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The tools of normal forms and recurrence are used to analyze the interaction of low and higher
order resonances in Hamiltonian systems. The resonance zones where the short-periodic solu-
tions of the low order resonances exist are characterized by small variations of the corresponding
actions that match the variations of the higher order resonance; this yields cases of embedded
double resonance. The resulting interaction produces periodic solutions that in some cases desta-
bilize a resonance zone. Applications are given to the three dof 1 : 1 : 4 resonance and to periodic
FPU-chains producing unexpected nonlinear stability results and quasi-trapping phenomena.
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1. Introduction

The presence of low (prominent) and higher order
resonances in Hamiltonian systems enables the pos-
sibility of a special kind of double resonance. In such
a case the higher order resonance zone will, if it
exists, be embedded in the primary resonance zone
of the low order resonance.

Consider a n degrees-of-freedom (dof) Hamil-
tonian system in a neighborhood of stable equilib-
rium. We assume the Hamiltonian H(p, q) can be
expanded in a Taylor series of the form

H(p, q) = H2(p, q) +H3(p, q) +H4(p, q) + · · ·
where the Hm,m = 2, 3, . . . are homogeneous poly-
nomials in p, q of degree m. The quadratic form
H2(p, q) is Morse in (p, q) = (0, 0). Suppose that
we have:

H2 =
1
2

n∑
m=1

ωm(p2
m + q2m)

or equivalently

H2 =
1
2

n∑
m=1

(p2
m + ω2

mq
2
m)

with positive frequencies ωm,m = 1, 2, . . . , n. Often
it is convenient to scale the coordinates near the
stable origin of the system by putting p, q → εp, εq
and dividing by ε2. This leads to the Hamiltonian
H = H2 + εH3 + ε2H4 + ε3 . . . .

If necessary, we can approximate the frequen-
cies ωm,m = 1, 2, . . . , n by rational numbers as the
rationals are dense in the set of real numbers. This
will add a perturbation term to the Hamiltonian.

A powerful theorem on the stability of Hamilto-
nian systems in the sense of exponentially-long time
invariance of the actions was formulated and proved
in [Nekhoroshev, 1977]. This theorem presupposes
the absence of first or second order resonances in the
system so it cannot be applied in our cases. In many
applications in physics and engineering a combina-
tion of low and higher order resonances takes place.
To avoid this problem one usually concentrates on
the low order resonances neglecting the higher order
ones. The purpose of our paper is to explore cases of
combined low and higher order resonances to ana-
lyze the variation of the nonresonant actions (or
amplitudes). The resulting dynamics turns out to
be interesting, it throws new light on quasi-trapping
phenomena and delayed recurrence.
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The formulation of Hamiltonian resonance is
well-known, see [Sanders et al., 2007, Chapter 10,
Tables 10.3–4]. For two dof, the low order reso-
nances are 1 : 2, 1 : 3 and 1 : 1. A combination of
low and high order would for example be the three
dof resonances 1 : 2 : 7 or 1 : 1 : 9. A three dof first
order resonance like 1 : 2 : 2 can be part of the res-
onance 1 : 2 : 2 : 7. A basic observation is that in a
large part of phase-space, the dynamics of the low
order resonance dominates. However, in the absence
of theoretical results that the orbits will remain
in these low order resonance regions, we have to
include and identify parts of phase-space, the reso-
nance zones (introduced in Sec. 3), where the higher
order resonances become important. The essence
of the problems we are faced with arise already at
three dof. So to understand the phenomena and the-
ory we will in most cases restrict to three dof.

Our main tools will be normal form theory and
the use of the Poincaré recurrence theorem from
[Poincaré, 1892, 1893, 1899, Vol. 3] to character-
ize the dynamics in resonance zones. The empha-
sis is on the analysis of dynamics with numerics for
illustration. Recurrence in time-independent Hamil-
tonian systems on bounded domains implies that
orbits cannot be trapped in a region that does not
contain the initial position in phase-space. How-
ever, quasi-trapping, as described by [Zaslavsky,
2007], plays an important part with consequences
for the recurrence times. Suppose that an orbit
travels through a resonance zone M . The zone
may contain periodic and quasi-periodic solutions,
homo- and heteroclinic solutions, tori and other geo-
metric structures. The complexity of M will deter-
mine the length of the time interval to pass the res-
onance zone. It turns out that in the case of three
dof with one low order resonance involving two dof,
we have two possibilities. In the first case the reso-
nance zone M may contain higher order resonances
(see Sec. 3) that complicate the dynamics within
the zone. This is a case of secondary or embedded
double resonance. An example is found in our treat-
ment of the 1 : 1 : 4 resonance. In the second case no
higher order resonance will be active in M because
of strong detuning, but a nonresonant forcing cor-
responding to a simple torus structure may impede
and delay transition of the zone.

To characterize recurrence we will use the
Euclidean distance d in phase-space which is the
distance of a phase-point with respect to its initial

conditions as a function of time. When considering
the solutions of the initial value problem

ẋ = f(x), x(0) = x(0)

in R
n, this Euclidean distance written in compo-

nents xi(t), xi(0), i = 1, . . . , n will be at time t:

d =

√√√√ n∑
i=1

(xi(t) − xi(0))2.

Near stable equilibrium, the dynamics of two dof
Hamiltonian systems is dominated by a foliation of
the energy manifold in tori that separate the phase-
flow. This excludes diffusion phenomena. To study
recurrence and quasi-trapping we consider mainly
the simplest Hamiltonian context that allows for
this phenomenon, three dof autonomous Hamilto-
nian systems. It follows from the proof of the recur-
rence theorem that for a fixed return distance d
the recurrence time on a bounded energy man-
ifold will always be bounded by an upper limit
except for a set of initial conditions of measure
zero.

A formulation for these systems will be given in
Sec. 2; Sec. 4 will introduce secondary resonances
that may be active in so-called resonance zones.
We find a typical example of these phenomena in
the 1 : 1 : 4 resonance of Sec. 5; another example,
the 2 : 2 : 3 resonance, was discussed in [Verhulst,
2018]. An application of the 1 : 1 : ω resonance with
ω nonresonant will be the periodic FPU-chain with
four particles in Sec. 6. In this problem, the α- and
the β-chains behave quite differently. It was shown
in [Bruggeman & Verhulst, 2018] that a periodic
FPU-chain with four particles will be found again
as a submanifold in a chain with 4n particles. This
motivates us to consider the dynamics of the peri-
odic FPU-chain with eight particles in Secs. 7 and 8.

Many papers were written on FPU-chains, we
cannot do justice to these. A useful modern refer-
ence is [Christodoulidi et al., 2010]. Regarding the
existence of invariant manifolds (called “bushes”)
in classical FPU-chains, basic results are found
in [Chechin & Sakhnenko, 1998; Chechin et al.,
2002; Chechin et al., 2005]. In these papers group-
theoretical methods were used for coupled oscillator
systems with special attention to α- and β FPU-
chains. See for the existence of invariant manifolds
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additional manifolds also [Rink, 2001]. We will focus
on examples of existence and stability of invari-
ant manifolds for the classical periodic FPU-chain
and for the FPU-chain with alternating masses.
A remarkable result is that the linear or spectral
stability concluded in the papers by [Chechin &
Sakhnenko, 1998; Chechin et al., 2002; Chechin
et al., 2005] is in a number of cases destroyed by the
nonlinearities. For this nonlinear analysis the idea
of interaction of low and higher order resonances in
resonance zones is essential.

Apart from chains of oscillators there is also an
extensive literature on passage through resonance.
Again we cannot do justice to all contributions. We
mention [Haberman, 2006; Neishtadt & Su, 2013;
Sanders et al., 2007, Chapter 8] with more refer-
ences there.

We also note that there is clearly a connection
with the topics of Arnold-diffusion, Aubry–Mather
theory and double resonances. For references on
some of these topics see [Cheng, 2015]. A detailed
study of double resonances, Arnold diffusion, with
many references can be found in [Efthymiopoulos &
Harsoula, 2013; Guzzo & Lega, 2016]. Double res-
onances are often connected with the intersection
of two resonance manifolds producing a so-called
“resonant junction”. Our approach is different as
we discuss cases where one resonance is dominant
but where in the prominent resonance zone a sec-
ondary higher order resonance zone is embedded.
This scenario is natural in many applications.

The numerical illustrations were obtained by
Matcont under Matlab with ode code 78, in
most cases relative tolerance and abs. tolerance e−15.

2. Three Degrees-of-Freedom

Consider the three degrees-of-freedom (dof) Hamil-
tonian H(p, q) = H2(p, q) +H3(p, q) + · · · with

H2 =
1
2
ω1(p2

1 + q21) +
1
2
ω2(p2

2 + q22)

+
1
2
ω3(p2

3 + q23). (1)

The frequencies ω1, ω2, ω3 are chosen positive; we
assume that two of the frequencies, say ω1 and ω2,
are close to a first or second order resonance of two
dof, so we have that the ratios ω1/ω2 are 1 : 2, 1 : 1
or 1 : 3. Often we rescale the frequencies to obtain
ω1 = 1, ω2 = k = 1, 2 or 3, ω3 = l; detuning effects

to allow for small frequency perturbations can be
added in applications. The three frequencies are not
in first or second order resonance of three dof, so for
rational l we exclude neighborhoods of the natural
numbers 1, 2, . . . , 6.

As indicated before, we scale the coordinates
near the stable origin of the system by putting
p, q → εp, εq and dividing by ε2. This leads to the
Hamiltonian

H(p, q) =
1
2
(p2

1 + q21) +
1
2
k(p2

2 + q22)

+
1
2
l(p2

3 + q23) + εH3(p, q) + ε2 . . . . (2)

So ε2 is a measure for the energy with respect
to stable equilibrium at the origin. We introduce
action-angle coordinates I, φ by the transformation:

qi =
√

2Ii sinφi,

pi =
√

2Ii cosφi,
i = 1, 2, 3, (3)

leading with (2) to

H = I1 + kI2 + lI3 + εH3 + ε2 . . . and

İ = −∂H
∂φ

, φ̇ =
∂H

∂I
.

We will also use amplitude-phase coordinates r, ψ
with transformations

qi = ri cos(ωit+ ψi),

q̇i = −ωiri sin(ωit+ ψi).
(4)

2.1. Birkhoff–Gustavson or
Born-approximation

After Birkhoff and Gustavson (earlier formulated by
[Born, 1927]) we will introduce a symplectic near-
identity transformation producing normal forms
(see [Sanders et al., 2007] for theory and litera-
ture). Prominent terms in the normal forms are pro-
duced by the resonances induced by the frequencies
1, k, l. Introducing annihilation vectors a ∈ Z

3 with
the property a1 + a2k + a3l = 0, the normal form
may contain corresponding combination angles of
the form:

χ = a1φ1 + a2φ2 + a3φ3.

1850097-3

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

8.
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
T

R
E

C
H

T
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/3
0/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 30, 2018 9:30 WSPC/S0218-1274 1850097

F. Verhulst

We will call ‖a‖ = |a1| + |a2| + |a3| the norm of the annihilator. The Birkhoff–Gustavson normal form to
H4 in action-angle coordinates involves the angles φ1, φ2; in the cases k = 1, 2, 3 we have:


H12 = I1 + 2I2 + lI3 + εb1I1

√
2I2 cos(χ1 − b2) + ε2A(I1, I2, I3), k = 2, χ1 = 2φ1 − φ2,

H11 = I1 + I2 + lI3 + ε2(A(I1, I2, I3) + b1I1I2 cos 2(χ1 − b2)), k = 1, χ1 = φ1 − φ2,

H13 = I1 + 3I2 + lI3 + ε2(A(I1, I2, I3) + b1I
3
2
1 I

1
2
2 cos(χ1 − b2)), k = 3, χ1 = 3φ1 − φ2.

(5)

The constants b1, b2 are real (for potential problems
b2 = 0), A is a homogeneous, quadratic polynomial
in I1, I2, I3 (quartic in the amplitudes).

Preliminary conclusions on the Birkhoff–
Gustavson normal forms (5):

(1) The three normal forms are integrable.
(2) If k = 2, the integrals are H12, I1 + 2I2 and I3.

The flow is dominated by H2 + εH12.
(3) If k = 1, the integrals are H11, I1 + I2 and I3.
(4) If k = 3, the integrals are H13, I1 + 3I2 and I3.
(5) Near stable equilibrium the energy manifolds

are topologically the five-dimensional sphere S5.
They are foliated in families of tori with
parametrization by the integral I3.

(6) On the energy manifold we find families of short-
periodic solutions parametrized by I3 which is
a degeneration in the sense of [Poincaré, 1892,
1893, 1899, Vol. 1].

The treatment of higher order resonance in
[Sanders, 1977] is quite general for two dof, the
theory will be summarized in the next section. For
more than two dof the complexity of higher order
resonance increases enormously. The case k = 2 is
relatively simple as generically the normal form is
dominated by H3, see also [Verhulst, 2017]; com-
bination angles different from χ1 are in general
timelike. Here we will study the remaining cases
k = 1, followed by applications, for instance a
low-dimensional FPU-chain.

2.2. The notion of genericity

In what follows we use the notion of genericity.
This means that in a dynamical system character-
ized by parameters we keep track of cases producing
qualitatively special phenomena that exist only for
exceptional choices of the parameters. Genericity is
a concept that has to be defined in the context of
explicit dynamical systems. For systems in second
order resonance as in Sec. 4, its use looks simple: if
in Eq. (5) b1 �= 0, we have a generic case, b1 = 0
which produces nongeneric dynamics.

However, it can be necessary to extend the def-
inition in these cases, for instance if b1 �= 0 with the
other parameters producing a bifurcation of peri-
odic solutions.

We illustrate such phenomena for the 1 : 1 : 4
resonance that is discussed in Sec. 4. Consider the
H2 + ε2H4 part of the 1 : 1 : 4 resonance with H2

slightly different from (2):

H =
1
2
(q̇21 + q21) +

1
2
(q̇22 + q22) +

1
2
(q̇23 + 16q23)

− ε2(b1q41 + b2q
2
1q

2
2 + b3q

4
2 + b4q

4
3). (6)

The third dof is decoupled and plays no part in this
illustration. It is easy to show that if b1 = b3 = b,
b2 = 2b, b �= 0, the system has the second (angular
momentum) integral q̇1q2 − q1q̇2, a feature that is
already nongeneric. The analysis of Hamiltonian (6)
as far as the 1 : 1 resonance is concerned was carried
out in [Verhulst, 1979]; it has been shown that for
these values of the coefficients we find short-periodic
solutions resulting in exceptional dynamics. This
is a degenerate situation; the degeneration of this
type was described by [Poincaré, 1892, 1893, 1899,
Vol. 1]. Moreover I3 is still free to choose which
makes the degeneration worse. Such parameter val-
ues corresponding with nongenericity have to be
studied separately.

3. Higher Order Resonance
in Two Dof

We summarize the theory for two dof from [Sanders,
1977] and extend following [Tuwankotta & Verhulst,
2000], see also [Sanders et al., 2007]. Consider the
two dof Hamiltonian system with linear frequencies
k, l ∈ N. If k+ l > 4 its Birkhoff–Gustavson normal
form is in action-angle coordinates:

H = kI1 + lI2 + ε2(AI 2
1 + 2BI1I2 + CI 2

2) + · · ·
+ εk+l−2(D1(I1, I2) +D2(I1, I2) cos(χ+ b)),

(7)
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where b is a constant phase-shift, the dots stand for
Birkhoff normal form terms (dependent on I1, I2
only), χ = lφ1 − kφ2. It can be shown that the
actions I1, I2 are constant to O(ε) on the timescale
1/ε2; with some effort the error is reduced to O(ε2)
on the timescale 1/ε2.

The combination angle χ may vary locally in a
resonance zone as follows: The resonance manifold
N embedded in the compact energy manifold E is
defined using dχ/dt = 0 by:

N = {I1, I2 ∈E | (lA− kB)I1 +(lB− kC)I2 = 0}.
(8)

IfN exists, small exchanges of energy will take place
between the two dof in a resonance zone located
in an O(ε(k+l−4)/2) neighborhood of N (this is an
improved estimate based on [Tuwankotta & Ver-
hulst, 2000]). The resonance zone contains stable
and unstable periodic solutions, the exchange of
energy takes place on tori in the resonance zone with
timescale 1/ε−(k+l)/2. In [Tuwankotta & Verhulst,
2000] it is also proved that for potential problems
the phase-shift b = 0 in (7).

If the frequency ratio is not rational, we approx-
imate the ratio by a suitable rational. “Suitable”
means that the detuning of the irrational frequency
ratio is matched by the small parameter ε. For an
application of detuning see [Sanders & Verhulst,
1979].

4. Three Dof: Interaction with a
Second Order Resonance

The dynamics of the 1 : 1 : l and 1 : 3 : l resonances
(with l not in a neighborhood of 1, 2, . . . , 6) is dif-
ferent from the case 1 : 2 : l discussed in [Verhulst,
2017]. To avoid too many parameters we will restrict
ourselves from now on in our applications to poten-
tial problems; the results can easily be generalized.
An implication is that the subsequent Hamiltonians
correspond with mechanical systems. The Hamilto-
nian will be of the form H(I, φ) = H11 + ε3 . . . or
H(I, φ) = H13 + ε3 . . . with H11 or H13 containing
the combination angle χ1 = φ1−φ2 or χ1 = 3φ1−φ2;
depending on the frequency l other combination
angles will arise at O(ε3). The reasoning for k = 3
runs along the same lines as for k = 1.

4.1. The case k = 1

With system (5) the normalized equations for k =
1 are in a neighborhood with the normal modes

excluded:


İ1 = 2ε2b1I1I2 sin 2(χ1 − b2) + ε3 . . . ,

φ̇1 = 1+ ε2
(
∂A

∂I1
+ b1I2 cos 2(χ1 − b2)

)
+ ε3 . . . ,

İ2 =−2ε2b1I1I2 sin 2(χ1 − b2) + ε3 . . . ,

φ̇2 = 1+ ε2
(
∂A

∂I2
+ b1I1 cos 2(χ1 − b2)1

)
+ ε3 . . . ,

İ3 = ε3 . . . ,

φ̇3 = l + ε2
∂A

∂I3
+ ε3 . . . .

(9)

A(I) (I = I1, I2, I3) is a homogeneous quadratic
polynomial in its arguments. Starting with ε3 the
dots stand for terms dependent on the actions and
other resonant combination angles χ2, χ3, . . .; from
O(ε4) on, χ1 may also be present.

H2 = I1 + I2 + lI3(= E0) is conserved to O(ε)
for all time. In addition we have

d

dt
(I1 + I2) = O(ε3).

We have I1 + I2 = E1 +O(ε) on the timescale 1/ε2

with E1 ≥ 0; İ3 = O(ε3), so I3 is conserved with
error O(ε) on the same timescale. The theorem in
[Nekhoroshev, 1977] cannot be applied in this case.

Consider the case with one additional combina-
tion angle arising at H5. Cases with more angles or
still higher order resonances can be treated in a sim-
ilar way. A resonance at H5 with annihilation vector
(a1, a2, a3) generates the combination angle χ2. We
have to order ε2:


χ̇1 = ε2
(
∂A

∂I1
− ∂A

∂I2

+ b1(I2 − I1) cos 2(χ1 − b2)
)

+ ε3 . . .

χ̇2 = ε2
(
a1
∂A

∂I1
+ a2

∂A

∂I2
+ a3

∂A

∂I3

+ b1(a1I2 + a2I1) cos 2(χ1 − b2)
)

+ ε3 . . . .

(10)

Dynamically the situation for k = 1 (and k = 3) is
different from k = 2 as the normalization removes
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the terms derived from εH3 to the normalized ε2H4.
The combination angle χ2, is not necessarily time-
like, the equation for χ̇2 may contain zeros; we
will call the zeros critical values of the combination
angle. Periodic solutions in 1 : 1 resonance can be
found if sin 2(χ1 − b2) = 0 or 2(χ1 − b2) = 0, π,
2π, 3π, and when we can find solutions for I1, I2
from χ̇1 = 0. We define a primary resonance zone
M as a neighborhood of the solutions of

sin 2(χ1 − b2) = 0, χ̇1 = 0. (11)

Such solutions of Eqs. (11), if they exist, are
parametrized by I3 producing to this order mani-
folds of periodic solutions embedded in the primary
resonance zones M .

Outside M and excluding the normal mode
planes, the flow is dominated to O(ε) on the
timescale 1/ε2 by the 1 : 1 resonance of the first
two modes. The action I3 varies O(ε) on the same
timescale. Outside the resonance zones, the combi-
nation angle χ2 is timelike, so this estimate for I3
can be improved.

4.2. Normal forms in the
resonance zones

Smaller, secondary resonance zones in a primary
resonance zone M can possibly be found if a combi-
nation angle like χ2 is not timelike in M . To analyze
the dynamics in the resonance zones in full gener-
ality is cumbersome. We discuss the basic ideas in
the case that we have one higher order combination
angle χ2 arising fromH5. If necessary, the procedure
can be generalized to more angles. See also the more
general formulation involving conservative and dis-
sipative systems in [Verhulst, 1996, Chapter 11.7]. A
few details regarding the asymptotics can be found
in the Appendix, Sec. A.1. Consider the space-like
variables I = (I1, I2, I3) and the angle χ1 =φ1 −φ2

determined by (11), and χ2, a linear combination of
φ1, φ2, φ3 with annihilator norm 5. The normalized
system in a primary resonance zone is:


İ1 = ε3[A1(I)+A2(I) sin(χ2 − b3)]+ ε4 . . . ,

İ2 = ε3[B1(I)+B2(I) sin(χ2 − b3)]+ ε4 . . . ,

İ3 = ε3[C1(I)+C2(I)] sin(χ2 − b3)+ ε4 . . . ,

χ̇1 = ε3D1(I)+ ε4 . . . ,

χ̇2 = ε2E1(I)+ ε3[E2(I)+E3(I)

× cos(χ2 − b3)] + ε4 . . . .

(12)

In the case of potential problems we have b2 = b3 =
0. In general, the angle χ1 will arise again at H6

(O(ε4) terms). The explicit form of the expressions
A(I) . . . E(I) does not concern us at this stage; we
will see examples later. Omitting the O(ε3) terms
in system (9) and solving the resulting system pro-
duces an O(ε) approximation of the solutions on the
timescale 1/ε2.

In the primary resonance zone we have that the
O(ε2) terms of χ̇1 in system (10) vanish. For fixed
energy a few unique solutions I1 = I0

1, I2 = I0
2 may

arise parametrized by I3. There are now at least two
possibilities:

• The equation

E1(I0
1, I

0
2, I3) = 0, (13)

has no positive solution I3 for I3; in this case
the angle χ2 is timelike, we can average over χ2

reducing the normalized system drastically.
• Equation (13) has unique positive solution I3 =
I3 with the point P = (I0

1, I
0
2, I3) located in the

primary resonance zone.

Assume that I3 exists. We localize in the primary
resonance zone M near P putting

ξ1 =
I1 − I0

1

δ(ε)
, ξ2 =

I2 − I0
2

δ(ε)
, ξ3 =

I3 − I3

δ(ε)

with δ(ε) → 0 as ε → 0. For the secondary
resonance zone embedded in the primary zone (a
neighborhood of P ) we have the lowest order of
equations:



δ(ε)ξ̇1 = ε3(A1(P ) +A2(P ) sin(χ2 − b3)),

δ(ε)ξ̇2 = ε3(B1(P ) +B2(P ) sin(χ2 − b3)),

δ(ε)ξ̇3 = ε3(C1(P ) + C2(P ) sin(χ2 − b3)),

χ̇2 = ε2δ(ε)
(
∂E1

∂I1
(P )ξ1

+
∂E1

∂I2
(P )ξ2 +

∂E1

∂I3
(P )ξ3

)
.

(14)

Balancing the equations (significant degeneration)
means putting ε3/δ(ε) = ε2δ(ε); this produces the
choice δ(ε) =

√
ε which is the size of the sec-

ondary resonance zone near P . Differentiation of χ̇2

yields that the dynamics of the secondary resonance
near P is to the lowest order characterized by the
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pendulum system:




χ̈2 − ε5
[
∂E1(P )
∂I1

(A1(P ) +A2(P ) sin(χ2 − b3))

+
∂E1(P )
∂I2

(B1(P ) +B3(P ) sin(χ2 − b3))

+
∂E1(P )
∂I3

(C1(P ) + C2(P ) sin(χ2 − b3))
]

= 0.

(15)

The system admits a saddle and a center equilib-
rium; the saddle character is persistent under higher
order perturbations and will produce instability.
The equilibria will correspond with periodic solu-
tions and will produce other geometric structures
in the primary resonance zone. The dynamics in
the secondary resonance zone is governed by the
timescale 1/ε

5
2 .

The analysis of the secondary resonance and
the associated timescale until now is based on the
role of ε2 and ε3 terms. If we have the combination
angles χ1 and χ2 with

İ3 = εmC(I, sinχ1) sinχ2 + εm+1 . . . , m ≥ 3,

we find δ(ε) =
√
εm−2 and timescale ε−

m+2
2 . If we

have m > 3, the size of the secondary resonance
domain becomes smaller and the timescale changes
accordingly to become larger.

Another natural possibility is that H5 generates
more independent combination angles: χ1, . . . , χm,
m ≥ 2. In such a case the dimension of system (12)
will become m + 3, in general we will have more
equations to analyze. In the next section we will
meet an example.

As stated in Sec. 1, the usual practice in engi-
neering and physics is to focus on low order reso-
nances and neglect the higher order ones. In this
respect, a very important question is now: can an
instability in a secondary resonance zone destabilize
a primary resonance zone? Surprisingly enough, the
answer is positive.

4.3. Critical values in a resonance
zone

We will consider an application to small chains
of oscillators in the next sections. Examples from

physical models are usually special but interesting.
It is natural in applications to have a spectrum of
the linearized system such as 1, 1, 5.5 or 2,

√
2,√

2. First we consider the case of the spectrum
1, 1, m with m ∈ N, m ≥ 4 as another typical
example.

Suppose we find from Eqs. (11) a primary res-
onance zone M with solutions

I1 = I0
1, I2 = I0

2, χ̇1 = 0.

At the level of Hm+1, higher order resonances
involving the third dof may be found with anni-
hilation vectors

(a1, a2, a3) = (a1,m− a1,−1).

In M where I1, I2 have fixed values, such smaller,
secondary resonances may be found as zeros of the
right-hand side of:

dχj

dt
= a1φ̇1 + a2φ̇2 + a3φ̇3

= a1φ̇1 + (m− a1)φ̇2 − φ̇3

= mφ̇2 − φ̇3, j ≥ 2. (16)

This is a remarkable result as it means that for all
possible annihilation vectors at Hm+1 the critical I3
value for zeros of Eq. (16) in M will be the same.
This is a special feature of the resonance 1, 1,m with
m ∈ N,m ≥ 4. Furthermore, we expect that the
variation of φ3 caused by the O(ε3) terms will lead
to instability of these accumulated resonances in M .
The example in the following section will illustrate
this.

Computational Strategy

To calculate normal forms of O(ε3) or higher is not
always necessary in applications. For the 1 : 1 : ω
resonance of system (9) one needs the O(ε2) terms
of the normal form (12). This system gives the loca-
tion of primary resonance zones (if any) and from
the equation for χ2 we may find the critical values
in a resonance zone. This will establish the possible
presence of secondary resonances in the resonance
zones.

In the subsequent applications, the details of
the analysis in the resonance zones are similar. We
shall give them explicitly for the 1 : 1 : 4 resonance
in the next section.
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5. Example: the 1 : 1 : 4 Resonance

We illustrate the dynamics of the 1 : 1 : 4 resonance for the Hamiltonian:

H =

1
2
(q̇21 + q21) +

1
2
(q̇22 + q22) +

1
2
(q̇23 + 16q2

3) −
1
4
ε2(α1q

4
1 + 2α2q

2
1q

2
2 + α3q

4
2 + α4q

4
3)

− ε3(b1q41q3 + b2q
4
2q3 + b3q

2
1q

2
2q3 + b4q

3
1q2q3 + b5q1q

3
2q3).

(17)

The Hamiltonian was chosen in intermediate normal form with the cubic terms transformed to higher order
by Birkhoff–Gustavson normalization; we have included χ1 = φ1 − φ2 at H4 and five combination angles
at H5 : χ2, . . . , χ6. The equations of motion induced by (17) are:


q̈1 + q1 = ε2(α1q

3
1 + α2q1q

2
2) + ε3(4b1q31q3 + 2b3q1q22q3 + 3b4q21q2q3 + b5q

3
2q3),

q̈2 + q2 = ε2(α2q
2
1q2 + α3q

3
2) + ε3(4b2q32q3 + 2b3q21q2q3 + b4q

3
1q3 + 3b5q1q22q3),

q̈3 + 16q3 = ε2α4q
3
3 + ε3(b1q41 + b2q

4
2 + b3q

2
1q

2
2 + b4q

3
1q2 + b5q1q

3
2).

(18)

At H5 with annihilation vector (a1, a2, a3), a1 + a2 = 4, a3 = −1, we have:

χ2 = 4φ1 − φ3, χ3 = 4φ2 − φ3, χ4 = 2φ1 + 2φ2 − φ3, χ5 = 3φ1 + φ2 − φ3, χ6 = φ1 + 3φ2 − φ3.

We will use polar (amplitude-phase) coordinates r, ψ. Using transformation (4) we find after averaging to
O(ε2): 



ṙ1 = −ε2α2

8
r1r

2
2 sin 2χ1 + ε3 . . . , φ̇1 = −ε2 1

8
(3α1r

2
1 + 2α2r

2
2 + α2r

2
2 cos 2χ1) + ε3 . . . ,

ṙ2 = ε2
α2

8
r21r2 sin 2χ1 + ε3 . . . , φ̇2 = −ε2 1

8
(2α2r

2
1 + α2r

2
1 cos 2χ1 + 3α3r

2
2) + ε3 . . . ,

ṙ3 = ε3 . . . , φ̇3 = −ε2 3α4

32
r23 + ε3 . . . .

(19)

This system corresponds with system (9) in
amplitude-phase form. The dots represent higher
order terms containing the amplitudes and the
combination angles χ2, . . . , χ6. For the averaging-
normal form (19) we have

r21 + r22 − 2E1 = O(ε)

and r3 − r3(0) = O(ε) with both estimates valid
on the timescale 1/ε2. With the Hamiltonian as
first integral this makes normal form (19) integrable
to O(ε2).

As before, a primary resonance zone M is
defined as a neighborhood of the solutions of
sin 2χ1 = 0, χ̇1 = 0. We find with system (19):

χ̇1 = −1
8
ε2((3α1 − 2α2)r21 + (2α2 − 3α3)r22

+α2(r22 − r21) cos 2χ1). (20)

Taking the right-hand side of Eq. (20) as zero we
find the primary resonance zones M1,M2:



M1 : r21 =

α2 − α3

α2 − α1
r22,

M2 : r21 =
α2 − 3α3

α2 − 3α1
r22.

(21)

We require the right-hand sides of r21 in (21)
to be finite and positive. In Fig. 1 we present (a)
the resonant actions I1, I2 and (b) the nearly invari-
ant I3 starting outside the primary resonance zones
defined by (21). We find 1 : 1 resonant interaction
of the first two modes and small modulation of the
third mode.

5.1. Secondary resonance in the
primary resonance zones

For the five combination angles χ2, . . . , χ6, j =
2, . . . , 6, we find with annihilation vector (a1, a2,
a3) = (a1, 4 − a1,−1) and Eq. (16) to O(ε2) in the

1850097-8

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

8.
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
T

R
E

C
H

T
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/3
0/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 30, 2018 9:30 WSPC/S0218-1274 1850097

Hamiltonian Resonance Zones

(a) (b)

Fig. 1. The 1 : 1 : 4 resonance with the actions I1, I2, I3 in 10 000 timesteps for Hamiltonian (17) starting outside the pri-
mary resonance zones; initial conditions: q1(0) = 0.2, q2(0) = 0.8, q3(0) = 1 and parameters: ε = 0.1, α1 = 0.4, α2 = 1, α3 =
0.6, α4 = 4, b1 = 1, b2 = −1.5, b3 = 1, b4 = −1, b5 = 2. (a) I1, I2 showing strong energy exchanges, the q1 and q2 normal modes
are unstable. (b) The action I3 showing variations of order 0.01.

primary resonance zones:

χ̇j = −1
8
ε2

(
8α2r

2
1 + 12α3r

2
2 + 4α2r

2
1 cos 2χ1

− 3
4
α4r

2
3

)
, cos 2χ1 = ±1. (22)

Secondary resonances involving the five combina-
tion angles in M1 and M2 may arise where the
right-hand side of Eq. (22) vanishes; in such a case
the angle χj is not timelike. Remarkably enough
the condition is the same for the five combination
angles as predicted in Sec. 4.3. To study the sta-
bility within the resonance zones we compute φ̇3 to
O(ε3). We find:

φ̇3 = −ε2 3α4

32
r23 − ε3

69
1282

α2
4r

4
3

− ε3

64r3
A(r1, r2, χ2, . . . , χ6)

with

A(r1, r2, χ2, . . . , χ6)

= b1r
4
1 cosχ2 + b2r

4
2 cosχ3 + b3r

2
1r

2
2 cosχ4

+ b4r
3
1r2 cosχ5 + b5r1r

3
2 cosχ6.

We conclude that unless all bi coefficients and
α4 vanish, φ3 may move out of resonance in the
primary resonance zones on a timescale longer
than 1/ε2. The higher order resonances included
in M1,M2 may generate instabilities, see Fig. 2.
From Sec. 4.2, we conclude that if secondary res-
onances arise from zeros of χ̇j, j = 2, . . . , 6, we find
stable and unstable periodic solutions from the nor-
mal forms in the resonance zones and characteristic
timescale 1/ε5/2. Consider the following analysis.

The recurrency properties of the phase-flow
are strongly dependent on the initial conditions.
To study the structure of the resonance zones we
consider the normal form to O(ε3) in M1. To make
the expressions more transparent we keep only b3
and combination angle χ4. With cos 2χ1 = 1 and
Eq. (22) we find in M1 the following normal form:



ṙ1 = −ε3 b3
8
r1r

2
2r3 sinχ4, φ̇1 = −ε2 3

8
(α1r

2
1 + α2r

2
2) − ε3

b3
8
r22r3 cosχ4,

ṙ2 = −ε3 b3
8
r21r2r3 sinχ4, φ̇2 = −ε2 3

8
(α2r

2
1 + α3r

2
2) − ε3

b3
8
r21r3 cosχ4,

ṙ3 = ε3
b3
64
r21r

2
2 sinχ4, φ̇3 = −ε2 3α4

32
r23 − ε3

b3
64
r21r

2
2

r3
cosχ4,

χ̇4 = −ε2 3
2
(α2r

2
1 + α3r

2
2 −

1
16
α3r

2
3) − ε3

b3r
2
1

64r3
(32r2

3 − r22) cos χ4.

(23)
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(a) (b)

Fig. 2. The 1 : 1 : 4 resonance in 20 000 timesteps. (a) The Euclidean distance d of the orbits to their initial conditions in
the case of initial conditions (outside M1) and parameters of Fig. 1; recurrence takes many more timesteps; computing with
higher precision than relative tolerance e−15, abs. tolerance e−15 does not change the picture. (b) The Euclidean distance
d for the same Hamiltonian (17) but inside primary resonance zone M1, starting at a location of higher order resonances
q1(0) = 0.3674, q2(0) = 0.45, q3(0) = 1.0129 (cos 2χ1 = 1). The recurrence is stronger until the orbit drifts further than around
2000 timesteps outside the higher order resonance location in M1. I3 (and r3) experiences 0.01 variation downwards.

The normal form (23) in M1 has the integral

r21 + r22 + 16r2
3 = 2E2, (24)

with E2 a positive constant. The integral corre-
sponds with H2 of the Hamiltonian and is valid for
all time. The combination angle χ4 is not timelike
if in M1:

α2r
2
1 + α3r

2
2 −

1
16
α4r

2
3 = 0. (25)

From Eq. (21) we have the relation between r1 and
r2 in M1, with the first integral (24) we determine
r3 in the primary resonance zone. In system (23)
the motion of χ4 dominates the dynamics. Differen-
tiation of χ̇4 produces the equation:

χ̈4 − ε5F (r1, r2, r3) sinχ4 = O(ε6),

F (r1, r2, r3) =
3
8

(
α2 + α3 +

1
128

α4

)
b3r

2
1r

2
2r3.

(26)

The amplitudes are constant to this order of approx-
imation, the timescale for χ4(t) is 1/ε5/2. The equi-
libria, center and saddle, produce the stable and
unstable resonances in M1. In the terminology of
papers on double resonances, a neighborhood of
the center and saddle in M1 will be called a res-
onant junction. Note that chaos will in general be
present in the resonance zones, but as we see from

system (23) it will be of small scale, the normal form
is integrable to this high order.

The unstable manifolds of the unstable periodic
solutions will be guiding the solutions that leave the
resonance zone or are passing through it.

For illustrations we postponed the choice of
the constants α1, . . . , α4 to be able to exclude non-
generic cases like α1 = α3. We choose

α1 = 0.4, α2 = 1, α3 = 0.6, α4 = 4. (27)

This choice results in

χ̇1 = −1
8
ε2(−0.8r2

1 + 0.2r2
2 + (r22 − r21) cos 2χ1).

(28)

Equation (28) results in resonance zones generated
by χ1, i.e. small neighborhoods of

M1: 3r21 − 2r22 = 0, (2χ1 = 0, 2π),

M2: r21 − 4r22 = 0, (2χ1 = π, 3π).
(29)

In Fig. 2 we show the Euclidean distance to
the initial conditions in two cases. On the left we
start away from stable periodic solutions (outside
M1), the orbits have a recurrence delayed by quasi-
trapping in M1; this is related to the invariant man-
ifolds described above. On the right we start with
the same Hamiltonian in the resonance zone M1 but

1850097-10
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near a location where the higher order combination
angles are not timelike; the recurrence is stronger
but then the variation of φ3 produces a drift-off of
the solutions in M1 and worse recurrence.

In Fig. 3 we show the recurrence in M1

when we start with initial conditions for the third
mode in the stable regime. The three projections
of the corresponding orbits illustrate the regular
recurrence.

The combination angle χj, j = 2, 3, . . . from
Eq. (22) is not timelike in a subset of M1 if we
can find values of the amplitudes (or actions) such

that:

4r21 + 2.4r2
2 = r23. (30)

In M2 we find:

4r21 + 7.2r2
2 = 3r23. (31)

To illustrate the stable and unstable behaviors
of the solutions starting in M1 we present in Fig. 4,
the case where q3(0) = 0.3 (χj is timelike) on the
left and the unstable case q3(0) = 1.0129 on the

Fig. 3. (Top) Recurrence in the primary resonance zone M1 measured by the Euclidean distance d in 10 000 timesteps of
the orbits to their initial conditions. The initial conditions and parameters are as in Fig. 2 except that we considered different
regions of M1 by choosing (left) q3(0) = 0.3 and (right) q3(0) = 0.8. The recurrence is in both cases much faster but different
as we are removed from the small higher order resonance zones in M1. The orbits are caught in the resonance zone M1.
(Bottom) Projections of the corresponding orbits in M1.
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(a) (b)

Fig. 4. Dynamics in the primary resonance zone M1 by the diagrams (I1, I3) for 20 000 timesteps. (a) The case q3(0) = 0.3 of
Fig. 3 where I1(t) and I3(t) are close to constant (variations of order 10−3 and 10−4). (b) The unstable case of q3(0) = 1.0129
in Fig. 2; the variations of I1(t) are considerable, in this case, the orbits leave the primary resonance zone (the arrow indicates
the start).

right. The scales have been adjusted to the varia-
tions of I1(t), I3(t).

6. Application to a FPU-Chain with
Four Particles

The original motivation for this paper came from
the spatially periodic Fermi–Pasta–Ulam problem
with alternating masses (see [Bruggeman & Ver-
hulst, 2018]), and from studying nonlinear wave
equations with Galerkin projection. The Hamilto-
nian in [Bruggeman & Verhulst, 2018] is more gen-
eral than the classical FPU case and is of the form:

H(p, q) =
n∑

j=1

(
1

2mj
p2

j + V (qj+1 − qj)
)

with V (z) =
1
2
z2 +

α

3
z3 +

β

4
z4. (32)

For odd index j we have mj = 1, for even j,
mj = m > 0. If m = 1 we have the classical FPU-
chain. If α �= 0, β = 0 we will call this an α-chain,
if α = 0, β �= 0, a β-chain. In the case αβ �= 0, we
keep α and β as free parameters as the dynamics
depends on their ratio.

To consider four particles only, is less restric-
tive than it appears. It was shown in [Bruggeman &
Verhulst, 2018] that a system of four particles
with its dynamics can be identified as a subman-
ifold of a periodic FPU-chain with 4n particles (n
an arbitrary natural number). There exist in this

system bushes (in the terminology of [Chechin et al.,
2002]) of submanifolds with this dynamics.

The equations of motion have the momentum
integral

m1q̇1 +m2q̇2 + · · · +mnq̇n = P0. (33)

P0 is a constant. We will consider the case of four
particles. The second integral (33) enables us to
reduce the system by one dof. In the case of four
particles we find with the usual scaling near stable
equilibrium:


ẍ1 + 2(1 + a)x1 = εα(γx2x3) + ε2β(−(1 + a)2x3
1

− 3(1 + a)x1(x2
2 + ax2

3)),

ẍ2 + 2x2 = εα(γx1x3) + ε2β(−x3
2 − 3ax2x

2
3

− 3(1 + a)x2
1x2),

ẍ3 + 2ax3 = εα(γx1x2) + ε2β(−3ax2
2x3 − a2x3

3

− 3a(1 + a)x2
1x3).

(34)

In this system a = 1/m, γ = 2
√

2a(1 + a). Three
exact families of periodic solutions are the normal
modes associated with the eigenvalues 2(1 + a), 2
and 2a. The exact solutions are harmonic for an
α-chain. In the classical case a = 1 we find in addi-
tion for the β-chain exact periodic solutions with
x2(t) = ±x3(t). The solutions satisfy x1 = ẋ1 = 0
and

ẍ2 + 2x2 = −4ε2βx3
2.
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Hamiltonian Resonance Zones

Important sets of special (exact) solutions of sys-
tem (34) are found if a = 1 and for arbitrary α, β
on putting x2(t) = ±x3(t). The variable x1 is still
free, so we have with these assumptions two mani-
folds of solutions of system (34) satisfying for a = 1
the system:

ẍ1 + 4x1 = ±4εαx2

2 + 4ε2β(−x3
1 − 3x1x

2
2),

ẍ2 + 2x2 = ±4εαx1x2 + 2ε2β(−2x3
2 − 3x2

1x2),

x2(t) = ±x3(t).

(35)

Near-Identity Transformation

To obtain normal forms for the equations of motion
one uses near-identity transformations following
Birkhoff–Gustavson or equivalently averaging, see
[Sanders et al., 2007]. We will use both.

For all choices of a the first order averaging
terms of system (34) vanish (although two first

order resonances are present: a = 1
4 and a = 1

3).
Using polar coordinates as before, the implication is
that the three amplitudes and phases are constant
with error O(ε) on the timescale 1/ε. Interesting
phenomena happen on a longer timescale; for the
actions we have of course the same result.

The estimate of [Nekhoroshev, 1977] for near
and long-time conservation of the actions cannot
be applied in the classical case m = 1 because of
the 1 : 1 resonance. For arbitrary m, this also holds
if m � 1 (0 < a � 1) as we find detuned 1 : 1
resonances. With four particles, we will focus in the
sequel on the classical case a = 1.

6.1. Normalizing the classical
FPU-chain (a = 1)

The normalization to second order was carried out
by [Rink & Verhulst, 2000], we will add results
regarding passage through resonance zones to the
analysis. The normalized Hamiltonian H to quartic
terms, quadratic in the actions, is:


H = 2I1 +

√
2I2 +

√
2I3 − ε2

[(
1
2
α2 − 3

8
β

)
I2I3 cos 2(φ2 − φ3)

− 3
8
βI2I3 − 3

16
β(I2 + I3)2 − 3

8
βI2

1 +
√

2
(

1
2
α2 − 3

4
β

)
I1(I2 + I3)

]
.

(36)

For the mode with frequency ω we have q =√
2I/ω sinφ, p =

√
2ωI cosφ. We will consider

the α- and β-chain in the case that the two nor-
mal modes x2, x3 of the 1 : 1 resonance are unsta-
ble, producing passage through resonance zones and
strong exchanges of energy between the two modes;
the x1 mode acts as a perturbation on the 1 : 1
resonance. In both cases, we have, in general, the
position of four periodic solutions of the normalized
Hamiltonian with χ = φ2 − φ3, sin 2χ = 0 located
in a primary resonance zone M . Starting near an
unstable normal mode will induce passage through
M . The quantity√

2(I2 + I3) = E1 (37)

with constant E1 ≥ 0 is conserved to O(ε) on the
timescale 1/ε2, İ1 = O(ε3). In addition, we have
2I1 +

√
2I2 +

√
2I3 = E0 +O(ε) for all time (E0, E1

positive constants).

6.2. The α-chain

Consider the α-chain (α = 1, β = 0). We note
that the nondegeneracy condition of the KAM

theorem is not satisfied for the normal form Hamil-
tonian (36) if β = 0 as the nonresonant frequency of
x1 removes the twist character of the ẋ1, x1-flow. As
we will see, this has consequences for the analysis.

From [Rink & Verhulst, 2000] we know that
the x2, x3 normal modes are unstable, the x1 nor-
mal mode is spectrally stable. From the normal
form (36) we have for the actions and the combi-
nation angle χ = φ2 − φ3 omitting terms O(ε3):



İ1 = 0, İ2 = −ε2I2I3 sin 2χ,

İ3 = ε2I2I3 sin 2χ,

φ̇1 = 2 − ε2

2

√
2(I2 + I3),

φ̇2 =
√

2 − ε2

2
(I3 cos 2χ+

√
2I1),

φ̇3 =
√

2 − ε2

2
(I2 cos 2χ+

√
2I1),

2χ̇ = ε2(I2 − I3) cos 2χ.

(38)
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F. Verhulst

General positions of periodic solutions are
found from the normal form for I2 = I3 = 1

4

√
2E1,

χ = 0, π producing resonance zone M1, or π/2,
3π/2 producing resonance zone M2; they are spec-
trally stable. As I1(0) is still free to choose, these
periodic solutions correspond in the normal form
system with manifolds located in each of the pri-
mary resonance zones M1,M2 on a fixed energy
manifold; we have parametrization of the periodic
solutions for 0 ≤ I1(0) ≤ 1

2E0. The primary res-
onance zones are small neighborhoods of the solu-
tions given by I2 = I3, χ = 0, π (M1) and I2 = I3,
χ = π/2, 3π/2 (M2).

From system (34) for a = 1 we have the special
(exact) solutions x2(t) = ±x3(t) satisfying:{

ẍ1 + 4x1 = ±4εx2
2,

ẍ2 + 2x2 = ±4εx1x2.
(39)

So x1(t) experiences when passing through M1,2

a small nonresonant excitation, see Fig. 5. The
periodic solutions in general position obtained
from the normal form (38) do not persist in the
original system as periodic solutions; we conjec-
ture that they can be continued as quasi- or
almost-periodic solutions. We offer the following

(a) (b)

(c)

Fig. 5. The classical α-chain, passage through a primary resonance zone. The actions H21 for system (34) (case a = 1)
with α = 1, β = 0 in three cases with H2(0) = 3.01. Initial conditions: (x1(0) = 0.3, x2(0) = 1.6793, x3(0) = 0.1),
(x1(0) = 0.6, x2(0) = 1.50997, x3(0) = 0.1) and (x1(0) = 0.8, x2(0) = 1.3115, x3(0) = 0.1), initial velocities zero and ε = 0.1.
The action H21 shows variations of magnitude 0.02 outside the resonance zone and significant excitation, magnitude 0.2, in
the zone.
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evidence:

From the normal form system (38) we have for these solutions in M1 the O(ε) approximations on the
timescale 1/ε2: 



x1(t) =
√

2I1(0) sin
(

2t− 1
2
ε2t

√
2(I2(0) + I3(0)) +

π

2

)
,

x2(t) =
√

2I2(0) sin
(√

2t− 1
2
ε2tI2(0) − 1

2
ε2t

√
2I1(0) +

π

2

)
,

x3(t) = x2(t).

(40)

A similar result holds for M2. The approximate solutions are quasi-periodic with, for fixed energy, periods
dependent on the initial values of the nonresonant mode x1 and x2, x3. In the resonance zones, the excitation
of x1 is during the passage O(ε).

(a) (b)

(c)

Fig. 6. The classical α-chain, passage through a primary resonance zone showing the actions H22, H23 corresponding with
x2, x3 of system (34) (case a = 1) with α = 1, β = 0. The three cases have the initial conditions of the three cases in Fig. 5
with H2(0) = 3.01. Whenever H22 = H23 we observe excitation of the x1 mode in the resonance zone. The time of passage
increases with x1(0).
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In the illustrations, we use quantities that,
apart from a scaling factor, are equal to the actions:

H21 =
1
2
(ẋ2

1 + 4x2
1),

H22 =
1
2
(ẋ2

2 + 2x2
2), (41)

H23 =
1
2
(ẋ2

3 + 2x2
3).

We keep H2(0) constant in the pictures as H2 is
an integral of the normal form. Figure 5 shows, as
expected, small variations of the first mode except
for the excitation when passing a resonance zone,
see system (39). The fluctuations of x1, ẋ1 in Fig. 5

are clearly larger when passing the primary res-
onance zone where H22 = H23. We demonstrate
this in the corresponding figures of the exchanges
of energy in Fig. 6. As we start near the unstable
x2 normal mode, we find rather strong exchanges
of energy; this suggests that we will have quasi-
trapping near the tori surrounding the solutions in
the resonance zones where x1 also plays a part.

The recurrence times Tr of the phase-flow can
be deduced from the behavior of the actions in
Figs. 5 and 6. The mechanism of quasi-trapping is
illustrated by the recurrence displayed in Fig. 7. The
Euclidean distance d to the initial conditions corre-
sponding with the three cases of Fig. 5 shows large
gaps in the recurrence behavior.

(a) (b)

(c)

Fig. 7. The classical α-chain, passage through resonance, showing the Euclidean distance d to the initial conditions in the
cases of Fig. 5, keeping H2(0) = 3.01 fixed. The recurrence times increase with x1(0), see also Fig. 8.
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x0 0.2 0.4 0.6 0.8 1
(0)

2000

4000

6000

8000

Tr

1

Fig. 8. The classical α-chain, recurrence times Tr after pas-
sage through a primary resonance zone from numerical inte-
gration of system (34) (case a = 1) with α = 1, β = 0. We
consider 12 cases with H2(0) = 3.01, x3(0) = 0.1 fixed; initial
velocities of the components are zero and ε = 0.1. Start-
ing near the unstable x2 normal mode, the recurrence time
increases strongly when the nonresonant x1 mode starts at a
higher energy level.

A systematic integration of system (34) for
x1(0) ranging from values 0 to 1 and fixed H2(0) =
3.01 shows the increase of recurrence times Tr if
x1(0) increases. The excitation of x1 in the res-
onance zones produces clearly a quasi-trapping
obstruction to the passage of the phase-flow through
the resonance zone, see Fig. 8. The recurrence times
will depend polynomially on x1(0) as Tr is bounded
for a neighborhood of the initial conditions with
positive measure. The form of the dependence is
sensitive to the six initial conditions.

A detuned higher order resonance of any
dynamical importance in the primary resonance
zones cannot be expected in the classical FPU-chain
with four particles. Expressing

√
2 by the rational

1.4 + δ(ε), δ(ε) = 0.0142 . . . we can study the com-
bination angle

χ755 = 7φ1 − 5φ2 − 5φ3.

If this angle is active it will be at very small size
and at very long timescales. We find in the primary
resonance zones M1,M2 that the three actions and
χ1 are varying in O(ε3) whereas:

χ̇755 = −ε
2

2

(
7E1 − 5√

2
E1 cos 2χ1 − 10

√
2I1

)

− 10δ(ε) +O(ε3). (42)

If δ(ε)/ε2 is not small, the right-hand side has no
zeros, χ755 will be timelike and we can average over
the angle to remove the O(ε2) terms of Eq. (42).
But even if δ(ε)/ε2 is small, we need not have a
term of the form x7

1x
5
2x

5
3 in the higher order nor-

mal form. Extensive numerical experiments suggest
that this resonance plays no part. The same holds
for resonances like 7 : 10.

We conclude, see Figs. 5–7, that because of non-
resonant excitation, passage through a resonance
zone can produce a considerable delay of recurrence.
Starting in a resonance zone the choice of H21(0)
has a strong influence on the recurrence properties.

6.3. The β-chain

The β-chain (α = 0, β = 1) shows dynamics that
is different. From [Rink & Verhulst, 2000], we know
that the x2, x3 normal modes are unstable; the res-
onance zone M1: I2 = I3 = 1

2E1 contains two stable
periodic solutions for χ = 0, π; we have M2 with
two unstable periodic solutions for χ = π/2, 3π/2
(parametrized by I1(0) as for the α-chain). One of
the motivations to study also the β-chain is that
the nearest-neighbor interaction in this case is sym-
metric. We will find that this results in different
dynamics.

From system (35) we find the exact solutions of
the β-chain:


ẍ1 + 4x1 = 4ε2β(−x3

1 − 3x1x
2
2),

ẍ2 + 2x2 = 2ε2β(−2x3
2 − 3x2

1x2),

x2(t) = ±x3(t).

(43)

From the normal form (36) we have for the actions
and the combination angle χ when omitting terms
O(ε3):


İ1 = 0, İ2 =−3
4
ε2I2I3 sin 2χ, İ3 =

3
4
ε2I2I3 sin 2χ,

φ̇1 = 2 +
3
4
ε2[I1 +

√
2(I2 + I3)],

φ̇2 =
√

2 +
3
8
ε2(I3 cos 2χ+ I2 + 2I3 + 2

√
2I1),

φ̇3 =
√

2 +
3
8
ε2(I2 cos 2χ+ 2I2 + I3 + 2

√
2I1),

2χ̇ = −3
4
ε2(I2 − I3)(cos 2χ+ 1).

(44)
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The 1 : 1 resonance zone is with the integral (37):√
2(I2 + I3) = E1 again determined by I2 = I3 =

1
4

√
2E1. The analysis runs along the same lines as

for the α-chain. The transitions through the res-
onance zone are shown in Figs. 9–11. We observe
a few differences and, because of the two unstable
periodic solutions in the resonance zone, we con-
sider the dynamics in the resonance zones.

We consider again the possibility of higher
order resonance. As before, we consider the com-
bination angle χ755 = 7φ1 − 5φ2 − 5φ3. However,
it is easy to show that dχ755/dt is sign-definite,

so higher order resonance of this type cannot be
expected to exist. Also the 7 : 10 resonance is not
present in the classical β-chain with four particles.

Passage through a primary resonance zone of
the β-chain produces considerable delay of recur-
rence. Figure 11 shows that increasing x1(0) while
keeping H2(0) = 3.01 fixed, the recurrence time
increases. The increase is caused by the increas-
ing amplitude of the x1-oscillations resulting in a
larger geometric obstruction in the resonance zone.
If x1(0) = 0.3, H21 varies by 0.004 around value
0.186, if x1(0) = 0.6, H21 varies by 0.02 around

(a) (b)

(c)

Fig. 9. The classical β-chain, passage through a primary resonance zone. The actions H21 for system (34) (case a = 1)
with α = 0, β = 1 in three cases with H2(0) = 3.01. Initial conditions: (x1(0) = 0.3, x2(0) = 1.6793, x3(0) = 0.1),
(x1(0) = 0.6, x2(0) = 1.50997, x3(0) = 0.1) and (x1(0) = 0.8, x2(0) = 1.3115, x3(0) = 0.1), initial velocities are zero and
ε = 0.1. The nonresonant action H21 shows small variations outside the resonance zone and smaller ones in the zone.
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(a) (b)

(c)

Fig. 10. The classical β-chain, passage through a primary resonance zone showing the actions H22, H23 corresponding with
x2, x3 of system (34) (case a = 1) with α = 0, β = 1. The three cases have the initial conditions of the three cases in Fig. 9
with H2(0) = 3.01 fixed. Whenever H22 = H23 we observe smaller excitation of the x1 mode in the resonance zone. The time
of passage and the recurrence times increase with x1(0).

value 0.74, if x1(0) = 0.8, H21 varies by 0.03 around
value 1.31.

Starting in the resonance zone, M1 yields fairly
good recurrence because of the stability of the peri-
odic solutions; see Fig. 12(a). In Fig. 12(b) we
show the recurrence when starting near an unsta-
ble quasi-periodic solution in M2. Whereas in M1

recurrence times are typically around 500 timesteps,
starting inM2 with x1(0) = 0.6, this is nearly 30 000
timesteps. In the second case the variations of H22

and H23 are near 2, H21 shows variations of size
0.02 on the time-interval 0–30 000.

The recurrence time varies with x1(0). In
Fig. 13 we have for x1(0) = 0.1 a recurrence time
of more than 130 000 timesteps, for x1(0) = 0.8
at least 30 000 timesteps, for x1(0) = 1 the recur-
rence time is more than 40 000 timesteps. As we
have noted, the 1 : 1 quasi-periodic solutions in M2

are unstable with corresponding unstable manifolds
dominating the expansion if x1(0) is small. The x1-
oscillations are spectrally stable. Increasing x1(0)
will reduce the size of the unstable manifolds result-
ing in reduced expansion and so relatively shorter
recurrence times. However, increasing x1(0) even
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(a) (b)

(c)

Fig. 11. The classical β-chain, passage through resonance, showing the Euclidean distance d to the initial conditions in the
cases of Fig. 9 with H2(0) = 3.01 fixed. The recurrence times increase with x1(0).

(a) (b)

Fig. 12. (a) The classical β-chain, dynamics in the resonance zone M1, showing relative fast recurrence d with initial con-
ditions x1(0) = 0.6, x2(0) = 1.2356, x3(0) = 1.2356 and initial velocities zero, starting near a stable quasi-periodic solution.
(b) We start near an unstable quasi-periodic solution in resonance zone M2, initial conditions x1(0) = 0.6, ẋ1(0) = 0, x2(0) =
1.0700, ẋ2(0) = 0, x3(0) = 0, ẋ3(0) = −1.5132. Starting in M2 the recurrence time increases strongly, in this case to around
30 000 timesteps.
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,ẋ

3
(0

)
=

−1
.7

2
9
2
,

x
1
(0

)
=

0
.8

,ẋ
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more, the x1-oscillations clearly pose a separate
obstruction to recurrence as in Fig. 11 for M1.

6.4. Comparison between Toda chain
and FPU α-chains

An interesting question was raised in [Ferguson
et al., 1982]. Considering chains of unit masses con-
nected by identical springs, they analyzed the cases
of harmonic forces, the Toda chain which is inte-
grable and the FPU α-chain. In the case of the
FPU α-chain the force field derived from Hamil-
tonian (32) is

FFPU(z) = −z − αz2, (45)

whereas we have for the Toda chain with con-
stant B:

FToda(z) =
1
B

(e−Bz − 1)

= −z +
1
2
Bz2 − 1

6
B2z3 + · · · . (46)

With the choice α = 1/4, B = −1/2 and so making
the first two terms of the forces equal, regarding the
well-known recurrence phenomena of the α-chain
and a numerical computation, Ferguson et al. [1982,
Figs. 25–26] conjecture that both chains show, at
least at low energy level, the same qualitative and
nearly the same quantitative behaviors.

We will show that in the case of four particles
this conjecture is correct at low energy level for a
small range of α,B values but not in general. For
the force fields to be equal to quadratic terms we
require −α = B/2. It was shown by [Rink & Ver-
hulst, 2000] that for a FPU-chain with four particles
and both α and β terms, the qualitative behavior is
governed by the bifurcation parameter:

γ =
3β

3β − 4α2
. (47)

The bifurcations involve existence and stability of
periodic solutions. For the α-chain we find γ = 0.
With B = −2α we have for the Toda chain γ =
−B4/4, so positive bifurcation values are excluded.
According to [Rink & Verhulst, 2000], a bifurca-
tion involving exchanges of stability takes place for
γ = ±1 or B =

√
2. Note that the choice of Fergu-

son et al. [1982] was B = −1/2 so that γ = −1/64,
close to the value of the α-chain. The zones M1,M2

found in Sec. 6.2 will for these values also be found
in the Toda chain.

Recently it was shown by Bruggeman and Ver-
hulst [2018] that for the FPU-chain with 4n parti-
cles the system with four particles is recovered in
an invariant manifold. This settles the question of
qualitative inequality of Toda chain and FPU-chain
in more generality.

7. Application to the Classical FPU
β-Chain with Eight Particles

A β-chain with four particles shows different
dynamics as compared with an α-chain. This dif-
ference persists in a system with eight particles,
in general, in a system with 4n particles. In addi-
tion, as indicated in Sec. 6 and [Bruggeman & Ver-
hulst, 2018], a FPU-system with eight particles is
found again as a submanifold in FPU-chains with
16, 24, . . . , or 8n particles. This is in itself is a moti-
vation to study low-dimensional FPU-chains.

Consider the FPU-chain (32) in the classical
case with equal masses, eight particles and α = 0,
β = 1. We have for the eigenvalues λi = ω2

i of the
linearized system:

ω2
i : 4, 2 +

√
2 (twice), 2, 2, 2 −

√
2 (twice), 0.

We have ω1 = 2, ω2,3 = 1.848 . . . , ω4,5 = 1.414 . . . ,
ω6,7 = 0.765 . . . . Using the momentum integral we
can reduce the system from eight dof to seven dof.
The symplectic transformation (p, q) → (y, x) pro-
duces a quartic Hamiltonian with 49 terms, see
Sec. A.2 where we list the coefficients.

7.1. Two invariant manifolds

Inspection of the equations of motion produces the
following invariant manifolds:

• IM 145 (six-dimensional) defined by x2(t) =
x3(t) = x6(t) = x7(t) = 0.

The equations of motion describing the
dynamics in IM 145 are:


ẍ1 + 4x1

= −ε2(4e1111x3
1 + 2e1144x1x

2
4 + 2e1155x1x

2
5),

ẍ4 + 2x4

= −ε2(2e1144x2
1x4 + 4e4444x3

4 + 2e4455x4x
2
5),

ẍ5 + 2x5

= −ε2(2e1155x2
1x5 + 2e4455x2

4x5 + 4e5555x3
5).

(48)

1850097-22

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

8.
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
T

R
E

C
H

T
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/3
0/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 30, 2018 9:30 WSPC/S0218-1274 1850097

Hamiltonian Resonance Zones

As predicted by the theorem in [Bruggeman & Verhulst, 2018], this invariant manifold corresponds with
the six-dimensional phase-space of the FPU-chain with four particles discussed in Sec. 6.

• IM 2367 (eight-dimensional) defined by x1(t) = x4(t) = x5(t) = 0.
We will analyze the dynamics in IM 2367 separately.

One of the conclusions of [Bruggeman & Verhulst, 2018] is that in a system with eight particles the
submanifolds are spectrally stable except if a = 0.75 (m = 4/3). However, we will find instability in the
classical case. Using the list in Sec. A.2 we find the equations of motion in IM 2:




ẍ2 + ω2
2x2 = −ε2(4e2222x3

2 + 3e2226x2
2x6 + 2e2233x2x

2
3 + 2e2237x2x3x7 + 2e2266x2x

2
6

+ 2e2277x2x
2
7 + e2336x

2
3x6 + e2367x3x6x7 + e2666x

3
6 + e2677x6x

2
7),

ẍ3 + ω2
3x3 = −ε2(2e2233x2

2x3 + e2237x
2
2x7 + 2e2336x2x3x6 + e2367x2x6x7 + 4e3333x3

3

+ 3e3337x2
3x7 + 2e3366x3x

2
6 + 2e3377x3x

2
7 + e3667x

2
6x7 + e3777x

3
7),

ẍ6 + ω2
6x6 = −ε2(e2226x3

2 + 2e2266x2
2x6 + e2336x2x

2
3 + e2367x2x3x7 + 3e2666x2x

2
6 + e2677x2x

2
7

+ 2e3366x2
3x6 + 2e3667x3x6x7 + 4e6666x3

6 + 2e6677x6x
2
7),

ẍ7 + ω2
7x7 = −ε2(e2237x2

2x3 + 2e2277x2
2x7 + e2367x2x3x6 + 2e2677x2x6x7 + e3337x

3
3

+ 2e3377x2
3x7 + e3667x3x

2
6 + 3e3777x3x

2
7 + 2e6677x2

6x7 + 4e7777x3
7).

(49)

The dynamics in IM 2367 is interesting as it involves two 1 : 1 resonances (ω2 = ω3, ω6 = ω7) that are
mutually nonresonant. The IM 2367 Hamiltonian contains 19 terms; after normalization, 11 quartic terms
remain.

We are interested in the phase-flow in IM 2367, the stability of the two invariant manifolds and their
interaction. From the preceding section we conclude that IM 2367 will be unstable as we can start in a
neighborhood of the manifold in the unstable resonance zone M2 of manifold IM 145. This is illustrated in
Fig. 14.

Fig. 14. The classical β-chain with eight particles, recurrence given by the Euclidean distance d when starting near
IM 2367 in the resonance zone M2 of IM 145. This illustrates the instability of invariant manifold IM 2367. We choose in
IM 2367 the case x2(0) = x3(0) = 0.5, x6(0) = x7(0) = 0.4 with (χ23, χ67) = (0, 0). For modes 1, 4 and 5 we took
x1(0) = 0.1, ẋ1(0) = 0, x4(0) = 0.1, ẋ4(0) = 0, x5(0) = 0, ẋ5(0) = −0.1414. The integration was carried out for the origi-
nal system induced by (32) with ε2 = 0.1 (to speed up the dynamics).
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7.2. The normalized amplitudes in seven dof

We normalize the full system of seven dof equations using transformation (4). The Hamiltonian of the β-
chain in y, x-coordinates contains 49 quartic terms. We find after transformation and normalization, using
Sec. A.2, combination angles:

χ23 = φ2 − φ3, χ45 = φ4 − φ5, χ67 = φ6 − φ7,




ṙ1 = 0, ṙ2 =
ε2

4ω2

(
3
16

(3 + 2
√

2)r2r23 sin 2χ23 +
3
4
r3r6r7 sinχ23 cosχ67

)
,

ṙ3 = − ε2

4ω3

(
3
16

(3 + 2
√

2)r22r3 sin 2χ23 +
3
4
r2r6r7 sinχ23 cosχ67

)
,

ṙ4 =
3ε2

16
√

2
r4r

2
5 sinχ45, ṙ5 = − 3ε2

16
√

2
r24r5 sinχ45,

ṙ6 =
ε2

4ω6

(
3
4
r2r3r7 cosχ23 sinχ67 +

3
16

(3 − 2
√

2)r6r27 sin 2χ67

)
,

ṙ7 = − ε2

4ω7

(
3
4
r2r3r6 cosχ23 sinχ67 +

3
16

(3 − 2
√

2)r26r7 sin 2χ67

)
.

(50)

The use of transformation (4) assumes that the amplitudes do not vanish, but it has been checked by using
co-moving coordinates that, as system (50) suggests, the normal modes are solutions of the normalized
system. We find four integrals of the amplitude normal form:

r1 = r1(0), r22 + r23 = 2E1, r24 + r25 = 2E2, r26 + r27 = 2E3 (E1, E2, E3 ≥ 0).

To this order of normalization, interaction between the two invariant manifolds does not take place by the
amplitudes, but as we shall see, by the angle φ1. Although the first mode, x1, is nonresonant, we have seen
in Sec. 6.3 that the choice of x1(0) influences the dynamics and the recurrence.

7.3. The normalized phases in seven dof




φ̇1 =
3ε2

8
(r21(0) + (2 +

√
2)E1 + 2E2 + (2 −

√
2)E3),

χ̇23 =
ε2

ω2

(
9
64

(3 + 2
√

2)(r22 − r23) +
3
32

(3 + 2
√

2)(r2
3 − r22)

(
1 +

1
2

cos 2χ23

)

+
3
16

(r27 − r26) +
3
16

(
r3
r2

− r2
r3

)
r6r7 cosχ23 cosχ67

)
,

χ̇45 =
3ε2

16
(r25 − r24)

(
1 +

1
2

cos 2χ45

)
,

χ̇67 =
ε2

ω6

(
3
16

(r23 − r22) +
3
16
r2r3 cosχ23 cosχ67

(
r7
r6

− r6
r7

)

+
3
32

(3 − 2
√

2)(r2
6 − r27) +

1
4
(r27 − r26) cos 2χ67

)
.

(51)
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Hamiltonian Resonance Zones

We find from Eqs. (50) and (51) in IM 145:

(1) The three normal mode periodic solutions x1,
x4, x5.

(2) Periodic solutions in the primary resonance
zones r1(0) = 0, r4 = r5, sin 2χ45 = 0.

We find in IM 2367:

(1) Two periodic solutions:

r6 = r7 = 0, sin 2χ23 = 0, r2 = r3.
r2 = r3 = 0, sin 2χ67 = 0, r6 = r7.

(2) Eight quasi-periodic solutions if r2r3r6r7 �= 0:

sinχ23 = sinχ67 = 0, r2 = r3, r6 = r7 produc-
ing (χ23, χ67) = (0, 0), (0, π), (π, 0), (π, π).
cosχ23 = cosχ67 = 0, r2 = r3, r6 = r7
producing (χ23, χ67) = (π

2 ,
π
2 ), (π

2 , 3
π
2 ), (3π

2 ,
π
2 ),

(3π
2 , 3

π
2 ).

7.4. Interaction of the two
invariant manifolds

We consider perturbations of the solutions start-
ing in a primary resonance zone of invariant man-
ifold IM 2367 by small values of x1(0), x4(0), x5(0)
in the unstable resonance zone M2 of IM 145. In
Fig. 14 we show the instability of IM 2367 by plot-
ting the Euclidean distance d to the initial condi-
tions in 30 000 timesteps. The normal form Eqs. (50)
and (51) show interaction of the angle of mode
x1 with the other six modes but not vice versa.
As we have shown earlier, the O(ε3) terms of the
normal form equations induce the instability on a
long timescale; we took ε2 = 0.1 to speed up the
dynamics.

Conclusion

As stated before, we will find invariant manifold
IM 145 in the classical FPU-chain with 4n particles.
An important consequence of our analysis is that
any other invariant manifold present in the classi-
cal FPU-chain with 4n particles will be unstable.

8. Note on the FPU-Chain with
Eight Particles and Alternating
Masses

It has been shown in [Bruggeman & Verhulst, 2018]
that also in the case of alternating masses, the
dynamics of a FPU-chain with eight particles will be
found again in submanifolds of periodic FPU-chains

with 8n particles. In the classical case (m = 1) we
have found in a chain with four particles instability
phenomena in a resonance zone of the β-chain. In
the case of four alternating masses, low order reso-
nances arise if m = 3, 4, 8, 9. However, the normal
forms in these cases degenerate so that we would
have to consider high order normal forms in these
cases.

We will make some remarks on the α-chain, the
β-chain with eight alternating masses is left as an
open problem.

The α-chain

The analysis for eight particles in [Bruggeman &
Verhulst, 2018] shows that for the α-chain we have
from the equations of motion, three invariant man-
ifolds: M145 (as expected), M256 and M357.

The first order normal forms are degenerate
except in the cases a = 0.5 and 0.75. Spectral stabil-
ity analysis in [Bruggeman & Verhulst, 2018] shows
that only for a = 0.75 we find from the normal forms
instability of the invariant manifolds. This instabil-
ity persists in alternating periodic FPU-chains with
a = 0.75 and 8n particles.

The remaining problem at this order of normal-
ization is to show whether the spectral stability of
the three manifolds persists as stability in the case
a = 0.5. We are inspired by the fact that mode
x5 plays a pivotal role in the three manifolds. Con-
sider the invariant manifoldM256 in the case of eight
particles, a = 0.5. According to [Bruggeman & Ver-
hulst, 2018, system (12)], the dynamics in the man-
ifold for the x2, x5 and x6 modes is governed by:


ẍ2 + λ2x2 = −ε(2x2x5d225 + x5x6d256),

ẍ5 + x5 = −ε(x2
2d225 + x6x2d256 + x2

6d665),

ẍ6 + λ6x6 = −ε(x2x5d256 + 2x5x6d665).

(52)

Here λ2 = 1
2(3 +

√
5), λ6 = 1

2(3 − √
5), the d-

coefficients are given in [Bruggeman & Verhulst,
2018] with d225 < 0, d256 =

√
10/10, d665 > 0.

Restricting to IM 256 only, d256 plays a part in the
intermediate normal form of system (52). The x5, ẋ5

coordinate plane contains harmonic solutions of the
form r0 cos(t + φ0) that produce by linearization a
Floquet system of the form:

ẍ2 + λ2x2 = −εd256r0 cos(t+ φ0)x6,

ẍ6 + λ6x6 = −εd256r0 cos(t+ φ0)x2.
(53)
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(a) (b)

Fig. 15. The instability of manifold IM 357 in the eight particle α-chain with a = 0.5, ε = 0.1. (a) The recurrence d with initial
conditions x(0) = 0,−0.1, 0.5, 0, 0.2, 0.1, 0.4 and initial velocities ẋ(0) = 0,−0.1, 0, 0, 0.2, 0.1, 0.4. (b) The distance to the initial
conditions of the modes 3, 5, 7 in the manifold IM 357 without the perturbing modes 1, 2, 4, 6, x3(0) = 0.5, x5(0) = 0.2, x7(0) =
0.4, velocities ẋ3(0) = 0, ẋ5(0) = 0.2, ẋ7(0) = 0.4. For the integration we used the original system derived from Hamilto-
nian (32) with corresponding initial conditions (a) q(0) = 0.1,−0.0646447, −0.45, 0.135355, −0.1, 0.135355, 0.45, 0.0646447 and
initial velocities q̇(0) = 0.1,−0.241421, −0.2,−0.0414214, −0.1, 0.0414214, 0.2, 0.241421.

The resonance
√
λ2 = 1 +

√
λ6 destabilizes the nor-

mal mode; this is confirmed by averaging of the lin-
earized system (53) and numerical simulations of
system (52). We conjecture now that the instabil-
ity of the x5 normal mode in IM 256 will affect the
stability of manifold IM 357. Figure 15 shows the
instability; in the manifold we start with x(0) =
0.5, 0.2, 0.4, ẋ(0) = 0, 0.2, 0.4 and add small pertur-
bations to the other modes. Inverting the symplec-
tic transformation we integrate numerically for the
original α-chain generated by Hamiltonian (32). On
the left we show the Euclidean distance d to the ini-
tial conditions for the eight modes of the chain; the
interval of time, 50 000 timesteps, in this unstable
case is not enough for recurrence. On the right we
show the Euclidean distance for the modes start-
ing in IM 357 without other perturbing modes. The
recurrence is relatively fast.

9. Discussion and Conclusions

(1) The main purpose of this paper is to show how
in Hamiltonian systems low and high order res-
onances may interact to produce delay of recur-
rence and instability of invariant manifolds. The
dynamics involves a special type of double res-
onance. This has been demonstrated for three
dof systems with as an example, the 1 : 1 : 4
resonance. In addition this has been applied for

the periodic FPU-chain with four and eight par-
ticles (and so for 4n and 8n particles).

(2) In [Ferguson et al., 1982] it was shown that
for certain parameter values the FPU α-chain
and the Toda chain have the same qualitative
and nearly the same quantitative behavior. We
have shown in Sec. 6.4 that this is not a gen-
eral feature, it is correct for a range of param-
eters involving small values of the parameter γ
in Eq. (47).

(3) Delay of recurrence takes different forms. An
important one is caused by quasi-trapping in
resonance zones where the higher order reso-
nance may become effective. This involves an
extension of the theory of higher order reso-
nance as described by [Sanders, 1977; Sanders
et al., 2007; Tuwankotta & Verhulst, 2000]. The
presence of tori and other invariant manifolds in
the resonance zones is a well-known explanation
of delay of recurrence.

An unexpected other effect resulting in delay
occurs in the classical periodic α-chain with 4n
particles. It is shown in Sec. 6.2 that nonreso-
nant excitation may take place in a resonance
zone.

(4) Normalization helps to describe in detail the
phase-flow in primary zones with double res-
onance. We have noted that the normal form
of the 1 : 1 : 4 resonance is integrable, this
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also holds in the primary resonance zone and
near the resonant junction. In this sense the
embedded double resonance is different from
the general double resonance as described in
[Efthymiopoulos & Harsoula, 2013]. In this case
chaos does not play an important part at low
energy level.

(5) Hamiltonian systems contain in general an infi-
nite number of periodic solutions that are close
(detuned) to the main resonances producing
the so-called short-periodic orbits. This implies
that the picture we have developed corresponds
with the dominant aspects of the phase-flow in
three dof. Our picture is not complete but this
becomes apparent only when going beyond the
low energy level where the normal forms are
valid. Detuned resonances will arise in normal
forms that contain terms of size εc‖a‖ with c

positive and ‖a‖ the annihilator norm of the
detuned resonance. The domains where they are
found are extremely small or even nonexistent
at low energy level.

(6) In a number of cases we find that spectral sta-
bility of a periodic solution or a manifold does
not persist in the nonlinear setting. For Hamil-
tonian systems this a known phenomenon, but
explicit examples in the case of three or more
dof are rare. For instance in Sec. 8, we have
spectral stability of an invariant manifold that
does not persist in an FPU-chain with alternat-
ing mass.

(7) We mention a number of open problems.
The periodic FPU-chain with six particles

was studied in [Rink & Verhulst, 2000]. In this
system we find a degenerate 1 : 2 : 1 resonance
which may cause quasi-trapping phenomena. In
itself, this system, which is typical for the classi-
cal periodic FPU-chain with 6n particles would
be useful to study in more detail.

Another interesting open problem is the
dynamics of the β FPU-chain with alternating
masses indicated in Sec. 8.

A basic approximation problem is that the
exponential estimates in [Nekhoroshev, 1977]
cannot be applied in the case of interacting low
and higher resonances; new mathematical esti-
mates are necessary here.

Finally, a natural problem would be to
use the present theory for FPU cell-chains as
described in [Verhulst, 2016].
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Appendix A

A.1. On normalization

Our results on normalization and error estimates
are based on [Sanders et al., 2007] with slight
modifications. We assume existence and unique-
ness of solutions of initial value problems, suffi-
cient smoothness and T -periodicity of vector fields.
To study the dynamics of secondary resonance in
three dof, we have to normalize at least to O(ε3),
in a Hamiltonian formulation to H5. We start with

putting system (5) with k = 1, 3 in the standard
form for averaging-normalization using transforma-
tion (4):

ẋ = ε2f(t, x) + ε3g(t, x) + ε4 . . . , x(0) = x0.

(A.1)

Consider the averaged vector field

f0(x) =
1
T

∫ T

0
f(s, x)ds

and the initial value problem

ẏ = ε2f0(y), y(0) = x0,

then x(t)− y(t) = O(ε) on the timescale 1/ε2. Sup-
pose that we need a higher order approximation.
We will use the near-identity transformation:

x = z + ε2u1(t, z), (A.2)

with

u1(t, z) =
∫ t

0
(f(s, z) − f0(z))ds.

Introduce the vector field

f1(t, z) = 
f(t, z)u1(t, z)

with f0
1 the average of f1, then the next approxima-

tion arising from the O(ε2) terms in Eq. (A.1) are
shifted to O(ε4). To O(ε3), the averaging normal
form of Eq. (A.1) is

ẋ = ε2f0(x) + ε3g0(x).

We can obtain an O(ε2) approximation on the
timescale 1/ε2. The analysis of primary and sec-
ondary resonances is too complicated to present
here in full generality.

A.2. Transformation to eigenmodes
by Mathematica

Here we document the Mathematica computations
in the case of a classical periodic FPU α- and β-
chain (equal masses) with eight particles. We follow
the reasoning as in [Bruggeman & Verhulst, 2018,
Sec. 3]. The Hamiltonian is

H(p, q) = H2(p, q) + εαH3(q) + ε2βH4(q), (A.3)
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with H3(q) = 1
3

∑8
j=1(qj+1 − qj)3, H4(q) = 1

4 ×∑8
j=1(qj+1 − qj)4. The vector p = (p1, p2, . . . , p8) ∈

R
8 gives the impulses of the eight particles, and

the vector q ∈ R
8, the positions with convention

qm+8 = qm. The symplectic transformation p = Ky,
q = Lx transforms the Hamiltonian in coordinate
vectors with respect to a basis of eigenvectors of
the linearized system (ε = 0). With the coordinate

vectors y, x ∈ R
8 we find the expression 1

2

∑8
j=1 y

2
j +

1
2

∑7
j=1 λj x

2
j for H2, as the eighth eigenvalue equals

zero.
For the sake of reference we add the result for

the cubic terms (the α-chain). We find expressions
H3 =

∑
ijk dijkxixjxk and H4 =

∑
ijkl eijklxixjxkxl

with the range of indices and coefficients in the
following lists:

d225 = −1
2
(1 +

√
2) d335 =

1
2
(1 +

√
2) d665 =

1
2
(
√

2 − 1) d775 = −1
2
(
√

2 − 1) d127 = −2

d136 = −2 d234 = 1 +
√

2 d145 = −2
√

2 d346 = 1 d256 = 1

d247 = −1 d357 = 1 d467 = −1 +
√

2
(A.4)

and

e1111 =
1
2

e1122 =
3
4
(2 +

√
2) e1133 =

3
4
(2 +

√
2) e1144 =

3
2

e1155 =
3
2

e1166 =
3
4
(2 −

√
2) e1177 =

3
4
(2 −

√
2) e1224 =

3
4
(2 +

√
2)

e1235 = −3
2
(2 +

√
2) e1246 = −3

2

√
2 e1257 =

3
2

√
2 e1334 = −3

4
(2 +

√
2)

e1347 = −3
2

√
2 e1356 = −3

2

√
2 e1466 = −3

4
(2 −

√
2) e1477 =

3
4
(2 −

√
2)

e1567 = −3
2
(2 −

√
2) e2222 =

3
32

(3 + 2
√

2) e2226 = −1
8
(1 +

√
2) e2233 =

3
16

(3 + 2
√

2)

e2237 = −3
8
(1 +

√
2) e2244 =

3
8
(2 +

√
2) e2255 =

3
8
(2 +

√
2) e2266 =

3
16

e2277 =
9
16

e2336 =
3
8
(1 +

√
2) e2367 =

3
4

e2457 =
3
2

√
2

e2666 =
1
8
(
√

2 − 1) e2677 = −3
8
(
√

2 − 1) e3333 =
3
32

(3 + 2
√

2) e3337 =
1
8
(1 +

√
2)

e3344 =
3
8
(2 +

√
2) e3355 =

3
8
(2 +

√
2) e3366 =

9
16

e3377 =
3
16

e3456 =
3
2

√
2 e3667 =

3
8
(
√

2 − 1) e3777 = −1
8
(
√

2 − 1) e4444 =
1
8

e4455 =
3
4

e4466 =
3
8
(2 −

√
2) e4477 =

3
8
(2 −

√
2) e5555 =

1
8

e5566 =
3
8
(2 −

√
2) e5577 =

3
8
(2 −

√
2) e6666 =

3
32

(3 − 2
√

2) e6677 =
3
16

(3 − 2
√

2)

e7777 =
3
32

(3 − 2
√

2)

(A.5)
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