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Density distribution of a Bose-Einstein condensate of photons in a dye-filled microcavity
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The achievement of Bose-Einstein condensation of photons (phBEC) in a dye-filled microcavity has led to a
renewed interest in the density distribution of the ideal Bose gas in a two-dimensional harmonic oscillator. We
present measurements of the radial profile of photons inside the microcavity below and above the critical point
for phBEC with a good signal-to-noise ratio. We obtain a good agreement with theoretical profiles obtained using
exact summation of eigenstates.
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I. INTRODUCTION

Since the realization of Bose-Einstein condensation (BEC)
in dilute atomic gases [1,2], the density distribution of BECs
and their surrounding thermal cloud have been well studied
using time-of-flight absorption imaging. The in situ density
distribution of a BEC in a harmonic trap is first observed
using phase contrast imaging [3]. In later work, the density
distribution of BECs in a harmonic potential is also studied
and has been well described theoretically using a local density
approximation [4]. This work has recently become even more
relevant with the creation of exciton-polariton condensates
[5,6], which truly have a two-dimensional nature.

However, for ideal bosons the local density approximation
cannot be used as the homogeneous system in that case does not
show BEC at nonzero temperature. This problem has recently
become relevant with the achievement of phBEC [7], which
are expected to behave as ideal bosons. Initial experimental
and theoretical work on the density distribution of phBECs
[7–9], which relies on the local density approximation, should
therefore be used with caution.

In this work we study the density distribution of photons
in a dye-filled microcavity, both experimentally and theo-
retically. Experimentally we exploit the axial symmetry of
the system by computing radial averages of the photon gas
yielding a good signal-to-noise ratio of the overall signal,
especially in the thermal tail of the distribution. This allows
us to accurately study the tail and compare the behavior of
the tail below and above the phase transition. Theoretically
we calculate the radial density profiles by carrying out an
exact summation of harmonic oscillator states weighed by the
appropriate Bose-Einstein distribution function. We find good
correspondence between theory and experiment. We also find,
both experimentally and theoretically, that below the phase
transition the thermal distribution has the expected Gaussian
form, but that above the transition the thermal tail becomes
strongly non-Gaussian.
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II. EXPERIMENTAL SETUP

The optical design of our experimental setup is based on
the work of Klaers et al. [7,10]. The core of our experimental
setup is a cavity consisting of two ultrahigh reflecting, spherical
mirrors with a radius of curvature of 1 m with a separation on
the order of 1μm, between which a droplet of a Rhodamine
6G dye solution is placed. The dye solution is pumped by
laser pulses with a duration of 500 ns and a wavelength of
532 nm, which are created using a CW laser and acousto-optic
modulators (AOMs). Using three AOMs in series gives us an
extinction ratio of 5 × 104, ensuring a high on/off contrast of
the pump pulse.

The density distribution of photons escaping through one
of the cavity mirrors is imaged. The photons first pass through
a lens with a diameter of 25.4 mm placed at the focal distance
f1 = 75 mm away from the cavity. The corresponding point
spread function is dpsf = 1.7 μm. The consequences of the
effective aperture of this collecting lens will be discussed later.
After passing through the lens, a second lens with a focal
length f2 = 200 mm is used to created an image plane with a
magnification M1 = f2/f1 = 2.67, used for initial alignment
purposes.

Using a second set of lenses, yielding an additional magni-
fication M2 = 6, an image plane is imaged on an Andor Zyla
camera.1 Figure 1 shows typical false color images obtained
below (a) and above (b) the BEC phase transition acquired
using the Andor Zyla camera.

The camera and the AOMs are synchronized such that we
image the distribution of photons in the cavity during each
individual pump pulse. To ensure reproducibility of our results,
we perform our experiment in runs during which thousands
of images are taken without user intervention. Additional
information on the automation of our experiments is given in
the Appendix.

1Andor Zyla 5.5 sCMOS: Quantum yield = 60%, dpixel = 6.5 μm.
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FIG. 1. Typical images of the photon distribution inside the cavity
below (a) and above (b) the critical point for phBEC. The bright
core in the right image is the Bose-Einstein condensate, whereas the
surrounding distribution is the thermal cloud.

III. THEORY

In the grand canonical ensemble, the total number of
identical, ideal bosons in a trap with a set of discrete energy
levels En is given by

N =
∑

n

gnfBE(En,μ,kBT ), (1)

where fBE denotes the well-known Bose-Einstein distribution
function, gn is the degeneracy of the nth energy level, μ is the
chemical potential, kB is the Boltzmann constant, and T is the
temperature. In our dye-filled microcavity, the energy levels
are those of the isotropic two-dimensional quantum harmonic
oscillator. The principal quantum number is n = nx + ny , with
nx,y ∈ N0 and Enxny

= h̄�(nx + ny + 1), where � denotes
the harmonic oscillator frequency. We assume that neither the
cavity nor the medium inside the cavity exhibits birefringence,
i.e., that the harmonic oscillator frequency does not depend on
the polarization. Summation over the polarization thus yields
a factor 2.

To determine the density of photons inside the cavity, we
substitute the probability distribution of each state of (nx,ny)
into the above summation, i.e.,

ρ(x,y) = 2
∑
nx,ny

∣∣ψnx
(x)ψny

(y)
∣∣2

fBE(Enxny
,μ,kBT ), (2)

where the functionsψn(x) are the well-known one-dimensional
harmonic oscillator wave functions. Because the expression
contains a double summation over a potentially large number of
states, it is unfeasible to use in a least-square fitting procedure.
For that reason, we write the density as

ρ(x,y) =
∑

n

gnρn(x,y)fBE(En,μ,kBT ), (3)

where gn = 2(n + 1) denotes the degeneracy and

ρn(x,y) = 1

n + 1

n∑
nx=0

∣∣ψnx
(x)ψn−nx

(y)
∣∣2

. (4)

As the above expression for ρn(x,y) does not depend on
the parameters μ and T , we can precompute the summation
over nx and carry out the summation over n during the fitting
procedure. An added benefit of this method is that in the

FIG. 2. Typical examples of ρn(r) normalized to the maximum
value.

isotropic system at hand, ρn can only depend on the radial
coordinate r , i.e., it must be radially symmetric. Thus we can
compute ρn(r) by computing the angular average of ρn(x,y)
and use

ρ(r) =
∑

n

gnρn(r)fBE(En,μ,kBT )η(En), (5)

where we have introduced the detection efficiency η(En) that
depends on the photon energy, due to for instance the quantum
efficiency of the camera used in the experiment.

Even though the eigenfunctions of the one-dimensional
quantum harmonic oscillator are analytically known, their
computation presents a numerical problem. For quantum
numbers from n ≈ 150 and upwards the computation involves
intermediate values that exceed the maximum value of the
double-precision floating-point format. For this reason, we
calculate the harmonic oscillator wave functions using the
Numerov method [11]. In order to reach a sufficient accuracy
for the large quantum numbers, we use a grid with a resolu-
tion of �x = 2 × 10−3 lHO, where lHO denotes the harmonic
oscillator length. We are left with an array ψnm, where n

is the quantum number and m labels the position according
to xm = −50lHO + m�x. We subsequently take the absolute
value squared of the numbers in this array, apply a low-pass
filter along the m direction and subsample the array in the m

direction to account for the finite optical resolution. Using the
resulting one-dimensional density distributions, we tabulate
the functions ρn(rm), where rm = m�x. To use the tabulated
data in the fit procedure, we create interpolating functions
that allow us to scale the harmonic oscillator length to the
experimental value.

Examples of the resulting functions are shown in Fig. 2.
For n = 1 we find the familiar Gaussian form. For larger
principle quantum numbers the density distribution rapidly
oscillates, as expected. Due to the filtering, the fast oscillations
are suppressed. For principle quantum numbers on the order of
100 or 1000, the filtered radial distribution behaves more and
more like a step function, with only a fast oscillation around
the classical turning point rctp = √

2n lHO.
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FIG. 3. Examples of experimental radial profiles measured below
[blue (dark gray)] and above [orange (light gray) dashed] the critical
point for phBEC. We can detect the decrease of intensity in the thermal
tail over more than two orders of magnitude. The insets show the (false
color) camera images, from which these radial profiles are computed.

IV. RESULTS

A. Experimental profiles

To quantitatively analyze the results, we exploit the fact
that the photon distributions are radially symmetric, as the
microcavity is isotropic, allowing us to perform a radial
average. We first determine the center of the microcavity by
selecting a run with a visible condensate and locate the center
pixel of the condensate. Performing the procedure for several
randomly selected images, we notice that we always find the
same center pixel, showing the stability of the setup. From the
center pixel we average each image radially outwards, allowing
us to increase the overall signal-to-noise ratio, but especially
in the tail of the distribution that is otherwise very noisy.

In Fig. 3 we plot examples of experimentally obtained radial
profiles, below and above the critical photon number Nc. The
two profiles overlap except close to the center, where the orange
(light gray) dashed line has an additional peak. The additional
peak is caused by the macroscopic occupation of the ground
state, i.e., the phBEC. The overlap between the profiles for
larger distances is a direct consequence of Bose enhancement;
the thermal cloud is saturated and thus cannot contain more
photons. Additional photons must occupy the ground state.

One can also observe that the profiles deviate from each
other close to but outside the condensate. This is a consequence
of the fact that we are dealing with a finite system and that we
are thus not formally in the thermodynamic limit in which there
is a clear distinction between the macroscopically occupied
ground state and the other states with occupancies < 1.

Lastly, we observe the decrease of the thermal tail of
the distribution over more than two orders of magnitude. It
is crucial to use a collecting lens with a sufficiently large
numerical aperture, as illustrated in Fig. 4. The numerical
aperture of the collecting lens is reduced by inserting an
aperture in front of the lens. Reducing the aperture drastically
reduces the thermal tail, which has a large impact on the
analysis. First, the condensate fraction is overestimated, as
most of the thermal photons are not recorded. Second, as the
slope of the thermal tail is a measure of the temperature, a

FIG. 4. Radial averages for measurements under identical pump-
ing conditions, but with a varying numerical aperture for the collecting
lens, i.e., � = 12.7 mm (bottom), � = 19.0 mm (middle), and � =
25.4 mm (top). We see that reducing the numerical aperture clearly
cuts the thermal tail. The dashed lines show fits to our theoretical
model.

smaller aperture produces a steeper slope and thus predicts
a lower temperature. As seen from the figure, the difference
between an aperture of 19.0 and 25.4 mm is minor, which
suggests that a 25.4 mm aperture is sufficient.

B. Fitting

The theoretical radial profiles depend on several parameters.
First of all, we need to know the harmonic oscillator length,
which depends on the cutoff wavelength λcutoff via [10]

lHO =
√

1

4π

λcutoff

n0

4

√
qR

λcutoff

n0
, (6)

where n0 denotes the refractive index of the solvent, q is the
longitudinal mode number of the cavity mode, and R is the
radius of curvature of the mirrors. To relate the theoretical
profile to the experimental profile, the detection efficiency
introduced in Eq. (5) needs to be determined which takes
into account the quantum efficiency of the camera, and the
reflection coefficients of the optical elements in the experi-
mental setup. To determine the efficiency, we use the fact that
at the phase transition the total number of photons can be well
approximated by

Nc = π2

3

(
kBT

h̄�

)2

, (7)

which is exact in the thermodynamics limit [10]. The harmonic
oscillator frequency � can be expressed in the experimental
parameters as

� = c

n0

√
2√

qR(λcutoff/n0)
. (8)

Using an iterative method, we find the detection efficiency by
dividing the value of Nc by the total experimental signal Nexpt,
which we obtain by numerically integrating the experimentally
obtained radial profile. However, we first need to obtain the
temperature of the photon gas at the critical point. We therefore
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TABLE I. Fit results of the radial profiles for different apertures.

� μ (h̄�) T (h̄�) T (K)

12.7 mm −0.181 ± 0.003 77.5 ± 0.2 122.1 ± 0.3
19.0 mm −0.278 ± 0.006 106.9 ± 0.2 168.5 ± 0.4
25.4 mm −0.42 ± 0.01 123.1 ± 0.2 194.0 ± 0.4

fit the radial profile using the chemical potential μ and the
temperature T , both in units of h̄�, as fit parameters. For
the fit, we temporarily use the detection efficiency as a free
parameter. With the fitted temperature, we can then recalculate
the detection efficiency. The fitted and recalculated detection
efficiencies agree reasonably well. We repeat the procedure for
50 images at the phase transition of Bose-Einstein condensa-
tion, and average the recalculated detection efficiencies. The
average detection efficiency is used and kept fixed while we
carry out the fits to the entire data set.

Figure 4 shows examples of fits as black dashed lines
to the radial profiles. One can note the striking agreement
between the fit and the large aperture data over many orders
of magnitude in signal, both for the thermal cloud and the
Bose-Einstein condensate. The fit parameters we find for the
different apertures are given in Table I. We notice that the fitted
temperature, when converted to SI units, is not equal to room
temperature as we would have expected. This could be due to
the aperture of the collecting lens. As mentioned in Sec. II, we
image the cloud using a lens with a finite aperture. Limiting
the aperture suppresses the thermal tail, but more importantly
increases the slope. One can see that this plays a role, as the
temperature for the smaller apertures deviates further from
room temperature. To reduce the deviation between the fit
result and the actual temperature of the photon gas, one could
lower the temperature of the dye solution which, as shown by
Damm et al. [12], also lowers the temperature of the photon gas.
Another approach is to use a larger numerical aperture. Based
on our findings optics with a diameter of 50.8 mm should be
sufficient to fully capture the spatial density distribution of the
photon gas inside the microcavity.

V. CONCLUSION

In our system, a Bose-Einstein condensate of photons in a
dye-filled microcavity, the signal-to-noise ratio is improved by
radially averaging the data. This is especially true for the tails
of the thermal distributions; a crucial step as it is the tail that
gives a reliable measurement of the temperature of the system.
Furthermore, we show that for the same reason, it is crucial to
have a large numerical aperture in the imaging system. Finally,
we present a theoretical model that we use to fit our data and
demonstrate a good correspondence between this model and
our data. A Python implementation of this model as well as all

data used in preparation of this work are available under the
Creative Commons Attribution 4.0 International Licence [13].
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APPENDIX: AUTOMATION

The heart of the automation system of the experiment is the
Beaglebone Black (BBB), a low-cost development platform
built around the ARM Cortex-A8 processor (Sitara), running
a Linux operating system. The BBB is particularly suitable for
real-time applications, because the Sitara processor includes
two so-called programmable real-time units (PRUs), which
share memory with the ARM core. We use one such PRU to
address a serial ten bit digital-to-analog converter (DAC). The
voltage from the DAC is used to control the RF power of one of
the AOMs, allowing us to change the pump pulse power during
the experimental run. Furthermore, the PRU is programed to
provide trigger pulses for the AOMs and the camera. The PRU
is instructed to trigger a shot of the experiment by sending the
appropriate commands over shared memory using a Python
script running on the ARM core.

The camera is an Andor Zyla 5.5 sCMOS, the data of
which are read out by a PC over a USB3 bus. At the start
of an experimental run the camera is set up for external
triggering and a Python script runs that takes the appropriate
number of images. Afterwards, we start a Python script on the
BBB that sends the corresponding shot requests to the PRU.
Synchronization is maintained by the fact that the camera is
externally triggered by the PRU.

An experimental run typically consist of 50 repetitions of
the same sequence containing typically 60 shots each with a
different pump power. Additionally, for each shot a background
image is taken. During a run we take 8 shots per second, which
including the background images leads to a frame rate of 16
frames per second (fps). As a single full frame image of the
camera contains approximately 11 MBytes, this corresponds to
a data rate of 88 MBytes/s. The total amount of data produced
in one run is 66 GBytes. To handle the data flow, we temporarily
store the data of 10 experimental runs on a solid-state drive
(SSD), with a capacity of 1 Tbytes. At the end of the day we
copy the data from the SSD to other storage media during the
following night.

As the experiment runs completely without user interven-
tion during an experimental run, the laboratory is vacated
during runs, which provides additional stability and repro-
ducibility contributing to the quality of our data.
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