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a b s t r a c t

Macroscopic realism is the thesis that macroscopically observable properties must always have definite
values. The idea was introduced by Leggett and Garg (1985), who wished to show a conflict with the
predictions of quantum theory, by using it to derive an inequality that quantum theory violates. However,
Leggett and Garg's analysis required not just the assumption of macroscopic realism per se, but also that
the observable properties could be measured non-invasively. In recent years there has been increasing
interest in experimental tests of the violation of the Leggett-Garg inequality, but it has remained a matter
of controversy whether this second assumption is a reasonable requirement for a macroscopic realist
view of quantum theory. In a recent critical assessment Maroney and Timpson (2014) identified three
different categories of macroscopic realism, and argued that only the simplest category could be ruled
out by Leggett-Garg inequality violations. Allen, Maroney, and Gogioso (2016) then showed that the
second of these approaches was also incompatible with quantum theory in Hilbert spaces of dimension 4
or higher. However, we show that the distinction introduced by Maroney and Timpson between the
second and third approaches is not noise tolerant, so unfortunately Allen's result, as given, is not directly
empirically testable. In this paper we replace Maroney and Timpson's three categories with a parame-
terization of macroscopic realist models, which can be related to experimental observations in a noise
tolerant way, and recover the original definitions in the noise-free limit. We show how this parame-
terization can be used to experimentally rule out classes of macroscopic realism in Hilbert spaces of
dimension 3 or higher, without any use of the non-invasive measurability assumption. Even for relatively
low precision experiments, this will rule out the original category of macroscopic realism, that is tested
by the Leggett-Garg inequality, while as the precision of the experiments increases, all cases of the
second category and many cases of the third category, will become experimentally ruled out.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of macroscopic realism was introduced by Leggett
and Garg (1985) to focus attention upon an apparent inconsis-
tency between quantum mechanics and our experience of the real
world. Roughly speaking, macroscopic realism maintains that a
macroscopically observable property must always have a definite
value. Therefore the only possible states are ones for which
macroscopic observables take definite values. Leggett and Garg
further argued that this view could be shown to be inconsistent
with observable predictions of quantum theory, by deriving an
rmens).
inequality for the correlations between a sequence of measure-
ments of the macro-observable, that quantum theory could, in
principle, violate.

However, Leggett and Garg's derivation required, in addition to
macroscopic realism, the use of another assumption: that it was
possible, in special cases, to measure the macro-observable non-
invasively. This left open the possibility that a macroscopically
realist interpretation of quantum theory is possible that still vio-
lates the inequality by denying the possibility of non-invasive
measurements.
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In recent years there have been increasingly sophisticated ex-
periments seeking to test the Leggett-Garg inequality violations in
quantum theory.1 These experiments have used a variety of mate-
rials, including superconducting devices, photons, and nuclear and
electron spins in silicon and in diamond, and techniques, including
weak and strong projective measurements, all confirming the
violation. It should be noted that none of these experiments have
actually tested a macroscopically observable property: rather, they
have shown violations of the Leggett-Garg inequality for micro-
scopic quantum observables, and represent a proof of principle that
tests of the inequality are possible. Alongside these tests has been a
revival of discussion of the significance of the choice of macroscopic
realism vs non-invasive measurability.2

In this paper we follow the analysis of Maroney and Timpson,
who identified three types of macroscopic realism, and argued that
experiments violating the Leggett-Garg inequality only ruled out
one, albeit rather natural, type. Allen, Maroney, and Gogioso (2016),
building on earlier work by Allen (2016), then showed problems for
a second type. However, the distinction between this type, and the
third remaining type as introduced byMaroney and Timpson, is not
noise tolerant, and so Allen's result can not be directly subjected to
experimental testing.

Our main concern in this paper is to show how experimental
tests of macroscopic realism are possible without making use of the
non-invasive measurability assumption, and in doing so show that
it is possible to rule out a wider class of models than is possible
using Leggett-Garg inequality violations. We start in Section 2 by
using the ontic models formalism (a general framework used for
classifying realist interpretations of operational theories) to char-
acterize macroscopically realist models for quantum theory. By
looking at the relationship between macroscopic realism and the
eigenvalue-eigenstate link, we will identify the types of macro-
scopic realism discussed by Maroney and Timpson: here called
eigenpreparation mixing models (which are in conflict with
Leggett-Garg inequality violations), eigenpreparation supported
models, and eigenpreparation undermining models. Broadly
speaking, eigenpreparation mixing is equivalent to macroscopic
realism with a strict interpretation of the eigenvalue-eigenstate
link, eigenpreparation support keeps a more generalized form of
the eigenvalue-eigenstate link, and eigenpreparation undermining
models maintain macroscopic realism without a connection to the
link.

In Section 3 we review how eigenpreparation mixing and
eigenpreparation supported models are incompatible with quan-
tum theory for Hilbert spaces with dimension two or more and
three or more respectively, extending the earlier result in (Allen
et al., 2016). However, in Section 4 we show that the distinction
between eigenpreparation supported and eigenpreparation
undermining macroscopic realism needed for this result, is subject
to finite precision loopholes, which means that no experimental
test can directly distinguish them. To address this problem, we
introduce two parameters for characterizing macroscopically
realist models for quantum theory, which qualitatively distinguish
eigenpreparation supported from eigenpreparation undermining
models, and which can be tested against experimental data. With
this parameterization, eigenpreparation mixing models can be
experimentally ruled out, without using assumptions of non-
invasive measurability. Qualitatively eigenpreparation supported
models can also be ruled out, with a larger range of such models
1 (Dressel, Broadbent, Howell, & Jordan, 2011; George et al., 2013; Goggin et al.,
2011; Knee et al., 2012, 2016; Palacios-Laloy et al., 2010; Xu, Li, Zou, & Guo, 2011).

2 (Foster & Elby, 1991; Elby & Foster, 1992; Bacciagaluppi, 2015; Clemente & Koer,
2016; Hess, De Raedt, and Michielsen, 2016; Maroney & Timpson, 2014).
being ruled out as experimental precision increases. For very high
precision measurements only some eigenpreparation undermining
models remain viable, thus providing a generalization of the noise-
free results of Section 3.2 in the limit. Overall, we will show that a
much larger class of macroscopically realist models can be exper-
imentally ruled out than is allowed by Leggett-Garg inequality vi-
olations, and without making any use of the assumption of non-
invasive measurability.
2. Macroscopic realism and the eigenvalue-eigenstate link

Leggett and Garg originally defined macroscopic realism in
terms of the existence of macroscopically distinct states:

A macroscopic system with two or more macroscopically
distinct states available to it will at all times be in one or other of
those states (Leggett & Garg, 1985, p. 857).

Intuitively, however, their idea is that it is certain observable
properties, such as the positions of tables and chairs, that have
definite values at all times. This shifts the focus from macroscopic
states to macroscopic observables. That this shift does not alter the
meaning should be clear: two states will be macroscopically
distinct if, and only if, they assign different values to some
macroscopic observable. But it is non-trivial to make precise why
some observables are macroscopic and others are not.3 What we
are interested in here is a proof of principle about what kinds of
realism about observable properties can be shown to be incom-
patible with quantummechanics. We therefore follow the standard
in the literature and set aside the question of what notion of
macroscopicity is supposed to be captured by the “macro”-part.
Although neither the observables we consider here, nor the ones
that have been experimentally investigated, fit our intuitive notion
of macroscopicity, the results we obtain here do rule out a partic-
ular form of realism about these observables. Whether the results
can then be scaled to more macroscopic observables is for later
concern. That this is theoretically a possibility is almost trivially so,
but whether it is also experimentally possible ultimately relies on
what we can technologically achieve and on the ultimate validity of
quantum mechanics on the macroscopic scale.

A useful way to approach macroscopic realism is via another
idea one often finds in orthodox expositions of quantum me-
chanics: the eigenvalue-eigenstate link. This is the axiom that an
observable for a system has a definite value if and only if the system is
in an eigenstate for that observable. The conjunction of this axiom
with the idea that the macro-observables are always value definite
yields the requirement that a system is always in one of the
eigenstates of a macro-observable. In other words, the observable
imposes a superselection rule: every possible state is a mixture of
eigenstates (i.e., a density operator as opposed to a proper super-
position). This is the type of macroscopic realism that Maroney and
Timpson (2014, x3) attribute to Leggett and Garg (1985), and can be
shown to be ruled out by experimental violations of the Leggett-
Garg inequality.

It is important to note that macroscopic realism per se is not in
conflict with quantum mechanics and so there are principled lim-
itations on what can be shown. A useful example is the de Broglie-
Bohm theory in which all particles have a definite position at all
time.4 If we assume that macroscopic properties supervene on
3 Although there have been several noteworthy attempts to make the notion of
macroscopicity precise. See for example (Yadin & Vedral, 2016) and references
therein.

4 See also (Bacciagaluppi, 2015; Kofler & Brukner, 2013).
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particle configurations, then these always have well-defined values
in this theory. The problem here is that the relationship between
the quantum state of the system and the observable having a def-
inite value in the de Broglie-Bohm theory is different from that in
orthodox quantum theory.

Although invoking the eigenvalue-eigenstate link to analyze
macroscopic realism is a natural idea within the formalism of
quantum mechanics, if one wishes to go beyond this formalism, it
doesn't seem that natural anymore. Because of this it is non-trivial
to tease out to what extent results are specifically about quantum
mechanics, or whether they also have implications beyond quan-
tum mechanics. Here, we aim for results that are more theory-
independent, in the same spirit that violations of Bell-type in-
equalities have implications that carry beyond quantummechanics.
For this we will make use of the ontic models framework
(Spekkens, 2005; Harrigan, Rudolph, and Aaronson, 2007). We rely
on quantummechanics solely for inspiration for experimental tests
of the ideas introduced, similar to its role in devising experiments
in which Bell-type inequalities can be violated.

2.1. Ontic models

To describe experiments in an operational, theory-independent
way, we make use of Prepare-Transform-Measure (PTM) models (see
also (Leifer, 2014,x8)). A PTM model is a triple ðP ;T ;M Þ of three
sets. Elements of P represent possible preparations of the system
and provide an operational state description. Elements of T
represent transformations, i.e., every T2T is a function T : P/P .
And finally, the elements M2M represent measurements. Specif-
ically, with every measurement M is associated a measurable space
ðUM ;SMÞ, with UM the set of possible outcomes for the measure-
ment M, and a rule which assigns to every P2P a probability
measure ℙð : jM; PÞ over ðUM ;SMÞ. We then write

ℙðEjM; T; PÞ ¼ ℙðEjM; TðPÞÞ (1)

to denote the probability of finding an outcome in E upon a mea-
surement M after the system has been prepared according to P and
then transformed according to T.

Quantum mechanics can be used to provide PTM models in a
straightforward way. We can take P to be a set of quantum states,
T a set of unitary operators, and M a set of self-adjoint operators.
The probabilities are then simply given by the Born rule:

ℙðEjA;U; jj〉Þ ¼
D
j
���U�PEAU

���jE; (2)

where PEA is the projection on the subspace spanned by the eigen-
states of A for eigenvalues in E. If we assume the projection
postulate, then the measurement itself also induces a trans-
formation of the system jj > 1PEAjj >. These transformations can
of course be added to T .

To study a particular type of explanation for some feature of a
PTM model, we look at ontic models for the PTM model. An ontic
model consists of a measurable space ðL;SÞ (where L is the set of
ontic states) and a triplet ðP;G;XÞ which serves as the counterpart
for the triplet ðP ;T ;M Þ in the following way:

� P is a set of probability measures on ðL;SÞ such that for every
P2P there is a non-empty subset PP3P of probability
5 For two measurable spaces ðU1;S1Þ; ðU2;S2Þ, a Markov kernel from the first to
the second is a map g : S2 � U1/½0;1� such that for every u12U1 the map
D21gðD2ju1Þ is a probability measure over ðU2;S2Þ and for every D22S2 the map
u11gðD2ju1Þ is a measurable function onðU1;S1Þ.
measures corresponding to P: whenever the system is prepared
according to P, an ontic state is selected according to some
probability measure m2PP .

� G is a set of Markov kernels5 from ðL;SÞ to itself such that for
every transformation T2T there is a non-empty subset GT3G
of Markov kernels corresponding to T: for every g2GT and
m2PP we have mg2PTðPÞ, where mg is defined as

mgðDÞ :¼
Z
L

gðDjlÞ dmðlÞ cD2S: (3)
� X is a set of Markov kernels such that for every measurement
M2M there is a non-empty subset XM3X. Every x2XM is a
Markov kernel from ðL;SÞ to ðUM ;SMÞ such that for every P2P
and m2PP

Z
L

xðEjlÞ dmðlÞ ¼ ℙðEjM; PÞ cE2SM; (4)
� i.e., the ontic model reproduces the predictions of the PTM
model.

In this framework quantum states are associated with prepa-
rations of systems: they give rise to probability distributions over
ontic states instead of necessarily being ontic states themselves. It
is not excluded that quantum states themselves can be ontic states
(in which case their associated probability distribution would
assign probability one to itself). It is just that first and foremost they
correspond to probability distributions over ontic states while we
remain agnostic about what these ontic states themselves are.

For every PTM model one can construct an ontic model in a
trivial way. This is done by setting L ¼ P , P ¼ fdP j P2P g with dP
the Dirac measure peaked at P, G ¼ fgT j T2T g with
gT ðDjPÞ :¼ mTðPÞðDÞ and X ¼ fxM jM2M gwith xMðEjPÞ :¼ ℙðEjM; PÞ.
This indicates that making use of the ontic models framework is
quite a sparse assumption. Indeed, its name is a bit misleading since
there is nothing in the formalism per se that requires one to adopt
an ontological interpretation of the ontic states. There is nothing to
prevent one from interpreting the elements of L as, say, a mathe-
matical representative of the degrees of belief of a rational agent.
However, further constraints thatmay be imposed on themodel are
usually motivated with an ontological interpretation in mind, and
may be artificial if one adopts a different interpretation.

We will note one feature of our use of PTMmodels in this paper.
Despite their usual description as an operational framework, sug-
gesting they can be related to experimental procedures, following
Spekkens (2005) it is common to find discussions of the ‘opera-
tional equivalence’ of certain preparations, transformations or
measurements, particularly on the topic of quantum contextuality.
Such discussions rely on quantifications over all P2P , T2T or
M2M where P , T or M applies to the whole of quantum theory.
Obviously no experimental procedure could ever test all possible
preparations allowed by quantum theory (there is a continuous
infinity of such procedures), so such formulations cannot be related
to actual experimental tests. Here, our intention is to consider
experimental tests of macroscopic realism, for which only a finite
fragment of quantum mechanics (i.e., a finite set of preparations,
transformations and measurements) can be contemplated. We will
discuss some implications of this restriction in Section 5, including
the extent to which it may present loopholes.
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2.2. Macroscopic realism per se

The constraint on ontic models we are concerned with here is
one that aims to capture the idea of macroscopic realism.We follow
Maroney and Timpson (2014) in identifying this as the constraint
that the macro-observable has a definite value at all times, encoded
in the ontic states of the system. Thus, if an observable Q2M is a
macro-observable in the ontic model, we require that

xðEjlÞ2f0;1g cx2XQ ; E2SQ : (5)

Here we have introduced the notational convention to use Q for
measurements of macro-observables. Now, although value defi-
niteness for all ontic states is a necessary requirement for an
observable to be a macro-observable, it is not sufficient. Value
definiteness alone still allows a peculiar form of contextuality.
Depending on the way Q is measured, it may have distinct definite
values when there are Markov kernels x; x02XQ with xsx0. There-
fore, we require that in addition XQ contains precisely one element
denoted xQ .

6 So a measurement Q2M is said to be a macro-
observable in an ontic model if XQ ¼ fxQg and xQ only takes the
values 0 and 1. With macroscopic realism per se we mean nothing
more than that there exists a non-trivial macro-observable.7

2.3. Eigenpreparation mixing models

For the eigenvalue-eigenstate link to appear in this formalism
we need to generalize the idea of eigenstates to eigenpreparations.
A preparation P2P is called an eigenpreparation for a measure-
mentM2M if there is anm2UM such that ℙðmjM; PÞ ¼ 1. Imposing
macroscopic realism by the introduction of a superselection rule
then amounts to the assumption that all possible preparations are
mixtures of eigenpreparations of the macro-observable Q. Thus
preparations correspond to convex combinations of the probability
distributions corresponding to eigenpreparations. For this reason
we say that type of macroscopic realism is eigenpreparation mixing.8

Now consider a PTM model and a macro-observable Q2M with
possible values UQ ¼ fq1;…; qng. An ontic model for the PTM
model is eigenpreparation mixing if every probability measure
m2P can be written as a mixture of probability measures corre-
sponding to eigenpreparations. If there exists such an ontic model,
we will also call the PTM model eigenpreparation mixing.

In terms of the PTM model, we find that eigenpreparation
mixing places severe constraints. Because the probability distri-
butions in the ontic model are required to reproduce the pre-
dictions of the PTM model, the mixing constraint immediately
poses relations on the probability distributions for possible mea-
surements. For example, if we assume that for every qi there is
precisely one eigenpreparation Pqi , we find that every preparation P
can be written as a convex combination

P ¼ l1Pq1 þ…þ lnPqn : (6)

So for every measurement M we have
6 Our definition of macro-observables is similar to the one proposed by Maroney
and Timpson (2016), but is weaker. Maroney and Timpson quantified non-
contextuality over all possible measurements, whereas here, in line with our re-
strictions, we will consider non-contextuality only with respect to measurements
within the finite PTM model. Both can be characterized as “non-contextual value
definiteness for a preferred observable”.

7 A trivial observable would be a measurement that always yields the same
outcome with probability one irrespective of how the system is prepared.

8 Maroney and Timpson (2017) used a more cumbersome terminology. Instead of
eigenpreparations they speak of operational eigenstates, and eigenpreparation
mixing is referred to as operational eigenstate mixture macrorealism.
ℙðmjM; PÞ ¼ l1ℙ
�
m
��M; Pq1

�þ…þ lnℙ
�
m
��M; Pqn

�
(7)

for all m2UM .
The prime example of an eigenpreparation mixing model would

be orthodox quantum theory where macroscopic realism is
enforced by introducing a superselection rule to adhere to the
eigenvalue-eigenstate link. More generally, any PTM model that
satisfies the criteria of Leggett and Garg (macroscopic realism per se
and non-invasive measurability), is eigenpreparation mixing.

To see this, consider a measurement of a macro-observable Q,
with values UQ ¼ fq1;…; qng, on a system prepared according to an
arbitrary preparation P. The post-measurement preparation Pqi is
defined by selecting only those cases when the measurement
produces the outcome qi.

Within the ontic models framework, macroscopic realism im-
plies a partition of the set of ontic states given by

Lqi :¼
�
l2L

�� xQ ðqijlÞ ¼ 1
�
; i ¼ 1;…;n: (8)

If the outcome of the measurement is qi, then the ontic state
before the measurement must have been in the appropriate
partition, l2Lqi . If the measurement is non-invasive, i.e., does not
affect the ontic state of the system, then the post-measurement
ontic state is still in that partition. It follows that the post-
measurement preparation Pqi is an eigenpreparation of Q with
value qi. As each post-measurement outcome occurs with proba-
bility ℙðqijQ ; PÞ, the non-selective post-measurement preparation is
just:

PQ ¼
Xn
i¼1

ℙðqijQ ; PÞPqi ; (9)

But, again, the measurement was non-invasive, so P ¼ PQ ,
which implies that the arbitrary preparation P is eigenpreparation
mixing. Consequently, any test that rules out eigenpreparation
mixing models, rules out Leggett Garg type macroscopic realism as
well.

Note there is a related proof, that if an observable can be
measured non-invasively and repeatably, then eigenpreparation
mixing must hold. If the measurement is repeatable, so that if it is
performed twice in rapid succession the same outcome always
occurs both times, then it is straightforward that the post-
measurement preparation Pqi must be an eigenpreparation of Q
with value qi. Combined with non-invasive measurability, eigen-
preparation mixing follows as above. A form of this related proof
appears in Clemente and Kofler (2015), as a proof of macroscopic
realism per se from non-invasive measurability alone. However,
they do not appear to notice that the repeatability assumption,
while a standard assumption within quantum theory, does not
follow fromnon-invasivemeasurability unlessmacroscopic realism
has been presupposed.
2.4. Eigenpreparation supported and undermining models

Eigenpreparation mixing is a stronger assumption than is
needed, if the aim is to preserve the flavor of the eigenvalue-
eigenstate link. In the ontic models formalism it is the ontic state
that gives the macroscopic observable a definite value, not the
preparation. In fact, it is not clear what it means for a system to be
in an eigenpreparation. Instead, we should refer to the set of ontic
states that may obtain given a particular preparation.

If the model is eigenpreparation mixing, it can be seen to satisfy
the following weaker constraint:
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The observable Q has the value q if and only if the ontic state of the
system could have been obtained by an eigenpreparation with
value q.

We call this the generalized eigenvalue-eigenstate link. Com-
bined with macroscopic realism it implies that the eigenprepa-
rations determine the full set of possible ontic states. However, we
now find that a superselection rule is a more draconian measure
than needed to maintain the generalized eigenvalue-eigenstate
link, and the resulting restriction to eigenpreparation mixing
models is too narrow. The link does not require that preparations
can be written as mixtures of eigenpreparations, but merely that
the supports of the corresponding probability distributions are
subsets of the union of the supports of all the eigenpreparations.
This is still a non-trivial constraint, and we call an ontic model that
satisfies this type of macroscopic realism eigenpreparation sup-
ported. If the model does not satisfy it, we say it is eigenprepara-
tion undermining.9 Analogously, we say that a PTM model is
eigenpreparation supported if it admits an eigenpreparation
supported ontic model and we say that the PTM model is eigen-
preparation undermining if it does not admit an eigenpreparation
supported ontic model.

It is worthwhile to elaborate a bit more on these definitions. As
noted above, macroscopic realism about Q partitions the ontic state
space into the sets Lq. Given an eigenpreparation Pq, it is a
requirement that every probability measure m2PPq assigns prob-
ability 1 to the set Lq. Thus we trivially have one half of the
generalized eigenvalue-eigenstate link: if the system is prepared
according to an eigenpreparation, then Q has a corresponding
definite value. The converse of this conditional is obviously not
true: Q always has a definite value, but not all preparations need be
eigenpreparations. But one can still wonder if, given a particular
ontic state l2Lq the system could have been prepared according to
some eigenpreparation Pq. The generalized eigenvalue-eigenstate
link states that this must indeed be so, and rules out the exis-
tence of ontic states that can only arise in other preparations. In
other words, if a set of ontic states has probability zero for all
eigenpreparations, then it should have probability zero for all
preparations, i.e.,

cD2S : mðDÞ ¼ 0c m2Pq;c q2UQ0mðDÞ
¼ 0c m2PP ;c P2P : (10)

If we assume a background measure over ðL;SÞ with respect to
which all probability distributions have a density, then there is a
convenient way to reformulate this idea. For a probability measure
m let fm denote its density.10 The support is defined as

supp fm :¼
n
l2L

��� fmðlÞ>0
o
: (11)

Eigenpreparation support now translates to the claim that every
ontic state should be in the support of some density function for
some eigenpreparation, i.e.,

c P2P ;c n2PP : supp fn3 ∪
q2UQ

∪
m2Pq

suppfm: (12)

In Fig. 1 some useful illustrations are given to clarify the
9 In (Maroney & Timpson, 2014), these versions of macroscopic realism are called
“operational eigenstate support macrorealism” and “supra eigenstate support
macrorealism” respectively.
10 We gloss here over the detail that fm is only determined up to a measure zero
set. The reformulation in terms of densities mainly serves to paint a picture, and we
expect readers with qualms about technical details to fill them in themselves.
definitions. Here we zoom in on the set of ontic states Lq, which
assign the value q to Q. Note that, by definition, the dichotomy
eigenpreparation supported/undermining is exhaustive. The
distributions in Fig. 1a and b are eigenpreparation supported
while the distributions in Fig. 1c and d are eigenpreparation
undermining. The eigenpreparation mixing models are just
special cases of the eigenpreparation supported models. But they
have to adhere to the additional constraint that f MP is just a
scaled version of fq on Lq. On the other extreme end there are
models for which the supports are completely disjoint as in
Fig. 1d. This is the case for j-ontic models, since having disjoint
supports is precisely what it means for a model to be j-ontic
(Leifer, 2014).

An example of an eigenpreparation supportedmodel is the qubit
model of Kochen and Specker Kochen and Specker (1967, see also
(Leifer, 2014,x4.3)). The de Broglie-Bohm theory, being j-ontic, is an
example of an eigenpreparation undermining macro-realist theory.
3. Quantum theory and eigenpreparation support

It is now well understood that macroscopic realism with non-
invasive measurability is in conflict with quantum theory. Given
the close connection to eigenpreparation mixing models, it should
come as no surprise that this type of macroscopic realism is also in
conflict with quantum theory. However, the details are not entirely
trivial and therefore we clarify them in section 3.1.

It is less known that eigenpreparation supportedmodels are also
in conflict with quantummechanics. This was shown by Allen et al.
(2016) for quantum systems with Hilbert spaces of dimension
greater than 3. In section 3.2 we show that this also applies to 3-
dimensional Hilbert spaces.
3.1. Quantum mechanics cannot be eigenpreparation mixing

Eigenpreparation mixing models can easily be seen to be at
odds with quantum mechanical predictions, using the double slit
experiment (see also x10 in the prepreint version of (Maroney &
Timpson, 2014)). If we assume that there is always a fact of the
matter considering which slit the particle goes through (i.e. as-
sume it is a macro-observable) we find a tension with eigenpre-
paration mixing models. We can consider the experiment with
either of the slits closed to be an eigenpreparation for states in
which the particle goes through the open slit. The measurement
M in (7) can be taken to be the measurement of the position
where the particle hits the screen. The interference pattern we
observe with both slits open is famously not a convex sum of the
two patterns with one slit closed. Hence, the preparation with two
slits open is not a convex combination of the two
eigenpreparations.

It is worthwhile to delve a bit more into eigenpreparation
mixing models to elucidate their relation to the Leggett-Garg
inequality. Consider again a macro-observable Q with possible
values UQ ¼ fq1;…; qng. For an eigenpreparation Pqi , the set of
corresponding probability distributions is given byPPqi

. Now letPqi

denote the union of all PPqi
with Pqi an eigenpreparation for the

value qi. An eigenpreparation mixing model now requires that for
every preparation P2P , the set PP lies within the convex hull of
∪n
i¼1Pqi . As noted above, this leads to non-trivial constraints for the

PTM model. But the situation becomes even more troublesome
when transformations are in play. As an example consider a PTM
model with macro-observable Q with UQ ¼ f�1;1g (as in the
Leggett-Garg setting). Suppose for each of the values for Q there is
only one eigenpreparation. Eigenpreparation mixing now implies



Fig. 1. Schematic representation of some ontic models. In each figure the density for an eigenpreparation (fq) and for an arbitrary preparation (fP) are drawn, restricted to the set of
ontic states where Q ¼ q. The models in 1a and 1b are eigenpreparation supported, while the other two are eigenpreparation undermining.
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that for every preparation P and every probability measure mP2PP

there are measures m�2P�1;mþ2Pþ1 such that

mP ¼ l�P m� þ lþP mþ; (13)

for some positive reals l�P ; l
þ
P that satisfy l�P þ lþP ¼ 1.

Now consider any transformation T and let gT2GT . We then
have for any measurement M and E2SM that
ℙðEjM; T; PÞ ¼
Z
L

Z
L

xMðEjlÞgT
�
dl
��l0� dmPðlÞ

¼
Z
L

Z
L

xMðEjlÞgT
�
dl
��l0�l�P dm�ðlÞ þ

Z
L

Z
L

xMðEjlÞgT
�
dl
��l0�lþP dmþðlÞ

¼ l�P ℙðEjM; T ; P�Þ þ lþP ℙðEjM; T ; PþÞ:

(14)
It then follows that if two transformations T1; T2 have the same
action on all the eigenpreparations, theymust have the same action
on all preparations. That is,

T1ðP�Þ ¼ T2ðP�Þ; T1ðPþÞ ¼ T2ðPþÞ0T1 ¼ T2: (15)

In the special case that TðP�Þ ¼ P� and TðPþÞ ¼ Pþ we find that
TðPÞ ¼ P for all P. So eigenpreparation mixing implies that, if the
effect of a measurement (understood as a transformation) is non-
invasive for eigenpreparations, it is non-invasive tout court. How-
ever, we know that in quantum mechanics this does not hold. If a
system is prepared in an eigenstate for Q, then a measurement of Q
does not alter the state. On the other hand, if the system is prepared
in a superposition, then a measurement causes the system to go
into one of the eigenstates. Leggett-Garg tests utilize this feature of
quantum mechanics, and so can be used to rule out eigenprepa-
ration mixing models.11
3.2. Quantum mechanics is eigenpreparation undermining

In Section 2 three types of macroscopic realism have been
introduced: eigenpreparation mixing, eigenpreparation supported,
and eigenpreparation undermining. The first is incompatible with
quantum mechanics while the third is compatible with quantum
mechanics. Whether quantum mechanics is eigenpreparation
11 See also (Kofler & Brukner, 2013; Knee et al., 2016). Another example of this
feature is the three box paradox (Maroney, 2017).
supported has been an open question until quite recently. Maroney
and Timpson (2014) noted that, for 2-dimensional systems, the
model introduced by Kochen and Specker (1967) serves as an
example of an eigenpreparation supported model, while Allen et al.
(2017) showed that no suchmodel exists if the dimension is greater
than 3.

In this section we give a simplified sketch of a proof to show
how even in the 3-dimensional case quantum mechanics does not
admit an eigenpreparation supported model. The theorem pre-
sented here can be obtained rigorously as a special case of Theorem
2 in section 4.3, for which a detailed proof is given in the appendix.

We proceed in two steps. First we establish a constraint on
eigenpreparation supported PTM models for systems with mea-
surements with at least three distinct outcomes. Second, we pro-
vide an example of a quantum PTM model that violates the
constraint derived in Theorem 1.

Theorem 1. Let ðP ;T ;M Þ be a PTM model with macro-observable
Q with possible measurement outcomes fq1; q2; q3g, a second
observable A with possible measurement outcomes fa1; a2; a3g,
eigenpreparation Pq1 and transformation T such that

ℙ
�
a2
��A; Pq1� ¼ 0; (16a)

ℙ
�
a3
��A; T ; Pq1� ¼ ℙ

�
q3
��Q ; T; Pq1

� ¼ 0: (16b)

If an eigenpreparation supported model exists, and Pq1 is the only
eigenpreparation for q1, then every preparation P2P must satisfy

ℙðq1jQ ; PÞ � ℙðq2jQ ; T ; PÞ þ ℙða1jA; T; PÞ: (17)

Proof sketch. To simplify the proof we will make an additional
assumption that the ontic model is also value definite for the
observable A (this assumption is not required for the general proof
given in the appendix). The ontic state space can then be parti-
tioned into sets of the form Lqi∩Laj where Q has the value qi and A
has the value aj. In this case, every probability measure m on the
ontic state space gives rise to a probability distribution over the
pairs of values ðqi; ajÞ for the observables Q ;A. This distribution can
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be neatly summarized in a table:
(18)

12 The density functions are defined with respect to a suitably chosen background
measure. Here, and throughout the remainder of this paper, this background
measure is suppressed in our notation of the integral.
Here the pi’s denote the probabilities for the set of states with
the specified values for Q and A, e.g. p4 ¼ mðLq2∩La1 Þ.

From (16a) we conclude that for any measure m2PPq1
we have

that all the pi are zero except for p1 and p3. Eigenpreparation
support then requires that

Lq1∩La2 ¼ ∅: (19)

Then p2 ¼ 0 for arbitrary preparations. From (16b) we derive
that for all m2PTðPq1 Þ we have

p3 ¼ p6 ¼ p7 ¼ p8 ¼ p9 ¼ 0: (20)

Now, let g2GT and for any two subsets of ontic states D1;D2 let

D1 1
g
D2 denote the set of states in D1 that have a finite probability

of ending up in D2 under g, i.e.,

D1 1
g
D2 :¼ fl2D1 j gðD2jlÞ>0g: (21)

Now eigenpreparation support requires that, for any g2GT , all
the ontic states in Lq1 must evolve to states that are compatible
with the predictions of TðPq1 Þ. This implies that

�
Lq1∩La1

�
1
g
La3 ¼ ∅;

�
Lq1∩La3

�
1
g
La3 ¼ ∅;�

Lq1∩La1
�
1
g
Lq3 ¼ ∅;

�
Lq1∩La3

�
1
g
Lq3 ¼ ∅:

(22)

Making use of (19), we can now conclude that all the ontic states
inLq1 evolve to states inLq2∪La1 under the transformationT, that is,

g
�
Lq2∪La1 jl

� ¼ 1 cl2Lq1 : (23)

From this (17) follows.
So we see that for eigenpreparation supported models there are

non-trivial constraints on the evolution of ontic states. Quantum
mechanics gives predictions that can violate (17). For the two ob-
servables we take

Q ¼
X3
i¼1

qi
��qi��qi��;A ¼

X3
i¼1

ai
��ai��ai��; (24)

with

jq1i ¼

0
BB@

1

0

0

1
CCA; jq2i ¼

0
BB@

0

1

0

1
CCA; jq3i ¼

0
BB@

0

0

1

1
CCA;

ja1i ¼
1
6

ffiffiffi
6

p
0
BB@

2

1

�1

1
CCA; ja2i ¼

1
2

ffiffiffi
2

p
0
BB@

0

1

1

1
CCA; ja3i ¼

1
3

ffiffiffi
3

p
0
BB@

�1

1

�1

1
CCA:

(25)

We then obtain a violation when the preparation jj〉 and
transformation U are given by
U ¼

0
BBBBB@

1
2

ffiffiffi
2

p 1
2

ffiffiffi
2

p
0

1
2

ffiffiffi
2

p
�1
2

ffiffiffi
2

p
0

0 0 1

1
CCCCCA; jj >¼ 1

10

ffiffiffiffiffiffi
10

p
0
@ 1

1
2
ffiffiffi
2

p

1
A; Ujj >

¼ 1
10

ffiffiffi
5

p
0
@2

0
4

1
A:

(26)

It is easy to check that (16) is satisfied and for the probabilities in
(17) we have

���q2��Uj���2 ¼ ���a1��Uj���2 ¼ 0;while
���q1��j���2 ¼ 1

10
>0: (27)

This demonstrates that eigenpreparation support is in conflict
with quantum theory in Hilbert spaces of dimension 3 or more. As
the Kochen-Specker model provides a constructive example of an
eigenpreparation supported model for 2 dimensional Hilbert
spaces, Theorem 1 closes the logical gap between Kochen-Specker
and Allen, Maroney and Gogioso.
4. Noise tolerance and eigenpreparation support

In Section 3 we showed that quantum theory must be eigen-
preparation undermining, in all Hilbert spaces of dimension greater
than two. In this Section, we will show that, unfortunately, this
proof rests on a distinction between eigenpreparation support and
eigenpreparation undermining that is not noise tolerant. The proof
uses probabilities which are assumed to be zero (16). Such an
assumption cannot be verified experimentally. At best one can
confirm that these probabilities are small, but the proof really re-
quires them to be zero. Worse, we can show that for any finite value
of these probabilities, one can devise eigenpreparation supported
models that can reproduce the predictions of quantum mechanics.

We will therefore introduce a new way of characterizing eigen-
preparation support and eigenpreparation undermining models,
ða; bÞ-support, that captures the qualitative features of these two
types of macroscopic realism in a noise-tolerant way. In our main
result,wewill then showhowexperimentally testablepredictions of
quantum theory are at odds with all qualitatively eigenpreparation
supported models, in Hilbert spaces of dimension greater than 2.
4.1. Robustness of the supported/undermining distinction

As noted above, Theorem 1 relies on an assumption that cannot
be verified experimentally. This is just a symptom of a deeper
problem, namely, that the distinction between eigenpreparation
supported and eigenpreparation undermining is not noise-tolerant.
The reason is that the notion of eigenpreparation support implicitly
relies on the use of the asymmetric overlap between preparations,
which is not robust. For two probability measures m; n on ðL;SÞ the
asymmetric overlap is defined as

6ðnjmÞ :¼ inffmðDÞ j D2S; nðDÞ ¼ 1g: (28)

Or, in terms of the corresponding density functions,12



Fig. 2. Schematic representation of some ontic models. In each figure the density for
an eigenpreparation (fq) and for an arbitrary preparation (fP) are drawn, restricted to
the set of ontic states where Q ¼ q. The colored area corresponds to the asymmetric
overlap. The models in 2a and 2d are eigenpreparation supported, while the other two
are eigenpreparation undermining.
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6


fn
���fm� :¼

Z
supp fn

fmðlÞ dl: (29)

If we assume that Pq is convex, then eigenpreparation support
results in the criterion that

sup
mq2Pq

6


mq

���mP� ¼ ℙðqjQ ; PÞ (30)

for all q2UQ , mP2PP , and P2P .
Fig. 2 provides a good illustration of the problems with the

asymmetric overlap. In this figure we again zoom in on Lq. The
distributions in Fig. 2a are in accordance with eigenpreparation

support: the asymmetric overlap 6ðfq
���f SP Þ equals the appropriate

probability. The distributions in Fig. 2b, on the other hand, are
eigenpreparation undermining: the support of f UP extends beyond
the support of fq. However, by slightly modifying the model
depicted in Fig. 2b, it can bemade eigenpreparation supported. This
is done by replacing fq with

fq
0 :¼ ð1� εÞfq þ ε

ℙðqjQ ; PÞf
U
P ; (31)

as in Fig. 2d. If ε is small enough, the distributions fq and fq
0 are

experimentally indiscernible. Consequently, for any eigenprepara-
tion undermining model and any finite precision of measurements,
we can construct a modified model that is eigenpreparation sup-
ported and experimentally indiscernible from the original model.
Conversely, every preparation supported model can be modified to
obtain a preparation undermining model by slightly adjusting the
distribution f SP as in Fig. 2c where we have replaced it with
f S
0

P :¼ ð1� εÞf SP þ εf UP : (32)

These considerations show that there is no way to experimen-
tally rule out eigenpreparation supported models. But they also
suggest that the distinction between eigenpreparation supported
and undermining models wasn't formalized in an operationally
meaningful way. Just by looking at Fig. 2 it is not difficult to
convince oneself that the explanations provided for observed
phenomena by the ontological model in Fig. 2c will be almost
identical to those provided by the model in Fig. 2a. While Fig. 2c is,
strictly, an eigenpreparation undermining model, it is, qualitatively,
almost an eigenpreparation supported model. Similarly the model
in Fig. 2d is, strictly, eigenpreparation supported, but its explana-
tion for observed phenomena will have more in common with
Fig. 2b. It is, qualitatively, almost eigenpreparation undermining. So
wewish to draw a distinction between eigenpreparation supported
and undermining models that is based on a matter of gradation
between the qualitative features of the models, rather than an all-
or-nothing case. The goal is to make this idea precise in away that is
noise-tolerant, which is what we do in the next section.
4.2. ða; bÞ-supported models

We now introduce our two parameter characterization of ontic
models, which will allow us to draw our noise-tolerant distinction
between the qualitative features of such models which make them
eigenpreparation supported or undermining.We start by looking at
noise-tolerance.

As noted in the previous section, the problem of the robustness
of the eigenpreparation supported/undermining distinction can be
traced back to its reliance on the asymmetric overlap. An intuitive
suggestion then is to switch from the asymmetric overlap to the
symmetric overlap, which is noise-tolerant. For two positive
measurable functions f ; g the symmetric overlap is defined as

uðf ; gÞ :¼
Z
L

minðf ðlÞ; gðlÞÞ dl: (33)

When f and g are densities for two probability measures mf and
mg , the symmetric overlap can be written as

uðf ; gÞ ¼ 1� sup
D2S

����mf ðDÞ � mgðDÞ
���� ¼ 1� 1

2

Z
L

����f ðlÞ � gðlÞ
���� dl:

(34)

Operationally this has awell known and robust interpretation: if
a system is prepared using one of the two preparation procedures,
but one doesn't know which, then the best guess possible as to
which procedure was used cannot succeed with a probability
higher than 1� 1

2uðf ; gÞ.
Unfortunately, just switching to the symmetric overlap tells us

little about whether a model is more eigenpreparation supported
or more eigenpreparation undermining. Fig. 2 reflects this: in 2a
and 2b the symmetric overlap is of the same order even though
they are supposed to be prime examples of the two types of
macroscopic realism. The problem is that we do not care about the
size of the symmetric overlap, per se, but rather about the way the
density for the preparation deviates in shape from the
eigenpreparation.

To make this idea precise, we return to the case of eigenprepa-
ration mixing (Fig. 1a). In the simple case where for every value of Q
there is precisely one eigenpreparation, and only one correspond-
ing probability distribution in the ontic model, we can write



Fig. 3. Plots for the symmetric overlap as a function of a for the distributions from
Fig. 2. Although for all the eigenpreparation supported models the overlap tends to-
wards the maximum value ℙðqjQ ; PÞ, this is at a very slow rate for the qualitatively
eigenpreparation undermining distribution with fq

0 . For the qualitatively eigenprepa-
ration supported model with f S

0
P on the other hand, the graph tends quite rapidly to its

maximum value which is just below ℙðqjQ ; PÞ.
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fP ¼ ℙðq1jQ ; PÞfq1 þ…þ ℙðqnjQ ; PÞfqn : (35)

This is equivalent to the criterion that

u


fP ; ℙðqijQ ; PÞfqi

�
¼ ℙðqijQ ; PÞ (36)

for all qi.
Essentially, (36) tells us that eigenpreparation mixing means

that fP is shaped like fqi on Lqi for every i. A violation of eigenpre-
paration mixing can thus be understood as a deviation from the
shape of fqi . Possible deviations can be classified in two categories
corresponding to the two other types of macroscopic realism. We
will identify two parameters a and b to characterize how much a
given fP deviates in either of these two directions from the eigen-
preparation mixing shape.

First we look at eigenpreparation support. For an eigenprepa-
ration supported model (36) will not hold in general. However we
can still find numbers ai such that

u


fP ; aifqi

�
¼ ℙðqijQ ; PÞ; (37)

but nowwith
P
i
ai >1. If we take these ai’s as small as possible, then

we can take a ¼ maxfa1;…; ang as a measure for how much the
model deviates from eigenpreparation mixing in the eigenprepa-
ration support direction. In the limit where we allow a to go to
infinity, we find that all eigenpreparation supported models can be
understood as such deviations from eigenpreparation mixing. This
is because we have the following general relation between the
symmetric and the asymmetric overlap:

lim
a/∞

u


fP ;afq

�
¼ 6



fq
���fP�: (38)

The original definition for eigenpreparation support was that
the right hand side of (38) equals ℙðqijQ ; PÞ. On the new reading we
use the left hand side of (38) and eigenpreparation support corre-
sponds to a finite value of a for which the equation

u


fP ;afq

�
¼ ℙðqjQ ; PÞ (39)

holds for all q.
Now we look at eigenpreparation undermining models. These

can be understood as a deviation from eigenpreparation mixing
where the shape of fP is altered by extending its domain beyond the

support of fq. Now this will leave uðfP ; fqÞ � 6ðfq
���fPÞ< ℙðqjQ ; PÞ, due

to the support of fP that now lies outside the support of fqi . How-
ever, while scaling fq up to afq will eventually achieve
uðfP ;afqÞ ¼ 6ðafq

��fPÞ, this will not change the value of the asym-
metric overlap, as the supports of fq and afq are identical. There will
remain a part of the support of fP which lies outside the support of
fqi .

There will, however, always exist numbers bi such that

u


fP ; fqi

�
þ bi ¼ ℙðqijQ ; PÞ (40)

If we take b ¼ maxfb1;…; bng, the deviation of eigenpreparation
undermining models can be quantified in terms of the parameter b
such that

u


fP ; fq

�
þ b � ℙðqjQ ; PÞ: (41)

holds for all q.
Equations (38) and (40) can be combined to give a more quali-
tative understanding of eigenpreparation supported and mixing
models. For any model, there always exist a and b such that

u


fP ;afq

�
þ b � ℙðqjQ ; PÞ (42)

for all q. (Indeed, the inequality holds trivially for the choice b ¼ 1.)
Formally we introduce the following definition.

Definition 1. Given an ontic model for a PTM model with macro-
observable Q, preparation P and constants a2½0;∞Þ, b2½0;1�, we
say that P is ða; bÞ-supported on Lq for some q2UQ if

sup
fq2Pq

u


fP ;afq

�
þ b � ℙðqjQ ; PÞ c fP2PP : (43)

If every preparation is ða; bÞ-supported for all q2UQ we say that
the ontic model is ða; bÞ-supported. A PTM model is called
ða; bÞ-supported if it admits an ða; bÞ-supported ontic model.

Nowwe look at the behavior of eigenpreparation supported and
eigenpreparation undermining models in terms of ða; bÞ-support.
We focus, as usual, upon a single outcome q with eigenpreparation
fq and we introduce the concept of ða;bÞ-support curves. The
ða; bÞ-support curve for a preparation P is simply the modified
overlap uðfP ;afqÞ viewed as a function of a. When a ¼ 0, the
modified overlap uðfP ;afqÞ ¼ 0 and so b � ℙðqjQ ; PÞ. As a is allowed
to increase, b is able to fall. At some point, however, uðfP ;afqÞ rea-
ches a maximum, and b reaches its lowest value. For eigenprepa-
ration supported models, this value of b ¼ 0.

These considerations are reflected in Fig. 3. Here we have
plotted the ða; bÞ-support curves for each of the functions from
Fig. 2 as well as for the eigenpreparation mixing model (the j-ontic
case is left out because for such models uðfP ;afqÞ ¼ 0 for all values
of a).

Next we look at the models in Fig. 2c and d, as a and b vary. In
the case of Fig. 2c, as a is allowed to increase, bwill fall in much the
same manner as for Fig. 2a. Only as the modified overlap ap-
proaches ℙðqjQ ; PÞ will any significant difference arise: Fig. 2c will
reach aminimum b value that is just above zero. By contrast, Fig. 2d
will initially behave much the same as Fig. 2b. Only when a gets
large, and b approaches its minimum value for Fig. 2b, will a dif-
ference appear: for the model in Fig. 2d, b will continue to fall
slowly, as a rises.
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We now see a clear qualitative similarity between Fig. 2a and c,
that is not shared with Fig. 2b and d: b can reach relatively small
values, for relatively small values of a. While b can become small for
Fig. 2d, it can only do so for quite large values of a (and for Fig. 2b
not at all). It is this feature that captures the qualitative properties
of the models more meaningfully than the question of whether b
can, for some sufficiently large value of a, actually reach zero.

Broadly, a qualitatively eigenpreparation undermining model is
one in which there is some region D of the ontic state space, for
which mqðDÞ is very small, but mPðDÞ is not small. In this case there is
a significant region of the support of fP where fq is much smaller
than fP . This requires a large a scaling up of fq to rise above fP , so b

cannot fall to low values until a has risen to large values. In the case
of strict eigenpreparation undermining models, fq ¼ 0 for this re-
gion and no a scaling will ever succeed to make b ¼ 0.

By contrast, in qualitatively eigenpreparation supported models,
every region D for which mqðDÞ is small, must also have mPðDÞ as
small. There is then nowhere that fP is significantly larger than fq.
Such models can still be strictly eigenpreparation undermining
when there is a region for which mPðDÞ is small and mqðDÞ ¼ 0.
However, as mPðDÞ is now small, scaling up mqðDÞ by a does not miss
very much of the support of fP , and only a small value of b is
required to compensate.

What is important to both types of models is not whether
mqðDÞ ¼ 0 or is just very small, which is not robust against small
changes in the model: it is whether the corresponding value of
mPðDÞ is small or large, which is robust against small changes. Put in
its simplest terms, then, a qualitatively eigenpreparation supported
model is one which can be ða; bÞ-supported, with both a and b

remaining relatively low. A qualitatively eigenpreparation under-
mining model is one where b cannot become small without a

becoming large, if at all.
We may regard this notion as a further weakening of the

generalized eigenvalue-eigenstate link. This link requires that if the
observable has a definite value, then the ontic state lies in the
support of an eigenpreparation. The qualitatively weakened notion
requires only that no region of the ontic state space D, assigning a
definite value to the observable, can be prepared with mPðDÞ large,
unless mqðDÞ is also large for some eigenpreparation q of the
observable Q. Qualitatively eigenpreparation supported models
satisfy this further weakened link, while qualitatively eigenprepa-
tion undermining models do not.

Before moving on, a few formal remarks about Definition 1 are
in order. We have introduced the supremum over all densities inPq

to account for the possibility of multiple eigenpreparations for q.
One can imagine that there are two densities f 1q and f 2q such that

u


f 1q ; f

2
q

�
¼ u



f 1q ; fP

�
¼ 0;while u



f 2q ; fP

�
¼ ℙðqjQ ; PÞ: (44)

In the quantum case, for example, this may happen whenever
the eigenvalue q is degenerate. Even though uðf 1q ; fPÞ ¼ 0, we still
think of this case as eigenpreparation supported, and taking the
supremum in (43) takes care of this.13

Second, note that, if an ontic model is ða; bÞ-supported, then it is
also ða0; b0Þ-supported whenever a0 � a and b0 � b. In fact, an ontic
model does not give rise to unique values of a and b for which it is
13 We implicitly assume here that Pq is convex. To see this, consider the case
where uðf 1q ; f 2q Þ ¼ 0 and uðf 1q ; fPÞ ¼ uðf 2q ; fPÞ ¼ 1

2 ℙðqjQ ; PÞ. This also suggests eigen-
preparation support, but we see that if f 1q and f 2q are the only two distributions in
Pq , we need b � 1

2 ℙðqjQ ; PÞ. But if we allow convex combinations, we may have
b ¼ 0.
ða; bÞ-supported, but rather gives rise to a region of pairs in the
parameter space ½0;∞Þ. This region is never empty since every
macroscopic realist ontic model is ða;1Þ-supported for all values of
a. When restricting attention to a single preparation we can use
Fig. 3 to gain some more insight. For any a2½0;∞Þ we find that the
preparation P is ða; bÞ-supported on Lq if and only if
b � ℙðqjQ ; PÞ � uðfP ;afqÞ.

Finally, if the model is ða;0Þ-supported for some value of a, then
it follows that the model is eigenpreparation supported.
Conversely, we see that if the model is eigenpreparation supported
and fP is bounded, then there is always an a such that the model is
ða;0Þ-supported. The requirement that fP is bounded is a
misleading formality though. After all, whether it is bounded or not
depends on the choice of the backgroundmeasure, but whether the
model is ða; bÞ-supported or not does not depend on this choice.
Thus, without loss of generality, we may always assume that fP is
bounded (possibly by changing the backgroundmeasure), and then
we recover the statement that the model is ða;0Þ-supported for
some value of a if and only if the model is eigenpreparation
supported.
4.3. Constraints on a and b

To rule out ða; bÞ-support for a given pair ða; bÞ, it suffices to
focus on a finite fragment of quantum mechanics containing a
particular preparation P (associated with a quantum state), and
show that any ontic model in which P is ða;bÞ-supported makes
predictions that contradict the quantum mechanical predictions.
This is actually similar to the case of eigenpreparation support.
Indeed, Theorem 1 only made use of the assumption that the
support of fP is a subset of the supports of the fq’s. So it also rules out
eigenpreparation undermining models as long as they behave as
eigenpreparation supported models for the preparation P.

As noted in the previous section, if an ontic model is
ða; bÞ-supported with b ¼ 0, then it is eigenpreparation supported.
In section 3.2 we demonstrated that such models must satisfy an
inequality that is significantly violated by quantum mechanics. It is
therefore not surprising that quantum mechanics poses further
constraints on the possibility of models that are ða; bÞ-supported
with positive values of b. In fact, Theorem 1 can be generalized to
incorporate the notion of ða;bÞ-support, leading to the following
theorem:

Theorem 2. Let ðP ;T ;M Þ be a PTM model with two measurements
Q ;A2M with each three possible measurement outcomes fq1; q2; q3g,
fa1; a2; a3g and a single eigenpreparation Pq1 for the value q1. Let
P2P be any preparation. For any pair ða; bÞ2½0;∞Þ, if there exists an
ontic model for which P is ða; bÞ-supported on Lq1 , then for any
transformation T2T the following inequality holds:

ℙðq1jQ ; PÞ � ℙðq2jQ ; T ; PÞ � ℙða1jA; T ; PÞ
� a

�
ℙ
�
a2
��A; Pq1�þ ℙ

�
a3
��A; T; Pq1�þ ℙ

�
q3
��Q ; T ; Pq1

��þ b:

(45)

The proof for this theorem can be found in the appendix.
Theorem 1 is recovered as a special case by assuming that

ℙ
�
a2
��A; Pq1� ¼ ℙ

�
a3
��A; T ; Pq1� ¼ ℙ

�
q3
��Q ; T ; Pq1

� ¼ 0 (46)

and setting b ¼ 0. The inequality (45) then reduces to (17) and the
notion of ða; bÞ-support reduces to eigenpreparation support.

Even if we were to take (46) for granted, we find that this the-
orem improves on Theorem 1. This can be seen as follows. Theorem
1 can be paraphrased as the claim that, if a PTMmodel predicts that



R. Hermens, O.J.E. Maroney / Studies in History and Philosophy of Modern Physics 63 (2018) 50e6460
ℙðq1jQ ; PÞ>ℙðq2jQ ; T ; PÞ þ ℙða1jA; T ; PÞ; (47)

then there does not exist an eigenpreparation supported ontic
f Q1 ðPÞ � f Q2 ðTðPÞÞ � f A1 ðTðPÞÞ ¼ ba þ u


fP ;afq1

�
� f Q2 ðTðPÞÞ � f A1 ðTðPÞÞ

> ba þ a


f A2
�
Pq1
�þ f A3

�
T
�
Pq1
��þ f Q3

�
T
�
Pq1
���

:
(50)
model for the PTMmodel. In the new language, this is equivalent to
the claim that there does not exist an ða;0Þ-supported ontic model.
From Theorem 2 we can now further conclude that all ða;bÞ-sup-
ported ontic models are ruled out with

b< ℙðq1jQ ; PÞ � ℙðq2jQ ; T ; PÞ � ℙða1jA; T ; PÞ (48)

if the PTM model predicts (45).
The main problem with Theorem 1 was that (46) can never be

verified experimentally. Theorem 2 solves this problem by putting
constraints on a and b even in the presence of noise. Experimen-
tally, one can get estimates for the probabilities in (44) in the form
of relative frequencies for measurement outcomes. So the experi-
mental estimate for ℙðmijM; PÞwould be f Mi ðPÞ2½0;1�. The acquired
data set determines a line given by

EðaÞ :
¼ f Q2 ðTðPÞÞ þ f A1 ðTðPÞÞ þ a



f A2
�
Pq1
�þ f A3

�
T
�
Pq1
��

þ f Q3
�
T
�
Pq1
���

: (49)

In Fig. 4 three candidates for such a line are illustrated. An ontic
model is ruled out experimentally whenever uðfP ;afq1 Þ crosses the
line EðaÞ for some value of a. The explanation for this criterion runs
as follows. For any value of a, the preparation P is ða; baÞ-supported
Fig. 4. Schematic depiction of how experimental results can be used to rule out
ða; bÞ-supported models. The solid lines represent ontic models and depict their cor-
responding ða; bÞ-support curves. The dashed lines indicate constraints obtained by
possible experimental data. The slope is given by f A2 ðPq1 Þ þ f A3 ðTðPq1 ÞÞ þ f Q3 ðTðPq1 ÞÞ. An
ontic model is ruled out by the experiment experimental data if the symmetric overlap
crosses the line Ei derived from that data. The line E1 corresponds to the idealized case
where (46) holds and the line E3 represents an experiment that is too noisy to rule out
any models.
for the choice ba ¼ f Q1 ðPÞ � uðfP ;afq1 Þ. Now suppose there exists an
ontic model for which there exists an a such that uðfP ;afq1 Þ> EðaÞ.
We then find for this value of a that
This contradicts the inequality of Theorem 2, hence there cannot
be an ontic model with an a such that uðfP ;afq1 Þ> EðaÞ.

The best way to look for a fragment of quantum mechanics that
can be used to test Theorem 2, is by restricting attention to frag-
ments in which the predicted values for f A2 ðPq1 Þ, f A3 ðTðPq1 ÞÞ and

f Q3 ðTðPq1 ÞÞ are zero, i.e., in which (45) holds. Experimentally, these
values will of course always be greater than zero and the slope of Ei
in Fig. 4 is also positive. But at least for the current choice of the
fragment we have that the slope becomes closer to zero as the
precision of the measurements increases, with the idealized case
represented by the line E1.

Since experimentally the slope of the line Ei will never actually
be zero, the best theoretical option we have for ruling out as much

models as possible is by maximizing the distance between f Q1 ðPÞ
and f Q2 ðTðPÞÞ þ f A1 ðTðPÞÞ. A numerical analysis in ℝ3 gives the value
0.236 for this maximal value. A concrete fragment of quantum
mechanics that comes close to this value is given by

jq1i ¼

0
BB@

1

0

0

1
CCA; ja1i ¼

1
6

ffiffiffi
6

p
0
BB@

2

1

�1

1
CCA; U ¼

0
BBBBBBB@

1
2

ffiffiffi
2

p
�1
2

ffiffiffi
2

p
0

1
2

ffiffiffi
2

p 1
2

ffiffiffi
2

p
0

0 0 1

1
CCCCCCCA
;

jq2i ¼

0
BB@

0

1

0

1
CCA; ja2i ¼

1
2

ffiffiffi
2

p
0
BB@

0

1

1

1
CCA; jj >¼ 1

4

0
BB@

1þ
ffiffiffi
3

p

1�
ffiffiffi
3

p

2
ffiffiffi
2

p

1
CCA;

jq3i ¼

0
BB@

0

0

1

1
CCA; ja3i ¼

1
3

ffiffiffi
3

p
0
BB@

�1

1

�1

1
CCA; Ujj >¼ 1

4

ffiffiffi
2

p
0
BB@

ffiffiffi
3

p

1

2

1
CCA:

(51)

For this set we have

���q1��j���2 � ���q2��Uj���2 � ���a1��Uj���2 ¼ 1
48
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ffiffiffi
3

p
� 7

�
z0:215:

(52)

It is worthwhile to delve a bit into the required accuracy for an
experiment in order for it to rule out at least some models. Looking
again at Fig. 4 we find that the eigenpreparation mixing models are

ruled out whenever Eðf Q1 ðPÞÞ< f Q1 ðPÞ, i.e., when
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f Q2 ðTðPÞÞ þ f A1 ðTðPÞÞ þ f Q1 ðPÞ


f A2
�
Pq1
�þ f A3

�
T
�
Pq1
��

þ f Q3
�
T
�
Pq1
���

< f Q1 ðPÞ:
(53)

The measured relative frequencies will of course deviate from
the predicted quantum mechanical probabilities. To get a view of
the amount of deviation that is permissible, we consider a worst
case scenario where every relative frequency deviates an amount ε
from the predicted probability in the direction that is most prob-
lematic for ruling out any models. We then look at the maximal
value for ε that would still allow us to conclude that eigenprepa-
ration mixing models are ruled out. Any lower value for ε would
then of course allow us to rule outmoremodels. Making use of (53),
we find that ε should satisfy
ℙðq2jQ ; T ; PÞ þ ℙða1jA; T ; PÞ þ 2εþ ðℙðq1jQ ; PÞ � ε Þ�ℙ�a2��A; Pq1�þ ℙ
�
a3
��A; T ; Pq1�þ ℙ

�
q3
��Q ; T ; Pq1

�þ 3ε
�
< ℙðq1jQ ; PÞ � ε: (54)
When using the numbers from the above example, we find that
this constraint is satisfied whenever ε<5:06%. This means that,
roughly, eigenpreparation mixing models can be ruled out with an
experimental setup with a fidelity of at least 95%. This seems
already an experimentally feasible value (Knee et al., 2012), while
we have to bear in mind that we considered a very pessimistic
scenario. We may thus expect that experiments ruling out macro-
scopic realist models can be carried out in the near future, without
having to rely on an additional assumption of non-invasive
measurability.
5. Discussion

Our analysis of macroscopic realism relied heavily on the
framework of PTM models and ontic models. We adopted this
framework to have an analysis that is to a large extent theory in-
dependent, mimicking the derivation and predictions for the
experimental violations of Bell type inequalities in this sense.
Obviously, though, there is a connection with quantum mechanics
in the background. We use quantum mechanics to make pre-
dictions about what kind of preparations, transformations and
measurements are physically possible. Theory independence is re-
obtained by ultimately verifying experimentally that these opera-
tions are indeed physically realizable. Consequently, we can only
make use of small finite fragments of quantum mechanics in our
analysis. This is reflected in Theorem 2, which only makes use of
two preparations, one transformation and two measurements.
However, implicit further assumptions lurk in the background, and
we shall discuss and elucidate those here.

It seems innocent enough to assume that the PTM model under
consideration contains many elements (preparations, trans-
formations and measurements) apart from the ones that will show
up in experiments. Most of the time these elements are just coming
along for a free ride. This can again be compared to the case of Bell
tests. Of course not all systems display non-local behavior. The
point of the tests is to show that there are finite sets of preparations
and measurements that experimentally violate Bell inequalities.
The conclusion is then that any ontic model for any PTMmodel that
incorporates these preparations and measurements must be non-
local irrespective of what other elements may be incorporated in
the PTM model.

It is then important that any additional elements that may be
present in a PTM model, play no role in our analysis whatsoever.
The simplest way to ensure this is to not mention these elements.
We, however, have not adhered to this credo everywhere. An
explicit example is in our Definition 1. To see if a particular ontic
model is ða; bÞ-supported, one has to quantify over all preparations
in the PTM model. However, what exactly is the set of all prepa-
rations is of course a theory dependent question. Consequently, the
question if nature allows ða; bÞ-support is also theory dependent.
The quantification is unproblematic because we are interested in
ruling out ða; bÞ-support, instead of showing that it holds. For this it
suffices to look at a finite set of preparations, transformations and
measurements. This can again be compared to the case of locality.
To show that Bell inequalities are violated, a finite fragment of
quantum mechanics suffices. But the related question if nature
satisfies the Tsirelson bound cannot be answered experimentally,
for it would require to verify that the bound is satisfied for all
preparations and measurements.

A more troublesome quantification over the elements of the
PTMmodel occurred in Section 3.1, wherewe discussed the relation
between the Leggett-Garg inequality and eigenpreparation mixing
models. We showed that, for eigenpreparation mixing models, to
check that a transformation is non-invasive, one only has to verify
that the transformation is non-invasive for eigenpreparations.
However, showing this itself is not unproblematic. For example, to
show that TðPqÞ and Pq are operationally equivalent, one has to
check that

ℙ
�
m
��M; T ; Pq

� ¼ ℙ
�
m
��M; Pq

�
(55)

for every measurement M and every outcome m. In practice, this is
not feasible. To solve this problem one can in addition assume the
existence of a finite tomographically complete set of measurements
as one does, for example, in tests of non-contextuality (Kunjwal &
Spekkens, 2015; Mazurek, Pusey, Kunjwal, Resch, & Spekkens,
2016; Spekkens, Buzacott, Keehn, Toner, & Pryde, 2009) or, less
explicitly, in the recent Leggett-Garg test in (Knee et al., 2016).
Then, to verify (55), one only has to check that it holds for the
tomographically complete set. However, such an assumption is
ungrounded without assuming the (partial) validity of some theory
(Hermens, 2011,x4.4).

Our analysis of macroscopic realism does not face this problem.
Nowhere dowe assume that any two procedures are operationally
equivalent and so there is no need to experimentally verify such
an assumption. This is another way in which we improve on the
Leggett-Garg result. However, there is a related issue, leading to a
qualifying remark on the logical limitations for experimentally
discriminating between the different types of macroscopic
realism.

We argued in Section 2.3 that macroscopic realism and non-
invasive measurability implies the existence of an
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eigenpreparation mixing ontic model. In short, the argument was
that, with the use of non-invasive measurements of Q, any prepa-
ration P can be turned into an eigenpreparation of Q by measuring
Q. Because the measurement is non-invasive, the ontic state is
unaltered and P can therefore be written as a mixture of these
eigenpreparations.

But, even if this possibility is ruled out for a given PTM model,
there always remains the possibility that a new non-invasive Q
measurement procedure could be added to the model. The post-
measurement preparations Pq, produced by such a measurement
would represent new eigenpreparations, not contained within our
original PTM model. So eigenpreparation mixing can only be ruled
out for a given PTM model, and there is always the logical possi-
bility of extending the model to include more eigenpreparations,
thereby restoring the possibility of an eigenpreparation mixing
ontic model.

In this sense, our results are not completely theory independent.
However, this doesn't affect the main thrust of our result. Namely,
given the eigenpreparations that we currently know, if we want to
have an ontic model, other preparations (corresponding to super-
positions in quantum mechanics) compel us to introduce novel
ontic states. If the model is to be augmented with new eigenpre-
parations and measurements to recover eigenpreparation mixing,
then at some point these augmented models must deviate from the
predictions of quantum theory.

The situation may be compared to the results on the j-ontic/j-
epistemic divide14 These results show that an epistemic interpre-
tation cannot fully explain the indistinguishability of non-
orthognal quantum states. But this indistinguishability itself is
not a given theory-independent fact. There is the logical possibility
that by going beyond quantummechanics there are measurements
that can distinguish quantum states with a single shot. Similarly,
our results show that macroscopic realism does nothing to explain
the peculiar nature of superpositions. But there is still the logical
possibility that by going beyond quantum mechanics there are
preparations in terms of which superpositions can be understood
as mixtures after all.
6. Conclusion

The Leggett-Garg inequality is the best known constraint on
macroscopic realism, but its significance has been diminished both
by its reliance on the assumption of non-invasive measurability,
and by the existence of known counterexamples, such as the de
Broglie-Bohm and Kochen-Specker models, which are able to
violate the Leggett-Garg inequality while being macro-realist about
the relevant observables.

Maroney and Timpson (2014) clarified the different kinds of
macroscopic realism possible, drawing a distinction between the
counterexamples and the types of macroscopic realist models ruled
out by Leggett-Garg inequality violations. However, despite the
work of Allen et al. (2017) extending the range of models which
were in conflict with quantum theory, the distinctions introduced
between eigenpreparation support and eigenpreparation under-
mining models had finite precision loopholes, and so these dis-
tinctions could not be empirically tested.

In this paper we have reanalyzed the difference between
eigenpreparation supported and eigenpreparation undermining
models, to look for their qualitative features which are robust
against small variations in the model. We defined a qualitatively
14 (Pusey, Barrett, and Rudolph, 2012; Barrett, Cavalcanti, Lal, & Maroney, 2014;
Leifer, 2014).
eigenpreparation supported model as one in which there are no
regions of the ontic state space in which all eigenpreparations have
a small support, but at least one preparation has a large support.We
introduced the concept of ða; bÞ-supported models to parameterize
this feature: qualitatively eigenpreparation supported models are
models for which there exist low values for a and b such that the
model is ða; bÞ-supported.

We then showed that macroscopic realist models had
ða; bÞ-support curves which could be compared to empirical data,
to rule out classes of macroscopic realist models for quantum
theory. We showed that eigenpreparation mixing models, the only
kind that could also be ruled out by Leggett-Garg inequality vio-
lations, could be ruled out at relatively modest experimental errors.
However, we can also go beyond that, and rule out qualitatively
eigenpreparation supported models. As the precision of experi-
mental tests of quantum theory increases, progressively less qual-
itatively eigenpreparation supported models are possible. In the
limit of noise free experimental data, all eigenpreparation sup-
ported models are ruled out, recovering the noise-free result. As an
additional feature, we note that many eigenpreparation under-
mining models may also be ruled out. In contrast to the Leggett-
Garg inequality violation, no troublesome assumption of non-
invasive measurability is needed for any of these experimental
tests.
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A Proof of Theorem 2

In this appendix we give a proof of Theorem 2. The proof makes
use of the following lemma.

Lemma 1. Let ða; bÞ2½0;∞Þ � ½0;1� and consider an ontic model
with a preparation P that is ða; bÞ-supported onLq for some value q
for the macro-observable Q. Let g : L/½0;1� be a measurable
function. Then, for every probability density fP that models the
preparation P.

Z
Lq

gðlÞfPðlÞ dl � sup
fq2Pq

Z
Lq

gðlÞafqðlÞ dlþ b: (56)

Proof. For the proof we make use of the following notation for
the minimum:

ðf∧gÞðlÞ :¼ minðf ðlÞ; gðlÞÞ: (57)

We beginwith a simple estimate making use of the definition of
ða; bÞ-support.



Z
Lq

gðlÞfPðlÞ dl ¼
Z
Lq

fPðlÞ dl�
Z
Lq

ð1� gðlÞÞfPðlÞ dl

� sup
fq2Pq

Z
Lq



fP∧afq

�
ðlÞ dlþ b�

Z
Lq

ð1� gðlÞÞfPðlÞ dl

� sup
fq2Pq

Z
Lq



fP∧afq

�
ðlÞ dlþ b�

Z
Lq

ð1� gðlÞÞðfP∧f ÞðlÞ dl:

(58)
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The last estimate holds for any function f. So in particular it

holds for f ¼ a~f q for every ~f q2Pq, and we can take the
supremum over all elements of Pq:Z
Lq

gðlÞfPðlÞ dl � sup
fq2Pq

Z
Lq



fP∧afq

�
ðlÞ dlþ b

� sup
~f q2Pq

Z
Lq

ð1� gðlÞÞ


fP∧a~f q

�
ðlÞ dl:

(59)
ℙðq1jQ ; PÞ � ℙðq2jQ ; T ; PÞ ¼
Z
Lq1

fPðlÞ dl�
Z
L

Z
Lq2

g
�
dl0
��l�fPðlÞ dl

¼
Z
Lq1

X3
i¼1

Z
Lqi

g
�
dl0
��l�fPðlÞ dl�

Z
L

Z
Lq2

g
�
dl0
��l�fPðlÞ dl

�
Z
Lq1

Z
Lq1

g
�
dl0
��l�fPðlÞ dlþ

Z
Lq1

Z
Lq3

g
�
dl0
��l�fPðlÞ dl

(61)
Finally, we make use of the fact that
supx2XgðxÞ � supx02Xhðx0Þ � supx2XðgðxÞ � hðxÞÞ to obtain

Z
Lq

gðlÞfPðlÞ dl � sup
fq2Pq

 Z
Lq



fP∧afq

�
ðlÞ dl

þ b�
Z
Lq

ð1� gðlÞÞ


fP∧afq

�
ðlÞ dl

!
;

(60)
Z
Lq1

Z
Lq1

g
�
dl0
��l�fPðlÞ dl� ℙða1jA; T; PÞ

¼
Z
Lq1

Z
Lq1

g
�
dl0
��l�fPðlÞ dl�

Z
L

Z
L

xA
�
a1
��l0�g� dl0��l�fPðlÞ dl

¼
Z
Lq1

Z
Lq1

X
i¼1

3
xA
�
ai
��l0�g� dl0��l�fPðlÞ dl�

Z
L

Z
L

xA
�
a1
��l0�g� dl

�
Z
Lq1

Z
Lq1

xA
�
a2
��l0�g� dl0��l�fPðlÞ dlþ

Z
Lq1

Z
Lq1

xA
�
a3
��l0�g� dl0��
which is the desired result.
Proof of Theorem 2. Let P be any preparation that is ða; bÞ-sup-

ported on Lq1 and let T be any transformation. Throughout the
proof we let g2GT be fixed. The first estimate is based on the fact
that the Q ¼ q1 states that transform to Q ¼ q2 states under T form
a subset of all the states that transform to Q ¼ q2 states under T.
In the noise-free case the second term in this final expression
would be zero because there we assumed that the probability for
any Q ¼ q1 state to transform to a Q ¼ q3 state is zero. In the noise-
tolerant case we need the notion of ða; bÞ-support to constraint the
term, whichwill be done by invoking Lemma 1. However, a stronger
estimate is obtained if we postpone this invocation until we have a
better estimate for the first term. For this term we have
0��l�fPðlÞ dl
l
�
fPðlÞ dl:

(62)
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Combining these two estimates we find that

ℙðq1jQ ; PÞ � ℙðq2jQ ; T ; PÞ � ℙða1jA; T; PÞ

�
Z
Lq1

 Z
Lq3

g
�
dl0
��l�þ Z

Lq1

xA
�fa2; a3g��l0�g� dl0��l�

!
fPðlÞ dl:

(63)

Now note thatZ
Lq3

g
�
dl0
��l�þ Z

Lq1

xA
�fa2; a3g��l0�g� dl0��l�

�
Z
Lq3

g
�
dl0
��l�þ Z

Lq1

g
�
dl0
��l�

�
Z
L

g
�
dl0
��l� ¼ 1:

(64)

This means that we can apply Lemma 1 to (63) to obtain the final
estimate:

ℙðq1jQ ; PÞ � ℙðq2jQ ; T ; PÞ � ℙða1jA; T ; PÞ
� sup

fq12Pq1

Z
Lq1

 Z
Lq3

g
�
dl0
��l�

þ
Z
Lq1

xA
�fa2; a3g��l0�g� dl0��l�

!
afq1ðlÞ dlþ b

¼ a
�
ℙ
�
q3
��Q ; Pq1

�þ ℙ
�fa2; a3g��A; T ; Pq1��þ b:

(65)

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.shpsb.2017.11.003.
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