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Abstract. In this article we develop algorithms for data assimilation based upon a computational time de-
pendent stable/unstable splitting. Our particular method is based upon shadowing refinement and
synchronization techniques and is motivated by work on assimilation in the unstable subspace [Car-
rassi et al., Chaos, 18 (2008), 023112; Trevisan, D'Isidoro, and Talagrand, Q. J. R. Meteorol. Soc.,
136 (2010), pp. 487--496; Palatella, Carrassi, and Trevisan, J. Phys. A, 46 (2013), 254020] and
pseudo-orbit data assimilation [Judd and Smith, Phys. D, 151 (2001), pp. 125--141; Judd et al., J.
Atmos. Sci., 65 (2008), pp. 1749--1772; Du and Smith, J. Atmos. Sci., 71 (2014), pp. 469--482]. The
algorithm utilizes time dependent projections onto the nonstable subspace determined by employing
computational techniques for Lyapunov exponents/vectors. The method is extended to parameter
estimation without changing the problem dynamics and we address techniques for adapting the
method when (as is commonly the case) observations are not available in the full model state space.
We use a combination of analysis and numerical experiments (with the Lorenz 63 and Lorenz 96
models) to illustrate the efficacy of the techniques and show that the results compare favorably with
other variational techniques.
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1. Introduction. Data assimilation methods combine orbits from a dynamical system
model with measurement data to obtain an improved estimate for the state of a physical
system. In this paper we develop a data assimilation method in the context of a discrete
deterministic model

(1) xn+1 = Fn(xn), xn \in \scrR d, n = 0, . . . , N  - 1,

where Fn : \scrR d \rightarrow \scrR d. In many applications the model is defined by the time-discretization of
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PROJECTED SHADOWING-BASED DATA ASSIMILATION 2447

an ODE

(2) \.x = f(t, x), x(t) \in \scrR d,

which in turn may be defined as the space-discretization of a PDE (or system of PDEs).
Let the sequence1 \{ \scrX 0,\scrX 1, . . . ,\scrX N\} be a distinguished orbit of (1), referred to as the true

solution of the model, and presumed to be unknown. Suppose we are given a sequence of
noisy observations yn related to \scrX n via

(3) yn = H\scrX n + \xi n, yn \in \scrR b, n = 0, . . . , N,

where H : \scrR d \rightarrow \scrR b, b \leq d, is the observation operator, and the noise variables \xi n are
drawn from a normal distribution \xi n \sim \scrN (0, E) with zero mean and known observational
error covariance matrix E.

Data assimilation is the problem of finding an orbit (or pseudo-orbit; see subsection 2.1)
\bfitu = \{ u0, u1, . . . , uN\} , un \in \scrR d, of the model (1), such that the differences \| yn  - Hun\| ,
n = 0, . . . , N are small in an appropriately defined sense. This is done with the aim of
minimizing the unknown error \| un - \scrX n\| ; see, for example, [53, 38]. For instance, well known
four-dimensional variational data assimilation (4DVar) aims at finding the optimal initial
condition u0 of (1) to minimize a cost function

C\mathrm{v}\mathrm{a}\mathrm{r}(u0; \{ yn\} ) =
N\sum 

n=1

(yn  - Hun)
TE - 1(yn  - Hun) + \lambda n(un  - Fn(un - 1)),

where the \lambda n are Lagrange multipliers to ensure that the sequence \{ un\} defines an orbit
of (1) (see, e.g., [50, 39, 54, 53] and references therein). One drawback of variational data
assimilation is that the number of local minima of the cost function increases dramatically
with N [5, 42, 47]. This places a practical limit on the length of the assimilation window---the
time period over which observations may be assimilated.

We propose a novel data assimilation method that overcomes this drawback: with the
proposed method, increasing the length of the assimilation window may in fact lead to a
better estimation. Instead of minimizing a cost function, we search for a zero of the cost
operator

(4) G(\bfitu ) =

\left(     
G0(\bfitu )
G1(\bfitu )

...
GN - 1(\bfitu )

\right)     , Gn(\bfitu ) = un+1  - Fn(un), n = 0, . . . , N  - 1,

using a contractive iteration started from (a proxy of) complete, noisy observations. This
approach is motivated by research on numerical shadowing methods. We stress that, as is
the case with 4DVar, our approach attempts to find an exact orbit of (1) consistent with the

1In what follows we will adopt the notation \{ \scrX n;n = 0, . . . , N\} or simply as \{ \scrX n\} for a discrete orbit. The
latter notation is also occasionally employed to denote an infinite sequence.
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observations. However, instead of solving directly for the initial condition, we solve for the
whole orbit at once.

As stated, our approach assumes the availability of (noisy) observations of the complete
state vectors \scrX n. In other words, we assume that the observation operator H is the identity
matrix on \scrR d. When only partial observations are available, it is necessary to generate a
proxy for complete observations. This can be done by some other cheap but inaccurate data
assimilation method. For instance, in subsection 6.1 we demonstrate this idea using direct
insertion of noisy partial observations into the iteration (1).

Recent efforts [11, 55, 28, 43, 37, 49] to improve speed and reliability of data assimilation
specifically address the partitioning of the tangent space into stable, neutral, and unstable
subspaces corresponding to Lyapunov vectors associated with negative, zero, and positive
Lyapunov exponents, respectively (see subsection 2.2). In particular, Trevisan, d'Isidoro, and
Talagrand propose a modification of 4DVar, so-called 4DVar-AUS, in which corrections are
applied only in the unstable and neutral subspaces [55, 43]. Research by Pecora and Carroll
[44] indicates that when partial observations are sufficient to constrain the unstable subspace,
an orbit of the chaotic Lorenz 63 system can be made to converge exponentially in time to
a different, driving orbit, hence refining in the stable subspace. Their work has triggered a
substantial body of research on the idea of synchronization of chaos. (See review articles by
Pecora et al. [46] and Boccaletti et al. [7].)

Motivated by the above, in this paper we propose a new method for data assimilation that
utilizes distinct treatments of the dynamics in the stable and nonstable directions. We find
a numerical orbit compatible with observations by using Newton's method with updates pro-
jected on the nonstable subspace to emphasize the need to stay close to current observations
in nonstable directions. In the stable subspace, we ensure that the trajectory is determined by
past observations using a forward integration to synchronize the stable components. Although
our focus here is on splitting into nonstable and stable components and then applying shad-
owing refinement and synchronization techniques, respectively, the splitting framework allows
for other possibilities. In particular, if the nonstable subspace is relatively low-dimensional
this makes applications of techniques such as particle filters appealing. In addition, 4DVar or
Kalman filter techniques may be applied to the stable system with the advantage that these
techniques are being applied to a system with contractive dynamics. This also allows the split
system to be put in a Bayesian data assimilation context.

In the next section we provide relevant background results. In section 3 we describe the
sense in which Newton's method is an effective data assimilation algorithm. While effective,
the full Newton's iteration can be made more efficient by restricting the updates to just the
nonstable tangent directions, as described in section 4. The updates can then be synchronized
in the stable directions as shown by the analysis in Appendix A. We provide details of our
implementation in section 5. Finally, in section 6 we provide numerical results for the Lorenz
63 model and compare the method to 4DVar for the Lorenz 96 model. We draw conclusions
in section 7.

2. Background. In subsection 2.1 we review concepts from numerical shadowing, in sub-
section 2.2 we describe the computation of the tangent space splitting used in this paper, and
in subsection 2.3 we review synchronization of chaos.
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2.1. Numerical shadowing. An \varepsilon -pseudo-orbit is a sequence \bfitu = \{ u0, u1, . . . , uN\} satisfy-
ing \| Gn(\bfitu )\| < \varepsilon , n = 0, . . . , N  - 1, where \| \cdot \| is a norm in \scrR d. For instance, suppose F \equiv Fn

is the exact time-\tau flow map of an autonomous ODE \.x = f(x). If the components of \bfitu are
the iterates of a numerical integrator with local truncation error bounded by \varepsilon , then these
define an \varepsilon -pseudo-orbit of F . The shadowing lemma (e.g., Theorem 18.1.2 of [36]) states
that in a neighborhood of a hyperbolic set for F , for every \delta > 0 there exists \varepsilon > 0 such that
every \varepsilon -pseudo-orbit is \delta -shadowed by an orbit of F , i.e., there exists an orbit \{ xn\} satisfying
xn+1 = F (xn) such that \| un  - xn\| < \delta for all n = 0, . . . , N . We remark that this means that
the initial condition x0 \not = u0 in general. Rigorous bounds on the global error of numerical
integrations with respect to a shadowing orbit can be proved. This is done by applying the
Newton--Kantorovich theorem to Newton's iteration for G(\bfitx ) = 0 with starting data given
by the numerical iterates \bfitu on a time interval that is long relative to the characteristic Lya-
punov time [6, 31, 30, 14, 15, 56]. Shadowing is an important analysis technique for obtaining
global error bounds on the numerical approximation to the solution of differential equations
exhibiting chaos.

Numerical shadowing refinement is a residual correction technique that seeks to correct
the residual (departure from being a true solution) by solving the error equation without con-
straining the initial condition. This makes it applicable over long time intervals for problems
with positive Lyapunov exponents. When refining using a Gauss--Newton method the linear
equations being solved are underdetermined so by using the pseudoinverse the Newton update
is the minimum two norm solution correction of the residual. We can view data assimilation
in the same vein by interpreting the data as some approximation to the model solution and
set it as our goal to find a particular model solution that shadows the data.

With respect to shadowing, the inverse problem is to determine an optimal initial condition
u0 for a numerical integration, such that the numerical iterates \bfitu \delta -shadow a desired orbit
of (2). Shadowing refinement (see, e.g., [29]) employs the pseudo-orbit as an initial guess for
G(\bfitu ) = 0 and, as opposed to proving the existence of a nearby zero of G, iteratively refines
the pseudo-orbit to obtain an improved approximation of a true solution. This is clearly akin
to the data assimilation problem.

Shadowing theory has already motivated a practical data assimilation algorithm known
as pseudo-orbit data assimilation (PDA); see, for instance, [34, 33, 25] and references therein.
For the PDA approach a cost function

C\mathrm{P}\mathrm{D}\mathrm{A} =
1

2

N - 1\sum 
n=0

GT
nGn

is minimized and the minimization is also initialized from observations. Obviously, the
(nonunique) global minimum of C\mathrm{P}\mathrm{D}\mathrm{A} is zero and this value is reached if and only if G(\bfitu ) = 0,
that is, if \bfitu is any model trajectory. The approach in [25] approximatly minimizes C\mathrm{P}\mathrm{D}\mathrm{A}

by taking a fixed number of gradient descent steps starting from observations. This typi-
cally yields not an orbit but a (discrete) pseudo-orbit, i.e., the minimizing sequence satisfies
\| un  - \scrX n\| < \varepsilon for all n = 0, . . . , N and some constant \varepsilon . The distance between the pseudo-
orbit and the manifold of trajectories is then smaller than the distance between observations
and the manifold of trajectories. The midpoint of this pseudo-orbit is then used as the initial
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condition for a trajectory that should be consistent with model and data. PDA has been
applied in operational weather models [33] and parameter estimation [51] and as a method
for finding reference trajectories for ensemble forecasting [25].

2.2. Tangent subspace decomposition. In this section we review the decomposition of
the tangent space into stable, neutral, and strongly unstable subspaces. This decomposition is
central to the method described in this paper. Let \{ xn;n = 0, . . . , N\} denote an orbit of (1).
The fundamental matrix equation associated with \{ xn\} is a matrix valued difference equation

(5) Xn+1 = F \prime 
n(xn)Xn, n = 0, . . . , N  - 1,

where Xn \in \scrR d\times d. The iterates of (5) become increasingly ill-conditioned as the columns align
with the dominant growth direction. To stably estimateXn, one may introduce a time-discrete
QR factorization. Let X0 = Q0R0, and write

(6) Qn+1Rn+1 = F \prime 
n(xn)Qn for n = 0, . . . , N  - 1,

where F \prime 
n(xn)Qn is a matrix product of known quantities, and Qn+1Rn+1 is the QR factoriza-

tion found using the modified Gram--Schmidt process. Then X1 = F \prime 
0(x0)Q0R0 = Q1R1R0,

X2 = F \prime 
1(x1)X1 = F \prime 

1(x1)Q1R1R0 = Q2R2R1R0, etc. Note that this procedure is well de-
fined for Qn \in \scrR d\times p for p \leq d provided F \prime 

n(xn)Qn is full rank for all n. The Gram--Schmidt
process yields the unique upper triangular Rn \in \scrR p\times p with positive diagonal elements and,
importantly, preserves the ordering of the columns of the Qn.

The (local) p (1 \leq p \leq d) largest Lyapunov exponents of the orbit \{ xn\} are extracted
from the time average of the logarithm of the diagonal of Rn [23]:

\lambda i = lim sup
N\rightarrow \infty 

1

N

N\sum 
n=1

lnR(i,i)
n , i = 1, . . . , p.

The method of construction ensures \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda p. Associated with \lambda i is a Lya-

punov vector V
(i)
n . The columns of Qn generally (for most initial conditions) form an or-

thonormal basis for the Lyapunov vectors at time n (see [16, 17, 18]). The iteration (5)
is a generalized power iteration. For each \ell = 1, . . . , p, one finds in the limit n \rightarrow \infty 
that span\{ V (1)

n , . . . , V
(\ell )
n \} = span\{ Q(1)

n , . . . , Q
(\ell )
n \} , where Q

(i)
n denotes the ith column of Qn

[23, 20, 1, 4]. Positive (negative) \lambda i correspond to tangent directions Q
(i)
n in which per-

turbations grow (decay) exponentially. Consequently, if \lambda p \geq 0 > \lambda p+1, then the matrix

Qu
n = (Q

(1)
n , . . . , Q

(p)
n ) provides an orthonormal basis for the nonstable tangent space at Xn.

This time dependent tangent space decomposition is motivated by splittings due to integral
separation (related to possessing an exponential dichotomy relative to a constant shift in the
stability spectrum) and are analogous to having a decomposition via the Oseledets filtration.

We note here that by approximating the nonstable subspace we obtain information (see
[28]) that may be used to analyze the error in data assimilation schemes, namely, in terms
of the degree to which observations constrain the uncertainty within the nonstable subspace.
We remark that the dimension of the unstable subspace may be much less then the total
dimension. In Carrassi et al. [12] it is shown that the assimilation in the unstable subspace
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(AUS) framework gives good results for a quasi-geostrophic model described in [48]. This
model is of dimension 14784, while the unstable subspace has a dimension of 24 [52].

We will use the computed factors Qu
n \in \scrR d\times p to construct projection operators onto

the nonstable tangent space. The Qu
n are quantities that can be computed robustly with

good forward error analysis properties (under reasonable assumptions closely related to the
continuity of Lyapunov exponents with respect to perturbations and the integral separation
or integral separation structure; see [1]). In particular, the results in [21, 22, 57, 2] show
that the Qu

n are continuous with respect to errors in F \prime (xn) and quantify the error in the Qn

as a function of the separation in growth/decay rates. In our context this ensures the time
dependent projection operators Pn = Qu

nQ
u
n
T are robust.

2.3. Synchronization. Pecora and Carroll [44] demonstrated that an orbit of a chaotic
dynamical system (the observer) can sometimes be made to synchronize with a second orbit
(the driver) of that system, given partial observations of the driver signal. There is a sizeable
body of literature on synchronization of chaos, particularly in the field of systems and control
theory [44, 32, 28]. The use of synchronization for data assimilation was first applied in [26].

For our purposes, the following coupled driver-response process is appropriate:

xn+1 = Fn(xn),(7a)

zn+1 = Pnxn+1 + (I  - Pn)Fn(zn),(7b)

where the Pn \in \scrR d\times d are a sequence of appropriately chosen projection matrices. The man-
ifold \scrS = \{ (x, z) \in \scrR d \times \scrR d : x = z\} is invariant under these dynamics and is called the
synchronization manifold. When \scrS attracts a neighborhood of itself, then for z0 within the
basin of attraction, zn synchronizes with xn. Defining wn = zn  - xn, n = 0, 1, . . . , the
transverse dynamics with respect to \scrS is given by

wn+1 = Pnxn+1 + (I  - Pn)Fn(zn) - Fn(xn)

= PnFn(xn) + (I  - Pn)Fn(zn) - Fn(xn)

= (I  - Pn) [Fn(xn + wn) - Fn(xn)]

= (I  - Pn)F
\prime 
n(xn)wn + rn(wn),

where rn(w) is assumed to be of higher order in w. The projectors Pn need to be chosen to
ensure asymptotic stability of the origin under the transverse dynamics. From the stability
theory of Lyapunov, it is known that if the sequence \| wn\| converges exponentially to zero
for generic initial conditions, then the Lyapunov exponents of the transverse dynamics must
necessarily all be negative. Such a necessary condition is argued by Pecora and Carroll in [45].
On the other hand, negativity of the Lyapunov exponents is also sufficient for convergence
in a neighborhood of the origin, if F \prime 

n is regular and rn is at least second order in w. In
our application to data assimilation we will choose Pn to project (in an approximate sense)
onto the locally nonstable tangent space Qu

n. Figure 1 illustrates synchronization of the
Lorenz 96 model (see [41] and subsection 6.2) using the driver-response system (7a)--(7b) with
projection Pn = Qu

nQ
u
n
T for increasing dimension of the projection space p. In particular we

observe exponential convergence only when p is greater than or equal to the dimension of the
nonstable space, with exponential rate of convergence increasing with p.
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Figure 1. Synchronization in the L96 model (21) with 13 positive Lyapunov exponents in 36 dimensions. We
plot the \ell \infty -norm of the difference between the true solution and the synchronization approximation as a function
of time. Forcing is done with projections of the true solution onto the nonstable space and the different graphs
are for various values of p. In black we plot lines given by Error = 25e\lambda p+1\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e} for p + 1 = 15, 16, 20, 24, 28.
It can be observed that after a transient time and for sufficiently large p (i.e., p \geq 14), convergence to the true
solution is exponential.

3. Data assimilation via Newton's method. In this section we discuss the use of Newton's
method for data assimilation, a context in which it was first applied in [10]. An important
property of Newton's method is its local nature: when the initial guess is sufficiently close to
a zero, the iterates converge to that zero at a quadratic rate. This statement is made formal
in the Kantorovich theorem [35].

Consequently, by analogy to the shadowing approach to global error estimation, we may
construct a simple scheme for data assimilation by applying Newton's iterations to solve

G(\bfitu ) = 0,

where G is defined in (4) and starting data is provided by the noisy observations \{ yn : n =
0, . . . , N\} with observation operator the identity \{ H\scrX n = \scrX n : n = 0, . . . , N\} (an assumption
that can be relaxed; see section 6).

In the kth Newton's iteration we seek an update \bfitdelta (k) approximately solving

(8) G(\bfitu (k) + \bfitdelta (k)) = 0.

We then update using \bfitu (k+1) = \bfitu (k) + \bfitdelta (k).
The solution to (8) is approximated by iterating

(9) G\prime (\bfitu (k))\bfitdelta (k) =  - G(\bfitu (k)), \bfitu (k+1) := \bfitu (k) + \bfitdelta (k)

to convergence. We solve each Newton's step using the right pseudoinverse of G\prime , i.e.,

G\prime \dagger = G\prime T (G\prime G\prime T ) - 1,
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where the linear system involving the block tridiagonal matrix G\prime G\prime T is solved using a block
tridiagonal solver. The function G(\bfitu ) has a zero for every orbit of the model (1). The function
G : \scrR dN \rightarrow \scrR d(N - 1) has a d(N  - 1)\times dN Jacobian with block structure

G\prime (\bfitu ) =

\left[     
 - F \prime 

0(u0) I
 - F \prime 

1(u1) I
. . .

. . .

 - F \prime 
N - 1(uN - 1) I

\right]     .

To distinguish this method from the projected method to be described in section 4, we shall
refer to it as the full Newton's method.

The fact that Newton's method is a local root-finding method proves useful. The Kan-
torovich theorem can be generalized using the existence of a right inverse as opposed to
an inverse. Then the solution \bfitu satisfies G\prime (\bfitu )TG(\bfitu ) = 0 [3]. In [34] it is shown that
G\prime (\bfitu )TG(\bfitu ) = 0 implies G(\bfitu ) = 0, i.e., \bfitu is a trajectory.

Initializing the algorithm with observations, we can expect to find a trajectory close to
observations, provided the initial observational error is not too large. The use of the pseudoin-
verse minimizes the Newton step size in the 2-norm. By taking those shortest possible steps
while starting from observations, the iterates should stay close to the observations, while con-
verging to a trajectory. After convergence, it is possible to compute the distance between the
assimilation and observations and use that to judge the quality of the assimilations [10, 9, 25].

The convergence of this approach with Newton's method can be demonstrated with nu-
merical examples. Using the Lorenz 63 (L63) model [40] (see also subsection 6.1) a set of true
trajectories \{ Xn\} were integrated and perturbed. We used 1000 random initial conditions,
which were all integrated for a spin-up time of length 5, after which we added noise as specified
in (3) with noise covariance E = I. Experiments were performed for the L63 model integrated
with both a forward Euler scheme and a classic fourth order Runge--Kutta (RK4) scheme. We
used time steps of length \Delta t = 0.005 for both methods and observed the full state at each
time step. For observations sparser in time we refer to subsection 6.2. The perturbed data
was used as a starting guess for Newton's method. We used a single observational window
of 2000 steps, corresponding to a time interval of length 10. Unless indicated otherwise, all
errors are using the \ell 2-norm.

In Figure 2, we show the median error over time as a dotted line, with the area between the
25th and 75th percentiles shaded. The 2nd and 98th percentiles are shown as solid lines. The
results for the forward Euler method are shown in blue and the results for the RK4 method
in orange. The mean square error (MSE) is defined as

(10) MSE =
1

N

N\sum 
n=1

(un  - \scrX n)
T (un  - \scrX n).

For the Euler method, the median of the MSE is equal to 0.027. Next we examine errors with
respect to the observation operator

(11) C(\{ xn\} ) =
1

N

N\sum 
n=1

(yn  - Hxn)
T (yn  - Hxn).
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Figure 2. Application of Newton's method to the L63 model (19). The mean observational error is in black
and the error over time of the estimation is in blue for forward Euler and orange for RK4.

Table 1
Application of Newton's method to L63. C(\cdot ) is defined in (11).

Property Value

Observation error C(\{ \scrX n\} ) 2.9994\pm 0.0549
Observational discrepancy of estimated trajectory C(\bfitu ) (Euler) 3.0062\pm 0.0639
Observational discrepancy of estimated trajectory C(\bfitu ) (RK4) 2.9986\pm 0.0550

The MSE in the observations (mean noise variance) is given by < C(\{ \scrX n\} ) >= 2.9994, where
< \cdot \cdot \cdot > stands for the average over the experiments. By comparison, the mean observation
discrepancy of the Newton's solution is equal to < C(\bfitu ) >= 3.0062 for the Euler discretization
experiments and < C(\bfitu ) >= 2.9986 for the RK4 discretization experiments. These results
with standard deviations are summarized in Table 1. In 497 out of 1000 Euler experiments and
in 860 out of 1000 RK4 experiments, we find that the discrepancy C(\bfitu ) < C(\{ \scrX n\} ). That is,
even though the trajectory found by Newton's method is not identical to the true trajectory,
it is in fact a model orbit closer to the observations. This demonstrates that the method
works well, even when observational noise prevents determining a unique viable trajectory.

We have also repeated this numerical experiment for the Lorenz 96 model [41] (see also
subsection 6.2). For parameter values \scrF = 8 and d = 36, we integrated 1000 initial conditions
over a run-up time of 5, after which we assimilated the data taken over a window of length
2.5. We used both forward Euler and RK4 with time step \tau = 0.005 and full observations.
Results are in Figure 3 and Table 2.

For the Euler discretization of L96 the median of the MSE of the median is 0.0558. In
994 out of 1000 Euler experiments and in 998 out of 1000 RK4 experiments, we find that
the discrepancy C(\bfitu ) < C(\{ \scrX n\} ). In the rest of the paper we shall consider results for
experiments with Euler discretization. For comparisons, unless stated otherwise, truth and
noise realizations are identical between experiments, except in subsection 6.1, where we include
results for an ensemble of noise realizations.

D
ow

nl
oa

de
d 

02
/2

8/
24

 to
 1

31
.2

11
.1

05
.1

61
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROJECTED SHADOWING-BASED DATA ASSIMILATION 2455

Figure 3. Application of Newton's method to the L96 model (21). The mean observational error is in black
and the error over time of the estimation is in blue for forward Euler and orange for RK4.

Table 2
Application of Newton's method to L96. C(\cdot ) is defined in (11).

Property Value

Observation error C(\{ \scrX n\} ) 35.9872\pm 0.3745
Observational discrepancy of estimated trajectory C(\bfitu ) (Euler) 35.9227\pm 0.3751
Observational discrepancy of estimated trajectory C(\bfitu ) (RK4) 35.9229\pm 0.3736

Remark. Our data assimilation method can be applied to parameter estimation as well. A
standard approach to dealing with parameter estimation is to treat parameters as dependent
variables with trivial dynamics. This approach adds neutral directions to the tangent space,
which can hamper convergence of shadowing. Instead, Newton's method can be extended
to simultaneously estimate state space variables and parameters. Consider G(\bfitu ) defined
in (4) and replace Gn(\bfitu ) with Gn(\bfitu ;\bfitalpha ) = un+1  - Fn(un;\bfitalpha ), where \bfitalpha = (\alpha 1, \alpha 2, . . . , \alpha q).
Linearization with respect to \alpha j takes the form

\partial Fn(un;\bfitalpha )

\partial \alpha j
d\alpha j , n = 0, . . . , N  - 1.

In the presence of uncertain parameters, the linearization of G is modified. In particular,
G\prime (\bfitu ) becomes G\prime (\bfitu ;\bfitalpha ). In the case of q parameters we have

G\prime (\bfitu ;\bfitalpha ) = [G\prime 
\bfitu | G\prime 

\bfitalpha ],

where G\bfitalpha is composed of q column vectors. Note that when forming the pseudoinverse of G\prime ,
G\prime \dagger = G\prime T (G\prime G\prime T ) - 1 we have

G\prime G\prime T = G\prime 
\bfitu G

\prime T
\bfitu +G\prime 

\bfitalpha G
\prime T
\bfitalpha 

so that G\prime 
\bfitalpha G

\prime T
\bfitalpha is a rank q perturbation of the block tridiagonal matrix G\prime 

\bfitu G
\prime T
\bfitu . This allows

for the use of Sherman--Morrision--Woodbury formulas and a solver for G\prime 
\bfitu G

\prime T
\bfitu to solve linear
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systems with matrix G\prime G\prime T . In the case of time dependent parameters \bfitalpha n, the diagonal blocks
of G\prime 

\bfitu G
\prime T
\bfitu are modified and the overall block tridiagonal structure in maintained in G\prime G\prime T . In

subsection 6.4 we illustrate this approach with numerical experiments.

4. Tangent space splitting of Newton's method. In the previous section we demon-
strated that Newton's method applied to the residual (4) may converge from noisy obser-
vations to a model trajectory. On the other hand the computational and memory costs of
the full Newton's method may be high. We will see that when the number of nonnegative
Lyapunov exponents is moderate, substantial savings may be realized by computing Newton's
updates only in the nonstable directions.

We start by decomposing the relation (8) into the equivalent system

\scrP G
\Bigl( 
\bfitu (k) + \widehat \scrP \bfitdelta (k) + (I  - \widehat \scrP )\bfitdelta (k)

\Bigr) 
= 0,

(I  - \scrP )G
\Bigl( 
\bfitu (k) + \widehat \scrP \bfitdelta (k) + (I  - \widehat \scrP )\bfitdelta (k)

\Bigr) 
= 0.

Here, \scrP and \widehat \scrP are block diagonal projection matrices \scrP = blockdiag (P1, . . . , PN ) and \widehat \scrP =
blockdiag (P0, . . . , PN ), where P0, P1, . . . , PN \in \scrR d\times d are projection matrices onto the nonsta-
ble subspace at time levels n = 0, 1, . . . , N , respectively.

We propose to modify the Newton's iteration as follows. Instead of computing the update
\bfitdelta (k) by simultaneously solving the above system, we split the iterate into updates in the range
and complement of \widehat \scrP . We also allow the projection operators \scrP and \widehat \scrP to be updated in
each iteration. In the kth iteration, we first approximate the update in the range of \widehat \scrP (k),
neglecting the term (I  - \widehat \scrP (k))\bfitdelta (k) in the first equation above and solving

(12) \scrP (k)G
\Bigl( 
\bfitu (k) + \widehat \scrP (k)\bfitdelta (k)

\Bigr) 
= 0

for \bfitdelta | | 
(k) = \widehat \scrP (k)\bfitdelta (k). Next we approximate the update in the complement of \widehat \scrP (k) by solving

(13) (I  - \scrP (k))G(\bfitu (k) + \widehat \scrP (k)\bfitdelta (k) + (I  - \widehat \scrP (k))\bfitdelta (k)) = 0

for \bfitdelta \bot 
(k) = (I  - \widehat \scrP (k))\bfitdelta (k). Then the update is computed as \bfitu (k+1) = \bfitu (k) + \bfitdelta | | 

(k) + \bfitdelta \bot 
(k).

Expressions (12) and (13) are solved approximately for the components \bfitdelta | | 
(k) and \bfitdelta \bot 

(k) as
described below.

4.1. Computation of projection matrices. The basis Qu
n, n = 0, . . . , N , for the nonstable

tangent space along the true trajectory \{ \scrX n\} is unknown. Instead, we approximate the Qu
n

along the most recent approximate trajectory \{ u(k)n \} . In each iteration we update the pro-

jection matrices P
(k)
n that project onto the nonstable tangent space. In the kth iteration we

choose P
(k)
n = Q

u(k)
n (Q

u(k)
n )T , where Q

u(k)
n \in \scrR d\times p is a columnwise orthonormal matrix defined

via the iteration (6) linearized along the most recently updated pseudo-orbit \bfitu (k). That is, we

take xn = u
(k)
n , n = 0, . . . , N , in (6). For the first iteration we use the following observations:

u
(0)
n = yn, n = 0, . . . , N .

The dimension p of the orthonormal basis Q
u(k)
n should be equal to or greater than the

number of nonnegative Lyapunov exponents. In practice we take p to be a few more than the
number of nonnegative Lyapunov exponents to enhance the convergence rate of the synchro-
nization step below [19].
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PROJECTED SHADOWING-BASED DATA ASSIMILATION 2457

4.2. Newton's step on the unstable space. Linearization of (12) yields a projected linear
system for the update \bfitdelta | | 

(k) = \widehat \scrP (k)\bfitdelta (k):

(14) \scrP (k)G\prime (\bfitu (k)) \widehat \scrP (k)\bfitdelta (k) =  - \scrP (k)G(\bfitu (k)).

Suppressing the iteration index k for the moment, define block matrices \scrQ =
blockdiag (Qu

1 , . . . , Q
u
N ) and \widehat \scrQ = blockdiag (Qu

0 , . . . , Q
u
N ) and note the relations \scrQ \scrQ T = \scrP ,

\scrQ T\scrQ = I with analogous expressions for \widehat \scrQ . Let \bfitmu = \widehat \scrQ T\bfitdelta = \widehat \scrQ T \widehat \scrP \bfitdelta , \widetilde G\prime = \scrQ TG\prime (\bfitu ) \widehat \scrQ and
\bfitb = \scrQ TG(\bfitu ). Then the linear system for the update \bfitmu may be written as

(15) \widetilde G\prime \bfitmu =  - \bfitb ,

where the matrix \widetilde G\prime has the block structure

\widetilde G\prime =

\left[     
 - Ru

0 I
 - Ru

1 I
. . .

. . .

 - Ru
N - 1 I

\right]     ,

and consequently, \widetilde G\prime \in \scrR Np\times (N+1)p. We solve (15) using the right pseudoinverse \widetilde G\prime \dagger =\widetilde G\prime T ( \widetilde G\prime \widetilde G\prime T ) - 1 and define the intermediate update

(16) \=\bfitu (k) = \bfitu (k) + \widehat \scrP (k)\bfitdelta (k) = \bfitu (k) + \widehat \scrQ (k)\bfitmu (k).

4.3. Synchronization step in the stable space. We next turn to the treatment of (13).
Inserting the definition (16) into (13) yields the relation

(17) (I  - \scrP (k))G(\=\bfitu (k) + (I  - \widehat \scrP (k))\bfitdelta (k)) = 0,

whose solution for \bfitdelta \bot 
(k) = (I - \widehat \scrP (k))\bfitdelta (k) we wish to approximate. Again dropping the iteration

index k for the moment, we expand (17) componentwise over the time index n:

0 =
\Bigl[ 
(I  - \scrP )G

\Bigl( 
\=\bfitu + (I  - \widehat \scrP )\bfitdelta 

\Bigr) \Bigr] 
n

= (I  - Pn+1) [\=un+1 + (I  - Pn+1)\delta n+1  - Fn(\=un + (I  - Pn)\delta n)] , n = 0, . . . , N  - 1.

The second equation is rewritten in the form

(I  - Pn+1)\delta n+1 = (I  - Pn+1) (Fn(\=un + (I  - Pn)\delta n) - \=un+1) , n = 0, . . . , N  - 1.

Adding \=un+1 to both sides of this equation we get

\=un+1 + (I  - Pn+1)\delta n+1 = Pn+1\=un+1 + (I  - Pn+1)Fn(\=un + (I  - Pn)\delta n), n = 0, . . . , N  - 1,

or, defining u
(k+1)
n = \=u

(k)
n + (I  - Pn)\delta 

(k)
n ,

(18) u
(k+1)
n+1 = Pn+1\=u

(k)
n+1 + (I  - Pn+1)Fn(u

(k+1)
n ), n = 0, . . . , N  - 1.
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The form of this iteration is identical to that of the receiver equation (7b) in the synchroniza-
tion process. In other words, given the update \=\bfitu (k), corrected in the nonstable subspace (16),
the correction to the stable subspace can be implemented through a forward synchronization
integration (18). In the appendix, we prove that under suitable assumptions, if after k itera-

tions, the error in \=\bfitu (k) exists entirely in the stable tangent space in the sense that Pn\=u
(k)
n = \=u

(k)
n

and \| Pn\scrX n  - \=u
(k)
n \| < \epsilon , then the forward integration (18) converges exponentially to \scrX n as

n \rightarrow \infty .
To summarize, the complete iteration step consists of the following:
1. Compute the approximate basis Qu

n, n = 0, . . . , N , for the tangent bundle along the

pseudotrajectory \{ u(k)n \} .
2. Solve the linear system (14) for the update \bfitdelta \bot 

(k) in the nonstable subspace, and
compute the intermediate update \=\bfitu (k) from (16).

3. Synchronize in the stable subspace using the forward iteration (18) to obtain \bfitu (k+1).
The Newton's step in the unstable subspace is based upon residual (Gn(\bfitu ) := un+1  - 

Fn(un)) correction with both the residual and the correction projected into the unstable
subspace. If PnGn(\bfitu ) = Gn(\bfitu ) for all n, i.e, the residual is wholly within the unstable
subspace, then the synchronization step in the stable subspace is trivial with (I  - Pn)\delta n \equiv 0
for all n. Thus, provided the Newton's iteration converges, all residual correction occurs
within the unstable subspace. In the more general case in which the residual is contained,
at least for some n, in both the stable and unstable subspaces, then the initialization of the
synchronization step makes possible a reduction of the residuals in the stable subspace. This
then generates an updated approximate trajectory to linearize about and obtain updated
projections. In this case the Newton's step in the unstable subspace may again decrease the
residual with respect to these new projections. The process then continues in the updated
stable subspace and we continue until the desired tolerance is achieved or the method fails for
lack of convergence of the projected Newton's iteration. In general the projected Newton's
iteration will converge provided the residuals are small enough as compared to the strength
of the hyperbolic structure (exponential dichotomies, etc.) in the projected system.

What we have observed is that better results are obtained by switching after each projected
Newton's iterate to the synchronization step as opposed to switching to the synchronization
after the projected Newton's has converged to tolerance. We attribute this to the variation
in the projections that are produced. We note here that the basic splitting based upon pro-
jection into unstable and stable parts allows for different techniques to be employed for each
subsystem. It provides a representation for the unstable subspace which we believe will prove
useful in assessing the effectiveness and uncertainties in data assimilation techniques. We
also emphasize that in contrast with traditional data assimilation techniques but similar to
PDA, the only influence of the observations is via the initial guess for the projected New-
ton's/synchronization scheme. Thus, in a perfect model scenario convergence to a solution
depends on the initial guess being within its basin of attraction.

In the next section we demonstrate the algorithm and compare it to 4DVar for a number
of test problems.

5. Implementation. In this section we provide details of the algorithm we implement and
discuss some possible variations. The algorithm is ``interval sequential"" in the sense that the
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PROJECTED SHADOWING-BASED DATA ASSIMILATION 2459

shadowing refinement is applied over an entire subinterval. This has the effect of simulta-
neously incorporating all observations over this subinterval into a single refinement step. In
order to transition between subintervals we impose a continuity constraint in the stable sub-
space. Also discussed in this section are methods for obtaining an initial approximation of
the solution trajectory. This is needed in order to determine the initial projections on each
subinterval.

When observations are not available at every time step, we can redefine F to be the map
corresponding to the composition of several time steps. (Examples are given in subsections 6.2
and 6.3.) When observations are not of the full model state, we can first apply a preprocessing
step to the observations to infer an estimate of the full state at all observation times and then
perform the main algorithm with the goal of substantial noise reduction. For the PDA method,
where the same issue arises, this completion has been done using a variational analysis [33] or
by just inserting climatological means for missing observations [24, 25]. In subsection 6.1, we
demonstrate an alternative preprocess motived by synchronization, whereby the observation
data is directly inserted as a driving signal. The effectiveness of such an approach relies on
the ability of the partial observational data to constrain the unstable tangent space. However,
it is one of the main conclusions of this paper that such a requirement on the data must hold
anyway, if data assimilation is to be effective.

In our implementation, we decompose the time interval t \in [0, T ] of integration into M+1
nonoverlapping time windows, and the data assimilation method is applied sequentially on
each of these. We identify times \tau m, m = 0, . . . ,M + 1, where \tau 0 = 0, \tau M+1 = T , \tau 1 \in (0, T )
is the length of the first time window, and \tau m = \tau 1 + (m  - 1)\Delta \tau , \Delta \tau = (T  - \tau 1)/M . The
mth time window is the interval t \in [\tau m - 1, \tau m]. In each window, an initial condition (\delta \bot )0
is needed for the synchronization step, and convergence of the stable directions requires this
quantity to be small (see the appendix). In particular we implement (18) as

(I  - Pn+1)\delta n+1 = (I  - Pn+1)[F (\=u(k)n + (I  - Pn)\delta n) - \=u
(k)
n+1].

The initial condition (\delta \bot )0 = (I  - P0)\delta 0 on time window m is determined by imposing

(I  - P0)\delta 0 = (I  - P0)[vT  - u
(k)
0 ],

where vT is the converged iterate u at the terminal time on the time window m - 1. Effectively,
by imposing continuity in the stable directions during the full assimilation, also across window
boundaries, when solving (18) we can define a unique solution. (This analysis point of view
is also taken up in [32] and [28].) To obtain a good initial condition for the algorithm we
perform smoothing on an initialization window: i.e., we employ the full Newton's algorithm
(see section 3) on a short window and start the forced system (18) from there. This also
improves the approximation of the unstable directions at the beginning of the window at
which the projected method is started.

6. Numerical experiments. In the preceding sections we have outlined a data assimilation
method based on a tangent space splitting into stable and nonstable subspaces. As described,
the method assumes noisy observations of the full state of the system (i.e., observation operator
H the identity map on \scrR d) at each time step, and no restrictions are placed on the length of
the time interval.
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In this section we demonstrate the behavior of the method for low-dimensional test prob-
lems: the Lorenz models L63 and L96. We study dependence on dimension of the projection
operator and window lengths. We compare the method with 4DVar and investigate the ap-
proaches for incomplete observations and parameter estimation.

In all experiments, the observations are generated from the truth by adding i.i.d. zero-
mean Guassian noise as in (3) with diagonal covariance matrix E = \nu 2I, where \nu 2 denotes the
variance of the noise process. As a convergence criterion for the projected Newton's method

we use that \| \bfitb \| 2
\| \bfitu \| 2 < 10 - 15, where \bfitb is the projected residual in (15).

6.1. Dependence on projector in the L63 model. The well-known Lorenz attractor [40] is
a chaotic dynamical system commonly used as a test problem for data assimilation algorithms.
The L63 model is

(19) \.x1 = \sigma (x2  - x1), \.x2 = x1(\rho  - x3) - x2, \.x3 = x1x2  - \beta x3,

where \sigma = 10, \beta = 8
3 , and \rho = 28. The Lyapunov exponents of the Lorenz attractor are

\lambda 1 \approx 0.906, \lambda 2 = 0, \lambda 3 \approx  - 14.572.
For the experiments in this section we generate a (single) set of observations computing a

trajectory of L63 on t \in [0, 20] with T = 20, using time step \Delta t = 0.005, and \nu 2 = 4. In all
experiments in this section we use an assimilation window of length \Delta \tau = 2.5.

In section 3 we observed that the full Newton's method successfully assimilates obser-
vations into L63. Now, we examine the proposed algorithm with projected Newton's and
synchronization. Since the L63 model can be synchronized by coupling of the x1-variables
[44, 32], it is natural instead of computing Lyapunov vectors to try to take P = Px1 , hence
always projecting on the x1-coordinate, and to iterate (16) and (18). Errors (10)--(11) are
given in Table 3, where it is clear that for our algorithm the choice P = Px1 is insufficient to
obtain an orbit that is close to observations. Since the projection operators P generally do
not commute with the forward model solution operator F , the projected Newton's method
does not yield a projection of the full model solution, which means in particular that there
are important differences between our algorithm and synchronization in the sense of [44, 32].

Therefore we consider the projection operator on the subspace spanned by Lyapunov
vectors. First, we choose the dimension of the projection operator to be p = 1. This means
we use Newton's method in the (approximate) unstable direction, but not in the neutral or
stable direction, because the L63 model has one positive, one zero, and one negative Lyapunov
exponent. This is not sufficient for Newton's method to always converge, since the method
works well until t = 20 and after that Newton's method diverges. The results up to t = 20

Table 3
Application of the algorithm to L63 with P = Px1 . Results are unsatisfactory. Please recall C and MSE

are defined in (11) and (10), respectively.

Property Value

Observation error C(\{ Xn\} ) 11.9
Distance between estimate and observations C(\bfitu ) 367
Error between estimate and the truth MSE 356
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Table 4
Application of the algorithm to L63 with P1. Results for the time up to 20, since after that the algorithm

diverges. Please recall C, MSE, and D are defined in (11), (10), and (20), respectively.

Property Value

Observation error C(\{ Xn\} ) 11.9
Distance between estimate and observations C(\bfitu ) 12.2
Error between estimate and the truth MSE 0.27
Discontinuity measure at window boundaries D 0.23
Average number of iterations \# 8.7

are shown in Table 4, where in addition to errors we also display a measure of discontinuity
at window boundaries defined as

(20) D =
1

N

N\sum 
n=1

max | Gn(\bfitu )| 

and the average number of iterations needed for Newton's method to converge is denoted as
\#. We remark that in principle we could restart the method using full Newton's at t = 20
and then continue with p = 1.

Next, we choose the dimension of the projection operator to be p = 2. This means we
apply Newton's method to both the unstable and neutral direction. The results are shown
in Table 5 and Figure 4, where it can be seen that the algorithm becomes stable. Thus it is
necessary to apply the projected Newton's method to both the unstable and neutral directions
in this example. We repeated this numerical experiment for 100 different noise realizations.
The case p = d = 3 is the full Newton's method, which gives the smallest MSE as was shown in
section 3. We remark, however, that in this section initialization (full Newton's) is performed
only on the first assimilation window, which reduces computational costs. We conclude that
the algorithm is capable of recovering a good approximation of the true trajectory and that
this approximation is a trajectory of the L63 model.

As mentioned in the beginning of section 6, observations of the full model state are not
feasible and thus we need to relax this assumption. Therefore we now assume that the only
available observations are of the x1-coordinate. First, we perform a preprocessing procedure
in order to complete the missing observations: we run (7b) with observations of x1 as driving
signal and H\scrX n = Px1\scrX n, n = 0, . . . , N , as coupling. Subsequently, we apply the main
algorithm with thus completed observations (which generally contain large errors due to the
preprocessing). For the main algorithm we choose p = 2. Results are shown in Table 6, where
we see that when only one coordinate is observed the error can be reduced and information
on other coordinates can be obtained with synchronization as the preprocessing procedure.

6.2. Dependence on window length in the L96 model. Lorenz [41] proposed the follow-
ing model as an example of a simple one-dimensional model with features of the atmosphere.
The L96 model is

(21) \.xl =  - xl - 2xl - 1 + xl - 1xl+1  - xl + \scrF , (l = 1, . . . , d),

where the dimension d and forcing \scrF are parameters. Cyclic boundary conditions are imposed.
We implement the L96 model with the standard parameter choices d = 36 and \scrF = 8. The
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Table 5
Application of the algorithm to L63 with P2. Good results are obtained. Please recall C, MSE, and D

are defined in (11), (10), and (20), respectively. Numbers shown in the table are averages over 100 noise
realizations, together with the corresponding standard deviations.

Property Value

Observation error C(\{ Xn\} ) 12.00\pm 0.17
Distance between estimate and observations C(\bfitu ) 12.06\pm 0.18
Error between estimate and the truth MSE 0.09\pm 0.07
Discontinuity measure at window boundaries D 0.29\pm 0.08
Average number of iterations \# 6.52\pm 0.15

Figure 4. Application of the algorithm to L63 with P2. We compare the time-averaged observational error
(black) with the error of the estimations (blue) over time. We used 100 observational noise realizations. The
average estimation error over time is shown in red.

Table 6
Application of the algorithm to L63 with P2 and observations of the x1-coordinate only. Synchronization

is used as a preprocessing step and errors are reduced by the projected Newton's method. Please recall C, MSE,
and D are defined in (11), (10), and (20), respectively.

Property Value

Observation error C(\{ Xn\} ) 3.97
Distance between estimate and observations C(\bfitu ) 4.32
Error between estimate and the truth MSE 2.49
MSE for the observed coordinate 0.37
Discontinuity measure at window boundaries D 1.16
Average number of iterations \# 7.0
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Figure 5. The best window length choice for the algorithm, applied to L96 with \sigma = 0.3 and observations
every 10 time steps. We use p = 15. The initialization window has length 2.5, and the following windows have
length 1.25. In this realization, the MSE = 0.09. The mean observational error is in black and the error over
time of the estimation is in blue.

differential equations are discretized with a forward Euler scheme with time step \tau = 0.005 and
the model initial conditions are chosen at random (standard Gaussian i.i.d.). Observations are
obtained by perturbing a reference (true) trajectory with random Gaussian i.i.d. noise with
zero mean and covariance with \sigma = 0.3. However, the observations are not drawn at every time
step as for the L63 model but only every tenth time step, corresponding to observing a full
model state every 6 hours. Then the map Fn (1) corresponds to ten forward Euler steps. This
map is used to define G and the derivatives of this map are needed for the QR-decompositions
and Newton's iteration. For the synchronization we observe that if G(\bfitu ) = 0, then we also
have a trajectory under the forward Euler discretization with time step \tau . This means that
any model integration can just be done with the original discretization, with forcing only
applied at points where we have observations.

For the projected Newton's method the dimension of the nonstable subspace p is chosen to
be either 15 or 25. We carry out numerical experiments for various choices of window lengths:
we use initialization windows with lengths between 0.75 and 15 time units and following
windows with lengths between 0.75 and 5 time units. The total time length of assimilation is
always 75 and identical observations are used for all choices of p and the respective window
length. In Figures 5 and 6 we show the error over time for a particular realization. In Tables 7
and 8 we show mean values and standard deviations for 20 realizations of true trajectory and
noise. Initial conditions are generated at random and we use a spin-up time of 5, after which
we have observations and assimilation over a total time of 75. It can be seen that the algorithm
works well for both long and short windows, although when the windows are too long or too
short the results deteriorate. In general, higher p decreases the estimation errors, although for
the optimal choice of the window lengths---initialization window of 2.5 and following windows
of 1.25---projection on p = 15 may result in better estimation; also see Figure 5.
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Figure 6. Here we use p = 15 with the longest window lengths: initialization window 15, following windows
5. Trajectories are found, but if error reduction is the main purpose longer windows do not necessarily result
in smaller errors. In this realization, the MSE = 1.47. The mean observational error is in black and the error
over time of the estimation is in blue.

Table 7
Application of the algorithm to L96 with P15. Please recall C, MSE, and D are defined in (11), (10),

and (20), respectively. Averages and standard deviations over 20 trajectory and noise realizations. For window
length 5, there were 4 experiments in which the method did not converge. Those results have been left out.

Property Value

Window length 5 2.5

Initial window 15 5 15 5

Observation error C(\{ Xn\} ) 3.23\pm 0.01

Distance between estimate and observations C(\bfitu ) 4.64\pm 0.92 4.91\pm 0.71 3.46\pm 0.13 3.33\pm 0.06
Error between estimate and the truth MSE 1.44\pm 0.91 1.71\pm 0.71 0.28\pm 0.13 0.16\pm 0.06
Discontinuity measure at window boundaries D 1.07\pm 0.27 1.05\pm 0.20 0.33\pm 0.05 0.31\pm 0.04
Average number of iterations \# 10.6\pm 0.2 10.8\pm 0.3 8.5\pm 0.1 8.5\pm 0.1

Property Value

Window length 2.5 1.25 0.75

Initial window 2.5 1.25 0.75

Observation error C(\{ Xn\} ) 3.23\pm 0.01

Distance between estimate and observations C(\bfitu ) 3.33\pm 0.04 3.23\pm 0.03 3.25\pm 0.03 3.50\pm 1.09
Error between estimate and the truth MSE 0.16\pm 0.03 0.11\pm 0.03 0.13\pm 0.03 0.46\pm 1.12
Discontinuity measure at window boundaries D 0.31\pm 0.03 0.24\pm 0.03 0.25\pm 0.02 0.31\pm 0.11
Average number of iterations \# 8.5\pm 0.1 7.3\pm 0.1 7.4\pm 0.1 7.01\pm 0.04

In Table 9 we investigate in more detail the dependence on the dimension of the projection
p. We take total dimension d = 40 and illustrate how the distance of the refined orbit from
observations undergoes a sharp transition around the number of positive Lyapunov exponents,
which is equal to 13. This sharp transition has also been observed for 4DVar-AUS [55, 43].
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Table 8
Application of the algorithm to L96 with P25. Please recall C, MSE, and D are defined in (11), (10), and

(20), respectively. Averages and standard deviations over 20 trajectory and noise realizations.

Property Value

Window length 5 2.5

Initial window 15 5 15 5

Observation error C(\{ Xn\} ) 3.23\pm 0.01

Distance between estimate and observations C(\bfitu ) 4.20\pm 0.33 4.18\pm 0.41 3.37\pm 0.12 3.25\pm 0.03
Error between estimate and the truth MSE 1.00\pm 0.32 0.99\pm 0.41 0.21\pm 0.12 0.10\pm 0.02
Discontinuity measure at window boundaries D 1.01\pm 0.19 0.96\pm 0.17 0.31\pm 0.03 0.30\pm 0.03
Average \# of iterations \# 9.2\pm 0.2 9.2\pm 0.2 7.9\pm 0.1 7.9\pm 0.1

Property Value

Window length 2.5 1.25 0.75

Initial window 2.5 1.25 0.75

Observation error C(\{ Xn\} ) 3.23\pm 0.01

Distance between estimate and observations C(\bfitu ) 3.25\pm 0.03 3.15\pm 0.01 3.15\pm 0.01 3.09\pm 0.01
Error between estimate and the truth MSE 0.10\pm 0.02 0.096\pm 0.004 0.098\pm 0.004 0.156\pm 0.004
Discontinuity measure at window boundaries D 0.30\pm 0.03 0.26\pm 0.01 0.26\pm 0.01 0.30\pm 0.01
Average \# of iterations \# 7.93\pm 0.04 7.01\pm 0.02 7.01\pm 0.02 6.87\pm 0.03

Table 9
Distance between estimate and observations C(\bfitu ) for L96.

p 5 10 13 15 20 30 40

C(\bfitu ) 149.2 77.5 73.1 59.2 55.4 53.2 53.2

The values that are reported are based upon uniformly distributed noise in the interval [ - 2, 2]
and upon a total assimilation time of 4, subdivided into 4 windows of length 1. At the first
window full Newton's is used (i.e., p = 40) and at the subsequent three windows p is as
specified in Table 9; C(\bfitu ) is then computed over all 4 windows.

It is possible to carry out the same experiment using more projected windows of length 1
to achieve a total length of 10 or 20. However, for small p, the results get worse if the total
length increases. For length 50 divergence of Newton's method is observed. So, the table
can be reconstructed qualitatively, but not for unlimited times. At some point new spin-up
windows with full Newton's (p = 40) are needed. This eventual instability also occurs for L63
with p = 1. This problem does not occur when p is chosen large enough. Carrying out the
numerical experiment with p = 20 results in the average distance to observations remaining
compatible with the noise level for time lengths up to 2500 (using windows of length 1).

This illustrates that it is important to define the nonstable space to be large enough,
ensuring the (I - P )-problem does not contain neutral or unstable directions. If p is chosen too
small, the initialization at the spin-up window with full Newton's keeps the error somewhat
in check over a few projected windows, but as we progress even further in time projected
Newton's on an insufficiently large subspace is unable to keep the error in check. When errors
get larger, this will eventually lead to divergence of Newton's method, but already before that
the results from the data assimilation get progressively worse. However, if we choose p to be
large enough, the method remains stable over long times.
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Figure 7. The error between the results of the approximation methods and the truth over time, measured
using the \infty -norm. The error of 4DVar is shown in blue, the error for the shadowing method is shown in red,
and the mean observational error is in black.

Table 10
The results from the projected Newton's algorithm and 4DVar are of comparable quality, but convergence

is much more quick for the projected Newton's algorithm.

Property Value

Method Projected Newton's 4DVar

Observation error C(\{ Xn\} ) 1.43
Distance between estimate and observations C(\bfitu ) 1.40 1.39
Error between estimate and the truth MSE 0.027 0.037
Discontinuity measure at window boundaries D 0.14 0.17
Average number of iterations \# 6.3 418.3

6.3. Comparison to 4DVar. In the above sections we have argued that our algorithm
aims at the same goals as the 4DVar algorithm and that for the L63 and L96 models we are
able to reconstruct good trajectories based on observations. We now make a comparison with
the standard 4DVar algorithm and demonstrate that our approach is a good alternative.

We perform a test using the L96 model with the same parameters as in the section above.
Observations are drawn every fifth time step, which means we observe the full state every
0.025 time units, corresponding to 3 hours. We set p = 25. In our tests we use identical data,
models, and windows for both methods. We choose 25 windows of length 1, of which the first
is used as an initialization window for the shadowing method. On the initialization window 5
iterations are needed for Newton's algorithm to converge. The initialization of 4DVar at the
beginning of the first window is done with the first observation, since for neither of the two
methods do we have any prior knowledge of the system state. We do not use a background
term for 4DVar. The gradient computation in the 4DVar method is done using the adjoint
integration and the optimization is performed by a conjugate gradient method. Results are
shown in Figure 7 and Table 10.
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We can see in Table 10 that the 4DVar method returns a result that is slightly closer to
the observations than the projected Newton's method, while the projected Newton's method
is slightly closer to the truth. This minor difference might be related to the projection on the
unstable space used for the projected Newton's method [55].

It can be seen that 4DVar and the projected Newton's method give comparable results
in this test case, but that the projected Newton's method is faster and more suitable if we
were to use longer windows. The choice of window length is determined by the requirement
that the 4DVar method should still converge. Even though the results in the previous section
suggest slightly longer windows would be better, this is not viable for this test. In fact, the
number of iterations could be significantly reduced for 4DVar by shortening the window, but
this would come at the cost of not taking enough data into account.

If the frequency of observations is significantly lowered, there may be benefits to using
4DVar compared to the projected Newton's method. Since the projected Newton's method
makes use of linearizations of the model computed only at observation times, we expect the
method to perform worse if observations are far enough apart in time for nonlinearities to
be significant. In some cases it may be useful to combine 4DVar and the projected Newton's
method. For instance, one could use the solution of the projected Newton's method to initialize
the 4DVar algorithm.

We remark that one iteration of the projected Newton's method is more costly than one
iteration of the 4DVar algorithm; if most directions are stable, the difference in iteration
cost would be less strong. In any case, the higher cost per iteration step of the projected
Newton's method is more than compensated for since it requires far fewer iterations. For
sufficiently long windows, the cost per iteration of 4DVar is dominated by the need to do one
model integration and one adjoint integration, which scales as \scrO (Nc), where c is defined as
the typical cost of taking one time step in the nonlinear model. An implementation of the
full Newton's method in which the Jacobians are formed explicitly and are treated as dense
matrices yields a cost per iteration of \scrO (dNc) for the integrations needed and \scrO (Nd3) for
solving the resulting linear system with a block tridiagonal method. The use of the projected
Newton's method reduces this cost to \scrO (pNc) +\scrO (Ndp2). The main factors contributing to
the cost per iteration of the projected Newton's method are two model integrations, p tangent
linear model integrations and the application of the modified Gram--Schmidt method to a
p\times d-matrix at each time step.

Reasons for the large difference in number of iterations needed for convergence could be
that Newton's method has a quadratic convergence rate, while the optimization algorithm for
4DVar does not. We remark that it is not possible to choose an algorithm with quadratic
convergence rate for 4DVar, since we do not have the Hessian of the 4DVar cost function
available. A more important reason for the strong difference in number of iterations needed for
convergence may be in the fact that 4DVar and projected Newton's really solve very different
problems. An explanation for the large difference in needed iterations for this example and
the robustness of the projected Newton's method can be found by analyzing what happens
when window lengths are increased.

The (projected) Newton's method has to solve larger (but weakly coupled and not that
strongly nonlinear) problems if interval length is increased, while for the 4DVar approach the
size of the optimization problem stays constant, but the problem becomes more and more
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Table 11
Estimation of \sigma by shadowing-based data assimilation methodology from section 3. The true value is 10.

Property Initial guess for \sigma 

Initial \sigma 5 10 15 20

Observation error C(\{ Xn\} ) 2.97
Distance between estimate and observations C(\bfitu ) 2.98 2.96 2.96 2.98
Error between estimate and the truth MSE 0.03 0.02 0.03 0.07
Estimated \sigma 10.08 10.03 10.05 10.06

Table 12
Estimation of \sigma by 4DVar parameter estimation. The true value is 10.

Property Initial guess for \sigma 

Initial \sigma 5 10 15 20

Observation error C(\{ Xn\} ) 2.97
Distance between estimate and observations C(\bfitu ) 2.98 2.97 3.04 3.06
Error between estimate and the truth MSE 0.12 0.12 0.17 0.18
Estimated \sigma 9.92 9.95 9.91 9.94

highly nonlinear as the interval length is increased. This problematic behavior of the 4DVar
optimization problem is well known in the literature [5, 42, 47]. This can then lead to a
large number of iterations needed for convergence, convergence to highly suboptimal local
minima, or even to nonconvergence of the 4DVar optimization. This difference between a
large but weakly coupled and relatively easy root-finding problem that can be solved with an
efficient method compared to a small but highly nontrivial optimization problem for which a
slightly slower method has to be employed may give rise to the observed performance difference
between the methods, both in terms of iterations needed to converge (and hence time needed
to converge) and in the ability to still work for longer windows.

6.4. Parameter estimation. As described in section 3, a shadowing-based data assimila-
tion methodology can be applied to the problem of parameter estimation. The results of \sigma 
estimation for the L63 model are shown in Table 11, where different values of initial \sigma were
chosen---5, 10, 15, and 20---with the true \sigma being 10. Gaussian noise with identity covariance
is added to the true solution and data assimilation is performed over one window of length 5.
(When data assimilation is performed over multiple windows an estimate from the previous
window can be taken as an initial parameter for the next window.) It should be noted that
similar results can be obtained for \rho or \beta estimation of the L63 model and for \scrF estimation
of the L96 model.

In Table 12, we show \sigma estimations obtained by 4DVar using a window length of 0.25.
Instead of using the method of section 3, we can also introduce trivial equations for the
parameters to the shadowing-based data assimilation, which introduces extra zero Lyapunov
exponents. As can be observed from Table 13 this method fails for \sigma estimations, though
performs sufficiently well for \rho (see Table 14) or \beta estimations of the L63 model and for
\scrF estimation of the L96 model. Thus, adding trivial equations for the parameters to the
shadowing-based data assimilation deteriorates its performance.
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Table 13
Estimation of \sigma by shadowing-based data assimilation methodology with trivial model for the parameters.

The true value is 10 and the estimated \sigma is the mean estimate. Cases when Newton's method diverges are
denoted by ``\infty "" in the corresponding column.

Property Initial guess for \sigma 

Initial \sigma 5 10 15 20

Observation error C(\{ Xn\} ) 2.97
Distance between estimate and observations C(\bfitu ) 360 5.50 \infty \infty 
Error between estimate and the truth MSE 355 2.77 \infty \infty 
Estimated \sigma 8.85 9.83 \infty \infty 

Table 14
Estimation of \rho by shadowing-based data assimilation methodology with trivial model for the parameters.

The true value is 28 and the estimated \rho is the mean estimate.

Property Initial guess for \rho 

Initial \rho 14 28 42 56

Observation error C(\{ Xn\} ) 2.97
Distance between estimate and observations C(\bfitu ) 35.7 2.95 5.52 161
Error between estimate and the truth MSE 32.7 0.02 2.74 159
Estimated \rho 26.7 28.0 28.4 37

7. Conclusions. We have introduced a new class of algorithms for data assimilation based
upon shadowing refinement, synchronization, AUS, and PDA techniques. Projections are de-
termined based upon techniques employed in the computation of Lyapunov exponents/vectors,
in particular continuous QR techniques. This produces a splitting of the dynamics into non-
stable and stable components, which allows for employing different techniques for the different
components that are suited to their dynamics. Since the projections are a function of solutions
of the state space model, these projection based techniques require at least an approximate
solution to determine initial projections. Assessing the uncertainty in obtaining an initial
approximate solution and the impact of these uncertainties on the assimilation is a focus of
our future work. These techniques are also amenable in a number of ways to a Bayesian
framework and since we obtain an approximation of a time dependent orthonormal basis for
the nonstable subspace one can assess the observation operator with respect to the unstable
subspace. The stable component has contractive dynamics which is useful for error control
and further assessing of uncertainties. In future work, we shall analyze the performance of
the algorithm when observations are biased, correlated, and/or sparse in time. The algorithm
developed here is effective in parameter estimation without introducing a trivial ODE for the
parameters as in traditional data assimilation methods. We used a combination of analysis
and numerical experiments to show that the algorithm works effectively and we demonstrated
that the results compare favorably to those of 4DVar. Rigourous convergence proofs of the
method will be addressed in future work. The other avenues for future research include more
efficient numerical linear algebra techniques (the shadowing refinement relies on a block tridi-
agonal linear system solve that we have performed with direct methods) and the use of parallel
computing techniques.
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Appendix A. Convergence of the synchronization update in the stable subspace.

A.1. Convergence in the linear, nonautonomous case. We study a synchronization pro-
cess where there is some error made in the nonstable directions. If the model is linear but
nonautonomous and at each step sufficiently close to the identity and the largest Lyapunov
exponent of the stable subspace is negative, then the total error of the synchronized solution
will not be much larger then the error in the nonstable directions. This holds in particular if
the largest Lyapunov exponent of the stable subspace is small enough and if convergence to
the Lyapunov exponents in the stable space is quick.

Let \scrX n be a solution to the nonautonomous linear model \scrX n+1 = F \prime 
n\scrX n for n \in \BbbN , and

let Qn+1Rn+1 = F \prime 
nQn. Let \=un \in \scrR d be a sequence of vectors approximating the truth in the

nonstable subspace as follows:

Pn\=un = \=un, \| Pn\scrX n  - \=un\| < \epsilon ,

where Pn := (Qu
n)(Q

u
n)

T , the orthogonal projector onto the first p columns of Qn, i.e., p is the
dimension of the nonstable subspace.

Define \Delta n := (F \prime 
n  - I) and \Delta := supn \| \Delta n\| F . Let w0 be arbitrary and

wn = (I  - Pn)F
\prime 
n - 1 (\=un - 1 + wn - 1)

for n \geq 1. Define the error vector vn as the difference between truth and approximation at
time step n:

(22) vn := \scrX n  - \=un  - wn,

and denote the projection on the \kappa th column of Qn by v\kappa n for \kappa = p + 1, . . . , d. Let \zeta :=

(
\surd 
2\Delta 

1 - \Delta + [
\surd 
2\Delta 

1 - \Delta ]2)(1 + \Delta )\epsilon and \delta 2 = (2
\surd 
2\Delta 

1 - \Delta \Delta + [
\surd 
2\Delta 

1 - \Delta ]2(1 + \Delta )). Define modified Lyapunov

exponents as \^\lambda k := limn\rightarrow \infty 
1
n

\sum n
l=0 log(R

(k,k)
\ell + \delta 2) for k = p+ 1, . . . , d.

Assumption A.1. There exists a positive constant \^\varepsilon > 0 and a positive integer \scrN such that
for all integers \scrN \prime \geq \scrN and all n > 0,\bigm| \bigm| \bigm| \bigm| \bigm| 1\scrN \prime 

\scrN \prime \sum 
\ell =0

log
\Bigl( 
R

(k,k)
(n+\ell ) + \delta 2

\Bigr) 
 - \^\lambda k

\bigm| \bigm| \bigm| \bigm| \bigm| < \^\varepsilon , k = p+ 1, . . . , d.

Theorem A.2. Assume \Delta < 1, \^\lambda p+1 < 0. Under Assumption A.1, for any p < \kappa \leq d,
m1 \in \BbbN , and m2 := m1 +\scrN + 1,

| v(\kappa )m2
| \leq e(

\^\lambda \kappa +\^\epsilon \kappa )\scrN | v(\kappa )m1
| +

\scrN \sum 
l=0

\zeta 
\scrN  - 1\prod 
j=l

\Bigl( 
R

(\kappa ,\kappa )
j+m1+2 + \delta 2

\Bigr) 

+

\left\{   
d\sum 

\iota =\kappa +1

\scrN \sum 
l=0

| R(\iota ,\kappa )
l+m1

+ \delta 2| 
\scrN \prod 

j=l+1

\Bigl( 
R

(\kappa ,\kappa )
j+m1

+ \delta 2
\Bigr) 
| v(\iota )l+m1

| 

\right\}   .
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Corollary A.3. Assume that when averaging over all n \in \BbbN , for all m \in \BbbN and all \iota l, \kappa l \in 
\{ p + 1, p + 2, . . . , d\} with l \in \{ n, n + 1, . . . , n + m\} , the average of the product \Pi n+m

l=n R
(\iota l,\kappa l)
l

can be expressed as the product of the averages: \Pi n+m
l=n R

(\iota l,\kappa l)
l = \Pi n+m

l=n R
(\iota l,\kappa l)
l . Then

| v(\kappa )m2 | <
1

1 - e(\^\lambda \kappa +\^\epsilon \kappa )\scrN 

\Biggl( 
1 +

1

| \^\lambda \kappa | 

\Bigl( 
1 - e

\^\lambda \kappa \scrN 
\Bigr) \Biggr) 

\zeta +\scrO (\Delta 2),

where | v(\kappa )m2 | denotes taking the average of | v(\kappa )m2 | over all m2.

Proof. To prove Theorem A.2 we use, without loss of generality, a coordinate system such
that at step n the orthonormal Lyapunov vectors coincide with the standard basis. Then we
consider the equation for the projection of the error on the stable space:

(23) (I  - Pn+1)vn+1 = (I  - Pn+1) [Qn+1Rn+1(\scrX n  - \=un  - wn)] .

We now split the right side of (23) between the range and the kernel of Pn:

(I  - Pn+1)Qn+1Rn+1(\scrX n  - \=un  - wn)

= (I  - Pn+1)Qn+1Rn+1Pn(\scrX n  - \=un  - wn)

+ (I  - Pn+1)Qn+1Rn+1(I  - Pn)(\scrX n  - \=un  - wn)

= (I  - Pn+1)Qn+1Rn+1(Pn\scrX n  - \=un) + (I  - Pn+1)Qn+1Rn+1 \{ (I  - Pn)\scrX n  - wn\} .

We first analyze the contribution from the error term (I - Pn+1)Qn+1Rn+1(Pn\scrX n - \=un), which
is the contribution of the error parallel to the p leading Lyapunov vectors at time n to the
error perpendicular to these vectors at time n+ 1.

By the definitions of Qn, Rn, and \Delta n, we have that

(24) Qn+1Rn+1 = I +\Delta n.

We recall that Pn = Qu
n(Q

u
n)

T and that Qn is the identity matrix in our coordinates. We can

approximate | | I  - Qn+1| | F \leq 
\surd 
2| | \Delta n+1| | F

1 - | | \Delta n+1| | 2 , by Theorem 3.1 of [13]. It immediately follows that

| | (I  - Pn+1)Qn+1Rn+1(Pn\scrX n  - \=un)| | 2 <

\left(  \surd 
2| | \Delta n+1| | F

1 - | | \Delta n+1| | 2
+

\Biggl[ \surd 
2| | \Delta n+1| | F

1 - | | \Delta n+1| | 2

\Biggr] 2\right)  (1 + | | \Delta n+1| | 2)\epsilon 

< \zeta .

For the convergence in the stable directions we proceed analogously to [56]. We remark
that Rn encodes the local approximation to the Lyapunov exponents [27]. We recall that the
Gram--Schmidt algorithm ensures that all diagonal elements of Rn are positive for all n. Using
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the bound on the contribution of the unstable errors to the stable direction, we obtain

| | (I  - Pn+1)vn+1| | 2 < | | (I  - Pn+1)F
\prime 
n \{ (I  - Pn)vn\} | | 2 + \zeta (25)

\leq | | (I  - Pn)Rn+1 \{ (I  - Pn)vn\} | | 2

+ | | ((I  - Pn+1)Qn+1  - (I  - Pn))Rn+1 \{ (I  - Pn)vn\} | | 2 + \zeta 

< | | (I  - Pn)Rn \{ (I  - Pn)vn\} | | 2

+

\left(  2

\surd 
2| | \Delta n+1| | F

1 - | | \Delta n+1| | 2
\Delta +

\Biggl[ \surd 
2| | \Delta n+1| | F

1 - | | \Delta n+1| | 2

\Biggr] 2
(1 + \Delta )

\right)  | | (I  - Pn)vn| | 2 + \zeta 

\leq | | (I  - Pn)Rn \{ (I  - Pn)vn\} | | 2 + \delta 2| | (I  - Pn)vn| | 2 + \zeta .

We now compute a bound in the expected error by induction on the stable subspace dimension

d - p. If d - p = 1, then (I  - Pn)vn = v
(d)
n and for any m1, m2 \in \BbbN with m2 > m1,

(26) | v(d)m2
| \leq 

m2 - 1\prod 
l=m1

\bigl( 
(Rdd)l + \delta 2

\bigr) 
| v(d)m1

| +
m2\sum 

l=m1+1

\zeta 

m2\prod 
j=l+1

\Bigl( 
(Rdd)j + \delta 2

\Bigr) 
.

Using Assumption A.1 and choosing m2  - m1 = \scrN + 1, we get

| v(d)m2
| \leq 

\scrN \prod 
l=0

\bigl( 
(Rdd)l+m1

+ \delta 2
\bigr) 
| v(d)m1

| +
\scrN \sum 
l=0

\zeta 
\scrN  - 1\prod 
j=l

\Bigl( 
(Rdd)j+m1+2 + \delta 2

\Bigr) 

\leq e(
\^\lambda d+\^\epsilon d)\scrN | v(d)m1

| +
\scrN \sum 
l=0

\zeta 
\scrN  - 1\prod 
j=l

\Bigl( 
(Rdd)j+m1+2 + \delta 2

\Bigr) 
.

Now assume d - p > 1 and let p < \kappa \leq d, and then

| v(\kappa )m2
| \leq 

\scrN \prod 
l=0

\bigl( 
(R\kappa \kappa )l+m1

+ \delta 2
\bigr) 
| v(\kappa )m1

| +
\scrN \sum 
l=0

\zeta 
\scrN  - 1\prod 
j=l

\Bigl( 
(R\kappa \kappa )j+m1+2 + \delta 2

\Bigr) 

+

\left\{   
d\sum 

\iota =\kappa +1

\scrN \sum 
l=0

| (R\iota \kappa )l+m1 + \delta 2| 
\scrN \prod 

j=l+1

\bigl( 
(R\kappa \kappa )j+m1 + \delta 2

\bigr) 
| v(\iota )l+m1

| 

\right\}   .

We remark that the first two terms of the above formula are the same as those in (26). This
finishes the proof of the theorem.
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Corollary A.3 can be proved by taking the average over all m2. We may now take averages
over all m2 > \scrN + 1 and use that m1 = m2  - \scrN  - 1.

| v(d)m2 | \leq e(
\^\lambda d+\^\epsilon d)\scrN | v(d)m2 - \scrN  - 1| +

\scrN \sum 
l=0

\zeta 
\scrN  - 1\prod 
j=l

\Bigl( 
(Rdd)j+m2 - \scrN +1 + \delta 2

\Bigr) 

\leq e(
\^\lambda d+\^\epsilon )\scrN | v(d)m2 | +

\scrN \sum 
l=0

\zeta e
\^\lambda dl

< e(
\^\lambda d+\^\epsilon d)\scrN | v(d)m2 | + \zeta 

\biggl( \int \scrN 

t=0
e
\^\lambda dt dt+ 1

\biggr) 
\leq e(

\^\lambda d+\^\epsilon d)\scrN | v(d)m2 | +

\Biggl( 
1 +

1

| \^\lambda d| 

\Bigl( 
1 - e

\^\lambda d\scrN 
\Bigr) \Biggr) 

\zeta ,

from which it immediately follows that

(27) | v(d)m2 | <
1

1 - e(\^\lambda d+\^\epsilon d)\scrN 

\Biggl( 
1 +

1

| \^\lambda d| 

\Bigl( 
1 - e

\^\lambda d\scrN 
\Bigr) \Biggr) 

\zeta .

For the last term in the expression with d - p > 1 this yields

d\sum 
\iota =\kappa +1

\scrN \sum 
l=0

| (R\iota \kappa )l+m1 + \delta 2| 
\scrN \prod 

j=l+1

((R\kappa \kappa )j+m1 + \delta 2) | v(\iota )l+m1
| 

=
d\sum 

\iota =\kappa +1

\scrN \sum 
l=0

\scrN \prod 
j=l+1

\Bigl( 
(R\kappa \kappa )j+m1 + \delta 2

\Bigr) 
| (R\iota \kappa )l+m1 + \delta 2| | v(\iota )l+m1

| 

<
d\sum 

\iota =\kappa +1

\Biggl( 
1 +

1

| \^\lambda \kappa | 

\Bigl( 
1 - e

\^\lambda \kappa \scrN 
\Bigr) \Biggr) \bigl( 

\Delta + \delta 2
\bigr) 
| v(\iota )m2 | ,

from which it immediately follows that

(28) | v(\kappa )m2 | <
1

1 - e(\^\lambda \kappa +\^\epsilon \kappa )\scrN 

\Biggl( 
1 +

1

| \^\lambda \kappa | 

\Bigl( 
1 - e

\^\lambda \kappa \scrN 
\Bigr) \Biggr) \Biggl( 

\zeta +
d\sum 

\iota =\kappa +1

\Delta | v(\iota )m2 | 

\Biggr) 
.

Combining (26) and (28) and using that \zeta = \scrO (\Delta ), we conclude that

(29) | v(\kappa )m2 | <
1

1 - e(\^\lambda \kappa +\^\epsilon \kappa )\scrN 

\Biggl( 
1 +

1

| \^\lambda \kappa | 

\Bigl( 
1 - e

\^\lambda \kappa \scrN 
\Bigr) \Biggr) 

\zeta +\scrO (\Delta 2).

A.2. Bound for the nonlinear case. For the nonlinear case we do not have a convergence
proof, but we can put a bound on the error. Let the truth \scrX n be a solution to the nonlinear
model \scrX n+1 = Fn(\scrX n), where Fn is a \scrC 3 function. Assume \{ \scrX n\} lies on an attractor of F and
on the attractor F admits an exponential splitting. Let \epsilon 1 \geq \epsilon 2 > 0, A\epsilon 1 be the neighborhood
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of size \epsilon 1 around the attractor of F , \alpha \geq 0, \delta > 0, and \~\lambda > exp(\lambda s), where \lambda s < 0 is the largest
Lyapunov exponent of the stable space. Let \Pi n be projectors that project on the nonstable
space at \scrX n, and let K2 = 1

2 sup\chi \in A\epsilon 1
| F \prime \prime 

n (\chi )| and K0 = sup\chi \in A\epsilon 1
| Fn(\chi )| . Let Pn \in \scrR d \times \scrR d

be a sequence projectors and let \=un \in \scrR d be a given sequence of vectors with Pn\=un = \=un for
all n. Let w0 be some arbitrary vector and wn = (I  - Pn)F (\=un - 1 + wn - 1) for n > 1. Define
the error vector vn as the difference between truth and approximation at time step n:

vn := \scrX n  - \=un  - wn.

Theorem A.4. Assume | | vn| | < \epsilon 1, | | Pnvn| | < \epsilon 2, and | | Pn+1vn+1| | = | | Pn+1\scrX n+1 - \=un+1| | <
\epsilon 2. Then there exists some \~\alpha > 0 such that if for all \~v \in \scrR d it holds that Pn\~v \in Ku

\alpha (\scrX n),
where Ku

\alpha (\scrX n) is the nonstable cone [36, 8] of size \alpha at \scrX n, and (I  - Pn)\~v \in Ks
\~\alpha (\scrX n), where

Ks
\~\alpha (\scrX n) is the stable cone [36, 8] of size \~\alpha at \scrX n, then

(30) | | vn+1| | < \epsilon 2 +K2\epsilon 
2
1 + 2\alpha (K0\epsilon 2 +K2\epsilon 

2
2) + (\~\lambda + \delta )\epsilon 1.

Proof of Theorem A.4. Throughout this proof we use results of [36, 8, 28]. Since the error
vn is small and Fn is \scrC 3, we can approximate the nonlinear flow by a Taylor expansion around
the truth

(31) | | vn+1  - F \prime 
n(\scrX n)vn| | = \| Fn(\scrX n) - Fn(\scrX n  - vn) - F \prime 

n(\scrX n)vn\| \leq K2| | vn| | 2.

By splitting vn+1 = Pn+1vn+1 + (I  - Pn+1)vn+1, noting that | | I  - Pn+1| | < 1, and using (31)
we obtain

(32) | | vn+1| | < \epsilon 2 +K2\epsilon 
2
1 + | | (I  - Pn+1)F

\prime 
n(\scrX n)vn| | .

Due to the exponential splitting of Fn, the nonstable cone becomes more narrow under the
tangent dynamics, i.e., vectors in this nonstable cone tend to align more toward the nonstable
directions under the dynamics. This means that F \prime 

n(\scrX n)K
u
\alpha (\scrX n) \subset int(Ku

\alpha (\scrX n+1)) \cup \{ 0\} . (It
follows, for example, from Proposition 5.4.1 of [8] or Lemma 6.2.10 of [36].) Hence we have
that F \prime (\scrX n)Pnvn \in int(Ku

\alpha (\scrX n+1)) \cup \{ 0\} . Due to the dynamics on the nonstable cone, we
expect the length of Pnvn to grow. A bound for the growth in any step is given by Taylor
expansion of Fn(\scrX n  - Pnvn) around Fn(\scrX n) as | | F \prime (\scrX n)Pnvn| | \leq K0| | Pnvn| | + K2| | Pnvn| | 2,
where K0 = sup | Fn(\scrX n)| . However, the only part of F \prime (\scrX n)Pnvn of interest is the component
(I  - Pn+1)F

\prime (\scrX n)Pnvn. We have that

(33) | | (I  - Pn+1)F
\prime (\scrX n)Pnvn| | < 2\alpha | | F \prime (\scrX n)Pnvn| | < 2\alpha (K0| | Pnvn| | +K2| | Pnvn| | 2).

For the part (I  - Pn)vn in the stable cone we can use [8, Proposition 5.4.2] or [36, Lemma
6.2.11], which states that this vector shrinks under time evolution, where the amount depends
on the width of our cone. To be precise, for all \delta > 0 \exists \~\alpha > 0 such that if (I - Pn)vn \in Ks

\~\alpha (\scrX n),
then

(34) \| F \prime 
n(\scrX n)(I  - Pn)vn\| < (\~\lambda + \delta )\| (I  - Pn)vn\| .
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Collecting the estimates (32)--(34), we find that

| | vn+1| | < \epsilon 2 +K2\epsilon 
2
1 + | | (I  - Pn+1)F

\prime 
n(\scrX n)(Pnvn + (I  - Pn)vn)| | 

\leq \epsilon 2 +K2\epsilon 
2
1 + | | (I  - Pn+1)F

\prime 
n(\scrX n)Pnvn| | + | | F \prime 

n(\scrX n)(I  - Pn)vn)| | 
< \epsilon 2 +K2\epsilon 

2
1 + 2\alpha (K0| | Pnvn| | +K2| | Pnvn| | 2) + (\~\lambda + \delta )| | (I  - Pn)vn| | 

< \epsilon 2 +K2\epsilon 
2
1 + 2\alpha (K0\epsilon 2 +K2\epsilon 

2
2) + (\~\lambda + \delta )\epsilon 1.
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