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JAKUB BYSZEWSKI AND GUNTHER CORNELISSEN

Abstract. We study periodic points and orbit length distribution for endomorphisms of abelian varieties in
characteristic p > 0. We study rationality, algebraicity and the natural boundary property for the dynamical
zeta function (the latter using a general result on power series proven by Royals and Ward in the appendix),
as well as analogues of the prime number theorem, also for tame dynamics, ignoring orbits whose order is
divisible by p. The behaviour is governed by whether or not the action on the local p-torsion group scheme is
nilpotent.
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Introduction

The study of the orbit structure of a dynamical system starts by considering periodic points, which, as
advocated by Smale in [37, Section 1.4] and Artin–Mazur [1], can be approached by considering dynamical
zeta functions. More precisely, let S denote a set (typically, a topological space, differentiable manifold, or
an algebraic variety), let f : S → S be a map on a set S (typically, a homeomorphism, a diffeomorphism, or
a regular map), and denote by fn the number of fixed points of the n-th iterate fn = f ◦f ◦ · · · ◦f (n times),
i.e., the number of distinct solutions in S of the equation fn(x) = x. Let us say that f is confined if fn is
finite for all n, and use the notation f

�

S to indicate that f satisfies this assumption. For such f , the basic
question is to find patterns in the sequence (fn)n>1: Does it grow in some controlled way? Does it satisfy a
recurrence relation, so that finitely many fn suffice to determine all? These questions are recast in terms of
the (full) dynamical zeta function, defined as ζf (z) := exp(

∑
fnz

n/n). Typical questions are:
(Q1) Is ζf (generically) a rational function? (Smale [37, Problem 4.5]);
(Q2) Is ζf algebraic as soon as it has a nonzero radius of convergence? (Artin and Mazur [1, Question 2

on p. 84]).
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Answers to these questions vary widely depending on the situation considered; we quote some results that
provide context for our study. The dynamical zeta function ζf (z) is rational when f is an endomorphism
of a real torus ([2, Thm. 1]); f is a rational function of degree > 2 on P1(C) (Hinkkanen [24, Thm. 1]);
or f is the Frobenius map on a variety X defined over a finite field Fq, so that fn is the number of Fqn-
rational points on X and ζf (z) is the Weil zeta function of X (Dwork [13] and Grothendieck [22, Cor. 5.2]).
Our original starting point for this work was Andrew Bridy’s automaton-theoretic proof that ζf (z) is tran-
scendental for separable dynamically affine maps on P1(Fp), e.g., for the power map x 7→ xm where m
is coprime to p ([8, Thm. 1], [9, Thm. 1.2 & 1.3]). Finally, we mention that ζf (z) has natural boundary
(namely, it does not extend analytically beyond the disk of convergence) for some explicit automorphisms
of solenoids, e.g., the map dual to doubling on Z[1/6] (Bell, Miles, and Ward [5]).

In this paper, we deal with these questions in a rather “rigid” algebraic situation, when S = A(K) is the
set of K-points on an abelian variety over an algebraically closed field of characteristic p > 0, and f = σ
is a confined endomorphism σ ∈ End(A) (reserving the notation f for the general case). It is plain that ζσ
has nonzero radius of convergence (Proposition 5.2). We provide an exact dichotomy for rationality of zeta
functions in terms of an arithmetical property of σ

�

A. Call σ very inseparable if σn − 1 is a separable
isogeny for all n > 1. The terminology at first may appear confusing, but notice that the multiplication-by-
m map for an integer m is very inseparable precisely when p|m, i.e., when it is an inseparable isogeny or
zero. For another example, if A is defined over a finite field, the corresponding (inseparable) Frobenius is
very inseparable.

Theorem A (= Theorem 4.3 & Theorem 6.3). Suppose that σ : A → A is a confined endomorphism of an
abelian variety A over an algebraically closed field K of characteristic p > 0. Then σ is very inseparable
if and only if it acts nilpotently on the local p-torsion subgroup scheme A[p]0. Furthermore, the following
dichotomy holds:

(i) If σ is very inseparable, then (σn) is linear recurrent, and ζσ(z) is rational.
(ii) If σ is not very inseparable, then (σn) is non-holonomic (cf. Definition 1.1 below), and ζσ(z) is

transcendental.

Since the local p-torsion group scheme has trivial group ofK-points, in the given characterisation of very
inseparability it is essential to use the scheme structure ofA[p]0. WhenA is ordinary—which happens along
a Zariski dense subspace in the moduli space of abelian varieties—very inseparable endomorphisms form a
proper ideal in the endomorphism ring. Thus, in relation to question (Q1) above, in our case rationality is
not generic at all.

The proofs proceed as follows: the number σn is the quotient of the degree of σn− 1 by its inseparability
degree. We use arithmetical properties of the endomorphism ring of A and the action of its elements on the
p-divisible subgroup to study the structure of these degrees as a function of n, showing that their `-valuations
are of the form “(periodic sequence) × (periodic power of |n|`)” (Propositions 2.3 and 2.7). The emerging
picture is that the degree is a very regular function of n essentially controlled by linear algebra/cohomology,
but to study the inseparability degree, one needs to use geometry. The crucial tool is a general commutative
algebra lemma (Lemma 2.1). We find that for some positive integers q,$,

dn := deg(σn − 1) =

r∑
i=1

miλ
n
i for some mi ∈ Z and distinct λi ∈ C∗; and

degi(σ
n − 1) = rn|n|snp for $-periodic sequences rn ∈ Q∗, sn ∈ Z60 .

(1)

Note in particular that this implies that the degree zeta function

Dσ(z) := exp(
∑

dnz
n/n) =

r∏
i=1

(1− λiz)−mi

(called the “false zeta function” by Smale [37, p. 768]) is rational. In Theorem 3.1, we then prove an
adaptation of the Hadamard quotient theorem in which one of the series displays such periodic behaviour, but
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the other is merely assumed holonomic. From this, we can already deduce the rationality or transcendence
of ζσ. In contrast to Bridy’s result, we make no reference to the theory of automata.

Example B. We present as a warm up example the case where E is an ordinary elliptic curve over F3 and
let σ = [2] be the doubling map and τ = [3] the tripling map, where everything can be computed explicitly.
Although the example lacks some of the features of the general case, we hope this will help the reader to
grasp the basic ideas. For this example, some facts follow from general theory in Bridy [9]; and, since ζσ(z)
equals the dynamical zeta function induced by doubling on the direct product of the circle and the solenoid
dual to Z[1/6] ([5]), some properties could be deduced from the existing literature, which we will not do.

First of all, deg(σn− 1) = (2n− 1)2 = 4n− 2 · 2n + 1 and deg(τn− 1) = (3n− 1)2 = 9n− 2 · 3n + 1.
The corresponding degree zeta functions are

Dσ(z) =
(1− 2z)2

(1− 4z)(1− z)
and Dτ (z) =

(1− 3z)2

(1− 9z)(1− z)
.

From the definition, σ is not very inseparable but τ is. In fact, τn = deg(3n− 1) and ζτ = Dτ but, since we
are on an ordinary elliptic curve (where E[pm] is of order pm), we find

σn = (2n − 1)2|2n − 1|3 = (2n − 1)2r−1
n |n|

−sn
3

with $ = 2; r2k = 3, s2k = −1; r2k+1 = 1, s2k+1 = 0.

In our first proof of transcendence of ζσ(z), we use the fact that σ2n differs from a linear recurrence by a
factor |n|3 to argue that it is not holonomic.

Since we are on an ordinary curve, the local 3-torsion group scheme isE[3]0 = µ3, which has End(E[3]0) =
F3 in which the only nilpotent element is the zero element. Thus, we can detect very inseparability of σ or
τ by their image under End(E) → End(E[3]0) = F3 being zero, and indeed, τ = [3] maps to zero, but
σ = [2] does not. ♦

In some cases, we prove a stronger result. Let Λ denote a dominant root of the linear recurrence (1)
satisfied by deg(σn − 1), i.e., Λ ∈ {λi} has |Λ| = max |λi|. In Proposition 5.1, we prove some properties
of Λ, e.g., that Λ > 1 is real and 1/Λ is a pole of ζσ.

Theorem C (= Theorem 5.5). If σ : A→ A is a confined, not very inseparable endomorphism of an abelian
variety A over an algebraically closed field K of characteristic p > 0 such that Λ is the unique dominant
root, then the dynamical zeta function ζσ(z) has a natural boundary along |z| = 1/Λ.

This result implies non-holonomicity and hence transcendence for such functions; our proof of Theorem
C is independent of that of Theorem A. The existence of a natural boundary follows from the fact that
the logarithmic derivative of ζσ can be expressed through certain “adelically perturbed” series that satisfy
Mahler-type functional equations in the sense of [3], and hence have accumulating poles (proven in the
appendix by Royals and Ward). From the theorem we see, in connection with question (Q2) above, that a
“generic” ζσ is far from algebraic (not even holonomic), despite having a positive radius of convergence.

Example B (continued). The dominant roots are Λσ = 4 and Λτ = 9, which are simple. Since ζτ is
rational, it extends meromorphically to C. We prove that ζσ(z) has a natural boundary at |z| = 1/4, as
follows. It suffices to prove this for the function Z(z) = zζ ′σ(z)/ζσ(z) =

∑
σnz

n, which we can expand as

Z(z) =
∑
2-n

(2n − 1)2zn +
1

3

∑
2|n

|n|3(2n − 1)2zn;

if we write f(t) =
∑
|n|3tn, then

Z(z) =
z(1 + 28z2 + 16z4)

(1− 16z2)(1− 4z2)(1− z2)
+

1

3

(
f(16z2)− 2f(4z2) + f(z2)

)
.
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It suffices to prove that f(t) has a natural boundary at |t| = 1, and this follows from the fact that f satisfies
the functional equation

f(z) =
z2 + z

1− z3
+

1

3
f(z3),

and hence acquires singularities at the dense set in the unit circle consisting of all third power roots of unity.
♦

Section 6 constitutes a purely arithmetic geometric study of the notion of very inseparability. We prove
that very inseparable isogenies are inseparable and that an isogeny σ : E → E of an elliptic curve E is very
inseparable if and only if it is inseparable. We give examples where very inseparability is not the same as
inseparability even for simple abelian varieties. We study very inseparability using the description of A[p]0

through Dieudonné modules, from which it follows that very inseparable endomorphisms are precisely those
of which a power factors through the Frobenius morphism.

Example D. Let E denote an ordinary elliptic curve over a field of characteristic 3 and set A = E × E;
then the map [2]× [3] is inseparable but not very inseparable, since there exist n for which 2n−1 is divisible
by 3. In this case, End(A[3]0) is the two-by-two matrix algebra over F3, which contains non-invertible
non-nilpotent elements, and under End(A) → End(A[3]0) = M2(F3), [2] × [3] is mapped to the matrix
diag(2, 0), which is such an element. ♦

We then introduce the tame zeta function ζ∗σ, defined as

ζ∗σ(z) := exp

∑
p-n

σn
zn

n

 , (2)

summing only over n that are not divisible by p. The full zeta function ζσ is an infinite product of tame
zeta functions of p-power iterates of σ (Proposition 7.2). Thus, one “understands” the full zeta function by
understanding those tame zeta functions. Our main result in this direction says that the tame zeta function
belongs to a cyclic extension of the field of rational functions:

Theorem E (= Theorem 7.3). For any (very inseparable or not) σ

�

A, a positive integer power of the tame
zeta function ζ∗σ is rational.

The minimal such integral power tσ > 0 seems to be an interesting arithmetical invariant of σ

�

A; for
example, on an ordinary elliptic curve E, one can choose tσ to be a p-th power for σ

�

E, but for a certain
endomorphism of a supersingular elliptic curve, tσ = p2(p+ 1) (cf. Proposition 7.4).

Example B (continued). The tame zeta function for σ is, by direct computation,

ζ∗σ(z) = exp

1

3

∑
3-n
2|n

(2n − 1)2 z
n

n
+
∑
3-n
2-n

(2n − 1)2 z
n

n


= 9

√
F2(z)9F64(z6)

F8(z3)3F4(z2)3
, where Fa(z) :=

(1− az)2

(1− a2z)(1− z)
,

and hence tσ = 9. Note that even for the very inseparable τ , ζ∗τ (z) = Dτ (z)/ 3
√
Dτ3(z3) is not rational, and

tτ = 3. ♦

In Section 8, we investigate functional equations for ζσ and ζ∗σ under z 7→ 1/(deg(σ)z). For very
inseparable σ, there is such a functional equation (which can also be understood cohomologically), but not
for ζσ having a natural boundary. On the other hand, we show that all tame zeta functions satisfy a functional
equation when continued to their Riemann surface (see Theorem 8.3).
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In Section 9, we study the distribution of prime orbits for σ

�

A. Let P` denote the number of prime
orbits of length ` for σ. In case of a unique dominant root, we deduce sharp asymptotics for P` of the form

P` =
Λ`

`r`|`|s`p
+O(ΛΘ`) where Θ := max{Re(s) : Dσ(Λ−s) = 0}. (3)

We average further like in the Prime Number Theorem (PNT). Define the prime orbit counting function
πσ(X) and the tame prime orbit counting function π∗σ(X) by

πσ(X) :=
∑
`6X

P` and π∗σ(X) :=
∑
`6X
p-`

P`.

Again, whether or not σ is very inseparable is related to the limit behaviour of these functions.

Theorem F (= Theorem 9.5 and Theorem 9.9). If σ

�

A has a unique dominant root Λ > 1, then, with $
as in (1) and for X taking integer values, we have:

(i) If σ is very inseparable, lim
X→+∞

Xπσ(X)/ΛX exists and equals Λ/(Λ− 1).

(ii) If σ is not very inseparable, then Xπσ(X)/ΛX is bounded away from zero and infinity, its set
of accumulation points is a union of a Cantor set and finitely many points (in particular, it is
uncountable), and every accumulation point is a limit along a sequence of integers X for which
(X,X) converges in the topological group

{(a, x) ∈ Z/$Z× Zp : a ≡ x mod |$|−1
p }.

(iii) For any k ∈ {0, . . . , p$ − 1}, the limit lim
X→+∞

X≡kmod p$

Xπ∗σ(X)/ΛX =: ρk exists.

An expression for ρk in terms of arithmetic invariants can be found in Formula (39). We also present an
analogue of Mertens’ second theorem (Proposition 9.10) on the asymptotics of

Mer(σ) :=
∑
`6X

P`/Λ
`

in X . It turns out that, in contrast to the PNT analogue, such type of averaged asymptotics is insensitive to
the endomorphism being very inseparable or not.

Example B (continued). Including a subscript for σ or τ in the notation, Möbius inversion relates Pσ,` to
the values of σ`, and hence of λi, rn, sn; we find for the very inseparable τ that Pτ,` = 9`/`+O(3`), which
we can sum to the analogue of the prime number theorem πτ (X) ∼ 9/8 · 9X/X . The situation is different
for the not very inseparable σ, where

Pσ,` =
4`

`
·
{
|3`|3 if ` is even
1 if ` is odd

}
+O(2`), (4)

and πσ(X)X/4X has uncountably many limit points in the interval [1/12, 4/3] (following the line of thought
set out in [14]).

We find as main term in Mer(τ) the X-th harmonic number
∑

`6X 1/`, and, taking into account the
constant term from summing error terms in (3), we get Mer(τ) ∼ logX + c for some c ∈ R. On the other
hand, a more tedious computation gives Mer(σ) ∼ 5/8 logX + c′ for some c′ ∈ R.

Concerning the tame case, Figure 1 shows a graph (computed in SageMath [11]) of the function π∗σ(X)X/4X ,
in which one sees six different accumulation points. The values ρk can be computed in closed form as ra-
tional numbers by noticing that if we sum Equation (4) only over ` not divisible by 3, we can split it into a
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FIGURE 1. Plot of X 7→ Xπ∗σ(X)/4X , where σ is doubling on an ordinary elliptic curve
in characteristic 3 (dots) and the six limit values as computed from Formula (39) (horizontal
solid lines)

k mod 6 ρk · 2−2 · 33 · 5 · 7 · 13 ρk (numerical)
0 839 0.27317867317867
1 17 · 193 1.06829466829467
2 22 · 461 0.60040700040700
3 461 0.15010175010175
4 17 · 67 0.37085877085877
5 22 · 839 1.09271469271469

TABLE 1. Exact and numerical values of the six limit values in Figure 1

finite sum over different values of ` modulo 6. We show the computed values in Table 1, which match the
asymptotics in the graph.1 ♦

We briefly discuss convergence rates in the above theorem (compare, e.g., [33]) in relation to analogues of
the Riemann Hypothesis (see Proposition 9.11): there is a function M(X) determined by the combinatorial
information (p,Λ, $, (rn), (sn)) associated to σ

�

A as in Equation (1), such that for integer values X , we
have

πσ(X) = M(X) +O(ΛΘX)

where the “power saving” Θ is determined by the real part of zeros of the degree zeta function Dσ(Λ−s).
Said more colloquially, the main term reflects the growth rate (analogue of entropy) and inseparability,
whereas the error term is insensitive to inseparability and determined purely by the action of σ on the total
cohomology.

Example B (continued). If we collect the main terms using the function, for k ∈ {0, 1},

Fk(Λ, X) =
∑
`6X

`≡kmod 2

Λ`/`

1An amusing observation is the similarity between Figure 1 and the final image in the notorious Fermi–Pasta–Ulam–Tsingou
paper (see the very suggestive Figures 4.3 and 4.5 in the modern account [7]): the time averaged fraction of the energy per Fourier
mode in the epynomous particle system seems to converge to distinct values, whereas mixing would imply convergence to a unique
value; by work of Izrailev–Chirikov the latter seems to happen at higher energy densities. This suggests an analogy (not in any way
mathematically precise) between “very inseparable” and “ergodic/mixing/high energy density”.
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FIGURE 2. Plot of X 7→ log4 |πσ(X)−M(X)| /X (dots) for integer X ∈ [10, 700] and
the solid line Θ = 1/2, where σ is doubling on an ordinary elliptic curve in characteristic 3

we arrive at the following analogue of the Riemann Hypothesis for σ:

πσ(X) = M(X) +O(2X) with M(X) :=
1

3
F0(4, X) + F1(4, X)−

blog3(X)c∑
i=1

2

9i
F0

(
43i ,

⌊
X

3i

⌋)
.

See Figure 2 (computed in SageMath [11]) for an illustration. ♦

Example G. All our results apply to the situation where A is an abelian variety defined over a finite field
Fq and σ is the Frobenius of Fq, which is very inseparable. This implies known results about curves C/Fq
when applied to the Jacobian A = Jac(C) of C, such as rationality of the zeta function and analogues of
PNT (compare [34, Thm. 5.12]).

We finish this introduction by discussing some open problems and possible future research directions. In
the near future, we hope to treat the case of linear algebraic groups, which will require different techniques.
Our methods in this paper rest on the presence of a group structure preserved by the map. What happens
in absence of a group structure is momentarily unclear to us, but we believe that the study of the tame
zeta function in such a more general setup merits consideration. We will consider this for dynamically
affine maps on P1 in the sense of [9] (not equal to, but still “close to” a group) in future work. It would
be interesting to study direct relations between our results and that of compact group endomorphisms and
S-integer dynamical systems—we briefly touch upon this at the end of Section 5.

1. Generalities

Rationality and holonomicity. We start by recalling some basic facts about recurrence sequences.

Definition 1.1. A power series f =
∑
n>1

anz
n ∈ C[[z]] is holonomic (or D-finite) if it satisfies a linear

differential equation over C(z), i.e., if there exist polynomials q0, . . . , qd ∈ C[z], not all zero, such that

q0(z)f(z) + q1(z)f ′(z) + . . .+ qd(z)f
(d)(z) = 0. (5)

A sequence (an)n>1 is called holonomic if its associated generating function f =
∑
n>1

anz
n ∈ C[[z]] is

holonomic.
7



In the following lemma, we collect some well-known equivalences between properties of a sequence and
its generating series:

Lemma 1.2. Let (an)n>1 be a sequence of complex numbers.
(i) The following conditions are equivalent:

(a) The sequence (an)n>1 satisfies a linear recurrence.
(b) The power series

∑
n>1

anz
n is in C(z).

(c) There exist complex numbers λi and polynomials qi ∈ C[z], 1 6 i 6 s, such that we have

an =
s∑
i=1

qi(n)λni for n large enough.

(ii) The following conditions are equivalent:

(a) The power series f(z) = exp

(∑
n>1

an
n
zn

)
is in C(z).

(b) There exist integers mi and complex numbers λi, 1 6 i 6 s, such that the sequence an can be

written as an =
s∑
i=1

miλ
n
i for all n > 1.

Furthermore, if all an are in Q, then f(z) is in Q(z).
(iii) The following conditions are equivalent:

(a) The sequence (an)n>1 is holonomic.
(b) There exist polynomials q0, . . . , qd ∈ C[z], not all zero, such that for all n > 1 we have

q0(n)an + . . .+ qd(n)an+d = 0.
Furthermore, if a power series f(z) ∈ C[[z]] is algebraic over C(z), then it is holonomic.

Proof. Statement (i) follows from [39, Thm. 4.1.1 & Prop. 4.2.2]. Statement (ii) is [39, Ex. 4.8]; the final
claim holds since C(z) ∩Q((z)) = Q(z) (see, e.g., [29, Lemma 27.9]). Statement (iii) is [38, Thm. 1.5 &
2.1]. �

Initial reduction from rational maps to confined endomorphisms. Let A denote an abelian variety over
an algebraically closed field K. Rational maps on abelian varieties are automatically regular [28, I.3.2],
and are always compositions of an endomorphism and a translation [28, I.3.7]. We say that a regular map
σ : A→ A is confined if the set of fixed points of σn is finite for all n, which we assume from now on. We
use the notations from the introduction: σn is the number of fixed points of σn and ζσ is the Artin–Mazur
dynamical zeta function of σ.

If σ is an endomorphism ofA, confinedness is equivalent to the finiteness of the kernel ker(σn−1) for all
n, or the fact that all σn − 1 are isogenies [28, I.7.1]. For arbitrary maps, the following allows us to restrict
ourselves to the study of zeta funtions of confined endomorphisms (where case (i) can effectively occur, for
example when σ is a translation by a non-torsion point):

Proposition 1.3. Let σ : A→ A be a confined regular map and write σ = τbψ, where τb is a translation by
b ∈ A(K) and ψ is an endomorphism of A. Then either

(i) σn = 0 for all n and hence ζσ(z) = 1; or else
(ii) ψ is confined and ζσ(z) = ζψ(z).

Proof. Iterates of σ are of the form

σn = τb(n)ψ
n, where b(n) =

n−1∑
i=0

ψi(b).

Thus, σn = ψn if b(n) ∈ im(ψn − 1) and σn = 0 otherwise. If σn = 0 for all n, then ζσ(z) = 1.
Otherwise, for some m > 1 we have σm > 0 and thus b(m) ∈ im(ψm − 1), σm = ψm, and ψm − 1 is an
isogeny. It follows that for all k > 1 we have b(km) =

∑k−1
i=0 ψ

im(b(m)) and hence b(km) ∈ im(ψkm − 1),
8



σkm = ψkm, and ψkm − 1 is an isogeny. Since ψk − 1 is a factor of ψkm − 1, we conclude that ψ is a
confined endomorphism, and hence ψk − 1 is surjective. In particular, b(k) ∈ im(ψk − 1), so σn = ψn for
all n, and hence ζσ(z) = ζψ(z). �

We make the following standing assumptions from now on, that we will not repeat in formulations of
results. Only in Section 6 shall we temporarily drop the assumption of confinedness, since this will make
exposition smoother (this will be clearly indicated).

Standing assumptions. K is an algebraically closed field of characteristic p > 0; A is an
abelian variety over K of dimension g; σ : A→ A is a confined endomorphism.

2. Periodic patterns in (in)separability degrees

For now, we will consider ζσ as a formal power series

ζσ(z) := exp

(∑
n>1

σn
zn

n

)
,

and postpone the discussion of complex analytic aspects to Section 5. Let degi(τ) denote the inseparability
degree of an isogeny τ ∈ End(A) (a pure p-th power). We then have the basic equation

σn =
deg(σn − 1)

degi(σ
n − 1)

. (6)

The strategy is to first consider the “false” (in the terminology of Smale [37]) zeta function with σn replaced
by the degree of σn − 1. This turns out to be a rational function. We then turn to study the inseparability
degree, which is determined by the p-valuations of the other two sequences.

We start with a general lemma in commutative algebra that is our crucial tool for controlling the valuations
of certain elements of sequences:

Lemma 2.1. Let S denote a local ring with maximal ideal m and residue field k of characteristic p > 0
such that the ring S/pS is artinian. For σ ∈ S and a positive integer n, let In := (σn − 1)S. Let σ denote
the image of σ in k.

(i) If σ ∈ m, then In = S for all n.
(ii) If σ ∈ S∗, let e be the order of σ in k∗. Then:

(a) if e-n, then In = S (this happens in particular if e =∞);
(b) if e|n and p-m, then Imn = In;
(c) there exists an integer n0 such that for all n with e|n and ordp(n) > n0, we have Ipn = pIn.

Proof. Part (i) is clear, so assume σ ∈ S∗. If e-n, then σn − 1 is invertible in S, since σn − 1 6= 0 in k and
hence In = S.

If e|n, we can assume without loss of generality that e = 1 (replacing σ by σe). Write σn = 1 + ε for
ε ∈ m. Then for m coprime to p, we immediately find

σmn − 1 = εu

for a unit u ∈ S∗, and hence Imn = In, which proves (b). On the other hand,

σpn − 1 = pεv + εp (7)

for some unit v ∈ S∗. This shows that σpn − 1 = ε(pv + εp−1) ⊆ εm, which already implies that we get

Ipn ⊆ Inm for all n. (8)

Since S/pS is artinian, there exists an integer n0 such that mn0 ⊆ pS. By iterating (8) n0 + 1 times, we
have

In ⊆ pm for all n with ordp(n) > n0.
9



Assuming now that ordp(n) > n0, we have ε ∈ pm, so εp ∈ pεm. Hence we conclude from (7) that
σpn − 1 = pεw for some unit w ∈ S∗, and hence Ipn = pIn. �

The degree zeta function. We start by considering the following zeta function with σn replaced by the
degree of σn − 1.

Definition 2.2. The degree zeta function is defined as the formal power series

Dσ(z) := exp

(∑
n>1

deg(σn − 1)

n
zn

)
.

Proposition 2.3.
(i) Dσ(z) ∈ Q(z).

(ii) Let ` be a prime (which might or might not be equal to p). Then the sequence of `-adic valuations
(|deg(σn − 1)|`)n>1 is of the form

| deg(σn − 1)|` = rn · |n|sn`
for some periodic sequences (rn) and (sn) with rn ∈ Q∗ and sn ∈ N. Furthermore, there is an
integer ω such that we have

rn = rgcd(n,ω) for `-n.

Proof. By [21, Cor. 3.6], the degree of σ and the sequence deg(σn − 1) can be computed as

deg σ =

k∏
i=1

NrdRi/Q(αi)
νi , deg(σn − 1) =

k∏
i=1

NrdRi/Q(αni − 1)νi ,

where Ri are finite dimensional simple algebras over Q, αi are elements of Ri, NrdRi/Q is the reduced
norm, and νi are positive integers. These formulæ come from replacing the variety A by an isogenous one
that is a finite product of simple abelian varieties and applying the well-known results on the structure of
endomorphism algebras of simple abelian varieties.

After tensoring with Q, the algebras Ri become isomorphic to a finite product of matrix algebras over
Q. For matrix algebras the notion of reduced norm coincides with the notion of determinant, and since the
determinant of a matrix is equal to the product of its eigenvalues, we obtain formulæ of the form

deg(σ) =

q∏
i=1

ξi, deg(σn − 1) =

q∏
i=1

(ξni − 1), (9)

with ξi ∈ Q (with possible repetitions to take care of multiplicities) and q = 2g (since deg is a polynomial
function of degree 2g). Multiplying out the terms in this expression, we finally obtain a formula of the form

deg(σn − 1) =

r∑
i=1

miλ
n
i , (10)

for some mi ∈ Z and λi ∈ Q. Now (i) follows from 1.2.(ii).
In order to prove (ii), we will use Formula (9). Consider a finite extension L of the field of `-adic numbers

Q` obtained by adjoining all ξi with 1 6 i 6 q. There is a unique extension of the valuation | · |` to L that
we continue to denote by the same symbol. Then we have

| deg(σn − 1)|` =

q∏
i=1

|ξni − 1|`.

10



We now claim that for ξ ∈ L, we have

|ξn − 1|` =


|ξ|n` if |ξ|` > 1,

rξn|n|s
ξ
n
` if |ξ|` = 1,

1 if |ξ|` < 1,
(11)

where (rξn)n and (sξn)n are certain periodic sequences, rξn ∈ R∗, sξn ∈ {0, 1}. The first and the last line of the
claim are immediate, and the second one follows from applying Lemma 2.1 to the ring of integers S = OL

with σ = ξ, as follows: set an = |ξn − 1|−1
` and let eξ be the order of ξ in the residue field of S (note that

eξ is not divisible by `). Then by Lemma 2.1 there exists an integer N such that an = 1 if eξ-n; amn = an
if eξ|n and `-m; and a`n = `an if eξ|n and ord`(n) > N . Therefore, it suffices to set (rξn, s

ξ
n) = (1, 0)

for eξ-n; (rξn, s
ξ
n) = (a−1

eξlν
, 0) for eξ|n and ν := ord`(n) < N ; and (rξn, s

ξ
n) = (a−1

eξ`N
`N , 1) for eξ|n and

ord`(n) > N . Note that for `-n we have

rξn =

{
1 if eξ-n,
a−1
eξ

if eξ|n.

Multiplying together formulæ (11) for ξ = ξ1, . . . , ξq, we obtain

|deg(σn − 1)|` = ρnrn|n|sn` ,

where

ρ =

q∏
i=1

max(|ξi|`, 1) > 1

and (rn) and (sn) are periodic sequences, rn ∈ R∗, sn ∈ N. We claim that ρ = 1 (that is, there is no i such
that |ξi|` > 1). Indeed, we know that deg(σn − 1) is an integer, and hence ρnrn|n|sn` 6 1 for all n. Thus,
taking n → ∞, `-n, we get ρ = 1 and rn ∈ Q∗. This finishes the proof of the formula for | deg(σn − 1)|`.
Furthermore, we have

rn =
∏
eξi |n

a−1
eξi

for `-n,

and hence the final formula holds with ω = lcm(eξ1 , . . . , eξq). �

Remark 2.4. We present an alternative, cohomological description of the degree zeta function Dσ(z). Fix
a prime ` 6= p and let Hi := Hi

ét(A,Q`) =
∧i(V`A)∨ denote the i-th `-adic cohomology group of A,

(V`A = T`A⊗Z` Q`, T`A is the Tate module and ∨ denotes the dual); then

Dσ(z) =

2g∏
i=1

det(1− σ∗z|Hi)(−1)i+1
. (12)

This follows in the same way as for the Weil zeta function: let Γσn ⊆ A × A denote the graph of σn and
∆ ⊆ A×A is the diagonal [29, 25.6]. The Lefschetz fixed point theorem [29, 25.1] implies that

(Γσn ·∆) =

2g∑
i=0

(−1)itr(σn|Hi).

Now Γσn intersects ∆ precisely along the (finite flat) group torsion group scheme A[σn − 1], and hence the
intersection number (Γσn ·∆) is the order of this group scheme, which is deg(σn − 1). Then the standard
determinant-trace identity [29, 27.5] implies the result (12).

The characteristic polynomial of σ∗ acting on H1 has integer coefficients independent of the choice of
` and its set of roots is precisely the set of algebraic numbers ξi from the proof of Proposition 2.3 (with
multiplicities), see, e.g., [30, IV.19, Thm. 3 & 4].
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Example 2.5. Suppose A is an abelian variety over a finite field Fq and σ is the q-Frobenius. Then σn − 1
is separable for all n, so σn = deg(σn − 1) for all n, and ζσ(z) = Dσ(z) is exactly the Weil zeta function
of A/Fq. Thus, we recover the rationality of that function for abelian varieties; note that this is an “easy”
case: by cutting A with suitable hyperplanes, we are reduced to the case of (Jacobians of) curves, hence
essentially to the Riemann–Roch theorem for global function fields proven by F.K. Schmidt in 1927.

The inseparability degree. Similarly to Proposition 2.3, we can control the regularity in the sequence of
inseparability degrees, with some more (geometric) work; this is relevant in the light of Formula (6). We
start with a decomposition lemma in commutative algebra:

Lemma 2.6. Let R be a (commutative) ring and let M be an R-module such that for every m ∈M the ring
R/ann(m) is artinian. Let m be a maximal ideal of R. Then the localisation Mm is equal to

Mm = M [m∞] := {m ∈M : mkm = 0 for some k > 1}
and

M =
⊕
m

Mm,

the direct sum being taken over all maximal ideals m of R.

Proof. Assume first that the module M is finitely generated, say, with generators m1, . . . ,ms. Set I =

ann(M). Then M is of finite length as a surjective image of the module
s⊕
i=1

R/ann(mi) and hence the ring

R/I is artinian, since it can be regarded as a submodule of M s via the embedding r 7→ (rm1, . . . , rms).
Therefore, the ideal I is contained in only finitely many maximal ideals m1, . . . ,ms of R, and for the
remaining maximal ideals m of R we have Mm = 0. The artinian ring R/I decomposes as the product

R/I '
s∏
i=1

Rmi/IRmi . (13)

Since I = ann(M), we have M ⊗R R/I ' M and M ⊗R Rmi/IRmi ' Mmi . Thus, tensoring (13) with
M , we obtain an isomorphism

M →Mm1 ⊕ . . .⊕Mms .

Since the modules Mmi are also of finite length, we see that each Mmi is annihilated by some power of the
maximal ideal mi.

We now turn to the case of an arbitrary module M . Consider the canonical map

Φ: M →
∏
m

Mm,

the product being taken over all maximal ideals m of R. Restricting Φ to finitely generated submodules
N ⊆ M , and using the (already established) claim for finitely generated modules, we conclude that the
image of Φ is in fact contained in

⊕
m
Mm and that the induced map

Φ: M →
⊕
m

Mm

(that we continue to denote by the same letter) is an isomorphism. For a maximal ideal n ofR, multiplication
by elements outside of n is bijective on Mn. Therefore, restricting Φ to M [m∞] shows that M [m∞] =
Mm[m∞]. Finally, we conclude from the case of finitely generated modules that every element in Mm is
anihilated by some power of the maximal ideal m. Thus, M [m∞] = Mm. �

Proposition 2.7. The inseparability degree of σn − 1 satisfies

degi(σ
n − 1) = rn · |n|snp (14)
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for periodic sequences (rn) and (sn) with rn ∈ Q∗ and sn ∈ Z, sn 6 0. Furthermore, there is an integer ω
such that we have

rn = rgcd(n,ω) for p-n.

Proof. The strategy of the proof is as follows: since degi(σ
n− 1) is a power of p, it is sufficient to compute

|deg(σn−1)|p and |σn|p. The former number has been already computed in Proposition 2.3.(ii); for the lat-
ter, we study the p-primary torsion ofA as anR-module, where, not to have to worry about noncommutative
arithmetic, we work with the ring R = Z[σ] ⊆ End(A). Note that R need not be a Dedekind domain. Let
X := A(K)tor denote the subgroup of torsion points of A(K). It has a natural structure of an R-module,
and as an abelian group is divisible; in fact,

X '
(
Z

[
1

p∞

]
/Z

)f
⊕
⊕
q 6=p

(
Z

[
1

q∞

]
/Z

)2g

,

where f is the p-rank of A, and

Z

[
1

q∞

]
=
⋃
k>1

Z

[
1

qk

]
.

As R acts on X , the localisation Rm acts on Xm for each maximal ideal m of R. Since X is torsion as an
abelian group, the conditions of Lemma 2.6 are satisfied, and hence we have Xm = X[m∞] and

X =
⊕
m

Xm,

the sum being taken over all maximal ideals m of R. For an element τ ∈ R, we have

X[τ ] =
⊕
m

Xm[τ ].

Since Xm = X[m∞], for any prime number q we have Xm[q∞] = 0 if q 6∈ m and Xm[q∞] = Xm if q ∈ m,
and hence we get

X[q∞] =
⊕
q∈m

Xm.

Thus the groups Xm for q ∈ m are q-power torsion. It follows that for τ ∈ R, τ 6= 0, we can compute

|X[τ ]|q =
∏
q∈m
|Xm[τ ]|q. (15)

Since X is a divisible abelian group, the groups Xm, being quotients of X , are also divisible. Thus, the
surjectivity of p : Xm → Xm implies that there is a short exact sequence

0 Xm[p] Xm[pτ ] Xm[τ ] 0.
p

(16)

Let σ be an element of R, let em denote the order of σ in (Rm/mRm)∗ for maximal ideals m of R with
p ∈ m and σ /∈ m. Note that em is then coprime with p. Applying (16) to τ = σn− 1 and using Lemma 2.1,
we get

|Xm[σmn − 1]|p =


1 for σ ∈ m,
1 for σ /∈ m and em-mn,
|Xm[σn − 1]|p for σ /∈ m, p-m and em|n,
|Xm[σn − 1]|p · |Xm[p]|p for σ /∈ m, m = p, em|n, and ordp(n)� 0.

Arguing in the same way as in the proof of Proposition 2.3, we conclude that there exist periodic sequences
(rmn )n and (smn )n with rmn ∈ Q∗ and smn ∈ N such that

|Xm[σn − 1]|p = rmn |n|s
m
n
p for n > 1. (17)
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Furthermore, rmn = 1 and smn = 0 for all n if σ ∈ m, and

rmn = rmgcd(n,em) for σ /∈ m and p-n.

Applying (15) to τ = σn − 1 and q = p, we get the equality

|σn|p =
∏
p∈m
|Xm[σn − 1]|p.

Taking the product of the Formulæ (17) over all maximal ideals m of R with p ∈ m, we obtain periodic
sequences (r′n)n and (s′n)n with r′n ∈ Q∗ and s′n ∈ N such that

|σn|p = r′n|n|s
′
n
p

and
r′n = r′gcd(n,ω′) for p-n,

where
ω′ = lcm{em | σ /∈ m}.

Writing

degi(σ
n − 1) =

deg(σn − 1)

σn
=

|σn|p
|deg(σn − 1)|p

and using Proposition 2.3.(ii), we get sequences (rn) and (sn) satisfying having all stated properties except
that it might be that sn > 0 for some n. However, since degi(σ

n − 1) is an integer, letting $ be the
common period of (rn) and (sn), we automatically get sn 6 0 for all n such that the arithmetic sequence
n+$N contains terms divisible by arbitrarily high powers of p. For all the remaining nwe have ordp(n) <
ordp($), and thus whenever sn > 0, we replace sn by 0 and rn by rn|n|snp , obtaining the claim. �

3. A holonomic version of the Hadamard quotient theorem

The next proposition is our basic tool from the theory of recurrent sequences. It bears some resemblance
to the Hadamard quotient theorem (which is used in its proof), and to conjectural generalisations of it
as proposed by Bellagh and Bézivin [6, “Question” in Section 1] (using holonomicity instead of linear
recurrence) and Dimitrov [12, Conjecture in 1.1] (using algebraicity instead of linear recurrence). In our
special case, the proof relies on the quotient sequence having a specific form.

Proposition 3.1. Let (an)n>1, (bn)n>1, (cn)n>1 be sequences of nonzero complex numbers such that

an = bncn

for all n. Assume that:
(i) (an)n>1 satisfies a linear recurrence;

(ii) (bn)n>1 is holonomic;
(iii) (cn)n>1 is of the form cn = rn|n|snp for a prime p and periodic sequences (rn)n>1, (sn)n>1 with

rn ∈ Q∗, sn ∈ Z.
Then the sequence (cn)n>1 is bounded.

Proof. Note that cn 6= 0 for all n. Since the sequence (bn)n>1 given by bn = an/cn is holonomic, by
Lemma 1.2.(iii) there exist polynomials q0, . . . , qd ∈ C[z] such that

q0(n)
an
cn

= −
d∑
i=1

qi(n+ i)
an+i

cn+i
for n > 1. (18)

We may further assume that q0 6= 0 (otherwise, replace for i = 1, . . . , d the polynomials qi by (z− 1)qi and
shift the relation by one). Suppose cn = rn|n|snp is not bounded and let $ be the common period of both
(rn) and (sn). The unboundedness of (cn)n>1 means that there exists an integer j > 1 with sj < 0 such
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that there are elements in the arithmetic sequence {j + $n | n > 0} which are divisible by an arbitrarily
high power of p. Fix such j and write s := sj . Let ν be an integer such that pν > max(d,$) and let
Π = lcm($, pν). Note that ordp Π = ν. By the assumption on {j + $n | n > 0}, there exists an integer
J such that J ≡ j (mod $) and J ≡ 0 (mod pν). By the definition of the sequence (cn)n>1, for n ≡ J
(mod Π) the values cn+1, . . . , cn+d are uniquely determined (i.e., do not depend on n). Substituting such n
to the equation (18), we obtain a formula of the form

a′n
|n|sp

= b′n for n ≡ J (mod Π),

where

a′n = q0(n)
an
rj

and b′n = −
d∑
i=1

qi(n+ i)
an+i

cn+i

are linear recurrence sequences along the arithmetic sequence n ≡ J (mod Π) (here we use the fact that
the values cn+1, . . . , cn+d do not depend on n, and that linear recurrence sequences form an algebra). Note
that the values of (a′n)n>1 are nonzero for sufficiently large n, and hence so are (b′n)n>1. By Lemma 1.2.(i),
a subsequence of a linear recurrence sequence along an arithmetic sequence is a linear recurrence sequence.
Since the sequence

|n|sp =
a′n
b′n

takes values in a finitely generated ring (namely Z[1/p]), we conclude from the Hadamard quotient theorem
(van der Poorten [40, Théorème], [36]) that the sequence (|J + Πn|sp)n>0 satisfies a linear recurrence, say

γ0|J + Πn|sp + γ1|J + Π(n+ 1)|sp + . . .+ γe|J + Π(n+ e)|sp = 0 for n large enough, (19)

where γ0, . . . , γe ∈ C, γ0 6= 0. Let µ be an integer such that pµ > Πd. Since ν = ordp(Π) 6 ordp(J), we
can find an integer Π′ > 0 such that ΠΠ′ ≡ −J (mod pµ). Then for n ≡ Π′ (mod pµ−ν) the values of

|J + Π(n+ 1)|sp, . . . , |J + Π(n+ e)|sp
are independent of n (actually, |J + Π(n + j)|sp = p−νs|j|sp for j = 1, . . . , e), and hence by (19) so is the
value of γ0|J + Πn|sp for n sufficiently large. Substituting n = Π′ + ipµ−ν with i = 0, . . . , p− 1, we get a
contradiction, since there is exactly one value of i for which |J + Π(Π′ + ipµ−ν)|sp < p−µs. �

4. Rationality properties of dynamical zeta functions

We prove a general rational/transcendental dichotomy in terms of the following arithmetical property:

Definition 4.1. An endomorphism σ ∈ End(A) is called very inseparable if σn − 1 is a separable isogeny
for all n.

Note that the zero map is very inseparable. The notion “very inseparable” makes sense for arbitrary (not
necessarily confined) endomorphisms, but such very inseparable endomorphisms are then automatically
confined. We will study the geometric meaning of very inseparability in greater detail in Section 6; here we
content ourselves with discussing the case of elliptic curves.

Example 4.2. In case A = E is an elliptic curve, things simplify greatly (compare [9, Section 5]): there
exists a (nonarchimedean) absolute value |·| on the ring End(E) such that degi(τ) = |τ |−1 for τ ∈ End(E).
It is immediate that inseparable isogenies together with the zero map form an ideal in End(E) and that an
inseparable isogeny σ (i.e., |σ| < 1) is very inseparable (i.e., |σn − 1| = 1 for all n). Neither of these
statements is true in general for higher dimensional abelian varieties.

Theorem 4.3.
(i) If σ is very inseparable, then ζσ(z) ∈ Q(z) is rational.
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(ii) If σ is not very inseparable, the sequence (σn) is not holonomic, and ζσ(z) is transcendental over
C(z).

Proof. Suppose we are in case (i), so σn − 1 is separable for all n. Since σn = deg(σn − 1), Proposition
2.3.(i) implies that ζσ(z) is a rational function of z.

In case (ii), set an = deg(σn−1), bn = σn, and cn = degi(σ
n−1). By Proposition 2.3.(i), (an) is linear

recurrent. By Proposition 2.7, cn = rn|n|snp for periodic rn ∈ Q∗ and sn ∈ Z. Assume, by contradiction,
that bn is holonomic, i.e., that the sequence (bn) is holonomic. The sequences (an), (bn), and (cn) then
satisfy all the conditions of Proposition 2.7, and we conclude that the sequence (cn) is bounded. However,
the following proves that (cn) is unbounded:

Lemma 4.4. If σ is not very inseparable, then the sequence degi(σ
n − 1) is unbounded.

Proof. By assumption, there exists n0 for which σn0 − 1 is inseparable. Write σn0 = 1 + ψ with ψ
inseparable; then

σn0p − 1 = (1 + ψ)p − 1 = ψ(ψp−1 + pχ)

for some endomorphism χ : A → A. Since p has identically zero differential, the map ψp−1 + pχ is
inseparable, and hence

degi(σ
n0p − 1) > 1 + degi(ψ) = 1 + degi(σ

n0 − 1),

and the result follows by iteration. �

To show the transcendence of ζσ(z) over C(z), suppose it is algebraic. Then so would be

z
ζ ′σ(z)

ζσ(z)
= z(log(ζσ(z)))′ =

∑
σnz

n.

This contradicts the fact that σn is not holonomic. �

Corollary 4.5. At most one of the functions

ζσ(z) = exp

(∑
n>1

σn
zn

n

)
and

1

ζσ(z)
= exp

(∑
n>1

−σn
zn

n

)
is holonomic.

Proof. Assume that both these functions are holonomic. Since the class of holonomic functions is closed
under taking the derivative and the product [38, Thm. 2.3], we conclude that z ζ

′
σ(z)
ζσ(z) is holonomic, contra-

dicting Theorem 4.3.(ii). �

Remark 4.6. It is not true that the multiplicative inverse of a holonomic function is necessarily holonomic.
Harris and Shibuya [23] proved that this happens precisely if the logarithmic derivative of the function is
algebraic. We do not know whether ζσ(z) is holonomic for not very inseparable σ, but Theorem 5.5 will
show that ζσ(z) is not holonomic for a large class of maps.

Remark 4.7. If σ is not assumed to be confined, we could change the definition of σn by considering σn
to be the number of fixed points of σn whenever it is finite, and 0 otherwise. This is in the spirit of [1],
where only isolated fixed points of diffeomorphisms of manifolds were considered. In this case, we could
still prove a variant of Theorem 4.3 saying that if σ is a (not-necessarily confined) endomorphism of A such
that there exist n such that σn − 1 is an isogeny of arbitrarily high inseparability degree, then (σn) is not
holonomic; one needs to use the fact that (the proof of) Proposition 3.1 holds even if we do not insist that an,
bn be nonzero and instead demand that cn = 1 if an = 0. Note, however, that without the assumption that
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σ is confined, ζσ(z) could be an algebraic but not rational function. For example, let E be a supersingular
elliptic curve over a field of characteristic 2, let A = E × E, and σ = [2]× [−1]. Then

ζσ(z) =
1− 2z

1 + 2z

√
(1 + z)(1 + 4z)

(1− z)(1− 4z)
.

5. Complex analytic aspects

We now turn to questions of convergence and analytic continuation.

Radius of convergence. From the proof of Proposition 2.3, we pick up the formula

deg(σn − 1) =

q∏
i=1

(ξni − 1) =

r∑
i=1

miλ
n
i , (20)

where we note for future use that q = 2g,
∏q
i=1 ξi = deg(σ), and λi are of the form λi =

∏
j∈I ξj for

some I ⊆ {1, . . . , q}, each occurring with sign (−1)|I|. Recall that {λi} are called the roots of the linear
recurrence, and λi is called a dominant root if it is of maximal absolute value amongst the roots. The roots
{λi} of the recurrence should not be confused with the roots {ξi} of the characteristic polynomial of σ on
H1 (the dual of the `-adic Tate module for any choice of ` 6= p).

The following proposition follows from Formula (20) and the fact that deg(σn − 1) takes only positive
values.

Proposition 5.1.
(i) The ξi are not roots of unity.

(ii) The linear recurrent sequence deg(σn − 1) has a dominant positive real root, denoted Λ.

(iii) Λ =

q∏
i=1

max{|ξi|, 1} > 1 is the Mahler measure of the characteristic polynomial of σ acting on

H1.
(iv) Λ = 1 if and only if σ is nilpotent.
(v) deg(σn − 1) has a unique dominant root if and only if there is no ξi with |ξi| = 1.

(vi) If deg(σn − 1) has a unique dominant root Λ, then Λ has multiplicity 1.

Proof. (i) This is clear since σ is confined.
(ii) If not, then deg(σn−1) would be negative infinitely often by a result of Bell and Gerhold [4, Thm. 2].

(iii) Denote temporarily Λ̃ =
q∏
i=1

max{|ξi|, 1}. We will prove shortly that Λ̃ = Λ. Formula (20) implies

that Λ 6 Λ̃ and
a1(n) :=

∑
|λj |=Λ̃

mjλ
n
j

equals
a1(n) = (−1)tPn

∏
j∈J

(ξnj − 1), (21)

where t is the number of indices i such that |ξi| < 1, P :=
∏
|ξi|>1 ξi, and J ⊆ {1, . . . , q} denotes the set of

indices i such that |ξi| = 1. Since the right hand side of Formula (21) is nonzero, we conclude that Λ̃ = Λ.
Finally, by Remark 2.4, ξi are the roots of the indicated characteristic polynomial.

(iv) Since none of the ξi is a root of unity, and since the set {ξi} is closed under Galois conjugation,
Kronecker’s theorem implies that either some ξi has absolute value |ξi| > 1, in which case Λ > 1, or else
all ξi are 0. The latter is equivalent to σ acting nilpotently on H1, and hence σ is nilpotent since End(A)
embeds into (the opposite ring of) End(H1).

17



(v) From Formula (21) we immediately get that if J = ∅, then deg(σn − 1) has a unique dominant root.
Conversely, if J 6= ∅, then substituting n = 0 into Formula (21) gives

∑
mj = 0, and hence in the formula

there are at least two distinct values of λj occurring, and the dominant root is not unique.
(vi) We have already proved that if there is a unique dominant root, then J = ∅. Thus we read from

Formula (21) that the multiplicity of Λ is ±1. Since deg(σn− 1) takes only positive values, the multiplicity
is in fact 1. �

Proposition 5.2. The radius of convergence of the power series defining ζσ(z) is 1/Λ > 0.

Proof. Note first that we have a trivial bound σn = O(Λn), which implies that the power series ζσ(z)
is majorised by exp(

∑
n>1CΛnzn/n) = (1 − Λz)−C for some constant C > 0. Thus the radius of

convergence of ζσ(z) is at least 1/Λ. If σ is nilpotent, the maps σn − 1 are all invertible, and hence σn = 1
and ζσ(z) = 1/(1− z). Assume thus that σ is not nilpotent, and hence by Proposition 5.1.(iv), Λ > 1.

For the other inequality, we write the linear recurrence sequence deg(σn − 1) =
∑r

i=1miλ
n
i as the sum

of two linear recurrence sequences a1(n) and a2(n), a1(n) as in Formula (21) containing the terms with λi
of absolute value Λ̃ = Λ, and a2(n) containing the terms where λi is of strictly smaller absolute value.

Since all ξj with j ∈ J are algebraic numbers on the unit circle but not roots of unity, a theorem of
Gel’fond [19, Thm. 3] implies that for any ε > 0 and n = n(ε) sufficiently large,∏

j∈J

∣∣ξnj − 1
∣∣ > Λ−nε

and hence |a1(n)| > Λn(1−ε) for sufficiently large n. The formula in Proposition 2.7 implies that degi(σ
n−

1) = O(ns) for some integer s, and hence it follows from Formula (6) that σn > Λn(1−2ε) for sufficiently
large n. An analogous reasoning as for the upper bound proves that the radius of convergence of ζσ(z) is at
most 1/Λ1−2ε, implying the claim. �

Remark 5.3. The value log Λ describes the growth rate of the number of periodic points and plays the role
of entropy as defined in the presence of a topology or a measure. It is the logarithm of the spectral radius of
σ acting on the total (`-adic) cohomology of A—even in the not very inseparable case—similarly to a result
of Friedland’s in the context of complex dynamics [18].

The degree zeta function. The degree zeta function Dσ(z) is a rational function, and hence admits a
meromorphic continuation to the entire complex plane. Actually,

Dσ(z) =

r∏
i=1

(1− λiz)−mi ,

written in terms of the parameters in Equation (20), immediately provides the extension. Poles (with mul-
tiplicity mi) occur at 1/λi with mi > 0; zeros (with multiplicity mi) occur at 1/λi with mi < 0. We may
describe the behaviour of zeros and poles more precisely.

Proposition 5.4. Assume that σ is not nilpotent. Let Λ′ := max{|λi| : |λi| < Λ} < Λ.

(i) The function Dσ(z) has a pole at 1/Λ.
(ii) The function Dσ(z) has a zero z0 with |z0| = 1/Λ′ and is holomorphic in the annulus 1/Λ < |z| <

1/Λ′.
(iii) Λ′ >

√
Λ.

Proof. In order to prove (i), we need to show that the multiplicitym of Λ is positive. If Λ is a dominant root,
this follows from Proposition 5.1.(vi). If Λ is not a dominant root and m < 0, the sequence deg(σn − 1)−
mΛn is a linear recurrent sequence with positive values and no dominant positive real root, contradicting [4,
Thm. 2].
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Let us now prove (ii). Let ρ denote the minimal value of |ξi| and |ξi|−1 that is strictly larger than 1, i.e.,

ρ = min(min{|ξi| : |ξi| > 1},min{|ξi|−1 : 0 < |ξi| < 1});

it exists since by Proposition 5.1.(iv), Λ > 1. Write the set of indices {1, . . . , q} = J−< ∪J−∪J ∪J+∪J+
> ,

where membership i ∈ J∗∗ is defined by the corresponding condition in the second row of the following
table

J−< J− J J+ J+
>

|ξi| < ρ−1 |ξi| = ρ−1 |ξi| = 1 |ξi| = ρ |ξi| > ρ

From Equation (20) we see that there is no λj with Λ/ρ < |λj | < Λ and that the terms λj with |λj | = Λ/ρ
arise as products

∏
i∈I ξi where I contains J+

> , I is disjoint from J−< , I ∩ J can be anything and either I
contains all except one i ∈ J+ or I contains all i ∈ J+ and exactly one i ∈ J−.

Setting as before P :=
∏

i∈J+∪J+
>

ξi and t = #(J−< ∪ J−), we get

∑
|λj |=Λ/ρ

mjλ
n
j = (−1)t−1Pn

∏
j∈J

(ξnj − 1)

∑
i∈J+

ξ−ni +
∑
i∈J−

ξni

 . (22)

Since the right hand side is not identically zero as a function of n, we conclude that Λ′ = Λ/ρ. We consider
two cases.

Case 1: J = ∅. Then by Proposition 5.1.(vi), P = Λ has multiplicity 1 and hence from Formula
(21) we conclude that t is even. Therefore by Formula (22) all λi with |λi| = Λ′ have multiplicity
mi < 0, and hence correspond to zeros of Dσ(z).

Case 2: J 6= ∅. Substituting n = 0 into Formula (21) shows that the sum of multiplicities mi of λi
with |λi| = Λ is 0. By Formula (22), the same is true for multiplicities mj of λj with |λj | = Λ′.
Thus there is some λi with |λi| = Λ′ and mi < 0.

For the proof of (iii), note that since Λ′ = Λ/ρ, the stated inequality is equivalent to Λ > ρ2. Since
Λ =

∏
max{|ξi|, 1}, it is enough to prove that there are at least two elements in the (non-empty) set

J+ ∪ J+
> . Since q = 2g is even, it suffices to prove that both #J and t = #(J− ∪ J−< ) are even. Since

ξi with |ξi| = 1 occur in complex conjugate pairs, #J is even, and the corresponding term in (21) is
real positive. In the course of proof of Proposition 5.2 we have shown that the sum a1(n) dominates the
remaining terms, and hence is positive for large n. Hence we find from Formula (21) that P > 1 and t is
even. �

Analytic continuation/natural boundary. When σ is very inseparable, ζσ(z) coincides with the degree
zeta function Dσ(z) and hence is a rational function. One may wonder whether a Pólya–Carlson dichotomy
holds for the functions ζσ(z), meaning that, when they are not rational as above, they admit a natural bound-
ary as complex function (and hence they are non-holonomic; in this context also called “transcendentally
transcendental”).

We confirm this for a large class of such maps, providing at the same time another proof of their tran-
scendence (and even non-holonomicity). The crucial tool is Theorem A.1 that Royals and Ward prove in
Appendix A of this paper.

Theorem 5.5. Suppose that σ is not very inseparable and that Λ is the unique dominant root. Then the
function ζσ(z) has the circle |z| = 1/Λ as its natural boundary. In particular, ζσ(z) is not holonomic.

Proof. We start by the observation that ζσ(z) has the same natural boundary as Zσ(z) :=
∑
σnz

n if the
latter function has natural boundary [5, Lemma 1]. Next, we find an expression

Zσ(z) =
r∑
i=1

mi

∑
n>1

r−1
n |n|−snp (λiz)

n,
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where mi, λi are as in (10) and rn, sn are as in Proposition 2.7. We now apply Theorem A.1: in the notation
of that theorem, we choose S to be the set of primes containing p and all primes ` for which |rn|` 6= 1 for
some n. By periodicity of (rn), the set S is finite. Let an := degi(σ

n − 1) = rn|n|snp . Suppose $ is a
common period for (rn) and (sn). For ` ∈ S, set n` = $, c`,k = |rk|`; for ` 6= p, set e`,k = 0, and set
ep,k = −sk. Then |an|S = a−1

n , and hence we can write

Zσ(z) =

r∑
i=1

mif(λiz),

where f is the function associated to (an) as in Theorem A.1. Since σ is not very inseparable, by Remark 4.4
the sequence (an) takes infinitely many values. We find that the term f(λiz) has a natural boundary along
|z| = 1

|λi| . If Λ is the unique λi of maximal absolute value, then the dense singularities along this circle
cannot be cancelled by other terms, and we conclude thatZσ(z) has a natural boundary along |z| = 1/Λ, and
the same holds for ζσ(z). Since a holonomic function has only finitely many singularities (corresponding
to the zeros of q0(z) if the series function satisfies Equation (5), compare [16, Thm. 1]), ζσ(z) cannot be
holonomic. �

Question 5.6. Is |z| = 1/Λ a natural boundary for ζσ(z) for any not very inseparable σ (even without the
assumption of a unique dominant root)?

Metrisable group endomorphisms with the same zeta function. Given the analogy between our results
and some properties of metrizable group endomorphisms, one may ask for the following more formal rela-
tionship:

Question 5.7. Can one associate to an action of σ

�

A an endomorphism of a compact metrisable abelian
group τ

�

G with the same Artin–Mazur zeta function, i.e., ζσ = ζτ?

The analogue of this question over the complex numbers is trivial, as one may take G = A(C). The
degree zeta function Dσ(z) artificially equals the Artin–Mazur zeta function of an endomorphism τ of
a 2g-dimensional real torus whose matrix has the same characteristic polynomial as that of σ acting on
T`(A) for any ` 6= p (e.g., the companion matrix). This implies that for a very inseparable σ

�

A, indeed,
ζσ(z) = ζτ (z).

Even in the not very inseparable case, it is sometimes possible to construct such τ

�

G, like we did for
the example in the introduction.

In general, it would be natural to consider the induced action of σ on the torsion subgroup A(K)tor (dual
of the total Tate module

∏
T`(A)). This provides the correct contribution |σn|` at all primes ` 6= p; for such

`, the size of the cokernel of σn − 1 acting on T`(A) is precisely |σn|−1
` . However, at ` = p, we found

no such natural group in general, and it seems that |σn|p is genuinely determined by the geometry of the
p-torsion subgroup scheme.

6. Geometric characterisation of very inseparable endomorphisms

In this section, we analyse the condition of very inseparability from a geometric point of view as well as
its relation to inseparability. For this, it is advantageous to temporarily drop the assumption of confinedness
and consider a general σ ∈ End(A).

Elementary properties. We start by listing properties of very inseparability that follow more or less directly
from the definition. For this, we first write out a very basic property:

Lemma 6.1. Whether σ ∈ End(A) is a separable isogeny or not is determined by its action on the finite
commutative group scheme A[p], i.e., by its image under the map End(A)→ End(A[p]).
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Proof. If two endomorphisms σ, τ : A→ A induce the same map on A[p], then σ− τ vanishes on the group
scheme A[p], and hence it factors through the map [p] : A → A. Thus σ − τ = pν for some ν : A → A,
and hence the map End(A)/pEnd(A) ↪→ End(A[p]) is injective. Since an endomorphism A → A is a
separable isogeny if and only if it induces an isomorphism on the tangent space, and since every map of the
form pν induces the zero map on the tangent space, we conclude that σ is a separable isogeny if and only if
τ is a separable isogeny. �

Proposition 6.2. Let σ ∈ End(A).
(i) The endomorphism σ is very inseparable if and only if σn − 1 is a separable isogeny for all n 6

p4g2 .
(ii) If A = A1 × A2 with A1, A2 abelian varieties and σ = σ1 × σ2 is a product morphism with

σi ∈ End(Ai), then σ is very inseparable if and only if σ1 and σ2 are both very inseparable.
(iii) Multiplication [m] : A→ A by an integer m is very inseparable if and only if m is divisible by p.
(iv) An endomorphism of an elliptic curve is very inseparable if and only if it is either an inseparable

isogeny or zero.
(v) IfE is an elliptic curve over a field of characteristic 3, then the isogeny σ := [2]×[3] onA := E×E

is inseparable but not very inseparable.

Proof. To prove (i), observe that by Lemma 6.1, it suffices to look at the images of σn − 1 in the ring
End(A)/pEnd(A). Since EndA is finite free of rank at most 4g2, this ring is finite of cardinality 6 p4g2 ,
and hence the sequence of images of σn − 1 is ultimately periodic (i.e., periodic except for a finite number
of n) with all possible values already occuring for n 6 p4g2 .

Property (ii) is immediate from the definition.
Since an endomorphism of an abelian variety is a separable isogeny if and only if its differential is

surjective, to prove (iii), observe that the differential of the multiplication by mn − 1 map is still given by
multiplication by mn − 1 and hence is surjective if and only if it is nonzero, i.e., when p does not divide
mn − 1. The latter happens for all n > 1 if and only if p|m.

Statement (iv) was already discussed in Remark 4.2.
Property (v) follows immediately from (ii) and (iii). �

Using the local group scheme A[p]0. The category of finite commutative group schemes over K is abelian
and decomposes as the product of the category of finite étale and the category of finite local group schemes
(see, e.g., [20, A §4]). The group scheme A[p] decomposes canonically as the product of the étale part
A[p]ét and the local part A[p]0. We now provide a geometric characterisation of (very) inseparability using
the local p-torsion subgroup scheme, as in Theorem A in the introduction.

Theorem 6.3. Let σ ∈ End(A).
(i) σ is a separable isogeny if and only if it induces an isomorphism on A[p]0.

(ii) σ is very inseparable if and only if it induces a nilpotent map on A[p]0.

Proof. Under the splitting A[p] = A[p]ét × A[p]0, the morphism σ[p] induced by σ on A[p] splits as a
product morphism σ[p] = σ[p]ét × σ[p]0. Therefore, we have

kerσ[p] = kerσ[p]ét × kerσ[p]0. (23)

An isogeny σ is separable if and only if kerσ is étale.
We turn to the proof of (i). In one direction, first assume that σ is a separable isogeny. Then kerσ is étale,

and hence so is its subgroup scheme kerσ[p]. From the decomposition (23), we conclude that kerσ[p]0 is
both étale and local, hence trivial. Since A[p]0 is a finite group scheme, the map σ[p]0 is an isomorphism.

For the other direction, assume first that σ is not an isogeny. Let B be the reduced connected component
of 0 of kerσ. Then B is an abelian subvariety, B[p]0 is a nontrivial group scheme (because multiplication
by p on B is not étale) and is contained in the kernel of σ[p]0 and hence σ[p]0 is not an isomorphism.
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Secondly, assume that σ is an inseparable isogeny. Then kerσ is not étale. We have kerσ ⊆ A[n] for
n = deg σ. Writing n = ptu with u coprime with p, we get a decomposition kerσ = kerσ[pt]× kerσ[u].
The group scheme kerσ[u] is étale (as a subgroup scheme of A[u]), and hence kerσ[pt] cannot be étale,
which means that kerσ[pt]0 is nontrivial. For each integer r, we have an exact sequence

0 kerσ[pr−1]0 kerσ[pr]0 kerσ[p]0.
pr−1

Applying this inductively for r = t, t − 1, . . . , 2, we conclude that kerσ[p]0 is nontrivial, and hence the
morphism σ[p]0 is not an isomorphism. This proves (i).

For the proof of (ii), consider the natural homomorphism ϕ : End(A) → End(A[p]0). Since End(A) is
a finite Z-algebra, and since p ∈ kerϕ, the ring R := im(ϕ) is a finite Fp-algebra. By part (i), the map
σn − 1 is a separable isogeny if and only if its image ϕ(σn − 1) is a unit in End(A[p]0). We claim that
ϕ(σn − 1) is then a unit in R; in fact, the ring R is a finite Fp-algebra, and hence there exists a monic
polynomial f ∈ Fp[t], f = td + ad−1t

d−1 + . . . + a0 of lowest degree such that f(σn − 1) = 0. If the
constant term a0 of f is different than zero, then we easily see that σn−1 is invertible inR, its inverse being
−a−1

0

∑d−1
i=0 (σn − 1)i. If on the other hand a0 = 0, then σn − 1 is a two-sided zero-divisor in R, hence in

End(A[p]0), and therefore cannot be a unit in End(A[p]0). Thus, our claim is now reduced to the proof of
the following lemma.

Lemma 6.4. Let R be a finite (not necessarily commutative) Fp-algebra and let r ∈ R. Then the following
conditions are equivalent:

(i) For all positive integers rn − 1 is invertible.
(ii) The element r is nilpotent.

Proof. Let J denote the Jacobson radical of R. The ring R is artinian and hence the ring R = R/J is
semisimple [26, 4.14]. For an element s ∈ R, denote the image of s in R by s. Then s is invertible in R if
and only if s is invertible in R [26, 4.18] and s is nilpotent if and only if s is nilpotent (this follows from
the fact that the Jacobson radical of an artinian ring is nilpotent, see [26, 4.12]). Thus we have reduced the
claim to the case of a semisimple ring R.

By the Wedderburn–Artin theorem [26, 3.5], a semisimple ring is a product of matrix rings over division
rings which in our case need to be finite, and hence by another theorem of Wedderburn [26, 13.1] are
commutative. Thus we can decompose the ring R as a product of matrix rings over finite fields

R '
s∏
i=1

Mni(Fqi).

Clearly, each of the properties in the statement of the lemma can be considered separately for each term in
this product, and we are reduced to proving that a matrix N over a finite field has the property that Nn − 1
is invertible for all n > 1 if and only if N is nilpotent.

If N is nilpotent, then all the matrices Nn − 1 are invertible, since in any ring the sum of a unit and
a nilpotent that commute with each other is a unit. Conversely, if N is not nilpotent, then N has some
eigenvalue λ 6= 0, perhaps in a larger (but still finite) field. Let n > 1 be such that λn = 1 (such n always
exists in a finite field). Then the matrix Nn − 1 is not invertible. �

We have some immediate corollaries (where 6.5.(i) refines Lemma 6.1):

Corollary 6.5. Let σ ∈ End(A).
(i) Whether σ is a separable isogeny or not, or very inseparable or not, is determined by its action on

A[p]0, i.e., on its image under the map

End(A)→ End(A[p]0).

(ii) Very inseparable isogenies are inseparable.
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(iii) There exists a simple abelian surface with a confined isogeny that is inseparable but not very
inseparable and for which inseparable isogenies together with the zero map do not form an ideal.

Proof. Statement (i) is immediate from Theorem 6.3. Statement (ii) follows from Theorem 6.3, since nilpo-
tents are not invertible. Concerning (iii), the following is an example of a simple abelian variety A and an
inseparable but not very inseparable isogeny σ (all computational data used can be found at [27]). Consider
the isogeny class of supersingular abelian surfaces over F5 of p-rank 0 with characteristic polynomial of
the Frobenius π equal to x4 + 25 = 0. The splitting field L := Q(π) = Q(i,

√
10) has no real embed-

dings, hence by Waterhouse [41, Thm. 6.1] there exists a simple abelian surface A with endomorphism ring
OL = Z[i, π] (the ring of integers in L, containing both π and 5/π = −iπ). Consider σ = i− 2 = π2

5 − 2,
with characteristic polynomial σ2 + 4σ + 5 = 0. The endomorphism σ is a confined isogeny since on a
simple abelian variety these are exactly the endomorphisms that are neither zero nor roots of unity. Denoting
the reduction of σ modulo 5 by σ, we find that

σ2 = σ. (24)

Note that A[p] = A[p]0 and hence there is an injective map OL/5OL ↪→ End(A[p]0). Now σ is separable if
and only if σ is an isomorphism on A[p]0, which, by (24), happens exactly if σ = 1. But then σ = 5ψ + 1
for some ψ ∈ OL, which does not hold. Hence σ is inseparable. On the other hand, σ is very inseparable if
and only if σ is nilpotent on A[p]0, which, by (24), happens exactly if σ = 0. This means that σ = 5ψ for
some ψ ∈ OL, which does not hold either. Hence σ is not very inseparable.

Let σ′ = −i− 2. We similarly prove that σ′ is inseparable, and yet the map σ + σ′ = −4 is a separable
isogeny. Hence the set of inseparable isogenies together with the zero map is not closed under addition. �

Using Dieudonné modules. The structure of the endomorphism ring of the local group scheme A[p]0 can
be computed explicitly using the theory of Dieudonné modules, and we will use this to deduce some more
results on very inseparability.

The group schemes A[p] and A[p]0 are objects in the category CK of finite commutative group schemes
over K annihilated by p. By covariant Dieudonné theory [20, A §5] there is an equivalence of categories

D : CK → Finite length left E-modules,

where E = K[F, V ] denotes the non-commutative ring of polynomials with relations

FV = V F = 0, Fλ = λpF and V λp = λV for λ ∈ K.
We may consider being a very inseparable endomorphism or a separable isogeny as a property of the image
of an endomorphism under the map End(A)→ EndE(D(A[p]0)).

Example 6.6. If A is an ordinary elliptic curve, then A[p]0 ∼= µp, so End(A[p]0) = Fp. If A is a supersin-
gular elliptic curve, the local group scheme A[p]0 is the unique non-split self-dual extension of αp by αp.
The Dieudonné module is D(A[p]0) = E/E(V +F ) [20, A.5.4] and a computation [20, A.5.8] gives a ring
isomorphism

End(A[p]0) ∼= EndE(E/E(V + F )) ∼=
{(

ap b
0 a

)
: a ∈ Fp2 , b ∈ K

}
.

From these computations, one also sees directly that non-invertible elements are nilpotent in End(A[p]0) in
both the ordinary and the supersingular case, giving an alternative proof of 6.2.(iv).

Proposition 6.7. Let σ ∈ End(A) and set D := D(A[p])0).
(i) σ is a separable isogeny (respectively, very inseparable endomorphism) if and only if its image in

EndK[F ](D/VD) is invertible (respectively, nilpotent).
(ii) σ is very inseparable if and only if a power of σ factors through the p-Frobenius map Fr: A 7→

A(p).
(iii) If End(A) is commutative, the set of very inseparable endomorphisms forms an ideal in End(A).
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(iv) There exists an abelian variety for which the set of very inseparable endomorphisms is not closed
under either addition or multiplication (in particular, it is not an ideal).

(v) Let A denote a simple ordinary abelian variety defined over a finite field Fq ⊆ K with (commuta-
tive) endomorphism ring O := End(A) and Frobenius endomorphism π. SetR := Z[π, q/π]. Then
R ⊆ O and if p-[O:R], then any isogeny of A is very inseparable if and only if it is inseparable.
This is in particular true if q = p > 5.

Proof. We first prove (i). The relations in E imply that VE is a two-sided ideal in E. In this way, σ, as an
E-endomorphism of D, gives rise to an endomorphism σ̃ of the E/VE = k[F ]-module D/VD. The first
claim is that σ is nilpotent if and only if σ̃ is. The interesting direction is where σ̃ is nilpotent, meaning
that σn(D) ⊆ VD for some n. Since V is nilpotent on D [20, A.5], say V dD = 0, we can iterate the
equation to get σnd(D) ⊆ V dD = 0. Secondly, we claim that σ is invertible if and only if σ̃ is so. Again,
the interesting direction is when σ̃ is invertible. If we let D′ denote the image of σ : D→ D, then D′ is an
E-submodule of D and D = D′ + VD. Iterating this sufficiently many times, we find that

D = D′ + VD = D′ + VD′ + V 2D = . . . = D′ + VD′ + · · ·+ V d−1D′ ⊆ D′.

This shows that σ is surjective, and, since it is an endomorphism of the underlying finite dimensional vector
space, it is then automatically injective.

In order to prove (ii), note that the Dieudonné module D(A(p)[p]0) can be identified with D = D(A[p]0)

with the E-action twisted by the geometric Frobenius map ψ : K → K, ψ(λ) = λ1/p. Under this identifi-
cation, the map induced by the p-Frobenius Fr: A → A(p) on the Dieudonné modules is the ψ-semilinear
map V : D→ D [20, A.5]. Moreover, the map V is nilpotent.

If σ is very inseparable, there exists n with σn|A[p]0 = 0. Since A[Fr] ⊆ A[p]0, we have σn|A[Fr] = 0 and
hence σn factors through Fr. Conversely, suppose that σn = τ ◦ Fr for some τ : A(p) → A. Passing to the
Dieudonné modules, and using the fact that the map D(τ) is ψ−1-semilinear (and hence commutes with V ),
we see that D(σn)D ⊆ VD, so D(σ) is nilpotent modulo V . By part (i), we find that σ is very inseparable.

For the proof of (iii), note that, without any assumptions on the ring End(A), the set I of maps in End(A)
that factor through the p-Frobenius Fr is a left ideal in End(A). Therefore by (ii), if the ring End(A) is
commutative, the set of very inseparable maps in End(A) coincides with the radical of I , and hence is an
ideal.

For (iv), consider A = E × E for an ordinary elliptic curve E. Then End(A) = M2(End(E)) surjects
onto End(A[p]0) = M2(Fp) (see Example 6.6). The set of very inseparable endomorphisms corresponds
under this map to matrices whose image in M2(Fp) is nilpotent, and it suffices to remark that the set of
nilpotent elements in M2(Fp) is not closed under neither addition nor multiplication.

For (v), we indeed have R ⊆ O by [41, 7.4]. Let σ ∈ O and observe that the coprimality of [O:R]
to p implies that there exists an integer N coprime to p with Nσ ∈ R. Therefore, it suffices to prove the
equivalence of inseparability and very inseparability for elements of R. Represent such an element σ ∈ R
by ∑

i>1

aiπ
i +
∑
j>0

bj(π
′)j ,

with π′ = q/π and ai, bi ∈ Z (the terms containing both π and π′ may be omitted since they do not change
the image of σ in End(D)). Since A is defined over Fq with q = pr, we have π = Frr and π′ = Verr,
where Ver: A(p) → A is the Verschiebung. On the level of Dieudonné modules, Fr maps to V and Ver
maps to F [20, A.5], so σ maps to the endomorphism

σ̃ :=
∑

bjF
rj ∈ EndK[F ](D/VD).

In the ordinary case, the Dieudonné modules of A[p] and A[p]0 are

D(A[p]) = (E/(V, 1− F )⊕E/(F, 1− V ))g
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and
D = D(A[p]0) = (E/(V, 1− F ))g

(since this is the subgroup scheme of D(A[p]) on which V is nilpotent [20, A.5]). Hence F = 1 in
End(D/VD) = Mg(Fp), and σ̃ :=

∑
bj is a scalar multiplication; therefore, it is nilpotent if and only

if it is zero (i.e., non-invertible).
The final claim follows from a result of Freeman and Lauter [17, Prop. 3.7]. �

We were unable to answer the following natural questions:

Question 6.8.
(i) Construct a simple abelian variety for which very inseparable endomorphisms do not form an ideal.

(ii) Consider the subset of the moduli space of abelian varieties of given dimension and given degree
of polarisation consisting of those abelian varieties A for which inseparable isogenies are very
inseparable. Is this locus dense in the moduli space? Recall that, by a result of Norman and Oort,
the ordinary locus is dense [31, Thm. 3.1].

7. The tame zeta function

We revert to our standard assumptions and define the following general “tame” version of the Artin–
Mazur zeta function for varieties over fields of positive characteristic (the construction is somewhat remi-
niscent of that of the Artin–Hasse exponential):

Definition 7.1. LetK denote an algebraically closed field of positive characteristic p > 0,X/K an algebraic
variety, and let f : X → X denote a confined morphism. The tame zeta function ζ∗f is defined as the formal
power series

ζ∗f (z) := exp

∑
p-n

fn
zn

n

 , (25)

summing only over n that are not divisible by p.

A basic observation is:

Proposition 7.2. We have identities of formal power series

ζX,f (z) =
∏
i>0

pi
√
ζ∗
X,fpi

(zpi) (26)

and
ζ∗X,f (z) = ζX,f (z)/ p

√
ζX,fp(zp). (27)

Proof. For the first identity (26), we do a formal computation, splitting the sum over n into parts where n is
exactly divisible by a given power pi of p (denoted pi||n):

ζX,f (z) = exp

∑
i>0

∑
pi||n

fn
n
zn

 = exp

∑
i>0

∑
p-m

fpim
pim

zp
im


= exp

∑
i>0

1

pi

∑
p-m

(fp
i
)m

m

(
zp

i
)m =

∏
i>0

exp

(
1

pi
log
(
ζ∗
fpi

(zp
i
)
))

.

For the second identity (27), we compute as follows:

ζ∗X,f (z) = exp

∑
n>1

fn
n
zn −

∑
k>1

fpk
pk

zpk

 = exp

(∑
n>1

fn
n
zn

)/
exp

1

p

∑
k>1

(fp)k
k

zpk

 . �
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Theorem 7.3. For σ

�

A, there exists an integer t > 0 (depending on σ) such that (ζ∗σ)t is a rational
function. In particular, ζ∗σ is algebraic.

Proof. Proposition 2.7 implies that for p-n the inseparability degree degi(σ
n−1) = rn is periodic of period

ω with rn = rgcd(n,ω). Let µ denote the Möbius function. For n|ω, define rational numbers αn by

αn =
1

n

∑
e|n

µ(n/e)

re
. (28)

By Möbius inversion and the equality rn = rgcd(n,ω), we get

1

rn
=

∑
d|gcd(n,ω)

dαd for all n > 1.

Therefore,

ζ∗σ(z) = exp

∑
p-n

deg(σn − 1)

nrn
zn

 = exp

∑
d|ω

αd
∑
p-m

deg(σdm − 1)

m
zdm


=
∏
d|ω

exp

∑
p-m

deg(σdm − 1)

m
zdm

αd

.

Using the notation of Proposition 2.3.(i), we can rewrite this as

ζ∗σ(z) =
∏
d|ω

(
Dσd(z

d)/ p

√
Dσpd(z

pd)

)αd
(29)

and hence the result follows from the rationality of the degree zeta functions. �

The minimal exponent tσ > 0 for which ζ∗σ(z) ∈ Q(z) is an invariant of the dynamical system σ

�

A.
We briefly discuss the arithmetic significance of such tσ, by considering both ordinary and supersingular
elliptic curves.

Proposition 7.4. Let E denote an elliptic curve, σ ∈ End(E), and let tσ be the minimal positive integer for
which ζ∗σ(z)tσ ∈ Q(z).

(i) If E is ordinary, tσ is a pure p-th power.
(ii) There exists a (supersingular) E and σ

�

E for which tσ is not a pure p-th power.

Proof. If σ is an endomorphism of an ordinary elliptic curve, then there is a valuation | · | on the quotient
field L of the endomorphism ring that extends the p-valuation and such that degi σ = |σ| (cf. Remark 4.2).
If σ is very inseparable, ζ∗σ(z) is rational, and the claim is clear. Otherwise, let s be the minimal positive
integer for which M := |σs − 1| < 1. We find that for integers n not divisible by p,

rn = degi(σ
n − 1) =

{
1 if s-n,
M if s|n. (30)

Substituting this into Formula (28), we get ω = s. If s = 1, we have α1 = 1/M , and if s > 1, we find

αn =

 1 if n = 1,
0 if n|s, 1 < n < s,
(1−M)/(Ms) if n = s.

(31)

Since p splits in L [10, §2.10], the valuation | · | has residue field Fp, and hence s|(p − 1). From Formula
(29), it follows that ζ∗σ(z) is a product of rational functions to powers 1/p and (1−M)/(Mps) (and 1/(Mp)
if s = 1). Now with M = p−r for some r > 1, we find that (1−M)/(Mps) = (pr − 1)/pr+1s, which has
denominator a power of p, since s divides p− 1. This proves (i).
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For (ii) consider a supersingular elliptic curve A = E. We have already seen in Remark 4.2 that the
inseparability degree of an isogeny is detected by a valuation on the quaternion algebra End(E) ⊗ Q, on
which we now briefly elaborate. The ring O = End(E) is a maximal order in a quaternion algebra, and
its completion Op = End(E) ⊗Z Zp is an order in the unique quaternion division algebra D over Qp

[10]. There exists a valuation v : D → Z on D with the property that Op = {x ∈ D : v(x) > 0}.
Let p = {x ∈ O : v(x) > 1}. Then p is a two-sided maximal ideal in O with pOp = p2Op and we
have an isomorphism O/p ' Fp2 . The inseparable degree of an isogeny σ ∈ O is given by the formula
degi(σ) = pv(σ), cf. [9, Prop. 5.5].

Let σ ∈ O be an endomorphism such that its image in O/p ' Fp2 generates the multiplicative group of
the field and such that v(σp

2−1 − 1) = 1. Then for integers n not divisible by p we have

degi(σ
n − 1) =

{
1 if (p2 − 1)-n,
p if (p2 − 1)|n. (32)

Let us prove that such σ exists: choose elements σ0, τ ∈ O such that the image of σ0 in O/p ' Fp2
generates the multiplicative group of the field and v(τ) = 1. Then one of the elements σ0, σ0 + τ satisfies
the desired conditions.

Furthermore, the degree is of the form deg(σn − 1) = mn − λn − (λ′)n + 1 for λ, λ′ ∈ Q and m :=
λλ′ ∈ Z. Using the convenient notation

Z (z) :=
p
√

1− zp
1− z

,

a somewhat tedious computation, splitting the terms in log ζ∗σ(z) to take into account the cases in Formula
(32), gives that

ζ∗σ(z) =
g1(z)

p(p+1)
√
gp2−1(z)

, where gi(z) :=
Z (zi) Z ((mz)i)

Z ((λz)i) Z ((λ′z)i)
.

Note that Z (z) is itself a p-th root of a rational function. We conclude that t = p2(p + 1) suffices to have
ζ∗σ(z)t ∈ Q(z) but ζ∗σ(z)t is not rational for any choice of t as a pure p-th power. �

8. Functional equations

In this section, we study the existence of functional equations for full and tame zeta functions on abelian
varieties. Assume throughout the section that σ is an isogeny. Under the transformation z 7→ 1/ deg(σ)z,
we will find a functional equation for zeta functions of very inseparable endomorphisms, and a “Riemann
surface” version of a functional equation for the tame zeta function. Since this transformation does not
make sense for ζσ as a formal power series, Dσ, ζσ, and ζ∗σ are therefore considered as genuine functions of
a complex variable, and the symbols are understood to refer to their (maximal) analytic continuations.

Proposition 8.1. The degree zeta function Dσ(z) (cf. 2.2) satisfies a functional equation of the form

Dσ

(
1

deg(σ)z

)
= Dσ(z).

Proof. We use the notations from Equation (20). It is clear that the multiset of λi is stable under the invo-
lution λ 7→ deg(σ)/λ. From this symmetry, we obtain a functional equation for the exponential generating
function Dσ(z) =

∏r
i=1(1− λiz)−mi of the form

Dσ

(
1

deg(σ)z

)
= (−z)

∑r
i=1mi

r∏
i=1

λmii Dσ(z).

Subsituting n = 0 into (20) gives
∑r

i=1mi = 0 and a direct computation using the form of λi and the fact
that q is even shows that

∏r
i=1 λ

mi
i = 1, which gives the claim. �
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Remark 8.2. The functional equation for Dσ(z) can be placed in the cohomological framework from Re-
mark 2.4: consider the Poincaré duality pairing 〈·, ·〉 : Hi ×H2g−i ⊗Q`(g)→ Q`, under which 〈σ∗x, y〉 =
〈x, σ∗y〉, with σ∗σ∗ = [deg σ]. Hence if σ∗ has eigenvalues αi on Hi, then σ∗ has eigenvalues deg(σ)/αi
on H2g−i, but these sets are the same by duality. In this way the functional equation picks up a factor zχ(A),
where χ(A) is the `-adic Euler characteristic of A. But here, χ(A) = 0 (since the i-th `-adic Betti number
of an abelian variety of dimension g is the binomial coefficient

(
2g
i

)
).

Theorem 8.3.
(i) If σ is very inseparable, then ζσ(z) extends to a meromorphic function on the entire complex plane

and satisfies a functional equation of the form

ζσ

(
1

deg(σ)z

)
= ζσ(z).

(ii) If σ is not very inseparable and Λ is the unique dominant root, then ζσ(z) cannot satisfy a func-
tional equation under z 7→ 1/deg(σ)z; actually, the intersection of the domains of ζσ(z) and
ζσ(1/ deg(σ)z) is empty.

(iii) For any confined σ, let Xσ denote the concrete Riemann surface of the algebraic function ζ∗σ(z) (a
finite covering of the Riemann sphere). Then there exists an involution τ ∈ Aut(Xσ) such that the
meromorphic extension ζ∗σ : Xσ → Ĉ fits into a commutative diagram of the form

Xσ

ζ∗σ ��

τ // Xσ

ζ∗σ��

Ĉ
id // Ĉ.

(33)

Proof. If σ is very inseparable, then ζσ = Dσ, and the result follows from Proposition 8.1.
If σ is not very inseparable and Λ is the unique dominant root, then by Theorem 5.5 the function ζσ(z)

has a natural boundary on |z| = 1/Λ. Thus ζσ(z) and ζσ( 1
deg(σ)z ) are commonly defined only on Λ

deg(σ) <

|z| < 1
Λ which is empty when Λ2 > deg(σ). By Proposition 5.1.(iii), we have Λ2 > Λ >

∏
|ξi| = deg σ,

so this always holds.
For the third part of the theorem, consider equation (29) that expresses the function ζ∗σ in terms of degree

zeta functions. Write αd/p = Ad/Bd for coprime integers Ad, Bd, let N denote the least common multiple
of Bd over all d|ω and set βd := Nαd/p ∈ Z. Then ζ∗σ entends to a function on the Riemann surface Xσ

corresponding to the projective curve defined by the affine equation

yN =
∏
d|ω

(
Dσd(x

d)p

Dσpd(x
pd)

)βd
given by ζ∗σ(x, y) = y. By the fact that all Dσ satisfy the functional equation as in Proposition 8.1, the map
τ : Xσ → Xσ, τ(x, y) =

(
1

deg(σ)x , y
)

is an involution of Xσ (we use that deg(σr) = deg(σ)r for any
integer r). The same functional equations then prove that the diagram (33) commutes. �

9. Prime orbit growth

In this section, we consider the prime orbit growth for a confined endomorphism σ : A → A. We are
interested in possible analogues of the Prime Number Theorem (“PNT”), much like Parry and Pollicott
proved for Axiom A flows [32]. In our case, it follows almost immediately from the rationality of their zeta
functions that such an analogue holds for very inseparable σ. In general, however, as we will see, the prime
orbit counting function displays infinitely many forms of limiting behaviour. Nevertheless, the (weaker)
analogue of Chebyshev’s bounds and Mertens’ second theorem hold. In accordance with our philosophy,
we also consider counting only “tame” prime orbits (i.e, of length coprime to p), and in this case we see
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finitely many forms of limiting behaviour, detectable from properties of the p-divisible group. Finally, we
briefly discuss good main and error terms reflecting analogues of the Riemann Hypothesis.

Notations/Definitions 9.1. A prime orbitO of length ` =: `(O) of σ : A→ A is a setO = {x, σx, σ2x, . . . , σ`x =
x} ⊆ A(K) of exact cardinality `. Letting P` denote the number of prime orbits of length ` for σ, the prime
orbit counting function is πσ(X) :=

∑
`6X P`.

As formal power series, the zeta function of σ admits a product expansion

ζσ(z) =
∏
O

1

1− z`(O)
,

where the product runs over all prime orbits. Since σn =
∑

`|n `P`, Möbius inversion implies that P` =
1
`

∑
n|` µ

(
`
n

)
σn. Our proofs will exploit the fact that the numbers σn differ from the linear recurrent se-

quence deg(σn − 1) only by a multiplicative factor, the inseparable degree, that grows quite slowly.
Not to complicate matters, we make the following assumption:

Standing assumption/notations.
The dominant root Λ > 1 is unique.
The $-periodic sequences (rn) and (sn), sn 6 0, are as in Formula (14).
All asymptotic formulæ in this section hold for integer values of the parameter.

By Proposition 5.1.(vi), this implies that Λ > 1 is of multiplicity one. We start with a basic proposition
describing the asymptotics of P`. Interestingly, the error terms are determined by the zeros of the degree
zeta function. This appears to be a rather strong result with a very easy proof, dependent on the exponential
growth.

Proposition 9.2. P` =
Λ`

`r`|`|s`p
+O(ΛΘ`), where Θ := max{Re(s) : Dσ(Λ−s) = 0} ∈ [

1

2
, 1).

Proof. From Formula (10), we get deg(σn − 1) = Λn +O(ΛΘ`) for

Θ := max
|λi|6=Λ

log |λi|
log(Λ)

.

By Proposition 5.4, this equals the largest real part of a zero of Dσ(Λ−s), and 1/2 6 Θ < 1. Hence

σ` =
deg(σ` − 1)

degi(σ
` − 1)

=
Λ`

r`|`|s`p
+O(ΛΘ`).

Expressing the number of prime orbits in terms of the number of fixed points, we get

P` =
1

`

∑
n|`

µ

(
`

n

)
σn =

σ`
`

+
1

`

∑
n|`
n<`

µ

(
`

n

)
σn.

Since |µ(`/n)σn| 6 deg(σn − 1) 6MΛn for some constant M depending only on σ, we get∣∣∣∣∣∣∣∣
∑
n|`
n<`

µ

(
`

n

)
σn

∣∣∣∣∣∣∣∣ 6 `MΛ`/2,

and since Θ > 1/2, the claim follows. �

The remainder of this section is dedicated to a study of what happens to the asymptotics if we further
average in `, like in the prime number theorem or Mertens’ theorem. We will see that between PNT and
Mertens’ theorem, information about σ being very inseparable or not gets lost.
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The next lemma is formulated in a general way and will be applied several times in order to asymptotically
replace factors “1/`” for ` 6 X by “1/X”. This leads to simplified main terms at the cost of worse error
terms (we will discuss another approach leading to a “complicated main term with good error term” at the
end of the section).

Lemma 9.3. Let (a`) be a bounded sequence and let Λ > 1 be a real number. Then∑
`6X

a`
`

Λ`−X =
1

X

∑
`6X

a`Λ
`−X +O(1/X2).

Proof. Write ∑
`6X

a`
`

Λ`−X − 1

X

∑
`6X

a`Λ
`−X =

∑
`6X

a`(X − `)
X`

Λ`−X .

With M := sup |a`| < +∞, the “top half” of this sum can be bounded as follows:∣∣∣∣∣∣
∑

X/26`6X

a`(X − `)
X`

Λ`−X

∣∣∣∣∣∣ 6 2M

X2

∑
i>0

iΛ−i = O(1/X2)

while the “bottom half” is easily seen to be O(XΛ−X/2), whence the claim. �

(Non-)analogues of PNT and analogues of Chebyshev’s estimates. The first application is to the follow-
ing “fluctuating” asymptotics for the prime orbit counting function:

Proposition 9.4.
Xπσ(X)

ΛX
=
∑
`6X

1

r`|`|s`p
Λ`−X +O(1/X).

Proof. By Proposition 9.2 we see that
Xπσ(X)

ΛX
= X

∑
`6X

P`Λ
−X = X

∑
`6X

(
1

`r`|`|s`p
Λ`−X + Λ−XO(ΛΘ`)

)
.

The error terms in this sum form a geometric series and hence decrease exponentially. Applying Lemma 9.3
to the main term, we find the stated result. �

The next theorem discusses the analogue of the PNT in our setting; an analogue of Chebyshev’s 1852
determination of the order of magnitude of the prime counting function holds in general, but the analogue of
the PNT holds only for very inseparable endomorphisms. The result for general endomorphisms is similar
in spirit to that for the 3-adic doubling map considered in [15, Thm. 3], S-integer dynamical systems in
[14] (from which we take the terminology “detector group”), or to Knieper’s theorem [25, Thm. B] on the
asymptotics of closed geodesics on rank one manifolds of non-positive curvature.

Theorem 9.5.
(i) The order of magnitude of πσ(X) is πσ(X) � ΛX/X, in the sense that the function Xπσ(X)/ΛX

is bounded away from 0 and∞.
(ii) Consider the “detector” group

Gσ := {(a, x) ∈ Z/$Z× Zp : a ≡ x mod |$|−1
p }.

If (Xn) is a sequence of integers such that Xn → +∞ and (Xn, Xn) has a limit in the group
Gσ, then the sequence Xnπσ(Xn)/ΛXn converges, and every accumulation point of Xπσ(X)/ΛX

arises in this way.
(iii) (a) If σ is very inseparable, lim

X→+∞
Xπσ(X)/ΛX exists and equals Λ/(Λ− 1).

(b) If σ is not very inseparable, then the set of accumulation points of Xπσ(X)/ΛX is a union of
a Cantor set and finitely many points. In particular, it is uncountable.
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Proof. For (i), we estimate the value of Xπσ(X)/ΛX in terms of the sum in Proposition 9.4. The bound
from above is trivial; for the bound from below we consider the terms with ` = X − 1 and ` = X and note
that for at least one of these indices we have |`|p = 1. We thus obtain the bounds

1

Λ max(r`)
6 lim inf

X→+∞

Xπσ(X)

ΛX
6 lim sup

X→+∞

Xπσ(X)

ΛX
6

Λ

Λ− 1
. (34)

To prove (ii), the formula in Proposition 9.4 may be rewritten as

Xπσ(X)

ΛX
=

X−1∑
`=0

1

rX−`|X − `|
sX−`
p

Λ−` +O(1/X). (35)

If (Xn) is as indicated, i.e., if Xn mod $ stabilises (say at the value $0 mod $) and Xn converges to
some x in Zp, then individual summands in Formula (35) have a well-defined limit while the whole sum is
bounded uniformly in n by the convergent series

∑∞
t=0 Λ−t. Thus

lim
n→+∞

Xnπσ(Xn)

ΛXn
=
∞∑
`=0

1

r$0−`|x− `|
s$0−`
p

Λ−`, (36)

where (rn) and (sn) are prolonged to periodic sequences for n ∈ Z in an obvious manner; if x is a positive
integer, then the term corresponding to ` = x should be construed as Λ−`

r$0−`
if s$0−` = 0, and 0 otherwise.

We now prove (iii). When σ is very inseparable, $ = 1, rn = 1, sn = 0, and Proposition 9.4 implies the
result by summing the geometric series

∑
k>0 Λ−k = 1/(1− 1/Λ) in (36). Note that the result also follows

by Tauberian methods applied to the rational zeta function ζσ = Dσ.
In the case of general σ, we consider the map ϕ : Gσ → R which associates to an element ($0, x) ∈ Gσ

the limit

ϕ($0, x) = lim
n→+∞

Xnπσ(Xn)

ΛXn

for a sequence (Xn) of integers such that Xn → +∞ and Xn has the limit ($0, x) in Gσ. By Formula (36),
this map is continuous. We will show that in some neighbourhood of each point the map ϕ is either constant
or a homeomorphism. Note that since Gσ is compact, the set of accumulation points of Xπσ(X)/ΛX is
equal to the image of ϕ.

Choose $0 mod $, two distinct elements x, y ∈ Zp and two sequences of integers (Xn) and (Yn) which
tend to infinity and such that Xn mod $ = Yn mod $ = $0 and Xn → x and Yn → y in Zp. Then by
(36) we have

ϕ($0, x)− ϕ($0, y) =

∞∑
`=0

a`, (37)

where

a` =
1

r$0−`

(
1

|x− `|s$0−`
p

− 1

|y − `|s$0−`
p

)
Λ−`.

Let k > 0 be such that |x − y|p = p−k. The terms a` are nonzero if and only if ` ≡ x (mod pk+1) or
` ≡ y (mod pk+1) and furthermore s$0−` 6= 0. Note that whether such ` exists depends only on the values
of x−$0 and y −$0 modulo gcd(pk+1, $). For ` with a` 6= 0, the terms a` can be bounded from below:

|a`| >
1

r$0−`

(
pks$0−` − p(k+1)s$0−`

)
Λ−` >

1

2r$0−`
pks$0−`Λ−`

while clearly |a`| 6 Λ−` for any `.
We now consider two cases depending on whether or not there exists ` such that a` 6= 0.
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Case 1: Assume first that there exists ` such that a` 6= 0 and let `0 be the smallest such `. Since any
other such ` differs from `0 by a multiple of pk, we get∣∣∣∣∣

∞∑
`=0

a`

∣∣∣∣∣ >
(

1

2r$0−`0
pks$0−`0 − Λ−p

k

1− Λ−pk

)
Λ−`0 .

Since the sequences (r`) and (s`) take only finitely many values, the expression on the right is
positive for k larger than a constant K0 which depends only on σ but not on x, y, or $0. Therefore
from (37) we conclude that if |x− y|p 6 p−K0 , then ϕ($0, x) 6= ϕ($0, y).

Case 2: If a` = 0 for all `, then by Formula (37) we have ϕ($0, x) = ϕ($0, y). Let pν be the largest
power of p dividing $. Recall that whether a` = 0 for all ` depends only on the values of x−$0

and y − $0 modulo gcd(pk+1, $). Therefore if a` = 0 for all ` and |x − y| = p−k with k > ν,
then the map ϕ is locally constant in a neighbourhood of ($0, x).

Replacing K0 with max(K0, ν) if necessary, we see that the map ϕ : Gσ → R restricted to open compact
subsets

B($0, x) = {($0, y) ∈ Gσ : |x− y|p 6 p−K0} ⊆ Gσ
is either injective (corresponding to Case 1) or constant (corresponding to Case 2). Since Gσ is a disjoint
union of finitely many subsetsB($0, x), and since eachB($0, x) is topologically a Cantor set, we conclude
that the image of ϕ is a union of finitely many (possibly no) Cantor sets and finitely many points.

In order to finish the proof, it is enough to note that if σ is very inseparable, then there exists ($0, x) ∈ Gσ
for which Case 1 holds, so the image of ϕ contains a Cantor set. Indeed, by Lemma 4.4 there exists an integer
$0 such that s$0 < 0. It is then easy to see that Case 1 holds for this choice of $0 and x = 0. �

Example 9.6. If σ is the (very inseparable) Frobenius (relative to Fq) on an abelian variety A/Fq of dimen-
sion g, then Λ = qg and we find that

∑
`6X P` ∼ qg(X+1)/(X(qg − 1)), where P` is the number of closed

points of A with residue field Fq` .
Our warm up example from the introduction illustrates what happens in the not very inseparable case.

Tame prime orbit counting. Now consider the analogous question in the tame case.

Definition 9.7. The tame prime orbit counting function is π∗σ(X) :=
∑
`6X
p-`

P`.

Remark 9.8. The tame zeta function ζ∗σ(z) is not exactly equal to the formal Euler product over orbits of
length coprime to p, but rather (notice the difference with Formula (26)):∏

p-`(O)

1

1− z`(O)
=
∏
i>0

pi
√
ζ∗σ(zpi).

We find only finitely many possible kinds of limiting behaviour, governed by the values of the periodic
sequence (rn) (the warm up example from the introduction illustrates this).

Theorem 9.9. For any k ∈ {0, . . . , p$ − 1} the limit

lim
X→+∞

X≡kmod p$

Xπ∗σ(X)

ΛX
= ρk (38)

exists (so there is convergence along sequences of values of X that converge in the “tame detector group”
G∗σ := Z/p$) and is given by

ρk =
1

Λp$ − 1

∑
16n6p$
p-n

Λ〈n−k〉

rn
, (39)

where 〈x〉 denotes the representative for x mod p$ in {1, . . . , p$}.
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Proof. By Proposition 9.2 we have

π∗σ(X) =
∑
`6X
p-`

(
Λ`

`r`
+O(ΛΘ`)

)
.

The error terms in this formula form a geometric progression and hence are O(ΛΘX). Multiplying by Λ−X

and applying Lemma 9.3, we get

π∗σ(X)

ΛX
=

1

XΛX

∑
`6X
p-`

Λ`
1

r`
+O(1/X2).

We split the sum by values of rn, as follows:

lim
X→+∞

Xπ∗σ(X)

ΛX
= lim

X→+∞

1

ΛX

 ∑
16n6p$
p-n

1

rn

⌊
X−n
p$

⌋∑
s=0

Λn+sp$



= lim
X→+∞

 ∑
16n6p$
p-n

Λ
p$

⌊
X−n
p$

⌋
+p$+n−X

rn(Λp$ − 1)

 .

The limit does not converge in general, but if we put X = Y p$ + k for fixed k and Y → +∞, we find the
indicated result, since p$

⌊
k−n
p$

⌋
+ p$ + n− k = 〈n− k〉. �

We refer to the example in the introduction for some explicit computations and graphs.

Analogue of Mertens’ theorem. The PNT is equivalent to the statement that the reciprocals of the primes
up to X sum, up to a constant, to log logX + o(1/ logX). Mertens’ second theorem is the same statement
but with the weaker error term O(1/ logX). It turns out that the analogue of this last theorem in our setting
does hold, and very inseparable and not very inseparable endomorphisms behave in the same way.

Proposition 9.10. For some c ∈ Q and c′ ∈ R we have
∑
`6X

P`/Λ
` = c logX + c′ +O(1/X).

Proof. From Proposition 9.2 we find∑
`6X

P`/Λ
` =

∑
`6X

(
1

`r`|`|s`p
+O(Λ(Θ−1)`)

)
.

The error terms in this formula sum to c′′ +O(Λ(Θ−1)X) for some c′′ ∈ R and the main terms sum to
$∑
j=1

1

rj
B−sj ,j(X),

where for integers s > 0, $ > 0, and j, we set

Bs,j(X) :=
∑
n6X

n≡jmod$

|n|sp
n
.

The proposition follows from

Bs,j(X) = cs,j logX + c′s,j +O(1/X) (40)
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for constants cs,j ∈ Q and c′s,j ∈ R. The case s = 0 is well-known and we will thus limit ourselves to the
case s > 0. To prove (40), we first consider the related sum

As,j(X) =
∑
n6X

n≡jmod$

|n|sp

and we claim that
As,j(X) = cs,jX +O(1) with cs,j ∈ Q . (41)

Then Abel summation gives

Bs,j(X) =
As,j(X)

X
+

∫ X

1

As,j(t)

t2
dt,

so (40) follows, setting c′s,j = cs,j +
∫∞

1 (As,j(t)− cs,jt)dt/t2 ∈ R. To prove (41), observe that the
arithmetic sequence j + $N might or might not contain terms divisible by arbitrarily high power of p
depending on whether |j|p 6 |$|p or |j|p > |$|p. In the latter case the sequence |n|p for n ≡ j (mod $)
is constant, and the asymptotic formula for As,j is clear. In the former case we write k for the power of
p dividing $. In the formula defining As,j , we isolate terms with a given value of |n|p. For each integer
q > k the number of terms n ≡ j (mod $) with n 6 X and |n|p = p−q is p−1

pq−k+1$
X +O(1), the implicit

constant being independent of q. We thus get the asymptotic formula

As,j =
∑
q>k

p−sq
(

p− 1

pq−k+1$
X +O(1)

)
= cs,jX +O(1)

with cs,j = (p− 1)ps(1−k)/((ps+1 − 1)$). �

Error terms in the PNT. We now briefly discuss how to identify good main terms and error terms in the
asymptotics for the number of prime orbits. From Proposition 9.2, it is immediate that

πσ(X) = M(X) +O(ΛΘX)

with “main term”

M(X) :=
∑
`6X

Λ`

`r`|`|s`p

depending only on the data (p,Λ, $, (rn), (sn)) and the power saving in the error term is dictated by the
zeros of the degree zeta function Dσ.

Finding Θ geometrically. Finding Θ can sometimes be approached geometrically, as follows. Recall that
ξi are roots of the characteristic polynomial of σ acting on H1 and all λi are products of such roots (corre-
sponding to the characteristic polynomial of σ acting on Hi = ∧iH1 for various i). Suppose that

|ξi|2 = a (42)

for all i and a fixed integer a. Then Λ = ag and Θ = 1 − 1/(2g), so we get an error term of the form
O(ag−1/2). By [30, Chapter 4, Application 2], condition (42) happens if for some polarisation on A with
Rosati involution ′, we have σσ′ = a in End(A). In Weil’s proof of the analogue of the Riemann hypothesis
for abelian varieties A/Fq, it is shown that this holds for σ the q-Frobenius with a = qg.

Another expression for the main term. One may express the main term M(X) as follows. For k ∈
{0, . . . , $ − 1}, define

Fk(Λ, X) =
∑
`6X

`≡kmod$

Λ`/`; (43)
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then

M(X) =
$−1∑
k=0

r−1
k

Fk(Λ, X) +
∑
i>1

p(sk−1)i(1− p−sk)
∑

06k′<$
pik′≡kmod$

Fk′

(
Λp

i
,

⌊
X

pi

⌋) . (44)

We collect the information in the following proposition.

Proposition 9.11. WithM(X) the function defined in (44) using (43), depending only on the data (p,Λ, $, (rn), (sn))
(i.e., the growth rate Λ and the inseparability degree pattern), we have for integer values of X ,

πσ(X) = M(X) +O(ΛΘX)

where
Θ = {Re(s) : s is a zero of Dσ(Λ−s)}. �

A worked example is in the introduction.
The tame case. In the tame setting, one similarly finds π∗σ(X)=M∗(X) +O(ΛΘX) with

M∗(X)=
$−1∑
k=0

r−1
k

Fk(Λ, X)− 1

p

∑
06k′<$

pk′≡kmod$

Fk′

(
Λp,

⌊
X

p

⌋) .

Remark 9.12. Due to its exponential growth as a function of a real variable X , it is not possible to approx-
imate M(bXc) by a continuous function with error O(ΛϑX) for any ϑ < 1. Note that Fk(Λ, X) can be
evaluated using the Lerch transcendent.

Appendix A. Adelic perturbation of power series
ROBERT ROYALS AND THOMAS WARD

The result in this appendix comes from the thesis [35] of the first author, and arose there in connec-
tion with the following question about ‘adelic perturbation’ of linear recurrence sequences. Write |m|S =∏
`∈S |m|` for m ∈ Q and S a set of primes, and for an integer sequence a = (an) define a function fa,S

by fa,S(z) =
∑∞

n=1 |an|Sanzn. If a is an integer linear recurrence sequence, does fa,S satisfy a Pólya–
Carlson dichotomy? That is, does fa,S admit a natural boundary whenever it does not define a rational
function? This remains open, but for certain classes of linear recurrence and for |S| < ∞, the following
theorem is the key step in the argument.

Theorem A.1. Let a = (an) be an integer sequence with the property that for every prime ` there exist
constants n` in Z>0, (c`,i)

n`−1
i=0 in Qn` , and (e`,i)

n`−1
i=0 in Zn`>0 such that |an|` = c`,k|n|

e`,k
` if n ≡ k mod n`.

Let S be a finite set of primes and write f(z) =
∑

n>1 |an|Szn. If the sequence (|an|S) takes infinitely many
values, then f admits the unit circle as a natural boundary. Otherwise, f is a rational function.

The method of proof is reminiscent of Mahler’s, in which functional equations allow one to conclude that
certain functions have singularities along a dense set of roots of unity (compare [3]).

For the proof, it is necessary to consider a slightly more general setup. Assume that S is a finite set of
primes and for each ` ∈ S there is an associated positive integer e`, write e for the collection (e`)`∈S , and
write FS,e,r(z) =

∑
n>0 |n − r|S,ezn for some r ∈ Q, where |n|S,e =

∏
`∈S |n|

e`
` . Notice that there is

always a bound of the shape
A

nB
� |n− r|` 6 max{1, |r|`}
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for constantsA,B > 0, so the radius of convergence of FS,e,r is 1. If |r|` > 1 for some ` ∈ S then |n−r|` =
|r|` for all n ∈ N, and so

FS,e,r(z) = |r|e``
∑
n>0

|n− r|S−{`},ezn = |r|e`` FS−{`},e,r(z)

wherever these series are defined. Thus as far as the question of a natural boundary is concerned, we may
safely assume that |r|` 6 1 for all ` ∈ S.

Now let ` ∈ S be fixed. Since |r|` 6 1, we can write

r = r0 + r1`+ r2`
2 + . . .

with ri ∈ {0, 1, . . . , `− 1} for all i > 0. For r ∈ Q write r mod `e for the positive integer r0 + r1`+ . . .+
re−1`

e−1. In particular, r mod `e is the smallest non-negative integer with

|r − (r mod `e)|` 6 `−e.
If n = pe11 · · · p

ej
j for distinct primes pi, then write r mod n for the smallest non-negative integer satisfying

|r − (r mod n)|pi 6 p
−ei
i

for i = 1, . . . , j (which exists by the Chinese remainder theorem).
Next we will obtain some functional equations for FS,e,r. For m > 0, we write tm = r−(r mod `m)

`m . Note
that |tm|p 6 1 for all p ∈ S and m > 0. We claim that for any m > 1 we have the equality

FS,e,tm−1(z) = FS−{`},e,tm−1
(z) + `−e`zrm−1FS,e,tm(z`)− zrm−1FS−{`},e,tm(z`). (45)

Indeed, we compare directly the coefficients at zn on both sides of this equation. The coefficient on the left
is |n− tm−1|S,e. The coefficient on the right is |n− tm−1|S−{`},e if `-(n− tm−1) and

|n− tm−1|S−{`},e + `−e`
∣∣∣∣n− rm−1

`
− tm

∣∣∣∣
S,e

−
∣∣∣∣n− rm−1

`
− tm

∣∣∣∣
S−{`},e

otherwise. Since n−rm−1

` − tm = n−tm−1

` and |`|S−{`},e = 1, after an easy manipulation we see that both
these coefficients are equal and hence we get (45).

Combining formulæ (45) for m = 1, . . . , s, we obtain the equality

FS,e,r(z) = FS−{`},e,r(z)− (`e` − 1)
s−1∑
k=1

1

`ke`
zr mod `kFS−{`},e,tk(z`

k
)

− `−(s−1)e`zr mod `sFS−{`},e,ts(z
`s) + `−se`zr mod `sFS,e,ts(z

`s). (46)

Since we have |ts|p 6 1 for all p ∈ S and s > 0, the coefficients in the power series FS−{`},e,ts(z
`s)

and FS,e,ts(z
`s) are bounded by 1, and hence for |z| < 1 we can bound the two latter terms in (46) by∣∣∣−`−(s−1)e`zr mod `sFS−{`},e,ts(z

`s) + `−se`zr mod `sFS,e,ts(z
`s)
∣∣∣

6 (`−(s−1)e` + `−se`)
∑
n>0

|z|n`s .

Thus by passing in (46) with s to infinity, we obtain

FS,e,r(z) = FS−{`},e,r(z)− (`e` − 1)
∑
k>1

1

`ke`
zr mod `kFS−{`},e,tk(z`

k
). (47)

Lemma A.2. Let S be a finite set of primes, e = {e` | ` ∈ S} the associated exponents, and n > 1 an
integer divisible by some prime q 6∈ S. Then there is a constant cn,e,S > 0 such that for any primitive nth
root of unity µ and for all λ ∈ [0, 1) we have |FS,e,r(λµ)| < cn,e,S .
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The constant cn,e,S does not depend on r under the assumption that |r|` 6 1 for all ` ∈ S.

Proof. We proceed by induction on the cardinality of S. For S = ∅ we have

FS,e,r(z) =
∑
m>0

|m− r|∅,ezm =
1

1− z
,

and the existence of the claimed constant is clear. Now suppose that |S| > 1, let p ∈ S and write

FS,e,r(z) = FS−{p},e,r(z)− (pep − 1)
∑
k>1

1

pkep
zr mod pkFS−{p},e,tk(zp

k
).

So,

|FS,e,r(z)| 6 |FS−{p},e,r(z)|

+ (pep − 1)
∑
k>1

1

pkep
|zr mod pk ||FS−{p},e,tk(zp

k
)|

6 (pep − 1)
∑
k>0

1

pkep
|FS−{p},e,tk(zp

k
)|

for |z| 6 1. If z = λµ for some λ ∈ [0, 1) and µ is a primitive nth root of unity with q|n, then zp
k

= λ′µ′

where λ′ ∈ [0, 1) and µ′ is a primitive n′th root of unity with q|n′, and n′ is one of finitely many possible
values. Thus by the inductive hypothesis there is a constant c with |FS−{p},e,tk(zp

k
)| < c for all k, and

hence |FS,e,r(z)| < (pep − 1)c pep

pep−1 . Taking this as cn,e,S gives the lemma. �

Lemma A.3. Let S be a finite set of primes and let r ∈ Q be such that |r|p 6 1 for all p ∈ S. Suppose
that n > 1 is an integer divisible only by primes in S, and that µ is a primitive nth root of unity. Writing n =

pf11 · · · p
fj
j where p1, . . . , pj are distinct primes in S and fi > 1 for all i = 1, . . . , j, we have

|FS,e,r(λµ)| −→ ∞

as λ→ 1−. More precisely,

Re
(
(−1)jµ−(r mod n)FS,e,r(λµ)

)
−→∞

as λ→ 1− and there exists a constant c′n,e,S (which does not depend on r and λ) such that

|Im
(
(−1)jµ−(r mod n)FS,e,r(λµ)

)
| < c′n,e,S

and
Re
(
(−1)jµ−(r mod n)FS,e,r(λµ)

)
> −c′n,e,S .

Proof. We again write z = λµ and define the function ϕS,e,r,µ(λ) by the formula

ϕS,e,r,µ(λ) = (−1)jµ−(r mod n)FS,e,r(λµ),

where j is the number of prime factors of n.
We proceed by induction on the number of distinct prime factors in n starting with n = 1. In this

case ϕS,e,r,µ(λ) =
∑

m>0 |m − r|S,eλm for each m, λm → 1− as λ → 1−, and |m − r|S,e = 1 infinitely
often. This shows that the real part tends to infinity as λ → 1− and is bounded from below by 0. The
imaginary part is bounded as FS,e,r(λ) is real for all λ ∈ [0, 1).

Now let p1, . . . , pj ∈ S be distinct, and let n =
∏j
i=1 p

fi
i with fi > 1 for all i. Let p = p1 and

use the variables r0, r1, . . . to indicate the p-adic coefficients of r and t0, t1, . . . to indicate the values tk =
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r−r mod pk

pk
for all k. Assume first that f1 = 1. We will apply the functional equation (47). For all k > 1, µp

k

is a primitive (n/p)th root of unity and the formula tk = r−r mod pk

pk
implies that

r mod n ≡ r mod pk + pk(tk mod (n/p)) (mod n).

Thus Formula (47) after some manipulation gives

ϕS,e,r,µ(λ) = ϕS−{p},e,r,µ(λ) + (pep − 1)
∞∑
k=1

λr mod pk

pkep
ϕ
S−{p},e,tk,µpk

(λp
k
).

The leading term in this expression is bounded by Lemma A.2, and the inductive hypothesis applied to the
terms ϕ

S−{p},e,r,µpk (λp
k
) shows that their real part tends to +∞ as λ→ 1− and is bounded away from−∞

independently of r and λ. Since these terms appear within the geometric progression
∑∞

k=1 p
−kep , we obtain

that
ϕS,e,r,µ(λ)→∞

as λ→ 1− and the same argument proves the latter claim. This proves the inductive step for the case f1 = 1.
We will use this as the base case for a second inductive proof for f1 > 1. The argument in this case is sim-

ilar except that we will use the functional equation (45) instead of (47). As before, µp is a primitive (n/p)th
root of unity and

r mod n ≡ r mod p+ p(t1 mod (n/p)) (mod n).

Thus Formula (45) after some manipulation gives

ϕS,e,r,µ(λ) = ϕS−{p},e,r,µ(λ) + p−epλr mod pϕS,e,t1,µp(λ
p)− λr mod pϕS−{p},e,t1,µp(λ

p).

The first and the third terms in this expression are bounded by Lemma A.2, and hence the claim follows
immediately from the inductive hypothesis applied to the term ϕS,e,t1,µp(λ

p). This concludes the induction.
�

Proof of Theorem A.1. If c`,k = 0 for some ` ∈ S and k we will automatically take e`,k = 0 as the
power of |n|` plays no role. Another case we wish to avoid is if for some ` and k ∈ {0, 1, . . . , n` − 1},
the value |n|` is constant for all n ≡ k mod n`. Writing v` for the `-adic order, this happens exactly
when v`(n`) > v`(k), and in this case |n|` = |k|`. If this is the case and e`,k 6= 0, then we will set e`,k = 0

and substitute c`,k|k|
e`,k
` for c`,k. Let N = lcm{np | p ∈ S}. For each j ∈ {0, 1, . . . , N − 1} consider the

value of |an|S when n ≡ j mod N . For each p, n ≡ j mod N and thus n ≡ j mod np as np|N . Let kp,j
be the unique element of {0, 1, . . . , np − 1} such that kp,j ≡ j mod np. So

|an|S =
∏
p∈S
|an|p =

∏
p∈S

cp,kp,j |n|
ep,kp,j
p

as n ≡ j ≡ kp,j mod np for all p ∈ S. If for any nonzero n with n ≡ j mod N we have |an|S = 0, or
equivalently an = 0, we define Sj = ∅ and dj = 0. If this is the case, then it follows that for this value n

0 =
∏
p∈S

cp,kp,j |n|
ep,kp,j
p

and |n|
ep,kp,j
p 6= 0 implies that cp,kp,j = 0 for some p ∈ S. This in turn implies that |am|S = 0 and

hence am = 0 for any m ≡ j mod N . If, on the other hand, for some n ≡ j mod N we have |an|S 6= 0
then for all m ≡ j mod N we have |am|S 6= 0 and hence cp,kp,j 6= 0 for all p ∈ S. If for a prime p ∈ S
we have vp(N) > vp(j), then for all n ≡ j mod N we have |n|p = |j|p. We will split S into the disjoint
union Sj t S′j t S′′j , where

Sj = {p ∈ S | vp(N) 6 vp(j) and ep,kp,j 6= 0},

S′j = {p ∈ S | vp(N) > vp(j) and ep,kp,j 6= 0},
38



and
S′′j = {p ∈ S | vp(N) > vp(j) and ep,kp,j = 0}.

Thus for all n ≡ j mod N we have

|an|S =
∏
p∈S

cp,kp,j ·
∏
p∈S′j

|j|
ep,kp,j
p · |n|Sj ,e(j) ,

where e(j) denotes the collection of exponents {ep,kj | p ∈ Sj}. Set

dj =
∏
p∈S

cp,kp,j ·
∏
p∈S′j

|j|
ep,kp,j
p

and |an|S = dj |n|Sj ,e(j) for all n ≡ j mod N .
Assume that the sequence (|an|S) takes infinitely many values. This implies that there exists some j

for which Sj is non-empty. By our assumption, for such j we have dj 6= 0. Consider the family of
sets {Sj | 0 6 j < N}, partially ordered by inclusion. Since it is finite and the Sj are not all empty, there is
a non-empty maximal element Sj0 . Write

f(z) =
∞∑
n=1

|an|Szn =
N−1∑
j=0

∑
n≡j (N)

|an|Szn =
N−1∑
j=0

fj(z)

where

fj(z) =
∑

n≡j (N)

|an|Szn =
∑

n≡j (N)

dj |n|Sj ,e(j)z
n =

∞∑
k=0

dj |kN + j|Sj ,e(j)z
kN+j

= dj |N |Sj ,e(j)
∞∑
k=0

|k + j/N |Sj ,e(j)z
kN+j = dj |N |Sj ,e(j)z

jgj(z
N )

with gj(z) = FSj ,e(j),−j/N (z). Thus f = h1 + h2, where h1 is the sum of the fj with Sj = Sj0 and h2 is
the sum of the fj with Sj 6= Sj0 . Let n =

∏
q∈Sj0

qfq be an integer divisible by every prime in Sj0 and by
no other primes such that for each q ∈ Sj0 we have fq > vq(N) and let µ be a primitive nth root of unity.
If j with 0 6 j < N has Sj 6= Sj0 then fj(λµ) = dj |N |Sj ,e(j)(λµ)jgj(λ

NµN ) is bounded as λ → 1− by
Lemma A.2 as µN is an n

N th root of unity and n
N is divisible by every prime in Sj0 and hence by some prime

not in Sj by maximality of Sj0 . Thus |h2(λµ)| is bounded as λ → 1−. Suppose instead that Sj = Sj0 . By
Lemma A.3 we have that

Re
(
(−1)m(µN )−(−j/N mod n/N)gj(z

N )
)
−→∞

as λ→ 1− where m = |Sj0 |. Equivalently,

Re
(
(−1)mµ(j mod n)gj(z

N )
)
−→∞,

and thus

Re
(
(−1)mzjgj(z

N )
)
−→∞

as λ→ 1−. As the real part of every term in h1(z) goes to∞, this means that

Re
(
(−1)mf(λµ)

)
−→∞

as λ → 1−. Since this is true for any µ that is a (
∏

q∈Sj0
qfq)th root of unity with each fq > vq(N), these

singularities form a dense set on the unit circle. It follows that f admits a natural boundary on the unit circle.
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For the second part of the theorem, assume that the sequence (|an|S) takes only finitely many values.
Then (|an|S) is periodic modulo N , and thus

f(z) =

N∑
j=1

∑
n≡j (N)

|aj |Szn =

N∑
j=1

|aj |S
∞∑
m=0

zmN+j =

N∑
j=1

|aj |S
zj

1− zN
,

completing the proof. �
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