ϕ(t)|p = 0
}

is a Banach space with respect to the norm defined by ‖ϕ‖p := sups

[
E|ϕ(s)|p].

The following lemma presents a Banach space that is used in this paper.

Lemma 8.6. Suppose that Ft is complete, that is, contains all null sets. Then the space

D := {ϕ ∈ C0([a, b];Lp(�,Rn)), ϕ(t) is Ft − measurable for all t
}

is a closed subspace of C0([a, b]; Lp(�, Rn)).
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Proof. Let ϕ, ψ ∈ D, then ϕ(t) and ψ(t) are Ft -measurable for all t , so ϕ(t) + ψ(t) and αϕ(t)

(α ∈ C) are Ft -measurable for all t .
Suppose that the sequence ϕ1, ϕ2, · · · , ϕn, · · · ∈ D, ϕ ∈ C0([a, b]; Lp(�, Rn)) and ϕn → ϕ as 

n → ∞ for all t , we claim that ϕ(t) is Ft -measurable. In fact, since ϕn → ϕ as n → ∞, then

sup
s∈�

[
E|ϕn(s) − ϕ(s)|p]→ 0 as n → ∞.

So, for every t , we obtain that E|ϕn(t) − ϕ(t)|p → 0 as n → ∞, which implies that there exists 
a subsequence (ϕnk

(t))k such that ϕnk
(t) → ϕ(t) a.e. on �. On the other hand, Ft is complete. 

Hence, we obtain that ϕ(t) is Ft -measurable, which implies that D is a closed subspace of the 
space C0([a, b]; Lp(�, Rn)). �
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