
Editorial

The Dynamic Plant: Capture, Transformation, and
Management of Energy1

Plants are exquisite in their capacity to convert
photons of light through photosynthetic carbon diox-
ide (CO2) fixation into carbohydrate resources that are
assimilated and partitioned from photosynthetic
source to sink tissues. The chemical energy gained
from photosynthesis includes ATP and NADPH that
along with sugars are vital to biosynthetic processes,
cell proliferation, biomass production, and reproductive
fitness. As in all eukaryotes, plants are dependent upon
dioxygen (O2) for efficient production of ATP through
aerobic respiration by mitochondria. Therefore, O2 is
crucial for the efficient catabolism of carbohydrates,
lipids, and protein into chemical energy in leaves in
the light and darkness, as well as in sink tissues. In this
Focus Issue, numerous reviews and research articles
explore the integration of light, O2, and energy meta-
bolism from the cellular to the whole-plant level. The
articles analyze molecular, biochemical, physiological,
and developmental mechanisms that contribute to the
plant’s energy balance. A recurrent theme is the in-
tegration of light, O2, and sugar sensing with signal
transduction and gene regulation, resulting inmetabolic
and developmental plasticity that maximizes available
energy for growth. This knowledge expands opportu-
nities to enhance photosynthetic efficiency and fine-
tune energy allocation to maximize yields of crops.

LET THERE BE LIGHT: DYNAMICS OF
CHLOROPLAST BIOGENESIS AND
DIFFERENTIATION

The biogenesis of photosynthetically active chloro-
plasts involves the coordinated regulation of the nuclear
and proplastid genomes. This synchronization involves
both anterograde (nucleus to plastid) and retrograde
(plastid to nucleus or another compartment) signaling
(de Souza et al., 2017; Hernández-Verdeja and Strand,
2018). Using a single-cell systemofArabidopsis (Arabidopsis
thaliana), Dubreuil et al. (2018) tracked dynamics in tran-
scripts and metabolites to refine the definition of the early
light-induced anterogradephase that includes chlorophyll

synthesis and rudimentary thylakoid membrane for-
mation. Their analysis resolved a second phase that is
characterized by retrograde signaling from the plastid
to the nucleus that dramatically bolsters the expression
of nucleus-encoded photosynthetic genes and the transi-
tion to photosynthetic competence. Modeling confirmed
that this second phase involves positive feedback from
the plastid itself. The two-phase biogenesis is demarked
by distinct morphological changes, including movement
of chloroplasts to the cell periphery. Intriguingly, the
retrograde phase is inhibited by high levels of Suc,
indicating that a surplus of carbon restricts thematuration
of chloroplasts.
Chloroplasts coordinate a range of cellular and devel-

opmental processes, as covered in two reviews (de
Souza et al., 2017; Hernández-Verdeja and Strand, 2018).
These processes include signaling through the produc-
tion of photosynthesis-derived reactive oxygen species
(ROS) that cause inhibition of PSII (photoinhibition).
The ephemeral superoxide and more enduring hydro-
gen peroxide generated by photooxidative stress have
well-studied impacts on signaling and physiology in
leaves. These active oxygens also act as signaling
molecules during development of flowers and fruits
that may augment photoprotection, stimulate pigment
production, and trigger chloroplast differentiation to
chromoplasts and other formswith specific biochemical
activities and structural features (Muñoz and Munné-
Bosch, 2018).

PHOTOSYNTHESIS: MAXIMIZING
FLEXIBILITY AND OUTPUT

Photosynthesis takes place under variable light in-
tensity, humidity, temperature, and CO2. The optimi-
zation of photosynthesis along with use of water,
nitrogen, and other limiting factors is a key opportu-
nity for crop improvement. Such improvements can be
pursued through modeling of steady-state and dy-
namic physiological data, and the targeted engineering
of specificmetabolic processes. Advances inmonitoring
photosynthetic parameters continue to benefit model-
ing. In a pioneering study, Lichtenberg et al. (2017)
performed laser light sheet microscopy with defined
spectra on the thalli of the aquatic macrophyte Fucus to
improve the estimation of PSII efficiency. To better
understand photosynthetic electron transport, Morales
et al. (2018) leveraged an extensive published dataset for
the C3 species Arabidopsis, including gas exchange,
chlorophyll fluorescence, light intensity, and CO2 avail-
ability, to model interactions between multiple mecha-
nisms and reactions. These interactions include regulation
of cyclic and noncyclic alternative electron transport and
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Rubisco activity. Their simulations exposed flexibility in
the coordination of photosynthesis in fluctuating environ-
ments that can be testedwith specific genotypes. Over the
past decade, several studies havemanipulated enzymes to
bolster photosynthesis and increase the acquisition of
biomass (Long et al., 2015). One such study in this issue
found that overexpressionof theRieskeFeSprotein, a com-
ponent of the cytochrome b6f complex that connects the
two photosystem reaction centers, significantly increased
PSI and PSII electron transport efficiency, CO2 assimila-
tion, and yield in Arabidopsis (Simkin et al., 2017).
Two must-read Updates on photosynthetic dynamics

caused by fluctuations in irradiance review the salient
physiology and promising strategies for improving
photosynthesis in crop canopies (Kaiser et al., 2018;
Slattery et al., 2018). One possible strategy is to
optimize the use of sunflecks within the lower part of
the canopy. The approach is addressed by Townsend
et al. (2018) through modeling of photosynthesis
within a 3D reconstruction of light rays in field-grown
wheat (Triticum aestivum). Their results underscore the
disparity between the brevity of photosynthetic activity
and the maintenance of photosynthetic capacity in
leaves as they become progressively shaded. These
shaded leaves of wheat contain the majority (80%) of
total shoot nitrogen, a repository that is underutilized in
the production of photosynthate at current planting
densities and is not fully remobilized to the seed during
maturation.
On the flipside, Walker et al. (2018) address the long-

held hypothesis that photosynthesis can be increased
by limiting the chlorophyll content of upper leaves of
the canopy, where photosynthetic activity is readily
maximized at low levels of solar radiation. Their simu-
lations for soybean (Glycine max) predict that reductions
in chlorophyll can provide a savings of nearly 10% of
leaf nitrogen without compromising photosynthetic as-
similation at the canopy scale. However, computingwith
the leaf optical properties collected in the field for
67 chlorophyll-deficient genotypes, their empirical model
failed to predict an overall enhancement of photosynthe-
sis in chlorophyll-deficient soybean. Despite this, model-
ing coupled with manipulation of three enzymes that
allow chloroplasts to release excess light as heat through
nonphotochemical quenching of chlorophyll fluorescence
provided a 15% increase in biomass in field-grown
tobacco (Nicotiana tabacum; Kromdijk et al., 2016).
Thus,manipulation of photosynthesis, photoprotection,
and development is a promising solution to biomass
improvement across crop species (Slattery et al., 2018).

PHYTOCHROME CENTRAL: TUNING
LIGHT RESPONSES AND RESOURCE
MANAGEMENT

Light is the plant’s source of energy, harnessed
through photosynthesis, but light also has pivotal
signaling functions for growth and development.
Different wavelengths are sensed through different

photoreceptors, including UV-A and blue light-sensitive
cryptochromes and phototropins and the red (R)/far-
red (FR)-reversible phytochromes (briefly reviewed
by van Gelderen et al. [2018]). The Update by
Krahmer et al. (2018) posits that phytochromes are
central regulators of photosynthetic capacity and re-
source management. This calls for an important broad-
ening of our views on phytochrome activity to
integrate their signaling function for development
and for resource management, the latter being indis-
pensable for the first. In the process of photosynthesis,
photoinhibition can occur when normally shaded
leaves experience high light conditions. Phytochrome
A of Arabidopsis was shown byWang et al. (2018) to be
involved in the protective effect of a low R/FR light
ratio, via control of the ELONGATED HYPOCOTYL5
(HY5) transcription factor. Phytochromes mediate their
regulationprimarily via Phytochrome Interacting Factors
(PIFs), a subgroup of basic helix-loop-helix transcription
factors (Leivar and Quail, 2011; Leivar andMonte, 2014).
The latest insights about this interaction are discussed in
Pham et al. (2018), including recent insights intomultiple
kinases and ubiquitin ligases that control PIF activity.
Plants express multiple photoreceptors with differ-

ent light quality sensitivities to monitor different fea-
tures of their light environment. Mechanisms of
phototropin signal transduction, focusing particularly
on the roles of NON-PHOTOTROPIC HYPOCOTYL3
and ROOT PHOTOTROPISM2-LIKE proteins are re-
viewed by Christie et al. (2018). Photoreceptors have
a wide variety of functions in plant growth and devel-
opment, including the transition to an autotrophic
lifestyle of recently germinated seedlings, circadian
clock input, flowering time control, and responses to
the environment, such as shade avoidance. Gommers
and Monte (2018) review the latest insights in light
control of seedling establishment, considering the sub-
tleties from dark to light and proposing darkness, and
thus photoreceptor inactivity, as an important infor-
mation state.
The CONSTITUTIVELY PHOTOMORPHOGENIC1

(COP1)-SUPPRESSOR OF PHYTOCHROME A (SPA)
E3 ligase is a key suppressor of light signaling that
controls the abundance of several central regulators,
such as HY5 and CONSTANS (CO). CO regulates pho-
toperiodic control of flowering time; Ordoñez-Herrera
et al. (2018) provide new experimental data showing that
14 CO-LIKE (COL) proteins also are COP1-SPA targets in
Arabidopsis. Among those, COL12 is shown to be a reg-
ulator of both flowering time and plant architecture. HY5
regulates photomorphogenesis and plant architecture. In
their study of HY5 homologs in monocots, Burman et al.
(2018) provide experimental evidence that HY5 functions
in the monocot rice (Oryza sativa) may be more diverse
than observed in the dicot Arabidopsis.
Although photomorphogenic responses are broadly

considered to be a suite of responses that occur above
ground to ensure light capture, van Gelderen et al. (2018)
stress the impact of photoreceptor activity for root
development. They discuss the different mechanisms
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through which light signaling may exert this control,
including photoreceptor activity in the shoot and root,
signal transmission from shoot to root, and consequences
for, among others, shade avoidance. Shade avoidance is
dominantly regulated by PIF-dependent control of auxin
homeostasis (de Wit et al., 2016) and refers to a suite of
elongation responses that consolidate light capture in
dense stands (Ballaré and Pierik, 2017). Interesting exper-
imental data from a research paper by Peng et al. (2018)
provide evidence for anovel linkbetweenPIFs andhistone
modifications during shade avoidance in Arabidopsis.
Additionally, Zhou et al. (2018) explore the involvement
of the TEOSINTE BRANCHED1, CYCLOIDEA, and PCF
(TCP) transcription factors in shade avoidance control of
the Arabidopsis hypocotyl. They provide evidence for
direct binding of TCP17 to promoters encoding PIFs and
YUCCAs, the latter encoding auxin biosynthesis enzymes
that also are direct targets of PIFs.
The examples above are cases of light acting as

a signal, through photoreceptors, to control plant de-
velopment. A process in which light acts both as
a signal and, through photosynthates, as a resource is
the regulation of axillary bud outgrowth. Signorelli
et al. (2018) discuss the various functions of light
signaling, including roles of cryptochromes and HY5,
in the outgrowth of axillary buds of perennials, and
integrate these with energy and oxygen signaling.

ENERGY NEXUS: DYNAMIC SUGAR
SENSING METERS CARBON
ALLOCATION FOR GROWTH AND
DEVELOPMENT

The energy status of plants is reflected in the avail-
ability of energy-rich photosynthetic products such as
ATP, reducing power, carbohydrates (including
sugars), and lipids. Plants can adjust growth and de-
velopment by sensing the availability of these mole-
cules. Sugars and sugar phosphates (in particular the
low-abundance metabolite trehalose-6-P, T6P) play an
important role in signaling energy availability in plants
(Wingler, 2018). Key energy signaling pathways include
the protein kinases SNF1-related protein kinase 1 (SnRK1;
low energy signaling) and Target of Rapamycin (TOR;
high energy signaling), with interactions between them.
Regulation of these pathways is complex, but recent
findings have made important contributions to our un-
derstanding of their downstream actions. One of the key
questions is howSnRK1 communicates a lowenergy state
to adjust metabolism in plant organelles. In their Update,
Wurzinger et al. (2018) discuss a role of SnRK1 in
phosphorylating transcription factors that may regulate
metabolic pathways in mitochondria and chloroplasts,
although the effect of phosphorylation of these on the
expression of their target genes remains to be demon-
strated. TOR activates protein synthesis and stimulates
cell proliferation and growth when energy supply is
high. Recent discoveries on the role of TOR in mRNA

translation are discussed by Schepetilnikov and Ryabova
(2018), who present a model showing how plant TOR
promotes reinitiation of translation of a subset of tran-
scripts with small upstream open reading frames in their
5# leaders. Several of these encode Auxin Response
Factors, which drive transcription in response to auxin.
In summary, SnRK1 and TOR signaling act antithetically
to meter energy use in plant cells.
While the photosynthetic organs of plants are not

short of energy during the day, a continuous supply of
energy for growth and maintenance processes is re-
quired in source and sink tissues and also during the
night. This necessitates not just sensing of the energy
status throughout the day/night cycle, but also adjust-
ment of metabolic processes for carefulmanagement of
energy reserves, for example, by T6P-dependent con-
trol of starch metabolism (Martins et al., 2013). While
the traditional view is that starch produced during the
day is only degraded to provide sugars at night,
Fernandez et al. (2017) show that starch degradation
starts in parallel with photosynthesis at the end of long
days and in evening twilight, in a manner influenced
by the circadian clock. Thereby, starch degradation
may supplement sugar synthesis to provide a steady
supply of carbon skeletons and energy for biosynthetic
pathways and growth.
Photosynthetically derived sugar provides the car-

bon skeletons that drive nutrient acquisition in roots,
organ growth, and reserves to developing seeds. Fatty
acid (FA) and triacylglycerol (TGA) biosynthesis re-
quires that Suc is abundant and biosynthetic pathways
are activated by sugar signaling. Zhai et al. (2017)
achieve significant increases in FA and TGA content
with genotypes defective in starch biosynthesis and the
export of sugar from leaves. Contents of these lipid
molecules were further bolstered by overexpression of
three genes associated with the “push,” “pull,” and
“protection” stages of lipid synthesis and accumulation
(Vanhercke et al., 2014). These were the WRINKLED1
transcription factor that regulates genes involved in FA
biosynthesis, a diacylglycerol acetyltransferase that pro-
motes TAG production, and OLEOSIN1, a protein that
determines oil body size.
Individual enzymes also can have a major impact on

partitioning carbon reserves between pathways con-
trolling growth. This is demonstrated by mutation of
individual isoforms of phosphoglycerate kinase (PGK),
an enzyme that converts 1,3-bisphosphoglycerate into
3-phosphoglycerate in glycolysis but catalyzes the re-
verse reaction in photosynthesis (Rosa-Téllez et al.,
2018). Interestingly, a doublemutant in the chloroplastic
(photosynthetic) and cytosolic (glycolytic) isoforms of
PGK is less impaired in growth than the single mutant
in cytosolic PGK, demonstrating the importance of
balancing photosynthetic and glycolytic reactions for
growth.
Developmental transitions such as germination,

flowering, and seed development require a sufficient
supply of energy. While there is considerable knowl-
edge of the role of sugars as signals in developmental
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transitions, interactions of sugar signals with other
developmental regulators, such as microRNA miR156,
are less well explored (Wingler, 2018). In Arabidopsis
seedlings, Suc supply induces hypocotyl elongation
under short-day conditions, suggesting that aminimum
supply of energy is required for hypocotyl elongation
(Simon et al., 2018). This response is dependent on T6P
synthase but inhibited by overexpression of the SnRK1
catalytic subunit, which is in agreement with the oppo-
site effects of T6P and SnRK1 in energy signaling.
How energy signaling controls leaf initiation and

expansion is explored byMohammed et al. (2018), who
demonstrate the importance of integration of multiple
energy signals, including light, Suc, and hormones.
Whereas TOR can integrate sugar and auxin signals
(Schepetilnikov and Ryabova, 2018) to stimulate cell
proliferation, photomorphogenesis is required for for-
mation of the leaf lamina (Mohammed et al., 2018).
Shoot branching is another developmental process that
relies on energy supply in the form of sugars. Salam
et al. (2017) show that sugar supply induces the
branching of sprouts growing from potato (Solanum
tuberosum) tubers. The silencing of a gene encoding
a vacuolar invertase, which converts Suc to Glc and
Fru, enhanced sprout branching, suggesting that Suc is
an important signal for this developmental decision.
Suc also may be involved in perennial bud burst after
dormancy, although its role as carbon source versus its
signaling function remains unresolved (Signorelli
et al., 2018). Recent research has demonstrated a func-
tion of T6P in pea (Pisum sativum) shoot branching in
response to Suc availability (Fichtner et al., 2017), and it is
therefore possible that T6P also is the signal inducing the
branching of potato sprouts and perennial bud burst.

OXYGEN: BOTH METABOLIC NECESSITY
AND DEVELOPMENTAL CUE

O2 is essential for aerobic energy production. When
cellularO2 levels decline due to limited gas diffusion as
a consequence of tissue density or the external envi-
ronment, a cellular energy crisis can ensue (Bailey-
Serres and Voesenek, 2008). Cellular hypoxia or anoxia
can rapidly damage cells, leading to organ or plant
death.Updates in this issue consider how O2 deficiency
is managed through integrated signaling and response
networks that reconfigure gene expression and meta-
bolism and promote changes in anatomy or morphol-
ogy that enhance aeration. These involve both direct
and indirect sensing of changes in cellular O2 homeo-
stasis, with the latter involving the mitochondrion and
both anterograde and retrograde signaling (Schmidt
et al., 2018; Wagner et al., 2018). The low O2 levels
intrinsic to some developmental zones, such as meri-
stems, also guide developmental processes in consort
with light and carbon availability, as described for sea-
sonal progressions in axillary buds (Signorelli et al., 2018).
The Update by Sasidharan et al. (2018) surveys

signatures of gaseous signals (O2, CO2, ethylene, and

nitric oxide), as well as ROS for flooding conditions,
including soil waterlogging and complete submer-
gence. When gas exchange with the atmosphere is
limited, the constitutive production of ethylene en-
sures a robust early signal of coming limitations in O2

as well as CO2. In waterlogged to completely sub-
merged plants, increases in ethylene drive changes in
the anatomy and morphology of root systems that
enhance tissue aeration, including the enhancement
of root aerenchyma in a number of species (Yamauchi
et al., 2018). Once O2 levels fall beyond an undeter-
mined cellular threshold, transcriptional activators of
the group VII subclass of Ethylene Responsive Factors
(ERF-VIIs) that are constitutively synthesized become
stabilized, as reviewed in detail by Giuntoli and Perata
(2018). This is due to a reduction in their conversion
into an N-terminal degron that targets degradation by
the N-end rule pathway of proteolysis (Gibbs et al.,
2011; Licausi et al., 2011). ERF-VIIs activate the tran-
scription of a number of genes, including enzymes of
anaerobic metabolism, regulators of ROS, and plant-
specific PLANT CYSTEINE OXIDASEs. The latter
catalyze the first step in ERF-VII turnover through
oxidation of an evolutionarily conserved N-terminal
Cys to a Cys-sulfonic acid residue (White et al., 2017).
Nitric oxide also is important in the conditional regu-
lation of ERF-VII abundance (Giuntoli and Perata,
2018; Sasidharan et al., 2018; Wagner et al., 2018).
ERF-VIIs, ethylene, and other factors influence physi-

ology and development under flooded conditions. The
role of ERFs in an ethylene-activated developmental
pathway was first shown in rice for the SNORKEL1/2
and SUBMERGENCE1 ERF-VIIs that promote or limit
underwater shoot elongation growth, respectively (Xu
et al., 2006; Hattori et al., 2009). Arabidopsis ERF-VIIs
acting in conjunction with ethylene were shown to limit
the transition from skoto- to photomorphogenesis, aswell
as the opening of the apical hook of seedlings (Abbas
et al., 2015), a trait that could be advantageous in poorly
aerated soil. New research from Eysholdt-Derzsó and
Sauter (2017) demonstrates that auxin-mediated upward
bending of Arabidopsis roots under hypoxia is limited
by the ERF-VII RAP2.12, revealing that they antagonize
the establishment of an auxin gradient. Partially flooded
semiaquatic plants typically develop highly porous
adventitious roots that develop on stems of dicots or at
the stemnode ofmonocots (Yamauchi et al., 2018). These
roots need to be near to the air-water interface to be well
aerated. Remarkably, the young adventitious roots of
partially submerged rice display strong upward growth
due to a change in gravitational setpoint in the dark, but
not in R, FR, or blue light (Lin and Sauter, 2018).
The importance of mitochondrial energy and redox

state in signalingwhenO2 is limiting is comprehensively
discussed by Wagner et al. (2018). Their analysis com-
plements the review by Schmidt et al. (2018) that high-
lights integration of responses toO2 deficiency, including
consequences of mitochondrial electron transport inhi-
bition and ROS release. We are reminded that there are
more than 200 proteins that are putative targets of the
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O2-dependent N-end rule pathway responsible for
ERF-VII turnover and more than 350 O2-dependent
enzymes in Arabidopsis. The critical challenge of deci-
phering cellular dynamics in response to changing O2

tension in a noninvasive manner for cellular and sub-
cellular quantitation is discussed by Schmidt et al. (2018).
The decline in efficiency in ATP production per mol of

Glc under low O2 conditions is counterbalanced by catab-
olism of carbon skeletons. SnRK1-regulated endosperm
starch catabolism is required to promote anaerobic meta-
bolism during germination of rice seeds under extremeO2

deficiency, and management of leaf starch catabolism is
critical to submergence survival (Yu et al., 2015). The
starchless plastidic PHOSPHOGLUCOMUTASE mutant
was used in experiments that demonstrate a requirement
for transitory leaf starch catabolism in submerged
Arabidopsis rosettes that requires the ERF-VIIs but is
independent of SnRK1 (Loreti et al., 2018).

CLOSING REMARKS

The increased understanding of the ability of plants
to dynamically capture, transform, andmanage energy
to maximize growth provides avenues to meet the
critical challenge of increasing yields in highly variable
environments. Already, spatial regulation of T6Pmeta-
bolism has been shown to improve the allocation
of leaf photosynthate to developing kernels of maize
(Zea mays) in varied environments (Nuccio et al., 2015).
Advances based on computational modeling, preci-
sion monitoring, genotype characterization, gene ma-
nipulation, and metabolic engineering will accelerate
progress toward these goals. We look forward to
advancements centered on the plant’s mastery of light
and oxygen to fix carbon into energy to further benefit
humanity.
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