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Stable generalized complex structures

Gil R. Cavalcanti and Marco Gualtieri

Abstract

A stable generalized complex structure is one that is generically symplectic but degenerates
along a real codimension two submanifold, where it defines a generalized Calabi–Yau structure.
We introduce a formalism which allows us to view such structures as symplectic forms with
singularities of logarithmic or elliptic type. This allows us to define two period maps: one for
deformations in which the background 3-form flux is fixed, and one for which the flux is allowed
to vary. As a result, we prove the unobstructedness of each of these deformation problems. We
use the same approach to establish local classification theorems for the degeneracy locus as well
as for analogues of Lagrangian submanifolds called Lagrangian branes.

Introduction

Generalized complex geometry [16, 21] is a common generalization of complex and symplectic
geometry in which the pointwise structure may be described as a symplectic subspace with
transverse complex structure. This symplectic distribution defines a real Poisson structure
whose rank may vary in any given example. Four-dimensional generalized complex manifolds
have been thoroughly investigated, the main focus being on structures which are generically
symplectic and degenerate along a two-dimensional submanifold, which then inherits a complex
structure rendering it a Riemann surface of genus one. In [7, 8, 13, 28, 29], many examples
of generalized complex four-manifolds were found, the most interesting of which were on
manifolds, such as CP 2#CP 2#CP 2, which admit neither symplectic nor complex structures.

In this paper we develop the main properties of stable generalized complex structures, where
the structure is generically symplectic but degenerates along a real codimension 2 submanifold
D, generalizing the case described above to arbitrary (even) dimension. We show that D inherits
a generalized Calabi–Yau structure as well as a holomorphic structure on its normal bundle, and
we prove that a tubular neighbourhood of D is completely classified by this data. This result
was not available even in dimension 4. We prove a similar classification theorem for Lagrangian
branes, analogs of Lagrangians in symplectic geometry. This involves a generalization of the
cotangent bundle construction in symplectic geometry which, for example, associates a natural
stable generalized 6-manifold to any co-oriented link K ⊂ S3. We also provide a construction of
stable structures on torus fibrations, obtaining, for instance, a stable structure on S1 × S5. We
then move to deformation theory and define two period maps controlling deformations of stable
generalized complex structures on compact manifolds M . The first describes deformations with
fixed background 3-form and is a map to H2(M\D,C), independently discovered by Goto [12].
The second describes simultaneous deformations of the pair (J, H) comprised a stable structure
J integrable with respect to the 3-form H, and is a map to H2(M\D,R) ⊕H1(D,R). In both
cases, we deduce the unobstructedness of the deformation problem.
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The main insight behind the above results is that a stable generalized complex structure on
M is naturally related to 2-forms in certain Lie algebroids over M . Firstly, a stable structure
is in fact equivalent to a 2-form on the logarithmic tangent bundle associated to a complex
divisor in M subject to a nondegeneracy condition. Secondly, the gauge equivalence class of the
stable structure is fully captured by a symplectic form on another Lie algebroid, this time the
elliptic tangent bundle. These insights allow for the use of symplectic techniques, such as Moser
interpolation, to study stable generalized complex structures. In particular, stable structures
provide a concrete example fitting in the framework of symplectic Lie algebroids as introduced
by Tsygan and Nest [26]. Our approach is analogous to that taken in holomorphic log
symplectic geometry [11] as well as in the recent development of real log symplectic geometry
[6, 18, 19, 24, 25] and justifies the intuition that a stable generalized complex structure is a
type of singular symplectic structure. Due to the relation between stable generalized complex
structures and the logarithmic and elliptic tangent bundles, we develop the Hodge theory of
these algebroids. In particular, we compute the Lie algebroid cohomology of the elliptic tangent
bundle and give an explicit description of its cup product.

Organization of the paper

In Section 1, we introduce the notion of a complex divisor in the smooth category and its
associated pair of Lie algebroids, the logarithmic tangent bundle (§ 1.1) and the elliptic tangent
bundle (§ 1.2). We describe the various residues of an elliptic form (§ 1.3), allowing an explicit
description of the elliptic de Rham cohomology and its cup product. We then compare (§ 1.4)
the logarithmic and elliptic de Rham complexes in the case that the elliptic residue vanishes, a
condition which holds for stable generalized complex structures. We end with the observation
that the above Lie algebroids may be interpreted as generalized Atiyah algebroids (§ 1.5). This
yields a key rectification lemma (§ 1.6) for complex divisors in the smooth category.

In Section 2 we introduce the main object of study: stable generalized complex structures.
Sections § 2.1–2.3 establish general results about the geometry of the canonical line bundle
and of generalized Calabi–Yau manifolds. In § 2.4 we define stable structures and determine in
Theorem 2.13 the inherited geometry of the anticanonical divisor, ending with a method for
constructing new examples (§ 2.5).

In Section 3, we establish the equivalence between stable generalized complex structures and
complex log symplectic structures (Theorem 3.2), as well as with co-oriented elliptic symplectic
structures (§ 3.1) if we consider only gauge equivalence classes of stable structures. We use
this to define two period maps, one for deformations in which H is fixed (§ 3.2) and one
where it is not (§ 3.3). In the remainder of this section we establish three main local normal
form theorems: Theorem 3.27 is a Darboux theorem for the neighbourhood of a point in D,
Theorem 3.28 classifies a tubular neighbourhood of D, and Theorem 3.31 is a Lagrangian brane
neighbourhood theorem.

1. Complex divisors on smooth manifolds

Definition 1.1. Let U be a smooth complex line bundle over the smooth n-manifold M , and
let s ∈ C∞(M,U) be a section transverse to the zero section. We refer to the pair D = (U, s)
as a complex divisor.

Our nomenclature is by analogy with the well-known correspondence between holomorphic
line bundles with section and divisors on complex manifolds. In our case, we regard the pair
(U, s) as the divisor, though we may abuse notation and use D to refer to the smooth real
codimension 2 submanifold given by the zero set of s. Note that as s vanishes transversely
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along D, it has a nonvanishing normal derivative which establishes an isomorphism between
the real normal bundle N of D and the restriction of U to D:

dνs : N
∼=−−−−−→ U |D. (1.1)

As a result, we obtain a complex structure on N . Therefore D is co-oriented and defines an
integral class in the second cohomology group H2(M,Z) which coincides with the Chern class
of U , just as in the holomorphic theory.

We now observe that by considering infinitesimal symmetries of a complex divisor we obtain
several useful Lie algebroids.

1.1. The logarithmic tangent bundle

Given a complex divisor D = (U, s) we obtain an ideal Is ⊂ C∞
C

(M) given by the image of the
map

C∞(M,U∗) s−−−−→ C∞
C (M). (1.2)

Definition 1.2. The logarithmic tangent bundle associated to the complex divisor D is the
Lie algebroid, denoted by T (− logD), given by the locally free sheaf of smooth complex vector
fields on M which preserve the ideal Is ⊂ C∞

C
(M). The anchor map a : T (− logD) → TCM is

defined by the inclusion of sheaves, and the bracket is inherited from the Lie bracket of vector
fields.

Away from the zero locus of s, the anchor is an isomorphism, and we give an explicit
description of T (− logD) near a point on the zero locus as follows. By the transversality of s,
we may choose a local trivialization in which s is given by the complex coordinate function w,
and let x3, . . . , xn be real functions forming a completion to a coordinate system, so that T ∗

C
M

is locally generated by (dw, dw̄, dx3, . . . , dxn). Then the algebroid T (− logD) is locally freely
generated over C∞

C
(M) as follows

T (− logD) = 〈w∂w, ∂w̄, ∂x3 , . . . , ∂xn
〉 . (1.3)

In the case of a nonsingular divisor D on a complex manifold, with holomorphic log tangent
bundle T (− logD), the above complex Lie algebroid coincides with the natural Lie algebroid
structure on T (− logD) ⊕ T 0,1M , the smooth Lie algebroid underlying the holomorphic one
(see [23]).

Also by analogy with the holomorphic case, we refer to the de Rham complex of the algebroid
T (− logD) as the logarithmic de Rham complex of the complex divisor D = (U, s). Similarly,
we use the notation Ωk(logD) for the sheaf of sections of the bundle of logarithmic k-forms.
In particular we denote the global sections by

Ωk(M, logD) = C∞(M,∧k(T (− logD))∗). (1.4)

In the above coordinates, a general logarithmic form may be written as

ρ = d logw ∧ α + β, (1.5)

for uniquely determined α, β in the ideal generated by (dw̄, dx3, . . . , dxn).
There are two important morphisms comparing the logarithmic de Rham complex with the

usual de Rham complex. The first derives from the fact that the anchor map

T (− logD) a−−−−→ TM (1.6)
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is an isomorphism over the divisor complement, that is, the nonvanishing locus of s. We obtain
a pullback along the inclusion i of the complement:

i∗ : Ωk(M, logD) → Ωk(M\D,C). (1.7)

Just as in the holomorphic theory [14], i induces an isomorphism on cohomology groups.

Theorem 1.3. The inclusion of the divisor complement induces an isomorphism between
the logarithmic cohomology of (M,D) and the complex de Rham cohomology of the
complement:

Hk(i∗) : Hk(M, logD)
∼=−−−−−→ Hk(M\D,C). (1.8)

Proof. As is done in the holomorphic case, we view the logarithmic cohomology as
the hypercohomology of the sheaf-theoretic logarithmic de Rham complex, and similarly
for the de Rham cohomology of the divisor complement. The pullback i∗ is a morphism
of complexes of sheaves, and we verify that it is a quasi-isomorphism, in the sense that
it induces an isomorphism on local cohomology sheaves. By the usual argument using
the hypercohomology spectral sequence, the quasi-isomorphism induces an isomorphism on
hypercohomology, yielding the result.

Away from the divisor, i∗ is an isomorphism, so to prove it is a quasi-isomorphism we compute
local cohomology in a small ball surrounding a point in D. With local coordinates chosen as
above, the logarithmic cohomology is one-dimensional in degrees 0 and 1 and zero otherwise,
generated by a constant and by d logw, respectively. Applying i∗ takes these to generators for
the cohomology of the divisor complement in the ball, which is homotopic to the circle. �

The second comparison map between usual and logarithmic forms is given by the residue
map, which takes a logarithmic k-form to a usual (k − 1)–form along D. The residue of our
general form (1.5) is given by

Res(d logw ∧ α + β) = j∗α, (1.9)

where j : D ↪→ M is the inclusion. Note that, in contrast to the holomorphic theory, the
vanishing of the residue does not guarantee that a form is smooth, that is, a member of
the subcomplex of usual differential forms: it may have a nonvanishing component in the ideal
generated by w̄d logw and d logw ∧ dw̄.

Just as in the holomorphic theory, however, the residue defined above (1.9) is a cochain
morphism and so induces a map of de Rham cohomology groups

Res∗ : Hk(M, logD) → Hk−1(D,C). (1.10)

The topological description of this map is well-known in the study of residues in the holomorphic
category, see for example, [10]. We leave the translation of the usual proof to our situation to
the reader.

Proposition 1.4. The residue map coincides with the Poincaré–Leray residue map in the
Thom–Gysin sequence for inclusion i of the complement M\D into M . That is, we have the
long exact sequence of cohomology groups with complex coefficients:

· · · → Hk(M) i∗−→ Hk(M\D) R−→ Hk−1(D)
j∗−→ Hk+1(M) → · · · (1.11)

where R = 2πi · Res∗ and j∗ is the pushforward associated to the co-oriented inclusion j : D ↪→
M .
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1.2. The elliptic tangent bundle

Any complex divisor D = (U, s) determines a complex conjugate divisor D = (U, s), with the
same zero locus. As described above, this divisor gives rise to a Lie algebroid T (− logD). In
the same coordinates chosen above, we have

T (− logD) = 〈∂w, w̄∂w̄, ∂x3 , . . . , ∂xn
〉 . (1.12)

The anchor maps a, a of the algebroids T (− logD), T (− logD) are transverse bundle maps
to TCM , and so there is a well-defined fibre product Lie algebroid, invariant under complex
conjugation.

Definition 1.5. The elliptic tangent bundle associated to the complex divisor D = (U, s) is
the real Lie algebroid T (− log |D|) whose complexification is the fibre product of the logarithmic
tangent bundle of D with its complex conjugate.

A convenient way to describe T (− log |D|) is as the real infinitesimal symmetries of the
tensor product (U ⊗ U, s⊗ s) of D with D. Even though s⊗ s is not transverse to the zero
section, it still defines an ideal of functions Iss ⊂ C∞

R
(M). As before, the subsheaf of vector

fields preserving this ideal has constant rank and hence defines a Lie algebroid which we call
the elliptic algebroid. In the coordinate system chosen above, this Lie algebroid is given by
the vector fields preserving the quadratic defining function ww. Explicitly, in polar coordinates
w = reiθ, we have

T (− log |D|) = 〈r∂r, ∂θ, ∂x3 , . . . , ∂xn
〉 . (1.13)

More generally, we may define the elliptic tangent bundle as follows.

Definition 1.6. Let (R, q) be an elliptic divisor, consisting of a real line bundle R over
M with a smooth section q whose zero set D is a smooth codimension 2 critical submanifold
along which the normal Hessian is positive-definite. The sheaf of vector fields preserving the
ideal Iq = q(C∞(M,R∗)) is called the elliptic tangent bundle associated to (R, q).

Note that the real line bundle R is oriented by q since it is a trivialization away from a
codimension 2 submanifold. Also, the normal Hessian referred to above is the leading term of
the Taylor expansion of q about D:

Hess(q) ∈ C∞(D,S2N∗ ⊗R). (1.14)

Using the Morse–Bott lemma and the factorization x2 + y2 = (x + iy)(x− iy) = ww̄, one sees
that an elliptic divisor (R, q) may be expressed as (U ⊗ U, s⊗ s) for a complex divisor (U, s)
if and only if its zero set is co-orientable. In this case (U, s) is uniquely determined up to
diffeomorphism by the choice of a co-orientation.

1.3. Residues and elliptic logarithmic cohomology

We now describe the Lie algebroid de Rham complex of the elliptic tangent bundle T (− log |D|)
associated to the elliptic divisor |D| = (R, q). We use D to denote the zero locus of q. In the
main case of interest, (R, q) is the elliptic divisor obtained from a complex divisor, that is,
q = s⊗ s. We use Ωk(log |D|) to denote the smooth sections of ∧k((T (− log |D|))∗) and call
these elliptic forms. From (1.13) we see that locally, a general elliptic form may be written

ρ = d log r ∧ dθ ∧ ρ0 + d log r ∧ ρ1 + dθ ∧ ρ2 + ρ3, (1.15)

with ρi smooth forms. Just as for logarithmic forms, there is a well-defined pullback i∗ from
logarithmic forms to the de Rham complex of the complement M\D (with real coefficients).
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In contrast to the previous case there are two independent singular generators for the elliptic
forms, namely, dθ, d log r. As a consequence, we obtain several residue forms, which we organize
as follows.

The restriction of T (− log |D|) to D defines an algebroid of infinitesimal symmetries of the
normal bundle N of D which is part of the exact sequence

0 → R ⊕ k → T (− log |D|)|D → TD → 0, (1.16)

where R is the trivial bundle generated by the Euler vector field E, and k ∼= ∧2N∗ ⊗R is
the adjoint bundle of infinitesimal rotations preserving the Hessian of q. If N is orientable, a
choice of orientation on N distinguishes a global trivialization I of k, a complex structure which
generates the S1 action on N . So, the logarithmic forms, restricted along D, define algebroid
forms for the above algebroid. Therefore we may define an elliptic residue, Resq, and, if this
vanishes, a complex residue, Resc, by the canonical projection maps given by dualizing (1.16):

Ωk
0(log |D|) −→ Ωk(log |D|) Resq−−−−−−→ Ωk−2(D, k∗)

Ωk
0(log |D|) Resc−−−−−−→ Ωk−1(D,R ⊕ k∗). (1.17)

We denote the kernel of Resq by Ω•
0(log |D|). Since Resq is a map of cochain complexes, the

spaces Ω•
0(log |D|) form a natural subcomplex of the elliptic de Rham complex. The orientation

bundle k is flat, and the elliptic residue is a degree −2 cochain map to Ω•(D, k∗). Also, if N
is oriented, k is trivialized and we may view Resc as a form with complex coefficients. Applied
to the form (1.15) and using ∂θ to orient N , we define Resq(ρ) = j∗ρ0, and if this vanishes, we
define

Resc(ρ) = j∗(ρ1 − iρ2), (1.18)

where j denotes the inclusion D ↪→ M . This complex residue is compatible with the logarithmic
residue defined in (1.9): any ρ ∈ Ω•(logD) may be pulled back to a complexified elliptic form,
whose real and imaginary parts satisfy

Resc(Re(ρ)) = iResc(Im(ρ)) = Res(ρ). (1.19)

The radial components of the residues Resq,Resc play a special role. Quotienting the sequence
(1.16) by the Euler vector field E, we obtain the Atiyah algebroid of the circle bundle S1N
associated to the rank 2 bundle N , an extension as below:

0 → k → At(S1N) → TD → 0. (1.20)

Because T (− log |D|)|D is an extension of At(S1N) by a trivial bundle, the elliptic residue
factors through a radial residue map

Resr : Ωk(log |D|) → C∞(D,∧k−1At(S1N)∗). (1.21)

Definition 1.7. The radial residue of the form (1.15) is given by

Resr(ρ) = (dθ ∧ ρ0 + ρ1)|D, (1.22)

well-defined as an algebroid form for the Atiyah algebroid of the principal circle bundle
associated to the normal bundle of D.

The radial residue may be viewed as an invariant form on the S1-bundle S1N associated
to N (that is, the exceptional divisor of the real-oriented blow-up of M along D). Also, the
contraction i∂θ

Resr(ρ) coincides with the elliptic residue. When this vanishes, Resr(ρ) coincides
with the real part of the complex residue. We now compute the elliptic de Rham cohomology
in terms of the de Rham cohomology of the complement and of the normal circle bundle.
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Theorem 1.8. Let |D| be an elliptic divisor. Then the restriction of forms to the divisor
complement, together with the radial residue map, defines an isomorphism

Hk(log |D|) = Hk(M\D,R) ⊕Hk−1(S1N,R), (1.23)

where S1N is the S1-bundle associated to the normal bundle of D.

Proof. Following the same strategy as in Theorem 1.3, we show that restriction to the
complement, together with the radial residue, define a quasi-isomorphism of complexes of
sheaves

(i∗,Resr) : Ωk(log |D|) → Ωk(M\D,R) ⊕ j∗C∞(∧k−1A∗), (1.24)

where j∗C∞(∧k−1A∗) is the sheaf of algebroid (k − 1)-forms for the Atiyah algebroid (1.20),
pushed forward to a sheaf on M supported along D. Recall that A-forms may be viewed as
invariant forms on S1N , so that this complex computes the required cohomology of S1N .

For open sets disjoint from D, the map is an isomorphism of complexes. For a sufficiently
small ball centered on a point in D, the cohomology of the complement of D is homotopic to
the circle and the bundle S1N is locally trivial, so the right hand side has local cohomology
given by

Hk(S1,R) ⊕Hk−1(S1,R) (1.25)

We now compute the local cohomology of the left hand side. In a coordinate chart U as
above, we choose the local splitting T (− log |D|) = E ⊕ F , with E generated by ∂x3 , . . . , ∂xn

and F generated by r∂r, ∂θ. We then doubly grade the complex of logarithmic forms:

(Ωk(U, log |D|), d) = (⊕i+j=kC
∞(∧iE∗ ⊗ ∧jF ∗), dE + dF ). (1.26)

We compute cohomology using the spectral sequence of a double complex. The dE cohomology
is easily computed by the Poincaré lemma: it is generated by a constant in degree (0, 0), the
forms d log r and dθ in degree (0, 1), and d log r ∧ dθ in degree (0, 2). The next differential
is induced by dF , and vanishes since the aforementioned generators are closed. Further
differentials vanish, hence we obtain

H•(U, log |D|) = ∧•(R[d log r] ⊕ R[dθ]). (1.27)

Finally, observe that i∗1, i∗[dθ] generate the local cohomology of the complement, whereas
Resr[d log r] = 1 and Resr[d log r ∧ dθ] = [dθ] generate the local cohomology of the normal S1-
bundle, establishing the quasi-isomorphism. �

Note that since the radial residue has cohomology class in Hk−1(S1N), in the case that N
is oriented, we may compose with the pushforward along π : S1N → D to obtain the elliptic
residue in Hk−2(D). We may also use the Gysin sequence

Hk(D) π∗
−−−−−→ Hk(S1N) π∗−−−−−→ Hk−1(D) c1−−−−−→ Hk+1(D) (1.28)

to simplify the computation of elliptic de Rham cohomology. In the case that N is trivial, for
example, we conclude from Theorem 1.8 that

Hk(log |D|) = Hk(M\D,R) ⊕Hk−1(D,R) ⊕Hk−2(D,R), (1.29)

where the first component corresponds to the restriction to the complement, and the second
and third components are the radial residue, consisting of the real part of the complex residue
and the elliptic residue, respectively.
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Since the circle bundle S1N is homotopic to the intersection of a tubular neighbourhood of
D with M\D, we have a canonical restriction homomorphism

r : Hk(M\D,R) → Hk(S1N,R), (1.30)

which is important for describing the product on H•(log |D|), as follows.

Theorem 1.9. The cup product on H•(log |D|) inherited from the differential graded
algebra structure on the elliptic de Rham complex decomposes according to the splitting (1.23)
as a sum of the usual cup product on H•(M\D,R) and the composition

Hk(S1N) ×H l(M\D) 1×r−−−−−−→ Hk(S1N) ×H l(S1N) ∪−−−−→ Hk+l(S1N). (1.31)

Proof. Choose a tubular neighbourhood and an identification with a neighbourhood U of D
in the normal bundle N . Choose a metric on N so that we have a well-defined radial coordinate
r in U and we may write any elliptic form as ρ = d log r ∧ α + β with ir∂r

α = ir∂r
β = 0. Denote

the radial residue Resr(ρ) = α|r=0 by α0. We may view α0 as a C∗-invariant elliptic form on
tot(N), and in this case the form d log r ∧ α0 has the same residue as ρ, and the restriction

(ρ− d log r ∧ α0)|D = β|r=0 (1.32)

is a well-defined section β0 of ∧•(At(S1N)∗) which we may again view as an invariant form on
tot(N). Therefore

ρ− d log r ∧ α0 − β0 (1.33)

vanishes as a logarithmic form along D. Now observe that if dρ = 0, then dα0 = 0 = dβ0. So,
the form (1.33) is a closed elliptic form which vanishes along D. By Lemma 1.10, such a form
is exact in U , that is,

[ρ] = [d log r ∧ α0 + β0]. (1.34)

If we now restrict to the complement of D in U , we see that d log r ∧ α0 is exact, with primitive
(log r)α0, and so [ρ] = [β0] on U\D. Summarizing, we have

ri∗[ρ] = [β0]. (1.35)

If we apply this observation to the product of forms ρ = d log r ∧ α + β and ρ′ = d log r ∧
α′ + β′ of degree k and l respectively, we obtain equalities

ρ ∧ ρ′ = d log r ∧ (α ∧ β′ + (−1)kβ ∧ α′) + β ∧ β′

Resr[ρ ∧ ρ′] = Resr[ρ] ∪ r(i∗[ρ′]) + (−1)kr(i∗[ρ]) ∪ Resr[ρ′],
(1.36)

yielding the required expression for the elliptic cup product. �

Lemma 1.10. If a closed elliptic form vanishes along D, then it is trivial in the elliptic de
Rham cohomology of a tubular neighbourhood of D.

Proof. Choose a tubular neighbourhood U of D, which we identify with an S1-invariant
neighbourhood of the zero section in the total space of the normal bundle of D. By Theorem 1.8,
the class defined by the closed elliptic form ρ has two components: one in Hk(U\D,R) obtained
by restricting to U\D, and another in Hk−1(S1N,R), defined by the class of Resr(ρ). But this
residue vanishes, since ρ vanishes along D. So it remains to show that ρ is exact on U\D.

We prove this by showing first that ρ is cohomologous to a smooth k-form ρ on U , and
that this k-form is zero when pulled back to D. Since U retracts onto D, this implies that [ρ]
vanishes in Hk(U,R), and hence in Hk(U\D,R), as required.
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We construct ρ by averaging the family of forms ρt = φ∗
t ρ, t ∈ S1, where φt : U → U is the

circle action on the tubular neighbourhood. The rotational vector field generating the S1 action
is a section of T (− log |D|), and so the averaging process acts trivially on Hk(log |D|). If we
locally trivialize the bundle and choose polar coordinates (r, θ) on the fibre, we may write

ρ = d log r ∧ dθ ∧ ρ0 + d log r ∧ ρ1 + dθ ∧ ρ2 + ρ3, (1.37)

where ρi are smooth forms independent of θ. Since the circle action fixes D, we also have that
ρ, and hence each ρi, vanishes along D. But this implies that each ρi is divisible by r2 in the
smooth forms, and therefore that ρ is itself a smooth form. Finally, its pullback to D is the
pullback of ρ3 to D, which vanishes since ρ3 vanishes along D. �

1.4. Comparison of elliptic and logarithmic forms

The fact that T (− logD) is a subsheaf of T (− log |D|) ⊗ C implies that the logarithmic forms
are naturally included in the complexified elliptic forms. We now compare the two more
carefully.

Proposition 1.11. The imaginary part defines a surjection from log forms to elliptic forms
with zero elliptic residue, with kernel given by the real smooth forms, defining an exact sequence
of complexes

0 −→ Ω•(M,R) −→ Ω•(logD) Im−−−−−→ Ω•
0(log |D|) −→ 0. (1.38)

Proof. This is an exact sequence on the level of complexes of sheaves, so we may verify the
statement locally in the coordinate system used above. A general log form ρ = d logw ∧ α + β
as in (1.5) has Resq(ρ) = 0 since it has no d logw component, so the same is true of its real
and imaginary parts, showing that Im has the claimed codomain. We now show surjectivity of
Im: write a general real elliptic form as

ρ = d logw ∧ d logw ∧ iα + d logw ∧ β + d logw ∧ β + γ, (1.39)

where α, β, γ are in the subalgebra generated by the remaining generators dx3, . . . , dxn, and
α, γ are real. This form has vanishing elliptic residue if and only if α vanishes along D, meaning
α = wα′ + wα′ for smooth α′. Then we have

ρ = d logw ∧ (β + dw ∧ iα′) + d logw ∧ (β − dw ∧ iα′) + γ, (1.40)

but this is the imaginary part of 2id logw ∧ (β + dw ∧ iα′) + iγ, a form in Ω•(logD), as
required.

To show exactness at the middle place, suppose that Imρ = 0, that is,

0 = d logw ∧ α− d logw ∧ α + β − β, (1.41)

where α, β are in the subalgebra generated by (dw̄, dx3, . . . , dxn). If we write α = dw ∧ α1 + α2

and β = dw ∧ β1 + β2, with αi, βi in the subalgebra generated by (dx3, . . . , dxn), then we obtain

0 = d logw ∧ d logw ∧ (wα1 + wα1)

+ d logw ∧ (α2 − wβ1) + d logw ∧ (α2 − wβ1) + (β2 − β2),
(1.42)

and in this form each summand vanishes independently. This implies that each of α1 and α2,
and therefore α, is divisible by w, which proves that ρ = d logw ∧ α + β is smooth. Injectivity
at the first place is clear since the logarithmic tangent sheaf is a subsheaf of the usual tangent
sheaf. �



1084 GIL R. CAVALCANTI AND MARCO GUALTIERI

Theorem 1.12. Let |D| be an elliptic divisor. The morphism (i∗,Resr) from Theorem 1.8,
when applied to elliptic forms with vanishing elliptic residue, defines an isomorphism

Hk
0 (log |D|) = Hk(M\D,R) ⊕Hk−1(D,R), (1.43)

where Hk
0 (log |D|) is the cohomology of the complex Ω•

0(log |D|) of forms with zero elliptic
residue.

Proof. This can be proved using the same strategy employed in the proof of Theorem 1.8.
There are two differences to keep in mind in the present proof: first, that when the elliptic
residue vanishes, the radial residue, Resr, maps naturally to Ωk−1(D,R) (without the need of
a co-orientation). Second, that the local computation (1.27) is modified by the absence of the
generator d log r ∧ dθ. The remainder of the proof remains unchanged. �

We now combine our knowledge of the elliptic and logarithmic cohomology groups from
Theorems 1.3 and 1.12 to give a purely topological description of the long exact sequence of
cohomology groups resulting from the sequence (1.38).

Theorem 1.13. The long exact sequence deriving from (1.38) may be written

· · · → Hk(M,R) → Hk(M\D,C) → Hk
0 (log |D|) → · · · , (1.44)

and splits according to decomposition (1.43) as a sum of the trivial sequence

· · · → 0 → Im(Hk(M\D,C)) =−→ Hk(M\D,R) → · · · (1.45)

and the Thom–Gysin sequence associated to the inclusion i of M\D into M

· · · → Hk(M,R) → Re(Hk(M \D,C)) → Hk−1(D,R) → · · · . (1.46)

Proof. We first use Proposition 1.11 and Theorem 1.3 to write the sequence (1.44). The
homomorphism from Hk(M,R) to the cohomology of the complement is simply i∗, which
maps only to the real part of Hk(M\D,C). We now compute the induced map of Im from
sequence (1.38). Since the pullback to the complement commutes with taking imaginary part,
the component of Im mapping to Hk(M\D,R) is simply the projection to the imaginary part,
as claimed in (1.45). The component of Im mapping to Hk−1(D,R) is induced by the map
Resr ◦ Im, and since Resr coincides with the real part of the complex residue and we have
identity (1.19), we have

Resr ◦ Im = Re ◦ Resc ◦ Im = −iRe ◦ Res = −(2π)−1Re ◦R, (1.47)

as operators on Hk(M, logD), where R is the map from the Gysin sequence in Proposition 1.4,
verifying (1.46). �

1.5. Atiyah algebroids

Let D = (U, s) be a complex divisor. The real derivations of U preserving its complex structure
are the sections of the Atiyah algebroid of U , a real Lie algebroid forming an extension of the
form

0 → gl(U) → At(U) → TM → 0, (1.48)

where gl(U) is a trivial bundle generated over R by the identity endomorphism and the complex
structure on U . Evaluating a derivation on the given section s defines a vector bundle map

evs : At(U) → U, (1.49)
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which is surjective due to the transversality of s with the zero section. The kernel of evs is
a corank 2 subalgebroid At(U, s) ⊂ At(U). This subalgebroid consists of all C∗-invariant real
vector fields on the total space of U which are tangent to the image of the section s.

Proposition 1.14. The subalgebroid At(U, s) ⊂ At(U) of derivations preserving s is
canonically isomorphic to T (− log |D|).

Proof. Choose local coordinates as above near a point on D, and let τ be a local trivialization
for U∗, defining a complex fibre coordinate on U . The image of s is then the locus τ = w. If
w = reiθ and τ = teiφ, then the invariant vector fields preserving this submanifold are generated
by

(r∂r + t∂t, ∂θ + ∂φ, ∂x3 , . . . , ∂xn
). (1.50)

Comparing with (1.13), we see that the anchor projection to TM factors through a canonical
isomorphism to T (− log |D|). �

To obtain a similar geometric description of the complex log algebroid T (− logD), we begin
by complexifying the Atiyah sequence (1.48), obtaining

0 → gl(U1,0) ⊕ gl(U0,1) → AtC(U) → TCM → 0, (1.51)

where we have decomposed U ⊗R C = U1,0 ⊕ U0,1 into the +i,−i eigenspaces of the given
complex structure on U , so that U1,0 ∼= U and U0,1 ∼= U . Also, gl(U1,0) and gl(U0,1) are trivial
complex line bundles generated by τ∂τ and τ∂τ , respectively, in the coordinates chosen above.

The subalgebroid AtC(U, s) preserving the section s is then generated by

(w∂w + τ∂τ , τ∂τ , ∂w, ∂x3 , . . . , ∂xn
), (1.52)

so that we have the following diagram of algebroids:

(1.53)

In this way, T (− logD) is expressed as the quotient of AtC(U, s) by gl(U0,1), and similarly for
the complex conjugate divisor (U, s), yielding the following result.

Proposition 1.15. The subalgebroids AtC(U, s) and AtC(U, s) of the complexified Atiyah
algebroid AtC(U) map surjectively to T (− logD) and T (− logD), respectively, with kernels
gl(U0,1) and gl(U1,0). Their intersection AtC(U, s) ∩ AtC(U, s) is canonically identified with
the complexification of the elliptic tangent bundle T (− log |D|).

1.6. Rectification of complex divisors

We say that the complex divisors (U1, u1), (U2, u2) on M are isomorphic when there is a
bundle map ψ : U1 → U2, covering the identity on M , taking u1 to u2. In terms of ideals, we
are requiring Iu1 = Iu2 . This notion is fairly strict: even if u1, u2 are sections of the same
bundle with the same zero set and inducing on it the same co-orientation, they need not be
isomorphic as divisors. For a concrete example, consider the complex functions w and w + w̄2

in a small neighbourhood of the origin in the complex plane. Since they agree to second order
at the origin, they have the same zero locus and define the same complex structure on the
normal bundle. Yet, since w̄2 is not in Iw, these are non-isomorphic divisors.

Less strict is the notion of diffeomorphism of divisors, where we allow the bundle map
ψ : U1 → U2 to cover a nontrivial diffeomorphism of M .
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Lemma 1.16. Let (Us, us), s ∈ [0, 1] be a smooth family of complex divisors on a compact
manifold M . Then the family may be rectified, that is, there is a smooth family of
diffeomorphisms ψs, s ∈ [0, 1], ψ0 = id, taking the given family to the constant family (U0, u0).

Proof. Let S = [0, 1] and X = M × S. The family (Us, us) is properly specified by giving a
complex divisor D = (U, u) on X which restricts to (Us, us) on each fibre π−1(s). In particular
the zero set of u is transverse to the fibres of the projection π : X → S. Because of this, the
derivative of π induces the short exact sequence

0 −→ TX/S(− log |D/S|) −→ TX(− log |D|) π∗−−−−−→ π∗TS −→ 0, (1.54)

where the first bundle is the vertical Lie algebroid assembled from the elliptic tangent bundles
of each of the fibres of π.

Choose a splitting ∇ : π∗TS → TX(− log |D|) for sequence (1.54), and use it to lift the
standard generator ∂s of TS. Identifying the elliptic tangent bundle with the Atiyah algebroid
using Proposition 1.14, we then have a derivation Z = ∇(−∂s) of U preserving u whose time-s
flow ψZ

s takes (Us, us) diffeomorphically onto (U0, u0), as required. �

Corollary 1.17. Complex divisors with diffeomorphic compact co-oriented zero loci are
diffeomorphic in the above sense.

Proof. Denote the divisors by D0 = (U0, s0), D1 = (U1, s1). Let φ be the diffeomorphism of
the manifold taking the zero locus of D0 to that of D1, preserving co-orientations. This implies
that, c1(U0) = φ∗c1(U1), and so there exists a bundle isomorphism ψ : U0 → U1 covering φ. We
may choose ψ so that ψ(s0) = s1 outside tubular neighbourhoods of the zero loci. Then the
family (U1, st = (1 − t)ψ(s0) + ts1) satisfies the hypotheses of Lemma 1.16 ( d

dtst has compact
support), which provides a diffeomorphism ϕ : U1 → U1 covering some diffeomorphism of the
base. The composition ϕ ◦ ψ is the required diffeomorphism of divisors. �

If (U, s) is a complex divisor on M , then it may be linearized along D, in the following
sense. Let tot(N) be the total space of the normal bundle to D, and let π : tot(N) → D be
the bundle projection. By the isomorphism (1.1), N is a complex line bundle, and defines
a complex line bundle U0 = π∗N on tot(N), which furthermore has a tautological section
s0 ∈ C∞(tot(N), π∗N). This defines a complex divisor (U0, s0) on tot(N) which we may
call the linearization of (U, s) along D. The tubular neighbourhood theorem, together with
Corollary 1.17, then directly yields the following normal form result.

Corollary 1.18. Any complex divisor is diffeomorphic to its linearization in a tubular
neighbourhood of its zero locus.

2. Generalized complex structures

We refer to [16] for the theory of generalized complex structures, and summarize the key facts
we will need below. Let H be a real closed 3-form on the smooth manifold M . A generalized
complex structure J is a complex structure on TM = TM ⊕ T ∗M , orthogonal for the split-
signature metric on this bundle, whose +i-eigenbundle L is involutive for the Courant bracket
twisted by H.

Generalized complex structures (M, J, H), (M ′, J′, H ′) are considered equivalent when there
is a diffeomorphism ϕ : M → M ′ and a 2-form b ∈ Ω2(M,R) such that ϕ∗H ′ = H + db and
J′ ◦ (ϕ∗eb) = (ϕ∗eb) ◦ J, where eb is the automorphism of TM given by

eb : X + ξ �→ X + ξ + iXb. (2.1)
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If the diffeomorphism ϕ is trivial in the above equivalence, we say that J, J′ are gauge
equivalent. In particular, two generalized complex structures with the same underlying pair
(M,H) are gauge equivalent when they are conjugate by a B-field gauge symmetry, namely
the automorphism eb for b closed.

At each point p, a generalized complex structure J induces on TpM the structure of a
symplectic subspace with transverse complex structure. Both the symplectic subspace and the
transverse complex structure are invariant by B-field symmetries, hence are intrinsic objects
associated to the generalized complex structure. The transverse complex dimension is called
the type of J at p. Courant involutivity of L guarantees that the symplectic distribution on M
integrates to a singular foliation and that the complex structure transverse to this foliation is
integrable in the appropriate sense. In fact, the singular symplectic foliation is associated to a
real Poisson structure Q which underlies J: if we view J as a section of ∧2TM , then Q = ∧2π(J),
for π : TM → TM the projection. The data of a real Poisson structure with transverse complex
structure is, however, not sufficient to describe a generalized complex structure. Indeed, even
for symplectic fibrations over a complex base there are delicate obstructions, as described in
[2].

2.1. The canonical line bundle

The action of TM by interior and exterior product renders the differential forms into a spinor
module for the Clifford algebra bundle of TM . In this action, the maximal isotropic subbundle
L ⊂ TCM annihilates a rank 1 subbundle K ⊂ ∧•T ∗

C
M of the complex differential forms called

the canonical bundle of J.
The subbundle K is generated pointwise by a form ρ of the following algebraic type

ρ = Ω ∧ eB+iω. (2.2)

Here Ω is a decomposable form and B and ω are real 2-forms satisfying the nondegeneracy
condition

Ω ∧ Ω ∧ ωn−k �= 0, (2.3)

where k is the degree of Ω and the dimension of M is 2n. We see from this formula that the
kernel of Ω ∧ Ω is a symplectic distribution and that Ω defines a transverse complex structure,
as discussed earlier.

While L annihilates K, the Clifford action of the subalgebra ∧•L on K defines an
isomorphism (using the canonical identification L = L∗)

(C ⊕ L∗ ⊕ ∧2L∗ ⊕ · · · ⊕ ∧nL∗) ⊗K ∼= ∧•T ∗
CM (2.4)

which induces a new Z-grading on the differential forms.
The involutivity of L may then be expressed in terms of K by requiring that the twisted de

Rham operator dH = d + H∧ · takes C∞(K) into C∞(L∗ ⊗K). That is, for every nonvanishing
local section ρ of K, there exists a section F = X + ξ of L, called the modular field of ρ, such
that

dHρ = F · ρ = iXρ + ξ ∧ ρ. (2.5)

This condition makes K a generalized holomorphic bundle, in the sense that it has a flat
L-connection: the restriction ∂ of dH to the sections of K defines an operator

∂ : C∞(K) → C∞(L∗ ⊗K), (2.6)

satisfying the Leibniz rule ∂(fρ) = f∂ρ + dLf ⊗ ρ and having zero curvature in Ω2
L, where here

(Ω•
L, dL) refers to the Lie algebroid de Rham complex of L. In this way, we see that the modular

field is the analogue of a connection 1-form for usual connections. As for complex manifolds,
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there is a distinguished class of generalized complex structures with holomorphically trivial
canonical bundle:

Definition 2.1 [21]. A generalized Calabi–Yau structure on (M,H) is a generalized
complex structure determined by a nowhere vanishing dH -closed form.

The generalized holomorphic structure on K actually renders the total space tot(K) into
a generalized complex manifold, in the same way that a rank-1 Poisson module inherits a
Poisson structure on its total space [22, 27]. To see this, let ρ be a local trivialization of K
as before, and let τ be the dual section, viewed as a fibrewise linear coordinate on tot(K). We
consider the product generalized complex structure dτ ∧ ρ, which represents the product of the
generalized complex structure with the standard complex structure on C, and we deform it by
the Maurer–Cartan element E ∧ F , where E = τ∂τ is the complex Euler vector field and F the
modular field of ρ. The resulting form �, given by

� = eE∧F dτ ∧ ρ = τF · ρ + dτ ∧ ρ, (2.7)

is then independent of the choice of local section ρ and defines a canonical generalized Calabi–
Yau structure on tot(K), integrable with respect to the pullback of the 3-form H to the total
space, which we also denote by H below.

Theorem 2.2. Let Θ be the tautological differential form on the total space of the canonical
line bundle K. Then its twisted derivative

� = dHΘ (2.8)

defines a generalized Calabi–Yau structure, which furthermore satisfies

iE� = Θ, (2.9)

so that the Euler vector field is Liouville, in the sense that LE� = (dH iE + iEd
H)� = �.

Proof. If ρ is a local trivialization of K with corresponding fibre coordinate τ , then Θ = τρ is
a local expression for the tautological form on tot(K). We then see that dHΘ = dτ ∧ ρ + τdHρ,
and using the definition (2.5) of the modular field we obtain expression (2.7), showing that
it is independent of the local trivialization. Nondegeneracy of � follows from the fact that
dτ ∧ dτ ∧ Ω ∧ Ω ∧ ωn−k is nonvanishing on tot(K). Finally, � is exact and so certainly closed,
defining the required generalized Calabi–Yau structure. Identity (2.9) then follows from the
local expression (2.7), since iE(F · ρ) = 0 and iE(dτ ∧ ρ) = τρ = Θ, as required. �

Since � satisfies LE� = �, it follows that the line generated by � in the forms on tot(K) is
invariant under rescaling, defining a C∗-invariant generalized complex structure JK on tot(K).
In fact, if we consider the principal C∗-bundle tot∗(K) defined by deleting the zero section,
we may express the original generalized complex structure on M as a Courant reduction of
the structure on tot∗(K) along the generalized symmetry E, in the sense developed in [4]. In
particular, J is given by the Dirac pushforward [5] of JK , as follows.

Proposition 2.3. Let L,LK be the +i-eigenbundles of J and JK , respectively. Then L is
given by the Dirac pushforward of LK along the bundle projection π : K → M , that is,

L = π∗LK = {π∗X + η ∈ TM | X + π∗η ∈ LK}. (2.10)
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Proof. Let ρ be a local trivialization of K and τ the corresponding fibrewise linear coordinate
on tot(K), so that � = dτ ∧ ρ + τF · ρ, where F is the modular field of ρ. Then we have

(X + π∗η) ·� = −dτ ∧ ((π∗X + η) · ρ) + (iXdτ + 2τ 〈π∗X + η, F 〉)ρ, (2.11)

where 〈·, ·〉 denotes the natural split-signature metric on TM . If X + π∗η ∈ LK , it annihilates
�, and both summands in (2.11) vanish independently since dτ is the only non-basic form.
Thus, π∗X + η ∈ L and we have π∗LK ⊂ L. For the reverse inclusion, let Y + η ∈ L. By
choosing X = Y − 2 〈Y + η, F 〉 τ∂τ , we see from (2.11) that (X + π∗η) ·� = 0, as required. �

While there is a C∗-invariant generalized complex structure on tot∗(K), the Calabi–Yau
form � is not invariant. As a result, iE� is not a basic form. Instead, iE� varies linearly on
each fibre and can be viewed as a section of K∗ ⊗ ∧•

C
T ∗M on M , defining an inclusion

iE� : K ↪→ ∧•T ∗
CM, (2.12)

recovering the original canonical bundle as a subbundle of the complex forms.

2.2. Generalized complex structures of type 1

Our main interest in this paper is in stable generalized complex structures, which are almost
everywhere of type 0. Yet stable structures are closely related to structures of type 1. For
example, as we shall see in Theorem 2.13, type 1 structures govern the singular behaviour of
stable structures. Therefore we are naturally lead to study of type 1 structures.

Let D be a smooth manifold with real closed 3-form H, and let J be a generalized complex
structure of type 1 on (D,H), so that the underlying real Poisson structure Q defines a
foliation by symplectic leaves of real codimension 2. The conormal bundle ν∗ = J(T ∗D) ∩ T ∗D
to the symplectic foliation is then a rank 1 complex subbundle of TD, whose complexification
decomposes in +i,−i eigenbundles for J respectively:

ν∗C = ν∗1,0 ⊕ ν∗0,1. (2.13)

As a result, if we apply the tangent projection to the +i-eigenbundle L ⊂ TCD of J, we obtain
the Lie algebroid extension

0 → ν∗1,0 → L → A → 0, (2.14)

where A ⊂ TCD is the involutive corank 1 complex distribution with annihilator ν∗1,0. We use
the notation (Ω•

A, dA) for the de Rham complex of A, an elliptic complex. As is always the case
for regular Dirac structures [16], the subbundle L ⊂ TCM determines and is determined by a
2-form σ ∈ Ω2

A(D) via the graph construction

L = {Z + ζ ∈ A⊕ T ∗D | ι∗ζ = iZσ}, (2.15)

where ι : A ↪→ TCM is the inclusion. Involutivity of L holds if and only if

dAσ + ι∗H = 0. (2.16)

From expression (2.15), we see that the condition L ∩ L = {0} holds if and only if σ has
nondegenerate imaginary part when pulled back to the real distribution Δ defined by the
transverse intersection A ∩A, recovering the symplectic structure determined by the Poisson
structure Q. We summarize these observations as follows.

Proposition 2.4. A type 1 generalized complex structure on (D,H) is equivalently specified
by a pair (A, σ), where: A ⊂ TCD is an involutive distribution of complex corank 1 that is
transverse to its complex conjugate, and σ is a section of ∧2A∗ such that the integrability
condition (2.16) holds and such that its pullback to Δ ⊗ C = A ∩A has nondegenerate
imaginary part.
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The conormal bundle ν∗1,0 has a natural partial flat connection along A, given by the
Lie derivative and often called the Bott connection. We therefore obtain a differential on
Ω•

A(D, ν∗1,0), the de Rham complex of A with coefficients in ν∗1,0. In fact, we have the short
exact sequence of complexes

0 −→ Ωk−1
A (D, ν∗1,0) −→ Ωk(D,C) ι∗−−−−−→ Ωk

A(D) −→ 0, (2.17)

establishing an isomorphism between the twisted cohomology Hk−1
A (D, ν∗1,0) and the degree-k

relative cohomology of the map ι∗. This immediately leads to the identification of the main
invariant of type 1 generalized complex structures:

Definition 2.5. The twisting class of a type 1 generalized complex structure is the class
in H2

A(D, ν∗1,0) corresponding to the class of (H,σ) in the relative cohomology of ι∗.

From this, we see that the twisting class vanishes if and only if there exists σ̃ ∈ Ω2(M,C)
with ι∗σ̃ = σ and dσ̃ + H = 0. In particular, if the class vanishes then H must be exact on D
and furthermore there is a global closed extension of the leafwise symplectic form associated to
the Poisson structure. This is a strong constraint: in the case that the symplectic foliation is a
connected proper fibre bundle, the vanishing of the twisting class immediately implies that all
fibres are symplectomorphic. The converse, however, is not true, as we show in Example 2.7.

The twisting class may also be described in the following useful way: the Lie bracket on
A together with the partial flat A-connection on ν∗1,0 endow A⊕ ν∗1,0 with a standard Lie
bracket [−,−]0, making it a Lie algebroid. Since L is an extension of A by ν∗1,0, we may split
the sequence (2.14) and express the bracket on L as a deformation of the standard one by a
tensorial term F ∈ Ω2

A(D, ν∗1,0), that is,

[X + ξ, Y + η]L = [X + ξ, Y + η]0 + F (X,Y ). (2.18)

The cohomology class [F ] ∈ H2
A(D, ν∗1,0) is independent of the splitting, and is precisely the

twisting class described above.
In terms of differential forms, a local generator for the canonical line bundle K of a generalized

complex structure of type 1 may be written as

ρ = Ω ∧ eB+iω, (2.19)

where Ω is a complex 1-form locally trivializing ν∗1,0, and B,ω are real 2-forms such that ω

is symplectic on the foliation determined by the kernel of Ω ∧ Ω. The fact that B + iω is not
uniquely determined in Ω2(D,C) but rather only modulo Ω1(D,C) · Ω recovers the above result
that it is

σ = ι∗(B + iω) (2.20)

which is well-defined. The integrability condition for the generalized complex structure is
then that Ω ∧ (d(B + iω) + H) = 0, which is a restatement of the condition dAσ + ι∗H = 0.
Therefore, the generalized Calabi–Yau condition holds for the above structure if and only if Ω
can be chosen to be globally closed. Restating in terms of (A, σ) we obtain the following.

Corollary 2.6. The type 1 generalized complex structure determined by (A, σ) via
Proposition 2.4 is generalized Calabi–Yau if and only if ν∗1,0 has a nonzero flat section.

Example 2.7. Let D be the Kodaira–Thurston manifold, a T 2 principal bundle over T 2

given by the product of S1 with the circle bundle with primitive Chern class. Let Ω be a complex
1-form defining a Calabi–Yau complex structure on T 2 and let θ1, θ2 be connection 1-forms
for the trivial and nontrivial circle bundles, respectively, so that dθ1 = 0 while dθ2 = iΩ ∧ Ω
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after normalization. Then ω = θ1 ∧ θ2 defines a symplectic form on each torus fibre, and the
following defines a generalized Calabi–Yau structure with H = 0 on D:

ρ = Ω ∧ eiω. (2.21)

If the twisting class vanished, there would be a closed form B + iω′ for which ρ = eB+iω′ ∧ Ω,
but in this case (ρ, ρ) = 2iΩ ∧ Ω ∧ ω′ would be exact, as Ω ∧ Ω is exact and ω′ is closed,
contradicting the fact that it is a nowhere vanishing volume form.

2.3. Holomorphic line bundles on type 1 generalized complex structures

Recall that a generalized holomorphic bundle is simply a vector bundle equipped with flat
algebroid connection for the +i-eigenbundle L of the generalied complex structure. Since we
have described L as the extension (2.14), we choose a splitting of the sequence as before, with
twisting form F ∈ Ω2

A(D, ν∗1,0) as defined in (2.18). Then an L-connection on the bundle V
decomposes as

∂
L

= φ + ∂
A
, (2.22)

where φ : V → ν1,0 ⊗ V is called the transverse Higgs field and ∂
A

: C∞(V ) → C∞(A∗ ⊗ V ) is
a partial connection along the distribution A. The tensor φ is independent of the splitting of
L, but a change of splitting by α ∈ Ω1

A(ν∗1,0) modifies ∂
A

by the following transformation:

∂
A �→ ∂

A
+ iαφ. (2.23)

The curvature of ∂
L

decomposes according to the splitting ∧2L∗ = ∧2A∗ ⊕ (A∗ ⊗ ν1,0), yielding
the following characterization of the flatness condition.

Proposition 2.8. The L-connection ∂
L

= φ + ∂
A

is flat if and only if the following hold:

[∂
A
, φ] = 0

curv(∂
A
) = iφF.

(2.24)

If V has rank 1, then φ is simply a flat section of ν1,0, which if nonzero determines (by
Corollary 2.6) a generalized Calabi–Yau structure (2.19), where Ω is dual to φ. By choosing
an extension of ∂

A
to a full connection, we immediately obtain the following analog of Bott’s

obstruction [3].

Theorem 2.9. Let D be a type 1 generalized complex manifold with complex distribution
A and twisting class F ∈ H2

A(D, ν∗1,0). Let φ ∈ H0
A(D, ν1,0) be a flat section of ν1,0. A complex

line bundle N over D admits a holomorphic structure with transverse Higgs field φ if and only
if

ι∗c1(N) = iφF ∈ H2
A(D), (2.25)

where ι : A → TCD is the inclusion map.

If φ vanishes, then the constraint (2.25) implies that the real Chern class c1(N) vanishes
when pulled back to A, and in particular to the foliation defined by A ∩A. If φ is nonzero, then
contraction by φ identifies H2

A(D, ν∗1,0) with H2
A(D), and (2.25) implies that if c1(N) vanishes,

then the twisting class must also vanish. In general, however, for nonzero φ, the real class c1(N)
need not vanish along the symplectic foliation.
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2.4. Stable generalized complex structures

The projection of a differential form to its zero-degree component is a linear map which, when
restricted to the canonical bundle K ⊂ ∧•T ∗

C
M of a generalized complex manifold, defines an

anticanonical section s ∈ C∞(M,K∗). In view of the pointwise structure (2.2), we see that a
generalized complex structure is of type zero, that is, equivalent to a usual symplectic structure,
precisely on the nonvanishing locus of this anticanonical section.

Definition 2.10. A generalized complex structure is stable when its anticanonical section
vanishes transversely, so that D = (K∗, s) defines a complex divisor called the anticanonical
divisor.

Of course, the simplest example of a stable generalized complex structure is one where s is
nowhere vanishing. In this case K is generated by the form eB+iω, where ω is a usual symplectic
form and B is a real 2-form satisfying dB = H. In the following we are interested in studying
nondegenerate structures with nontrivial anticanonical divisor.

Example 2.11. Let M be a complex 2n-manifold equipped with a holomorphic Poisson
structure π, defining a generalized complex structure Jπ with canonical line bundle locally
generated by eπΩ, where Ω is a trivialization of the holomorphic canonical bundle. The
structure Jπ is stable if and only if the anticanonical section πn is transverse to zero in
∧2nT1,0M .

Many examples of stable generalized complex structures which are not of the above
holomorphic Poisson type are now known in dimension 4: see [7, 8, 13, 28, 29]. These
references also provide examples of almost complex 4-manifolds which admit neither complex
nor symplectic structures, though they do admit stable generalized complex structures.

We now show that stable generalized complex structures are sandwiched between type 1
generalized Calabi–Yau structures: one on the total space of the canonical line bundle and
another on the anticanonical divisor.

Lemma 2.12. Let tot(K) be the total space of the canonical line bundle of a stable
generalized complex structure. The generalized Calabi–Yau structure (2.8) on tot(K) has
constant type 1 away from the zero section.

Proof. Let ρ be a local trivialization of K and let τ be the associated fibrewise linear
coordinate on tot(K). Then the tautological form may be written Θ = τρ, and the Calabi–Yau
form is � = dHΘ = dH(τρ). Therefore, the component of � with lowest degree is d(τs(ρ)),
the derivative of the fibrewise linear function on tot(K) defined by the anticanonical section
s. The transversality of s guarantees that this 1-form is nonzero when τ �= 0, showing that �
has type 1, as required. �

We now describe the geometry inherited by the anticanonical divisor D. In Section 3.5, we
will show that the generalized complex structure in a tubular neighbourhood of D is completely
determined by the structure of D which we detail here. The anticanonical divisor is an example
of a generalized Poisson submanifold, that is, its conormal bundle N∗ is a complex subbundle:
JN∗ ⊂ N∗. Such submanifolds inherit generalized complex structures by reduction [4]. Indeed,
along D the following exact sequence expresses TD = TD ⊕ T ∗D as a quotient of J-invariant
subbundles of TM |D:

0 −→ N∗ −→ N∗⊥ π−−−−→ N∗⊥/N∗ ∼= TD −→ 0. (2.26)
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As a result, D inherits a generalized complex structure JD, whose integrability with respect to
the pullback of H follows from integrability of J. It also follows that D is a Poisson submanifold
(in fact, the degeneracy locus) for the underlying real Poisson structure Q.

For a Poisson structure Q, we say, following [20], that the Poisson submanifold D is strong
when any local Poisson vector field is tangent to D. Degeneracy loci of Q are the typical
examples of strong Poisson submanifolds, whereas symplectic leaves need not be strong. There
is a corresponding notion for generalized complex structures: we say that D is strong when
each local generalized complex symmetry v ∈ C∞(TM) restricts along D to a section of the
orthogonal complement of N∗ (that is, the vector component of v must be tangent to D). Strong
submanifolds D have the property that generalized holomorphic bundles pull back to D. In
particular, the anticanonical bundle K∗ pulls back to a generalized holomorphic bundle along
D. Tranversality of the anticanonical section s implies that ds|D : N → K∗ is an isomorphism,
so that we obtain a generalized holomorphic structure on the normal bundle to D.

Theorem 2.13. The anticanonical divisor of a stable generalized complex structure inherits
a generalized Calabi–Yau structure of type 1 with distinguished Calabi–Yau form

ρD = Ω ∧ eσ. (2.27)

Furthermore, it inherits a generalized holomorphic structure on its normal bundle with
transverse Higgs field dual to Ω.

Proof. Let ρ be a local trivialization for K near a point p ∈ D. Then ρ0(p) = 0 and dρ0(p) �=
0. The integrability condition (2.5) provides a section F = X + ξ ∈ L such that dρ0 = iXρ2 +
ξρ0, implying that both X and ρ2 are nonvanishing along D. In particular this means J has
type 2 along D. Choosing a complement C• to the kernel of dρ0 ∧ · in a neighbourhood of p,
we may write

ρ2 = dρ0 ∧ Ω̃ + β, (2.28)

where Ω̃, β are uniquely determined smooth forms in C• and Ω̃ is nonzero along D. Away
from D, ρ is of type zero, so that ρ = ρ0eρ

2/ρ0
, and the integrability condition implies that

d(ρ2/ρ0) = H. This implies that

dρ0 ∧ ρ2 = ρ0dρ2 − (ρ0)2H, (2.29)

which must then hold on all of M by continuity. As a result, we conclude that β = ρ0σ̃ for a
smooth 2-form σ̃, and consequently ρ2/ρ0 and ρ/ρ0 are well-defined logarithmic forms for the
divisor D.

The reduction of complex structure is then performed by taking the residue of ρ/ρ0, a smooth
form on D given by

ρD = Res(ρ/ρ0) = Ω ∧ eσ, (2.30)

where Ω = ι∗DΩ̃ and σ = ι∗Dσ̃, for ιD : D → M the inclusion. The logarithmic form ρ/ρ0 is
independent of the choice of trivialization ρ, and so its residue is as well. Finally, the residue
is closed with respect to d + ι∗DH ∧ ·, since ρ/ρ0 is closed for dH .

To obtain the holomorphic structure on the normal bundle, we use the fact that the
transversality of s implies that ds|D : N → K∗|D is an isomorphism, allowing us to transport
the generalized holomorphic structure on K∗ to N . If ρ is a local trivialization for K, then ds|∗D
takes this to the local trivialization of N∗ given by η = dρ0|D. As explained in Section 2.1, the
generalized holomorphic structure on K is given locally by ∂ρ = F ⊗ ρ. Pulling back to D, we
define the generalized holomorphic structure on the conormal bundle by ∂η = π(F ) ⊗ η, where
π is the projection in (2.26), where we note that F is orthogonal to N∗

C
, so π(F ) lies in the −i-

eigenbundle of the reduced generalized complex structure on D. Explicitly, π(F ) = X + ι∗Dξ,
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and we may verify that since iXρ2 = dρ0 along D, it follows that iXΩ = −1. This implies that
the transverse Higgs field [X] of ∂ evaluates to −1 on Ω, and so the generalized holomorphic
structure on the dual bundle N has opposite transverse Higgs field, evaluating to +1 on Ω, as
required. �

Because the generalized holomorphic structure on the normal bundle N has transverse
Higgs field φ ∈ C∞(D, ν1,0) which satisfies iφΩ = 1, it follows that the induced C∗-invariant
generalized complex structure on tot(N) is symplectic away from the zero section. This can be
seen by writing the structure on the total space as we did in (2.7). Let n be a local trivialization
for N and let ∂n = (X + ξ) ⊗ n, using the generalized holomorphic structure on N defined in
Theorem 2.13. Here F = X + ξ ∈ LD, so that X is the transverse Higgs field of ∂. Let τ be
the fibrewise linear coordinate on tot(N) corresponding to n. Then the generalized complex
structure on tot(N) may be defined locally by the form

eτ∂τ∧F dτ ∧ ρD = (τ + (dτ + τ(iXσ + ξ)) ∧ Ω) ∧ eσ. (2.31)

In the expression above, σ is only defined modulo the ideal of Ω, and in fact we may choose
it such that iXσ + ξ = 0, simplifying the above expression. In any case, the component of
degree zero of (2.31) vanishes transversally, demonstrating that tot(N) has a stable generalized
complex structure with anticanonical divisor given by the zero section.

Definition 2.14. The natural C∗-invariant stable generalized complex structure (2.31)
inherited by the total space of the normal bundle of D is called the linearization of the stable
generalized complex manifold along D.

We conclude this section by showing that there are no implicit constraints on the data deter-
mining the linearization: any type 1 generalized Calabi–Yau structure and any holomorphic line
bundle over it may be realized as the linearization of a stable generalized complex manifold, as
long as the transverse Higgs field pairs nontrivially with the Calabi–Yau form. Since we show
in Section 3.5 that the generalized complex structure in a neighbourhood of D is completely
determined by the linearization, the following result provides a local normal form for stable
generalized complex manifolds about their anticanonical divisors.

Proposition 2.15. Let (D,Ω ∧ eσ) be a type 1 generalized Calabi–Yau manifold and N a
generalized holomorphic line bundle over D whose transverse Higgs field pairs nontrivially with
Ω. Then the total space tot(N) inherits a C∗-invariant stable generalized complex structure
with anticanonical divisor given by the zero section.

Proof. Let n be a local trivialization for N and let ∂n = F ⊗ n, where F ∈ LD is the
algebroid connection 1-form and X = πTC

(F ) is the transverse Higgs field. We may rescale
Ω by a constant so that iXΩ = 1, since X has constant pairing with Ω and this is nonzero
by assumption. Let τ be the fibrewise linear coordinate on tot(N) corresponding to n. Then
the generalized complex structure on tot(N) may be written locally just as in equation (2.31),
demonstrating that it is a stable generalized complex structure with anticanonical divisor given
by the zero section. �

Example 2.16. For M four-dimensional, D has dimension 2, and so the generalized Calabi–
Yau structure inherited by D is a usual Calabi–Yau complex structure, implying that each
component of D must be a complex curve of genus 1 with a distinguished holomorphic 1-form
Ω. Furthermore, the generalized holomorphic structure induced on N gives it the structure of
a holomorphic line bundle over D equipped with a transverse Higgs field, which in this case is
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simply the holomorphic vector field on D dual to Ω. In this way, we recover the results of [8]
characterizing the complex locus of a stable generalized complex 4-manifold.

2.5. Constructions of stable structures

If (U, ∂) is a generalized holomorphic line bundle over the stable generalized complex manifold
(M, J), then we obtain via (2.7) a natural C∗-invariant generalized complex structure on the
total space of U . We now describe how to construct a stable generalized complex structure on
the same total space but with the zero section removed. We discovered this construction by
applying T-duality [9] to the canonical structure on tot(U).

Choose a Hermitian metric on the bundle U , and let D : C∞(U) → C∞(TM ⊗ U) be the
unique unitary generalized connection whose component along L ⊂ TCM coincides with ∂ (see
[15] for a detailed discussion of generalized connections). If u is a local unitary trivialization
of U , and ∂u = α⊗ u for α ∈ L∗ ∼= L, we have that

Du = iA⊗ u = (α− α) ⊗ u, (2.32)

where A is the generalized connection 1-form, a real local section of TM . If ρ is a local
trivialization for the canonical bundle of J, and (r, θ) are fibrewise polar coordinates associated
to u, then we construct the following form on the complement of the zero section in the total
space of U :

eid log r∧(dθ−A)ρ = ρ− id log r ∧ (dθ ∧ ρ−A · ρ). (2.33)

This form is nondegenerate and independent of the choice of unitary trivialization. Its
integrability follows directly from the fact that dLα = 0. Its component of degree zero coincides
with that of ρ, and hence defines a stable generalized complex structure on tot∗(U). The form
(2.33) is manifestly invariant by constant rescaling of the fibres, therefore we may therefore
take a Z quotient of tot∗(U) to form a torus bundle over M . We summarize the construction
as follows.

Proposition 2.17. Given a Hermitian metric on a generalized holomorphic line bundle U
over the stable generalized complex manifold M , the total space of U inherits a C∗-invariant
stable generalized complex structure away from the zero section given by (2.33). Quotienting
by a subgroup Z ⊂ C∗, we obtain a stable generalized complex T 2-bundle over M .

Example 2.18. On a symplectic manifold (M,ω), generalized holomorphic bundles are
simply bundles equipped with complex flat connections. Let U be a Hermitian line bundle with
flat connection ∇. If u is a local unitary section then ∇u = 1

2A⊗ u for A a closed complex
1-form, and A = ω−1(Re(A)) + 2Im(A). The local expression for the stable structure (2.33) is
then

exp(d log r ∧ Re(A) + i(d log r ∧ (dθ − Im(A)) + ω)). (2.34)

Example 2.19. In this example we show that S1 × S5 admits stable generalized complex
structures (generically of type 0) as well as structures of type 1, 2 and 3.

Equip CP 2 with the stable generalized complex structure obtained by deforming the
complex structure by a holomorphic Poisson structure β ∈ H0(CP 2,∧2T ) whose zero locus
is a smooth cubic curve E. The O(1) line bundle then has a canonical generalized holomorphic
structure since its cube is the canonical line bundle. Equipping it with the Fubini-Study
metric, Proposition 2.17 provides a stable generalized complex structure on the T 2-bundle
tot∗(O(1))/Z ∼= S1 × S5. The anticanonical divisor D ⊂ S1 × S5 is then a symplectic fibre
bundle of tori over the cubic curve E. The generalized Calabi–Yau structure on D is analogous
to that described in Example 2.7 on the Kodaira–Thurston manifold.
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It is interesting to note that, in addition to the stable generalized complex structure
constructed above, S1 × S5 admits a generalized complex structure of type 1, by the
construction of Lemma 2.12 adapted to O(1), a fractional multiple of the canonical bundle
of CP 2. Furthermore, it admits a structure of constant type 2, by the following observation.
Viewing S5 as the unitary frame bundle of O(1) over CP 2, it has a connection form θ1 with
curvature of type (1, 1). If θ2 is a volume form on S1, then the following defines the canonical
line bundle of a generalized complex structure of type 2 on S1 × S5:

eiθ1∧θ2 ∧ Ω2,0. (2.35)

Finally, we observe that since S1 × S5 is the quotient of C3\{0} by the holomorphic action of
Z by rescalings it admits a complex structure, that is, a type 3 generalized complex structure.

3. Log symplectic forms

A stable generalized complex structure is equivalent via a B-field b to a symplectic structure
ω away from the anticanonical divisor D. Therefore, it may be viewed as a symplectic form
which is singular along D. In fact, in the proof of Theorem 2.13, we observed that the type of
singularity is such that σ = b + iω defines a logarithmic form in the sense of Section 1.1. In this
section we make precise the relationship between stable structures and logarithmic forms, and
we use this relationship to give a local period map for stable generalized complex structures.

Let D = (U, s) be a complex divisor on M and let ι, a be the natural Lie algebroid morphisms
(each an inclusion of sheaves) between the elliptic, logarithmic, and usual tangent bundles, as
follows:

T (− log |D|) ⊗ C
ι−−−−→ T (− logD) a−−−−→ TCM. (3.1)

Definition 3.1. Let H be a real closed 3-form and D a complex divisor on the manifold
M . A complex log symplectic form is a logarithmic 2-form σ ∈ Ω2(M, logD) such that

dσ = a∗H (3.2)

and such that the elliptic form ι∗σ = b + iω has nondegenerate imaginary part.†

The nondegeneracy condition on ω ∈ Ω2(M, log |D|) is that the induced skew map

ω : T (− log |D|) → T (− log |D|)∗ (3.3)

is an isomorphism. The integrability condition implies that dω = 0, rendering ω into what
we call an elliptic symplectic form (see Section 3.1). The notion of equivalence for complex
log symplectic structures is the same as that for generalized complex structures: we say
that (M,H,D, σ) is equivalent to (M ′, H ′, D′, σ′) when there is a diffeomorphism of divisors
ψ : (M,D) → (M ′, D′) in the sense of Section 1.6 as well as a real smooth 2-form b ∈ Ω2(M,R)
such that ψ∗H ′ = H + db and

ψ∗σ′ = σ + b.

Given a complex log symplectic form σ, its graph defines a subbundle Γσ ⊂ T (− logD) ⊕
T ∗(logD), and the anchor map a may be used to push this forward to a subbundle L ⊂ TCM :

L = a∗Γσ = {a(X) + η | X + a∗η ∈ Γσ}. (3.4)

†Note that a holomorphic log symplectic form for a reduced divisor D is a special case of our notion of
complex log symplectic form, which does not require the underlying manifold to be complex.
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We now show that this defines the +i-eigenbundle of a stable generalized complex structure
and that this establishes an isomorphism of categories between stable generalized complex
structures and complex log symplectic structures on (M,H).

Theorem 3.2. There is a canonical bijection between stable generalized complex structures
J on (M,H) with anticanonical divisor D = (K∗, s) and complex log symplectic forms σ,
defined by the relation LJ = a∗Γσ between the +i-eigenbundle of J and the graph of σ.
In this correspondence, any local trivialization ρ of the canonical line bundle satisfies the
identity

a∗ρ = ρ0eσ, (3.5)

so that ρ/ρ0 extends over all of M to a section of Ω•(logD).

Proof. Let J be a stable generalized complex structure on (M,H). Then by Theorem 2.2 it
determines a C∗-invariant generalized Calabi–Yau structure � on tot(K), the total space of its
canonical line bundle, which is of type 1 on tot∗(K), the complement of the zero section. Let
LK be the +i-eigenbundle of this Calabi–Yau structure. By Proposition 2.4, LK is completely
determined by its tangent projection A ⊂ TC(tot∗(K)), together with the 2-form σ ∈ Ω2

A, which
has nondegenerate imaginary part on A ∩A.

But A coincides with AtC(K, s), the subbundle of the complexified Atiyah bundle of K
consisting of vector fields fixing the fibrewise linear function s. By Proposition 1.15, A projects
surjectively onto T (− logD) under the derivative of the bundle projection π : K → M , with
kernel generated by the conjugate Euler vector field E = τ∂τ :

0 −→
〈
E
〉
−→ A

π∗−−−−−→ T (− logD) −→ 0. (3.6)

But E annihilates � and so it lies in the kernel of σ, implying that σ is basic for π∗, defining
a logarithmic 2-form as required. The nondegeneracy condition is immediate from the fact that
π∗ is an isomorphism from A ∩A to the complexification of T (− log |D|), and integrability is
inherited from dH� = 0. The relation LJ = a∗Γσ then follows from Proposition 2.3.

This argument is reversible: if σ is a complex log symplectic form for the complex divisor
(K∗, s), we may pull it back via π to a 2-form on A = ker ds. The resulting Calabi–Yau structure
� = ds ∧ eσ on tot∗(K) may be reduced along π to define a generalized complex structure J on
M . The reduction is done as follows: the action of C∗ is generated by the complex Euler vector
field E and its conjugate. Since E annihilates �, the form ρK = iE� is nowhere vanishing on
tot∗(K), and satisfies

iEρK = 0, LEρK = ρK . (3.7)

Therefore, ρK defines an inclusion ρK : K ↪→ ∧•T ∗M of vector bundles over M and since s is
transverse, J is stable, as required.

To verify identity (3.5), if ρ is a local trivialization for K with dual trivialization τ , we can
write s = ρ0τ and � = d(ρ0τ) ∧ eσ. Then ρK = τρ0eσ takes ρ to the smooth differential form
ρ0eσ, as required. �

3.1. Elliptic log symplectic structures

In the above equivalence between stable generalized complex structures J and logarithmic
symplectic forms σ = b + iω, the imaginary part ω is a closed, nondegenerate elliptic 2-form
for the elliptic divisor defined by (K∗ ⊗K

∗
, s⊗ s), where s is the anticanonical section of J.

Recall that ω coincides with the inverse of the real Poisson structure Q underlying J. In fact, Q
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itself determines the elliptic divisor, since the Chevalley pairing on differential forms restricts
to an isomorphism

K ⊗K
∼=−−−−−→ ∧2nT ∗

CM (3.8)

which takes eσ ⊗ eσ to the top degree component of eσ−σ, namely to (2i)nωn. This implies
that s⊗ s is taken to (2i)−nQn, giving the natural isomorphism

(K∗ ⊗K
∗
, s⊗ s) ∼= (∧2nTM,∧nQ). (3.9)

In this section, we show that the forgetful map taking J to its underlying real Poisson structure
Q defines a bijection between gauge equivalence classes of stable generalized complex structures
(integrable with respect to any 3-form) and a certain class of Poisson structures, defined as
follows.

Definition 3.3. A Poisson structure Q is of elliptic log symplectic type when its Pfaffian
defines an elliptic divisor (∧2nTM,∧nQ).

To justify the terminology, we have the following equivalent characterization:

Lemma 3.4. A Poisson structure Q is of elliptic log symplectic type if and only if its inverse
ω = Q−1 is a closed, nondegenerate elliptic 2-form.

Proof. Let Q be an elliptic log symplectic Poisson structure. Since LX(∧nQ) = 0 for any
Hamiltonian vector field X, it follows immediately that Q lifts to a section Q̃ of ∧2T (− log |D|).
Taking the top exterior power of the relation Q = aQ̃a∗, where a: T (− log |D|) → TM is the
anchor, we see that Q̃ is invertible, defining the elliptic log symplectic form

ω = Q̃−1 ∈ Ω2(log |D|), dω = 0. (3.10)

For the reverse implication, let D = (R, q) be an elliptic divisor and let ω be an elliptic log
symplectic form. We use the fact that the determinant of the algebroid anchor, a section of
∧2nT ∗(log |D|) ⊗ ∧2nTM , lifts to an isomorphism:

R
q−1 det a−−−−−−−−−→∼= ∧2nT ∗(log |D|) ⊗ ∧2nTM. (3.11)

Since ∧nω−1 trivializes ∧2nT (− log |D|) and is taken to ∧nQ by det a, we obtain an isomorphism
between (R, q) and (∧2nTM,∧nQ), proving that Q is of elliptic log symplectic type. �

Remark 3.5. Note that T (− log |D|) is isomorphic to TM away from D, which has real
codimension 2. This implies that M is oriented by the choice of an elliptic symplectic form.
Further, the Hessian (1.14) of ∧nQ is a section over D of S2N∗ ⊗ ∧2nTM , and has determinant
which trivializes the square of the bundle k = ∧2N∗ ⊗ ∧2nTM = ∧2n−2TD. The elliptic residue
Resqω ∈ Ω0(D, k∗), if nonzero, is then a constant volume form on D with respect to this
trivialization, and defines an orientation on D. If Resq(ω) = 0, then D need not be orientable,
as the following example shows.

Example 3.6. Let E be the elliptic curve C/Z(1, i) with standard coordinate z and consider
the holomorphic Poisson structure β = w∂w ∧ ∂z on CP 1 × E. The Z2 action τ : (w, z) �→
(w, z + 1

2 ) acts via τ∗(β) = −β and so preserves the imaginary part of β, an elliptic symplectic
structure with vanishing elliptic residue. The quotient (CP 1 × E)/Z2 then inherits an elliptic
symplectic structure with degeneracy locus given by the pair of Klein bottles {w±1 = 0}.
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We now state the main result, a relative of Theorem 3.2 in which H is allowed to vary
and gauge equivalence classes of generalized complex structures are identified with elliptic
symplectic structures. Recall that (J, H) is gauge equivalent to (J′, H ′) when there is a 2-form
b ∈ Ω2(M,R) such that H ′ = H + db and J′ = ebJe−b.

Theorem 3.7. Fix the smooth manifold M . The forgetful map which takes the pair (J, H)
of a stable generalized complex structure integrable with respect to the closed 3-form H to
the pair (Q, o), where Q is the real Poisson structure of J and o is the co-orientation of the
anticanonical divisor D of J, defines a bijection between gauge equivalence classes of stable
generalized complex structures and elliptic log symplectic structures with vanishing elliptic
residue and co-oriented degeneracy locus.

The map (J, H) �→ (Q, o) is equivariant for the action of the diffeomorphism group and
commutes with the natural maps to H3(M,R). That is, the radial residue Resr[Q−1] ∈
H1(D,R) is mapped to the class [H] ∈ H3(M,R) by the Thom–Gysin pushforward map
associated to the co-orientation o of the inclusion j : D ↪→ M .

Proof. By Theorem 3.2, ω = Q−1 is the imaginary part of a complex log symplectic form
σ, and by Proposition 1.11, the elliptic residue of this form must vanish. Furthermore, ω is
invariant under gauge transformations of J: if π : TM → TM is the projection, then for any
2-form b ∈ Ω2(M,R), we have π ◦ eb = π, so Q = πJπ∗ = πebJe−bπ∗. Of course the co-
orientation of the anticanonical divisor D is unaffected by the action of the connected group
of gauge transformations, so we have finally that the forward map J �→ (Q, o) is well-defined.

We see the map is surjective as follows: given an elliptic log symplectic form ω with zero
elliptic residue, we use the coorientation o to apply Proposition 1.11, which implies that there
exists σ ∈ Ω•(logD) such that Im(σ) = ω. Since dω = 0 by assumption, dσ has vanishing
imaginary part, and by the same Proposition, it must be a smooth real 3-form H, proving
that σ defines a complex log symplectic form, which is the required stable generalized complex
structure by Theorem 3.2.

Finally, the map is injective on gauge equivalence classes: if J and J′ give rise to the same
elliptic log symplectic form ω, this means that their corresponding complex log symplectic
forms σ, σ′ satisfy Im(σ) = Im(σ′). By Proposition 1.11, this means σ′ = σ + b for b a real
smooth 2-form, implying that J′ = ebJe−b, as needed.

Diffeomorphism equivariance is manifest from the description of the map. For compatibility
with the maps to H3(M,R), note that each gauge equivalence class [(J, H)] has a well-defined
class [H], and by the long exact sequence (1.44) this class coincides with the image of [ω] =
[Q−1] under the connecting homomorphism H2

0 (log |D|) → H3(M,R), which by sequence (1.46)
is the image of the radial residue Resr[ω] ∈ H1(D,R) under the Thom–Gysin pushforward
j∗ : H1(D) → H3(M), which is well-defined by the specified co-orientation o. �

Remark 3.8. Theorem 3.7 may be viewed as the statement that the set of pairs (J, H),
where J is a stable generalized complex structure integrable with respect to the closed 3-form
H, forms a principal bundle over the set of co-oriented elliptic symplectic structures, where
the principal structure group is the abelian group of real smooth 2-forms, where b ∈ Ω2(M,R)
acts via

b · (J, H) = (ebJe−b, H + db). (3.12)

This principal bundle is twisted equivariant for the action of diffeomorphisms, in the sense that
for any diffeomorphism ϕ, we have

ϕ∗(b · (J, H)) = (ϕ∗b) · ϕ∗(J, H). (3.13)
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3.2. The period map for fixed 3-form flux

Having established the equivalence between stable generalized complex structures and complex
log symplectic forms in the previous section, we now observe that in analogy with usual
symplectic structures, we may define a period map which gives a complete description of
the local moduli space of deformations of these structures. We shall consider two period maps
associated to stable generalized complex structures. The difference between them is whether
or not the 3-form H is fixed in the definition of a family of structures and in the definition of
equivalence for such families. In this section we treat the case with H fixed.

Definition 3.9. Let J be a generalized complex structure on (M,H). A deformation of J is
defined to be a smoothly varying family of structures Js, s ∈ [0, 1], each integrable with respect
to the fixed 3-form H and such that J0 = J. Two such deformations Js, J

′
s of J are said to be

equivalent when there is a family of sections es of TM , allowed to be time-dependent for each
s, whose associated exact time-1 flow Φes

1 (Definition 3.10) takes Js to J′s.

The flow Φt(X, b) of a pair (X, b) consisting of a time-dependent vector field X and 2-form
b ∈ Ω2(M,R) is a smooth family of automorphisms of TM defined by the initial value problem†

d
dtΦt = −L(X,b) ◦ Φt, Φ0 = id, (3.14)

where L(X,b) acts on sections of TM taking Y + η to LX(Y + η) − iY b. The solution may be
written Φt = ϕte

Bt , where ϕt is the time-t flow of X, acting on TM via (ϕt)∗ ⊕ (ϕ∗
t )

−1, and
Bt is given by

Bt =
∫ t

0

ϕ∗
sbs ds. (3.15)

If we equip TM with the H-twisted Courant bracket, then Φt takes it to the Ht-twisted Courant
bracket, where Ht satisfies the initial value problem

d
dtHt = −Lϕt∗XHt + db, H0 = H, (3.16)

which has solution Ht defined by the equation

ϕ∗
tHt = H + dBt. (3.17)

Definition 3.10. The exact flow Φe
t associated to the section e = X + ξ of TM is the flow

Φt(X, b) defined above for b given by

b = (ϕt
∗X)�H + dξ. (3.18)

It is an automorphism of TM preserving the H-Courant bracket.

As automorphisms of TM , flows Φt(X, b) operate on generalized complex structures by
conjugation. Such flows also act upon complex log symplectic structures, taking σ to σt, where

σt = (ϕ∗
t )

−1(σ + Bt), (3.19)

the result of operating by ϕte
Bt on the graph of σ. Indeed, if dσ = H, then from (3.17) we

obtain that dσt = Ht.

†We use conventions for flows in which d
dt

(ϕt)∗ = −LXt ◦ (ϕt)∗ and d
dt

(ϕt)∗ = LX ◦ (ϕt)∗.
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Applying the equivalence from Theorem 3.2, we obtain the corresponding notion of
deformation for complex log symplectic forms which includes the possible variation of the
complex divisor:

Definition 3.11. A deformation of the pair (D,σ) is a smoothly varying family (Ds, σs),
s ∈ [0, 1], of complex divisors Ds and complex log symplectic forms σs ∈ Ω2(logDs) such that
(D0, σ0) = (D,σ). Denote the set of deformations of (D,σ) by Def(D,σ). When a deformation
of (D,σ) is such that Ds = D for all s, we say that it is a deformation of σ only. Denote the
set of deformations of σ by Def(σ).

Two deformations (Ds, σs), (D′
s, σ

′
s) are equivalent when there is a family of (possibly time-

dependent) sections es of TM whose associated time-1 flows Φes
1 take (Ds, σs) to (D′

s, σ
′
s) via

(3.19). For deformations of σ only, we say that two deformations are equivalent when es has
vector component in T (− log |Ds|) for all s ∈ [0, 1].

The main observation which makes it possible to define a period map for stable gener-
alized complex structures is that any deformation of complex divisors may be rectified: By
Lemma 1.16, each deformation (Ds, σs) is equivalent to a deformation with fixed divisor, and
this defines a canonical bijection between equivalence classes of deformations of (D,σ) and
equivalence classes of deformations of σ only:

Def(D,σ)/∼
∼=−−−−−→ Def(σ)/∼ (3.20)

Lemma 3.12. Let M be compact. The rectification of divisors given by Lemma 1.16 defines
a canonical bijection between equivalence classes of deformations of (D,σ) and equivalence
classes of deformations of σ with D fixed.

As a result, the deformation theory of the stable generalized complex structure J is equivalent
to the theory of deformations of the corresponding complex log symplectic structure σ, keeping
the anticanonical divisor fixed. We now characterize these completely by defining a period map.

Definition 3.13. Let σs, s ∈ [0, 1], be a deformation of the complex log symplectic structure
σ with (M,H,D) fixed. Its period is defined to be the path given by

s �→ P(σs) = [σs − σ] ∈ H2(M\D,C), (3.21)

where we use the identification of H2(M, logD) with H2(M\D,C) in Theorem 1.3.

Theorem 3.14. Let σ be a complex log symplectic structure on (M,H,D) with M compact.
The period map defines a canonical bijection between germs of deformations of σ up to
equivalence and germs of smooth paths beginning at the origin in H2(M\D,C).

Proof. First we show that the period map descends to equivalence classes. Let σs, σ
′
s be

equivalent deformations of σ. To show that P(σs) = P(σ′
s), it suffices to show that [σ′

s − σs] = 0
for each s. Fix s and let σ0 = σs and σ1 = σ′

s. Equivalence of deformations implies that there is
a time-dependent elliptic vector field X and 1-form ξ which determine an interpolating family
σt given by σt = (ϕ∗

t )
−1(σ0 + Bt), where ϕt is the t-flow of X and Bt is given by (3.18). To

show [σ1 − σ0] = 0, we prove the infinitesimal version, that [∂tσt] = 0:

∂tσt = −Lϕt∗Xσt + bt

= −d(ϕt
∗X�σt + ξ),

(3.22)

where we have used that dσt = H for all t to obtain the result.
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The main difficulty is to show the period map is injective on germs: let σs, σ
′
s be two

deformations of σ with the same period, that is, [σs − σ] = [σ′
s − σ] for all s. We aim to show

that σs, σ
′
s have equivalent germs about s = 0, using a 2-step Moser method in families.

Step 1. We begin by finding an equivalence between the family σ′
s and a family σ′′

s whose
imaginary part coincides with that of σs. Decompose σs = b + iωs and σ′

s = b′s + iω′
s into real

and imaginary parts. Since [σ′
s − σs] = 0, the imaginary parts ω′

s, ωs are cohomologous in the
elliptic de Rham cohomology, that is, there exists a smooth family of primitives αs ∈ Ω1(log |D|)
such that

ω′
s − ωs = dαs (3.23)

and α0 = 0. We then interpolate between ωs and ω′
s, defining

ωs,t = tω′
s + (1 − t)ωs, (3.24)

which is an elliptic symplectic form for all t ∈ [0, 1] if s is sufficiently small (since ω′
0 = ω0).

Now let Xs = ω−1
s,t αs be a family of vector fields, each time-dependent, and let Φs,t be the exact

time-t flow generated by Xs. Applying this flow at time 1 to σ′
s, we obtain a new deformation

σ′′
s of σs, defined by

σ′′
s = (ϕ∗

s,1)
−1(σ′

s + B′
s,1), B′

s,t =
∫ t

0

iXs
(ϕ∗

s,uH)du. (3.25)

Then σ′′
s − σs is an exact log form, but with zero imaginary part since ϕ∗

s,1ωs = ω′
s.

Step 2. We now produce an exact flow taking σ′′
s to σs. First interpolate between the two

families:

σs,t = tσ′′
s + (1 − t)σs. (3.26)

By Step 1, the time derivative ∂tσs,t = σ′′
s − σs is exact as a log form, so we have ∂tσs,t = dζs,

for ζs ∈ Ω1(logD) with ζ0 = 0 and such that dζs is a smooth real form. If νs = Im(ζs) then νs
is a closed elliptic 1-form. To trivialize this interpolating family using an exact flow, we need
a family of sections es = Ys + ξs of TM with the property that

∂tσs,t = −d((ψs,t
∗ Ys)�σs,t − ξs), (3.27)

where ψs,t is the time-t flow of Ys. We may solve this as follows. Let Ys = −ω−1
s (νs), a family of

time-independent Poisson vector fields associated to the closed elliptic form νs. Then ψs,t
∗ Ys =

Ys and, crucially, ζs + iYs
σs,t has zero imaginary part. By Proposition 1.11, this implies that

it is a family of smooth real closed 1-forms

ξs = ζs + iYs
σs,t, (3.28)

solving (3.27) and so providing the required exact flow identifying σ′′
s with σs, completing the

proof of injectivity.
Finally, surjectivity of the period map follows from the fact that for any path γ : [0, 1] →

H2(M\D,C) with γ(0) = 0, we may lift this to a smooth family of cocycles γ̃ : [0, 1] →
Ω2(logD) with γ̃(0) = 0. Then, since the nondegeneracy condition is open, σs = σ + γ̃(s) is,
for sufficiently small s, a deformation of σ whose period realizes the given path germ. �

Remark 3.15. When the flux H vanishes, the complex log symplectic form σ itself defines a
class in H2(logD), and so the image of the period map may be taken to be naturally centered
at [σ].
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In summary, we have shown that the local deformation problem for a stable generalized
complex structure J on the fixed manifold with 3-form (M,H) is equivalent to the local
deformation problem for the complex log symplectic structure (D,σ) determined by J. This,
in turn, is equivalent to the local deformation problem for σ, keeping D fixed. Finally, this last
deformation problem is governed by a period map to a neighbourhood of zero in H2(M\D,C).
We therefore obtain the following explicit description, in the stable case, of the Kuranishi
family of local deformations of generalized complex structures described in [16]:

Corollary 3.16. The Kuranishi moduli space of deformations of the stable generalized
complex structure J is unobstructed and is identified by the period map with an open set
surrounding the origin in H2(M\D,C), where D is the anticanonical divisor of J.

Example 3.17. Consider the case of Example 2.11 in which π is a generic holomorphic
Poisson structure on the complex projective plane, vanishing on a smooth elliptic curve D ⊂
CP 2. Then H2(CP 2\D,C) is two-dimensional, implying that all germs of deformations of the
generalized complex structure defined by π are, up to equivalence, obtained by deforming the
holomorphic section π.

Example 3.18. The generalized Kähler structure on the Hopf surface described in [17,
Example 1.21] involves a pair J−, J+ of stable generalized complex structures on M = S3 × S1,
each integrable with respect to a cohomologically nontrivial 3-form H, and each of which has
anticanonical divisor D± given by a single T 2 fibre of the Hopf projection S3 × S1 → S2.
Therefore, the period map for J± takes values in H2(M\D±,C), which is one-dimensional
since M\D± is homotopic to T 2.

3.3. The period map for variable flux

We now describe the local moduli space of simultaneous deformations of the stable generalized
complex structure J and the closed 3-form H which determines the integrability of J.

Definition 3.19. A deformation of the pair (J, H) is defined to be a smooth family (Js, Hs),
s ∈ [0, 1], of generalized complex structures where each Js is integrable with respect to Hs and
such that (J0, H0) = (J, H). Two such deformations (Js, Hs) and (J′s, H

′
s) of the same pair are

said to be equivalent when there is a family of vector fields Xs and real 2-forms bs, each allowed
to be time-dependent, such that the time-1 flow Φ1(Xs, bs) takes Js to J′s.

Unlike the equivalence relation in the previous section, where only exact flows were used,
here we use any path of equivalences of generalized complex structures, without regard to the
effect on the 3-form. As a result, Theorem 3.7 implies that deformations of pairs (J, H) are,
up to equivalence, in bijection with equivalence classes of deformations of co-oriented elliptic
symplectic structures (Q, o) with vanishing elliptic residue, where a deformation is defined as
usual and two deformations are equivalent if there is a family of diffeomorphisms taking one
to the other.

Any family Qs of elliptic symplectic structures may be viewed as a family of elliptic
symplectic forms ωs = Q−1

s for the family of elliptic divisors defined by (∧2nTM,∧nQs), and
just as in the previous section, we may always rectify the family of divisors by a path of
diffeomorphisms. As a result, we may pass directly to deformations of elliptic symplectic forms
with fixed underlying elliptic divisor.

Definition 3.20. Fix the manifold M , the elliptic divisor |D|, and the elliptic symplectic
form ω. A (zero-residue) deformation of ω is a smoothly varying family ωs ∈ Ω2(log |D|),
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s ∈ [0, 1], of elliptic symplectic forms such that ω0 = ω (such that each ωs has zero elliptic
residue). Two such deformations ωs, ω

′
s are equivalent when there is a family of time-dependent

sections Xs of the elliptic tangent bundle T (− log |D|) whose associated time-1 flow takes ωs

to ω′
s.

We then have the analog of Lemma 3.12, allowing us to pass between deformations of pairs
(J, H) and of elliptic symplectic forms.

Lemma 3.21. Let J be a stable generalized complex structure on (M,H) with M
compact. Rectification of divisors defines a canonical bijection between equivalence classes
of deformations of (J, H) and equivalence classes of zero-residue deformations of the elliptic
symplectic structure ω = Q−1 with fixed divisor |D| = (∧2nTM,∧nQ), where Q is the real
Poisson structure underlying J.

We now define a period map for deformations of pairs (J, H): since, after rectification, these
give a family of elliptic symplectic forms with zero elliptic residue, our period map must take
values in H2

0 (log |D|).

Definition 3.22. Let ωs, s ∈ [0, 1], be a zero-residue deformation of the elliptic symplectic
structure ω, with fixed elliptic divisor |D|. Its period is defined to be the path given by

s �→ P(ωs) = [ωs] ∈ H2(M\D,R) ⊕H1(D,R), (3.29)

where we use the identification of H2
0 (M, log |D|) with the above group from Theorem 1.12.

Theorem 3.23. Let ω be an elliptic symplectic form with zero elliptic residue on the
compact manifold with elliptic divisor (M, |D|). The period map defines a canonical bijection
between germs of deformations of ω up to equivalence and germs of smooth paths beginning
at [ω] ∈ H2(M\D,R) ⊕H1(D,R).

Proof. The proof is similar to the proof of Theorem 3.14, but simpler. The period map
descends to equivalence classes because equivalence uses flows of elliptic vector fields, which
act trivially on the elliptic de Rham cohomology groups.

To show injectivity of the period map, suppose ωs, ω
′
s are two deformations of ω with the

same period, so that [ωs] = [ω′
s] in H2

0 (log |D|). Then we can apply a simple Moser argument
to identify ωs with ω′

s in a sufficiently small neighbourhood of s = 0.
As in the previous case, surjectivity holds for germs by the openness of the nondegeneracy

condition for elliptic symplectic forms. �

In summary, we have shown that the local deformation problem for the pair (J, H) of a
stable generalized complex structure on the fixed compact manifold M is equivalent to the
local deformation problem for the zero-residue elliptic symplectic form ω = Q−1 determined
by J, and that this is governed by a period map to a neighbourhood of [ω] ∈ H2

0 (log |D|).

Corollary 3.24. The Kuranishi moduli space of simultaneous deformations of the pair
(J, H) of a stable generalized complex structure integrable with respect to H is unobstructed,
and is identified by the period map with an open set surrounding the class determined by the
underlying real Poisson structure Q in H2(M\D,R) ⊕H1(D,R), where D is the anticanonical
divisor of J.

Remark 3.25. Let (J,M,H) be a compact stable generalized complex manifold. The
forgetful map from deformations of (J, H) to deformations of H induces a map on cohomology
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groups H2
0 (log |D|) → H3(M,R) which by Theorem 1.13 is the projection from H2

0 (log |D|)
to H1(D,R) followed by the Thom–Gysin map to H3(M,R). Consequently, not all directions
from [H] in H3(M,R) may be obtained by deforming the pair (J, H): only those in the kernel
of the pullback i∗ : H3(M,R) → H3(M\D,R) to the anticanonical complement.

Example 3.26. Revisiting Example 3.18, we see that deformations of the pair (J±, H) are
controlled by a period map to H2(M\D±) ⊕H1(D±), a real vector space of dimension 3, in
contrast to the period map for J±, which maps to a complex line.

3.4. Darboux coordinates about a degenerate point

Start with complex coordinates (w, z) and extend by real coordinates xi, pi, i = 1, . . . ,m− 2.
Suppose that w is the local defining function for the complex divisor D. Consider the closed
logarithmic 2-form

σ0 = d logw ∧ dz + iω, (3.30)

where ω =
∑

i dxi ∧ dpi is the standard symplectic form. Then this is a complex log symplectic
structure since its imaginary part is nondegenerate in the elliptic sense:

(Imσ0)m = d logw ∧ d logw ∧ dz ∧ dz ∧ ωm−1 (3.31)

is a nowhere vanishing elliptic form of top degree. Our aim is to prove that locally all complex
log symplectic forms are equivalent to the one above.

More precisely, we show that if (σ,H) is any complex log symplectic form, integrable with
respect to the 3-form H, then we can find a smooth real 2-form b and a diffeomorphism ϕ such
that

ϕ∗H + db = 0

ϕ∗σ + b = σ0.
(3.32)

Theorem 3.27. Any complex log symplectic form is equivalent, near a point on its
degeneracy divisor, to the normal form (3.30).

Proof. We are only concerned about the local structure near a point p on the divisor, so we
may identify the divisors and assume that the algebroid T (− logD) is fixed for the remainder
of the argument, and that both σ and σ0 are elements of Ω2(logD). We also assume that σ0, σ
induce the same orientation on the neighbourhood, in the sense that the elliptic volume forms
(3.31) of σ0, σ have positive ratio.

Let ω0, ω be the imaginary parts of σ0, σ, which are elliptic forms with vanishing elliptic
residue, by Proposition 1.11. By Theorem 1.12, in a small ball W surrounding a point on
the divisor, we have H2

0 (W, log |D|) = H2(W\D,R) ⊕H1(W ∩D), both of whose summands
vanish since W\D is homotopic to the circle and W ∩D is contractible. Hence ω, ω0 must be
cohomologous:

ω = ω0 + dα, α ∈ Ω1(W, log |D|), α(p) = 0. (3.33)

Furthermore, we may choose α such that it vanishes at p as a section of T ∗(log |D|), which is
possible since locally we have a basis of closed sections. We then employ the Moser argument:
the interpolating family ωt = tω + (1 − t)ω0 is nondegenerate for all t ∈ [0, 1] and has derivative
d
dtωt = dα. The vector field Xt = ω−1

t α is then a section of T (− log |D|) which vanishes at p,
so that we may integrate it (in a possibly smaller neighbourhood of p) to a flow ϕt such that
ϕ∗

1ω = ω0.



1106 GIL R. CAVALCANTI AND MARCO GUALTIERI

Having found ϕ such that ϕ∗σ, σ0 share an imaginary part, we may appeal to Proposition 1.11
to conclude that ϕ∗σ − σ0 = −b for a smooth real 2-form b, which by the integrability condition
satisfies ϕ∗H + db = 0, as required. �

In view of the equivalence between stable generalized complex structures and complex log
symplectic forms, the existence of the normal form (3.30) means that we have a normal form
for stable generalized complex structures. Indeed, a generator for the canonical line bundle
may be written as

weσ0 = (w + dw ∧ dz) ∧ eiω, (3.34)

which may also be viewed as a deformation of the type 2 structure

dw ∧ dz ∧ eiω (3.35)

by the holomorphic Poisson structure w∂w ∧ ∂z. In fact, one can alternatively deduce the
local normal form from Bailey’s theorem [1], which states that near a point of type k, a
generalized complex structure is equivalent to the product of a symplectic structure with a
deformation of the complex structure on a neighbourhood of the origin in Ck by a holomorphic
Poisson structure vanishing at the origin. Bailey’s theorem together with the nondegeneracy
assumption, determines the form (3.34) uniquely.

3.5. Linearization about the degeneracy locus

In Section 2.4, we introduced the linearization of a stable generalized complex J structure
along its anticanonical divisor D. This is a C∗-invariant stable structure on the total space of
the normal bundle N of D, defined purely in terms of the generalized Calabi–Yau structure
on D and the generalized holomorphic structure on its normal bundle. We now show that J

is equivalent to its linearization J′ in a sufficiently small neighbourhood of D, using a Moser
argument applied to the complex log symplectic structures associated to J, J′.

Theorem 3.28. Let J, J′ be stable generalized complex structures on (M,H) with the same
anticanonical divisor D. If J, J′ induce the same generalized Calabi–Yau structure on D, as well
as the same generalized holomorphic structure on the normal bundle to D, then J and J′ are
equivalent on a neighbourhood of D. In particular, any stable generalized complex structure is
equivalent to its linearization in a sufficiently small tubular neighbourhood of D.

Proof. Let σ, σ′ be the complex log symplectic forms corresponding to J, J′, let w be a local
defining function for the anticanonical divisor, and let ι : D → M be the inclusion. That is,
J, J′ have local trivializations ρ, ρ′ for their canonical bundles given by

ρ = weσ, ρ′ = weσ
′
. (3.36)

The assumption that J, J′ induce the same Calabi–Yau structure on D is the condition

Res(eσ) = Res(eσ
′
). (3.37)

Now write σ = d logw ∧ Ω + β and σ′ = d logw ∧ Ω′ + β′, for Ω,Ω′ and β, β′ smooth complex
forms, so that Res(σ) = ι∗Ω and similarly for σ′. Then condition (3.37) is equivalent to the
condition that

ι∗(Ωeβ) = ι∗(Ω′eβ
′
). (3.38)

This implies that ι∗(Ω′ − Ω) = 0 and also that ι∗(β′ − β) ∧ ι∗Ω = 0.
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The condition that J, J′ induce the same generalized holomorphic structure on the normal
bundle N to D is equivalent to the condition that the modular vector fields X + ξ, X ′ + ξ′

associated to ρ, ρ′, determined uniquely by the conditions

iXσ + ξ = 0

iXσ + ξ = d logw

iX′σ′ + ξ′ = 0

iX′σ′ + ξ′ = d logw,
(3.39)

must induce the same connection forms for the normal bundle, namely

X + ι∗ξ = X ′ + ι∗ξ′, (3.40)

as sections of TCD. From (3.39), we have that iX′σ + ξ′ = iXσ′ + ξ, and using (3.40) this
implies that ι∗(iX(σ′ − σ)) = 0, and therefore ι∗(iX(β′ − β)) = 0. But note that (3.39) implies
that ι∗(iXΩ) = −1, and applying X to the equation ι∗(β′ − β) ∧ ι∗Ω = 0, we obtain that
ι∗(β′ − β) = 0. So, we have that

σ′ − σ = d logw ∧ (Ω′ − Ω) + (β′ − β), (3.41)

and each of the components Ω′ − Ω and β′ − β are smooth forms which vanish upon pullback to
D. We apply Lemma 3.29 to each of these components to conclude that σ′ − σ, as a complexified
elliptic form, vanishes along D. In particular the imaginary part of σ is an elliptic form which
vanishes along D. We now apply Lemma 3.30 to conclude that σ′ and σ are equivalent in a
tubular neighbourhood of D, as required.

For the final statement, let J′ be the linearization of J along D, as defined in Definition 2.14.
By the construction of the linearization, we may identify a tubular neighbourhood of D with
a neighbourhood in its normal bundle in such a way that the anticanonical divisors of J and J′

are identified. Then J, J′ are integrable with respect to 3-forms H,H ′ respectively, which agree
on D, that is, ι∗H = ι∗H ′. Therefore H,H ′ are cohomologous in a tubular neighbourhood of
D, and we may choose B such that dB = H ′ −H and with the additional property ι∗B = 0.
We may then gauge transform J by B so that J, J′ share the same 3-form H, without changing
the fact that, by construction, J, J′ induce the same generalized Calabi–Yau structure on D
and the same holomorphic structure on its normal bundle. We then proceed as before. �

Lemma 3.29. Let D be a complex divisor, ι : D → M the inclusion map, and
a : T (− log |D|) → TM the anchor map for the elliptic tangent bundle. If � is a smooth
differential form such that ι∗� = 0, then a∗� is an elliptic logarithmic form which vanishes
along D.

Proof. Let (r, θ, x3, . . . , xn) be local coordinates near D as in Section 1.2, and let u = r cos θ,
v = r sin θ, so that D is the common zero set of u, v and we may write

� = du ∧ dv ∧�0 + du ∧�1 + dv ∧�2 + �3, (3.42)

where �i are smooth forms lying in the subalgebra generated by dx3, . . . dxn. Then since
du = ud log r − vdθ and dv = vd log r + udθ, we see that the first three summands in (3.42)
vanish along D as elliptic logarithmic forms. Finally, ι∗�3 = 0 if and only if �3 vanishes along
D, implying it vanishes as an elliptic form as well. �

Lemma 3.30. Complex log symplectic forms whose imaginary parts coincide along D must
be equivalent in a tubular neighbourhood of D.

Proof. Let σ0, σ1 be the given forms, and let their respective imaginary parts be ω0, ω1,
elliptic forms which coincide along D. The linear interpolation ωt = tω1 + (1 − t)ω0 is non-
degenerate for all t ∈ [0, 1], and has derivative ω̇t = ω1 − ω0, a closed elliptic form vanishing



1108 GIL R. CAVALCANTI AND MARCO GUALTIERI

along D. By Lemma 1.10, it is exact, so that ω1 = ω0 + dα for α ∈ Ω1(W, log |D|). Then the
vector field Xt = ω−1

t (α) is tangent to the compact submanifold D, meaning that the time-1
flow ϕ exists in a sufficiently small neighbourhood of D and satisfies ϕ∗ω1 = ω0. We complete
the proof as we did for Theorem 3.27, using Proposition 1.11 to argue that ϕ∗σ1 − σ0 = −b for
a smooth real 2-form b satisfying ϕ∗H + db = 0. �

3.6. Neighbourhood theorem for Lagrangian branes

In this section we introduce the elliptic analog of the cotangent bundle construction in
symplectic geometry. This provides a large family of examples of stable generalized complex
manifolds. We also prove a generalization of Weinstein’s Lagrangian neighbourhood theorem,
resulting in a normal form result for neighbourhoods of Lagrangian branes in stable generalized
complex manifolds.

Let D = (R, q) be an elliptic divisor on the n-manifold L, and TL(− log |D|) the associated
elliptic tangent bundle. Then let M = tot(T ∗L(log |D|)) be the 2n-manifold defined by the total
space of the elliptic cotangent bundle, with projection map π : M → L. Then π∗D = (π∗R, π∗q)
defines an elliptic divisor on M , and we have a tautological 1-form Θ ∈ Ω1(M, log |π∗D|) defined
in the familiar way:

Θξ(X) = ξ(π∗X), (3.43)

for ξ ∈ M and X ∈ TM(− log |π∗D|).

Theorem 3.31. The derivative ω = dΘ of the tautological 1-form (3.43) on the total space
of the elliptic cotangent bundle is an elliptic symplectic form with vanishing elliptic residue.
Furthermore, it satisfies iEω = Θ for E the Euler vector field, which is therefore Liouville in
the sense

LEω = ω. (3.44)

Proof. Using coordinates on L as in (1.13), we write any elliptic 1-form as

Θ = s d log r + tdθ +
∑n

i=3 pidxi, (3.45)

defining an extension of the coordinate system to M and providing an explicit expression for
the tautological form. Its derivative is then

dΘ = ds ∧ d log r + dt ∧ dθ +
∑n

i=3 dpi ∧ dxi, (3.46)

showing that ω is nondegenerate and has zero elliptic residue. Since the Euler vector field is
E = s∂s + t∂t +

∑
i pi∂pi

, we obtain iEω = Θ directly from the local expression. �

We now show that the elliptic cotangent bundle construction is the universal example of
a Lagrangian neighbourhood. Let ω ∈ Ω2(M, log |D|) be an elliptic symplectic form, and let
ι : L ↪→ M be a submanifold transverse to D, so that D pulls back to define an elliptic divisor
D ∩ L in L. We then have an induced inclusion map

ι∗ : TL(− log |D ∩ L|) → TM(− log |D|), (3.47)

and we say that L is Lagrangian when ι∗ω = 0.

Theorem 3.32. Let (M,D,ω) be an elliptic symplectic manifold and L a compact
Lagrangian submanifold transverse to D. Then a neighbourhood of L in M is isomorphic
to a neighbourhood of the zero section in T ∗L(log |D ∩ L|).
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Proof. The inclusion (3.47) has cokernel given by the normal bundle of L, which is identified
with M0 = T ∗L(log |D ∩ L|) by the elliptic symplectic form. We then choose an identification
of a tubular neighbourhood U of L with a neighbourhood of the zero section in M0, with
the property that the elliptic divisors on U and M0 are identified. Then the canonical form
(3.46) and the given form define a pair of elliptic symplectic forms ω0, ω1 on U such that
ι∗ω0 = ι∗ω1 = 0. But this implies that ω0, ω1 are cohomologous in U since (U,D) is smoothly
homotopic to (L,D ∩ L). That is, ω1 − ω0 = dξ for some ξ ∈ Ω1(U, log |D|). To produce a
diffeomorphism taking ω0 to ω1, we apply the Moser argument: the interpolating family
of symplectic forms ωt = tω1 + (1 − t)ω0 satisfies d

dtωt = dξ, and so we obtain the required
diffeomorphism by integrating the (elliptic, hence smooth) vector field Xt = −ω−1

t (ξ). Let
π : U → L be the retraction. Since ι∗dξ = 0, we may subtract π∗ι∗ξ from ξ in order to ensure
that ξ is chosen such that ι∗ξ = 0. But then ξ is conormal to L away from D ∩ L and so the
vector field Xt is tangent to L. By compactness of L, we may integrate Xt for unit time in a
sufficiently small neighbourhood of L, yielding the result. �

Example 3.33. Let L be a three-dimensional Lagrangian submanifold in a stable generalized
complex 6-manifold M which is transverse to the anticanonical divisor D. Then D ∩ L defines
a complex divisor K ⊂ L with zero locus consisting of a link of embedded circles. A tubular
neighbourhood of L in M is then isomorphic to the canonical structure on the total space of
T ∗L(logK) provided by Theorem 3.31.

The results of this section may be used to obtain a classification of a certain class of
generalized complex branes, defined as follows (we simplify the definition given in [16] by
ignoring the vector bundle over the submanifold).

Definition 3.34. Let (M,H, J) be a generalized complex manifold. A brane is a pair (L,F )
consisting of a submanifold ι : L ↪→ M and a 2-form F ∈ Ω2(L,R) such that ι∗H = dF and
JτF = τF , where τF = {X + ξ ∈ TL⊕ T ∗M | ι∗ξ = iXF}.

The bundle τF is an extension over L of the form

N∗L −→ τF −→ TL, (3.48)

and requiring that τF is J-invariant implies that Q(N∗L) ⊂ TL, that is, that L is coisotropic for
the underlying real Poisson structure Q. In the stable case, therefore, there is a distinguished
class of Lagrangian branes, essentially defined to be Lagrangian for the elliptic symplectic form
away from the anticanonical divisor:

Definition 3.35. Let (M,H, J) be a stable generalized complex 2n-manifold. We call the
brane (L,F ) Lagrangian when L has dimension n and is transverse to the anticanonical divisor
of J.

Certainly, any Lagrangian brane defines a Lagrangian submanifold for the elliptic symplectic
structure, but the converse also holds.

Proposition 3.36. Let J be a stable generalized complex structure on (M,H). Then any
submanifold L ⊂ M which is transverse to the anticanonical divisor D and Lagrangian for the
elliptic symplectic structure underlying J inherits a 2-form F making it a generalized complex
brane.

Proof. Since L is transverse to D, we obtain an induced complex divisor DL on L and an
inclusion of logarithmic tangent bundles ι∗ : TL(− logDL) → TM(− logD). We let σ be the
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complex log symplectic structure given by J. Since L is Lagrangian, the imaginary part of ι∗σ
vanishes, and by Proposition 1.11, it is a smooth 2-form, that is, ι∗σ = F ∈ Ω2(L,R). The
integrability condition dσ = H then yields the required condition ι∗H = dF . The condition
JτF = τF then automatically holds since it is a closed condition which is gauge equivalent,
away from D, to the condition that L is Lagrangian in the usual sense. �

In this way, we have obtained a classification of neighbourhoods of compact Lagrangian
branes in stable generalized complex manifolds, generalizing the following four-dimensional
result to all dimensions.

Example 3.37 [8, Theorem 2.6]. Let (L,F ) ⊂ (M,H, J) be a compact Lagrangian brane in
a stable generalized complex 4-manifold. Then the generalized complex structure in a tubular
neighbourhood of L is completely determined by the (zero-dimensional) complex divisor DL =
D ∩ L, which itself is completely determined by orienting the tangent spaces TpL at each of
the finitely many points p ∈ D ∩ L.

Acknowledgements. We thank R. Goto for the opportunity to visit Kyoto in 2013 and share
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