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ABSTRACT

Introduction: Previous analysis from the large European multicentre ESCAPE study showed an association of
ambient particulate matter < 2.5 pm (PM,s) air pollution exposure at residence with the incidence of gastric
cancer. It is unclear which components of PM are most relevant for gastric and also upper aerodigestive tract
(UADT) cancer and some of them may not be strongly correlated with PM mass. We evaluated the association
between long-term exposure to elemental components of PM, s and PM;, and gastric and UADT cancer incidence
in European adults.

Methods: Baseline addresses of individuals were geocoded and exposure was assessed by land-use regression
models for copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions; sulphur (S) indicating
long-range transport; nickel (Ni) and vanadium (V) for mixed oil-burning and industry; silicon (Si) for crustal
material and potassium (K) for biomass burning. Cox regression models with adjustment for potential con-
founders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-
analyses.

Results: Ten cohorts in six countries contributed data on 227,044 individuals with an average follow-up of
14.9 years with 633 incident cases of gastric cancer and 763 of UADT cancer.

The combined hazard ratio (HR) for an increase of 200 ng/m3 of PM, 5_S was 1.92 (95%-confidence interval
(95%-CI) 1.13;3.27) for gastric cancer, with no indication of heterogeneity between cohorts (1?2 = 0%), and 1.63
(95%-CI 0.88;3.01) for PM, 5_Zn (I> = 70%). For the other elements in PM, 5 and all elements in PM; o including
PM; _S, non-significant HRs between 0.78 and 1.21 with mostly wide CIs were seen. No association was found
between any of the elements and UADT cancer. The HR for PM, 5_S and gastric cancer was robust to adjustment
for additional factors, including diet, and restriction to study participants with stable addresses over follow-up
resulted in slightly higher effect estimates with a decrease in precision. In a two-pollutant model, the effect
estimate for total PM, 5 decreased whereas that for PM, 5_S was robust.

Conclusion: This large multicentre cohort study shows a robust association between gastric cancer and long-term
exposure to PM, 5s_S but not PM;(_S, suggesting that S in PM, 5 or correlated air pollutants may contribute to the

risk of gastric cancer.

1. Introduction

Long-term exposure to ambient air pollution with particles con-
tributes to increased cancer risk (International Agency for Research on
Cancer Monograph Working Group, 2015), with most evidence for lung
cancer (Raaschou-Nielsen et al., 2013).

A previous analysis of the large European multicentre ESCAPE study
showed an association of particulate matter < 2.5 um (PM, s) exposure
at residence with the incidence of gastric cancer (Nagel et al., 2018).
For the incidence of upper aerodigestive tract (UADT) cancer, which
summarises anatomically closely related sites, no association with
PM, 5 or PM;, was found (Nagel et al., 2018).

PM constitutes a complex mixture depending on contributing
sources and atmospheric processes, and it is still not clear which PM
components are the most relevant for health, which may vary by end-
points. Although we did not find any association of PM mass with UADT
cancer in our earlier work, it cannot be excluded that some components
which may not be strongly correlated with PM mass may still have a
role in carcinogenesis of UADT cancers.

The identification of elemental components of PM air pollution in-
creasing cancer risk may increase our understanding of pathomechanisms
and contribute to the identification of specific sources of relevance (Kelly
and Fussell, 2012). Components of outdoor air pollutions for which ad-
verse health effects have been reported include metals, inorganic com-
ponents, secondary aerosols (sulphate, nitrate) and organic components
(de Hoogh et al., 2013). The fact that these components do not occur in
isolation, but in a temporally and spatially variable air pollution mix,
renders epidemiological studies of individual components complex. While
the focus has mostly been on traffic exhaust related components so far,
recent reviews have pointed out the possible role of non-exhaust related
particle components (Kelly and Fussell, 2015). For example, transition
metals such as copper (Cu) and iron (Fe) resulting from brake and tyre
wear are likely to promote inflammation and oxidative stress (Hampel
et al., 2015). While elements may have health effects per se, some of them
also originate predominantly from certain sources (Viana et al., 2008) and
may, as indicators for the related pollution mix, inform on effective
preventions measures. To date, research on the influence of long-term
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exposure to different air-borne elements is scarce.

The objective of this study was therefore to investigate the asso-
ciation of chronic exposure to elemental components of PM air pollu-
tion with the incidence of gastric and UADT cancer. The study was
performed in the framework of ESCAPE and the European study of
Transport-related Air Pollution and Health Impacts—Integrated
Methodologies for Assessing Particulate Matter (TRANSPHORM; www.
transphorm.eu/).

2. Material and methods

Study population, outcome, confounder data and statistical analysis
were identical to the previous analysis of air pollution and gastric/
UADT cancer (Nagel et al., 2018).

2.1. Study population

For the present study, prospective cohort data from seven study
areas (Fig. 1) that had participated in ESCAPE (Raaschou-Nielsen et al.,
2013) and had data on PM elemental composition and the resources to
perform these additional analyses were analysed: Sweden ([CEANS]
comprising the Swedish National Study on Aging and Care in Kung-
sholmen [SNAC-K], Stockholm Screening Across the Lifespan Twin
study and TwinGene [SALT], Stockholm 60 years old and IMPROVE
study [Sixty] and the Stockholm Diabetes Prevention Program [SDPP]),
Norway (Oslo Health Study [HUBRO]), Copenhagen, Denmark (Diet,
Cancer and Health study [DCH]), the Netherlands (European Pro-
spective Investigation into Cancer and Nutrition [EPIC] comprising the
Monitoring Project on Risk Factors and Chronic Diseases in the Neth-
erlands [EPIC-MORGEN], and EPIC-PROSPECT), Austria (Vorarlberg
Health Monitoring and Prevention Programme [VHM&PP]), Italy
(EPIC-Turin, Italian Studies of Respiratory Disorders in Childhood and
Environment [SIDRIA]-Rome). The data of the four cohorts in the
Stockholm area and the two cohorts in the Netherlands, respectively,
were pooled. Therefore, 7 study estimates contributed to the meta-
analysis (Table 1, for cohort-specific details see (Nagel et al., 2018).


http://www.transphorm.eu
http://www.transphorm.eu
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Fig. 1. Location of participating cohorts: Oslo: HUBRO; Stockholm: CEANS (comprising SNAC-K, SALT, Sixty and SDPP); Copenhagen: DCH; Netherlands: EPIC
Netherlands; Vorarlberg: VHM&PP; Turin: EPIC Turin; Rome: SIDRIA; For acronyms of cohorts see Methods section.

Table 1
Participants, gastric and UADT cancer cases and mean PM, 5 concentrations in each cohort.
Total Baseline period Mean Age at baseline Incident cases Exposure Persons with stable residence (at least
participants follow-up (years) 10 years at baseline address)
time
Gastric UADT PM, 5 Proportion Proportion among
cancer cancer (ug/m®) cases
HUBRO, Oslo, Norway 17,958 2000-2001 8.5 47.9 21 23 8.9 0.39 0.67
(15.0) (0.12%) (0.13%) (1.3)
CEANS, Stockholm, 18,842 1992-2004 10.4 56.2 30 57 7.1 0.63 0.77
Sweden (11.5) (0.16%) (0.30%) (1.3)
DCH, Copenhagen, 37,676 1993-1997 14.8 56.8 120 283 11.3 0.86 0.87
Denmark (4.3) (0.32%) (0.75%) (0.9)
EPIC-Netherlands 30,134 1993-1997 11.8 50.4 41 69 16.8 n.d. n.d.
(11.3) (0.14%) (0.23%) (0.6)
VHM&PP, Vorarlberg, 104,713 1985-2005 18.1 42.9 375 311 13.6 0.58 0.74
Austria (14.9) (0.36%) (0.30%) (1.2)
EPIC-Turin, Italy 7946 1993-1998 14.1 50.4 26 NA 30.1 n.d. n.d.
(7.5) (0.33%) 1.7)
SIDRIA-Rome, Italy 9775 1999 11.2 44.2 20 20 19.4 0.72 0.70
(6.0) (0.20%) (0.20%) (1.8)
Total 227,044 149 633 763

Data are n, mean (SD), and n (%). PM, 5 = particulate matter with diameter < 2.5um. NA = not available. HUBRO = Oslo Health Study. CEANS = Swedish National
Study on Aging and Care in Kungsholmen (SNAC-K) + Stockholm Screening Across the Lifespan Twin study and TwinGene (SALT) + Stockholm 60 years old and
IMPROVE study (Sixty) + Stockholm Diabetes Prevention Program (SDPP). DCH = Diet, Cancer and Health study. EPIC = European Prospective Investigation into
Cancer and Nutrition. VHM&PP = Vorarlberg Health Monitoring and Prevention Programme. SIDRIA = Italian Studies of Respiratory Disorders in Childhood and
Environment. n.d. = no data available.
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Recruitment of the cohorts occurred largely in the 1990s. The co-
hort studies and the use of their data in ESCAPE were approved by the
local ethical and data protection authorities.

2.2. Outcome definition

Follow-up was based on linkage to national or local cancer re-
gistries, with exception of SIDRIA Rome for which hospital discharge
and mortality register data were used. The main outcomes were all
cancers of the stomach and of the UADT, respectively. Carcinomas were
identified using the International Statistical Classification of Diseases
and Related Health Problems, 9th and 10th revision [ICD9 and ICD10]:
for gastric cancer C16 [ICD10] and 151 [ICD9], and for UADT cancers:
C01-06 and 141-145 (oral cavity), C09, C10 (oropharynx), C12, C13
(hypo-pharynx) and 146 (pharynx), C14, C32 and 161 (larynx), C15
and 150 (esophagus). Lymphomas/myelomas/leukemias were excluded
according to the International Classification of Diseases for Oncology
(ICDO-3) morphology codes: 9590-9989. We only included primary
cancers and only malignant tumors with the fifth digit of the ICDO
morphology code being “3”.

2.3. Exposure assessment

Exposures at the residential baseline address of the participants
were determined according to a standardized procedure by assigning
air pollution exposure estimates derived from land use regression (LUR)
models specifically developed for the respective areas (de Hoogh et al.,
2013). If a subject moved the new address was not taken into account
except for exclusion of these subjects in a sensitivity analyses (see
below). A detailed description of the 3-step procedure is found else-
where. First, dedicated measurement campaigns (three two-week per-
iods over one year) were carried out at 20 locations in each study area
for a one-year period between October 2008 and May 2011. Results
from the three measurements per site were averaged to a mean annual
concentration, adjusting for temporal trends using data from a back-
ground monitoring site with continuous data.

Second, we collected information about potential predictor vari-
ables relating to nearby traffic intensity, population/household density
and land use from Geographic Information Systems (GIS), and eval-
uated these to explain spatial variation of measured annual average
concentrations using regression modelling (Beelen et al., 2013; Eeftens
et al., 2012). These LUR models were used to estimate the exposure at
the baseline address of each cohort member.

To determine the chemical elements contained in the respective PM
fractions, PM filters were sent to Cooper Environmental Services
(Portland, OR, USA) to analyse elemental composition using X-Ray
Fluorescence (XRF). As indicators mainly of non-tailpipe traffic emis-
sions such as brake and tyre wear, Cu, Fe and zinc (Zn) were selected;
sulphur (S) mainly for long-range transport; nickel (Ni) and vanadium
(V) for mixed oil-burning and industry; silicon (Si) for crustal material
and potassium (K) for biomass burning (de Hoogh et al., 2013; Viana
et al., 2008). However, each element can have multiple sources. The
LUR model results for all study areas have been shown previously (de
Hoogh et al., 2013). Land use regression models for Cu, Fe, and Zn in
both fractions (PM;, and PM, s) had average cross-validation explained
variance (r?) between 52% and 84% with a large variability between
areas (Raaschou-Nielsen et al., 2016). Models for the other elements
performed moderately with average cross-validation r* generally be-
tween ~50% and ~60%. For PM, 5 S the average cross-validation r?
was 32% with a range from 2 to 67%, consistent with the relatively low
spatial variation of PM_S concentrations within the cohort areas. LUR-
models could not be developed for K in PM;o (HUBRO), Ni in PM;o
(HUBRO), Ni in PM, 5 (CEANS), V in PM, 5 (HUBRO, VHM&PP) and Si
in PM,. s (HUBRO).

Environment International 120 (2018) 163-171

2.4. Statistical analyses

Cohort-specific analyses were carried out using a common protocol
and a centrally developed Stata analysis script (Nagel et al., 2018). In
the cases where data of multiple cohorts were pooled (the Swedish and
the Dutch cohorts, respectively) the analyses were performed strati-
fying the Cox Model for a cohort indicator variable.

Cox proportional hazard-regression with age as the underlying time-
axis was carried out. The hazard ratio was modeled as an exponential
function of continuous exposure. Censoring was applied at the time of
death, a diagnosis of any other cancer (except non-melanoma skin
cancer) or end of follow-up, whichever came first. Model checks in-
cluded a test for deviation from proportional hazard assumption and
testing the linearity assumption in the relation between each exposure
and the log hazard of the outcome by replacing the linear term with a
natural cubic spline with two inner knots placed at the 33rd and 66th
percentiles. The model fits of the linear and the spline models were
compared using a likelihood-ratio test (Chi-square test with 2df).

Confounder sets were determined a priori with increasing levels of
adjustment, following the procedures of previous ESCAPE studies
(Nagel et al., 2018). Model 1 was adjusted for age (time scale), calendar
year of enrolment and sex. Model 2 was additionally adjusted for
baseline information on smoking status, smoking intensity, smoking
duration, occupational exposure, employment status and educational
level. Model 3 (the main model) was in addition adjusted for area-level
(residential neighborhood or similar) socio-economic status (SES). The
availability of these variables varied slightly between cohorts (Nagel
et al., 2018). Only complete case analyses were performed. In the few
cases where one variable was missing entirely, the cohort was never-
theless analysed using the available confounders. In sensitivity analyses
we included additional potential confounders (alcohol consumption,
environmental tobacco smoke (ETS), intake of fruit, intake of meat and
marital status), restricted the analysis to participants with stable re-
sidence during follow-up or for at least 10 years, and included an in-
dicator for urban/rural environment to the main model.

All cohort-specific analyses were done in Stata versions 10 to 14
(StataCorp, College Station, TX).

The results obtained from the cohort-specific analyses were com-
bined with random effects meta-analysis (DerSimonian and Laird,
1986). Heterogeneity between cohorts was tested by the %2 test from
Cochran's Q statistic and quantified with the I* (Higgins and Thompson,
2002). Stata version 14 (StataCorp) was used for meta-analyses.

3. Results

The cohorts contributed together data on 227,044 individuals with
an average follow-up time of 14.9 years. 633 incident cases of gastric
cancer and 763 of UADT cancer occurred. DCH and VHM&PP con-
tributed with most of the cases (Table 1). Mean age at baseline in the
cohorts ranged from 43 years (VHM&PP) to 57 years (DCH). The details
of each cohort including participants characteristics and availability of
variables have been reported previously (Nagel et al., 2018).

There was a wide range of annual mean concentrations of PM ele-
ments concentrations within and between study cohorts. Generally, the
Nordic countries showed the lowest and the Southern countries the
highest levels of PM (Table 1) and similarly for most of the elements,
less consistent for Ni, V and Zn. Si had relatively high values in Sweden,
S in the Netherlands, and Austria showed high levels of K in PM, 5
(Fig. 2 and Figure in the online Supplementary Material). For PM; 5
differences in individual exposures were highest in SIDRIA (Rome) for
Cu, Fe, K, in EPIC Turin and Netherlands for Ni and S, in EPIC-Neth-
erlands for V and Zn and in CEANS (Stockholm) for Si. The pattern for
PM;, was very similar. Correlations of PM elements with total PM, 5
and PM;, varied between location with median correlation coefficients
largely between 0.4 and 0.6 (Raaschou-Nielsen et al., 2016).

In the tests of loglinearity of the dose-response, the p-value of only 4
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were <0.05 and only 8 < 0.1. p-values of < 0.05 were observed for
DCH for PM,5_S, for EPIC-Turin for PM;o K and for VHM&PP and
SIDRIA for PM;_Si Therefore we took over the results for the linear
models for all cohorts and pollutants and consider that this is a valid
approximation.

The meta-analysis results from the main model for PM, s compo-
nents showed effect estimates above and below unity. Only the positive
association of PM,s_S with gastric cancer incidence was statistically
significant with a hazard ratio (HR) of 1.93 (95%-confidence interval
(95%-CI) 1.13;3.27) for an increase of 200 ng/m3 (Table 2, Fig. 3) with
no heterogeneity in cohort results.

The second highest HR was seen for PM, 5_Zn with 1.63 (95%-CI
0.88;3.01) for an increase of 10ng/m>® with heterogeneity between
cohorts (I = 70%) No clear association was found with UADT cancers
for any of the PM, 5 elements. Effect estimates from the age-sex ad-
justed and fully adjusted confounder model did not differ substantially.
Also no clear association could be seen between any of the PM;,-
components and gastric or UADT cancer incidence (Table in the online
Supplementary Material). The association for PM;o_ S with gastric
cancer was 0.97 (95%-CI 0.67;1.41) for an increase of 200 ng/m3, also
with no heterogeneity between cohorts. Excluding VHM&PP which had
a weight of 66% and 71%, in the meta-analysis of PM, 5_S and PM;_S,
respectively, yielded a combined HR of 2.75 (95%-CI 1.10;6.86) and
1,43 (95%-CI 0,72;2.85), respectively. Excluding the three cohorts
(HUBRO, CEANS, EPIC-Netherlands) with a leave-one-out cross-vali-
dation (LOOCV) R? below 0.3 for the LUR-models yielded a HRR of 1,74
(95%-CI 0,90;3.33) for PM,5_S.

The results for the association of PM, s_S with gastric cancer were
robust to further adjustment for dietary variables and ETS showing no
change in the HR, obtained for the respective cohorts in this analysis, of
1.83 (95%-CI 1.05;3.20), (Fig. 4, additional confounder data available
for 6 cohorts). Similarly, adjustment for the rural indicator yielded very
similar effect estimates (information available in 5 cohorts). Restriction
to the population with a stable residence, which is less subject to mis-
classification of long-term exposure at the residence, resulted in slightly
increased effect estimates, however with wider CIs.

Table 2
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In two-pollutant models, the effect estimated for total PM,s
changed from 1.36 (95%-CI 0.97;1.90) to 1.07 (95%-CI 0.70;1.64)
when adjusted for PM,5_S and to 1.42 (95%-CI 0.68;2.95) when ad-
justed for PM, s_Zn. The effect estimated for PM, 5_S changed from 1.93
(95%-CI 1.13;3.27) to 1.79 (95%-CI 0.96;3.37) when adjusted for total
PM, 5 and the estimate for PM, 5s_Zn was not affected.

4. Discussion

This study including cohorts from 6 European countries shows a
statistically significant robust association of PM, 5_S with gastric cancer
incidence. The effect estimate for PM, 5 decreased markedly when ad-
justed for PM, s_S whereas the estimate for the latter changed little. No
further statistically significant association of the elementary com-
pounds with gastric or UADT cancer was observed, including PM;,_S.

The identification of PM,5_S as the element most strongly asso-
ciated with gastric cancer is in agreement with previous analyses within
the ESCAPE study on all-cause mortality (Beelen et al., 2015) and lung
cancer incidence (Raaschou-Nielsen et al., 2016). In our analysis of
gastric cancer, the HR for PM, s S was larger than for all-cause mor-
tality (HR 1.14) and lung cancer (HR 1.34). In contrast to lung cancer,
our estimate for gastric cancer was robust when additionally adjusted
for smoking status, smoking intensity, smoking duration, occupational
exposure, employment status, educational level, and for area-level
(residential neighbourhood or similar) socio-economic status (area
SES). However, it is of concern that there was no corresponding asso-
ciation seen for PM;o_S in contrast to PM, s_S. In general, PM, 5 com-
ponent mass makes up large amount of PM;, component mass and
sulphates are mainly present in the PM, s fraction (Tsai et al., 2015).
Indeed, the actual concentrations measured at the monitoring sites used
to develop the LUR models were highly correlated (median within area
r = 0.8) (Tsai et al., 2015). At the cohort address, we found a moderate
correlation (median = 0.57) between predicted PM,s S and PM;(_S
exposures from the LUR. In the large VHM&PP cohort, the correlation
was identical for measured and modeled concentrations. The lower
correlation is likely due to relatively moderate performance of the LUR

Results of the random effects meta-analyses of associations between PM, 5 elemental components and the risk for gastric and UADT cancer.

Fixed increase Number of Number of cases HR (95% CI) Measures of heterogeneity between cohorts (model 3)*
(ng/m?) cohorts
Model 1° Model 2¢ Model 3¢ I p-Value

Gastric cancer

PM,sCu 5 7 633 1.00 (0.73-1.38) 1.01 (0.70-1.45) 1.05 (0.72-1.53) 37.0% 0.15
PM,s Fe 100 7 633 1.04 (0.80-1.35) 1.03 (0.75-1.42) 1.03 (0.75-1.42) 22.5% 0.26
PM,s K 50 7 633 1.10 (0.88-1.37) 1.08 (0.87-1.34) 1.21 (0.88-1.66) 28.1% 0.21
PM,sNi 1 6 603! 0.81 (0.40-1.63) 0.77 (0.36-1.63) 0.81 (0.36-1.83) 60.3% 0.03
PM;ys S 200 7 633 2.07 (1.23-3.47) 2.01 (1.20-3.38) 1.93 (1.13-3.27) 0.0% 0.59
PM,sSi 100 6 6122 0.97 (0.54-1.75) 0.91 (0.43-1.91) 0.90 (0.41-1.98) 45.2% 0.10
PM,sV 2 5 237° 0.95 (0.47-1.89) 0.90 (0.45-1.80) 0.90 (0.45-1.81) 0.0% 0.87
PMys5Zn 10 7 633 1.54 (0.80-2.97) 1.54 (0.82-2.90) 1.63 (0.88-3.01) 70.2% < 0.01
UADT cancer

PMysCu 5 6 763 1.08 (0.83-1.40) 1.03 (0.79-1.34) 1.02 (0.78-1.33) 0.0% 0.64
PM,s Fe 100 6 763 0.97 (0.79-1.18) 0.89 (0.73-1.09) 0.90 (0.73-1.10) 0.0% 0.73
PM,s K 50 6 763 1.13 (0.78-1.65) 1.12 (0.83-1.51) 1.12(0.83-1.51) 22.9% 0.26
PM,sNi 1 5 706! 0.97 (0.56-1.67) 0.85 (0.53-1.35) 0.84 (0.51-1.37) 11.6% 0.34
PM,s S 200 6 763 0.90 (0.46-1.75) 0.74 (0.28-1.98) 0.75 (0.25-2.21) 54.9% 0.05
PM,sSi 100 5 740> 0.75 (0.54-1.04) 0.75 (0.54-1.04) 0.76 (0.54-1.05) 0.0% 0.99
PM,sV 2 4 429° 0.78 (0.48-1.28) 0.69 (0.42-1.14) 0.68 (0.41-1.12) 0.0% 0.63
PMys5Zn 10 6 763 1.09 (0.87-1.37) 1.09 (0.86-1.38) 1.11 (0.82-1.51) 25.6% 0.24

PM,s = particulate matter with diameter < 2.5 pm. We included only participants without missing data in any of the variables included in model 3, so the datasets
were identical for analyses with all three models. HR = hazard ratio. CI = confidence interval. UADT = upper aerodigestive tract.

2 Relating to model 3.
> Model 1: age (timescale in Cox model), sex, calendar time.

¢ Model 2: model 1 + smoking status, smoking intensity, smoking duration, occupational exposure, employment status and educational level.
4 Model 3: model 2 + area-level (residential neighbourhood or similar) socio-economic status. 1: without CEANS. 2: without HUBRO. 3: without HUBRO, VHM&

PP.
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PM,s_S (5 pg/m® increase)

%

cohort2 HR (95% Cl) Weight
HUBRO, Oslo, Norway +- 8.46 (0.23, 308.71) 217
CEANS, Stockholm, Sweden * 4.26 (0.04, 517.42) 1.22
DCH, Copenhagen, Denmark +- 0.57 (0.07, 4.49) 6.63
EPIC-Netherlands - 3.47 (0.67, 18.03) 10.35
VHM&PP, Vorarlberg, Austria —_—————— 1.61(0.84, 3.08) 66.32
EPIC-Turin, Italy +- 7.69 (0.98, 60.20) 6.64
SIDRIA-Rome, Italy * 2.10(0.27, 16.38) 6.67
Overall (I-squared = 0.0%, p = 0.592) <> 1.93 (1.13,3.27) 100.00
T 17T T T T

Fig. 3. Risk for gastric cancer associated with PM, 5_S in each cohort study.

Hazard ratios according to PM, s_S in each of the cohort studies, based on confounder model 3. Weights are from random effects analysis. Data points show HR; lines
show 95% CI, boxes show the weight with which each cohort contributed to the overall HR; vertical bold line shows overall HR. HR = hazard ratio.

PM, 5 = particulate matter with diameter < 2.5 pum.

models for S (de Hoogh et al, 2013) and possibly the over-
representation of traffic locations at the monitoring sites compared to
the cohort addresses. Overall, the explained variance of PM;,_S models
was slightly higher than for PM,s S LUR models (de Hoogh et al.,
2013). The low variability of S within study areas likely has contributed
to moderate performance (de Hoogh et al., 2013). In both the mortality
and lung cancer studies (Beelen et al., 2015; Raaschou-Nielsen et al.,
2016), HRs for PM;_S, were above unity, but smaller and less con-
sistent than for PM, 5_S.

For gastric cancer, the null finding for PM;,_S parallels the null-
finding for total PM;, that we have found in our previous ESCAPE
analysis (Nagel et al., 2018).

Overall, our results for PM, 5_S were robust as sensitivity analyses
did not notably change the effect estimate. Restricting the analyses to
persons who lived at least 10 years at their baseline address resulted in
slightly increased HRs, which would be expected if the association is
true and causal because the degree of non-differential misclassification
of exposure is expected to be lower in this sub-population. Excluding
the most influential cohort, VHM&PP with a weight of 66%, increased
the HR. Although two-pollutant models should be interpreted with
caution (Mostofsky et al., 2012), our finding that the HR in association
with PM, 5_S is robust when adjusting for PM, 5, which in turn is re-
duced to virtually no effect, is strengthening our result. Even more so,
because in contrast to earlier studies where S and PM were strongly
correlated, the moderate correlation in our study (mean of 0.55) allows
us to be more confident to disentangle effects.

Nevertheless, PM, 5s_S may also be seen as a marker of a certain
pollutant mix. Sources of S are coal, residual oil and motor vehicle
fuels. In the NPACT project, the coal combustion source category
showed the strongest associations of all investigated sources with long-
term effects (mortality in humans and aortic plaque progression in
mice) (Lippmann et al., 2013).

Ashely et al. reported a correlation between SO, exposure and
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gastric cancer mortality in the UK (Ashley, 1969). This study showed
that regions with coal and textile industry had higher gastric cancer
mortality. Another study showed that workers exposed to SO, in the
pulp and paper industry had no increased risk of gastric cancer, but
mortality from gastric cancer showed a positive dose-response with
increasing exposure, however, with very imprecise estimates (Lee et al.,
2002).

While an earlier review on toxicological results postulated that there
is little evidence that sulphate in ambient concentration is tox-
icologically relevant (Schlesinger and Cassee, 2003), recent reviews
acknowledge that it is unclear which effects are related to sulphates
contained in the PM-mixture: the cationic elements (H+, and therefore
acidity, and notably (transition) metals) or adsorbed compounds like
polyaromatic hydrocarbons (PAH)) may explain the observed epide-
miological associations (Cassee et al., 2013; Reiss et al., 2007). A study
in Hong Kong (Wong et al., 2012) that investigated the effects of lim-
iting the sulphur content in fuel found that natural mortality was re-
duced, however the reduction in SO, was highly correlated with re-
ductions in V and Ni and was not statistically significant after
adjustment. In our study these metals (V and Ni from residual oil
combustion e.g. from industry) were not associated with gastric cancer
incidence, although one might argue that the corresponding LUR-
models suffered from a lack of sufficiently specific predictors (Beelen
et al., 2015).

The possible pathomechanisms of carcinogenicity of sulphate in
ambient air for gastric cancer are not clear. Results from experimental
research with human bronchial epithelial cells, support the hypothesis
that SO, derivatives could by activation of pro-oncogenes and the in-
activation of tumour suppressor genes play a role in the pathogenesis of
cancer (Qin and Meng, 2009). It can also be speculated whether the
formation of sulphuric acid, which is formed from oxidation from SO,
increases the risk of gastric cancer (Bernatsky et al., 2017). As pointed
out above, sulphate may indirectly affect health by e.g. co-occurring
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N cohorts / N cases

Main model 4 7/633 | ——@———
Ma!n quel on cohorts withdata | 5/566H 0
residential history
I:A(?;;r;l?gaelsgiireir;cg;gﬁls which lived at least | 57273 o #
Main model with individuals that did not |5/ 28?‘.7 o

move during follow-up

Main model with subjects with urban/rural data

5/586 —@————

adjusted for urban/rural + 5/ 586 H—@———1
Main model with subjects with data on
s 16/601 [—@——
additional confounders
adjusted for additional confounders 4 6 /601 |F——@———
0 1 2 3 4 5 6
HR 95%-Cl

Fig. 4. Results of sensitivity analyses for the association of gastric cancer with PM, 5s_S. Hazard ratios (HR) with 95% confidence intervals are shown. N = number.
The additional confounders were alcohol consumption, environmental tobacco smoke (ETS), intake of fruit, intake of meat and marital status where available.

transition metals. The bioavailability of these metals may increase
(Cassee et al., 2013) and they can lead to the formation of reactive
oxygen species (ROS) which in turn may result in oxidative DNA-da-
mage (Moller et al., 2008; Risom et al., 2005).

4.1. Strengths and limitations

Our study comprises data from several cohorts from 7 geographical
areas, and constitutes the largest data set to date for the analysis of PM-
elements in relation to gastric cancer. A strength is the common stan-
dardized exposure assessment protocol that estimates local concentra-
tions with a small scale resolution. Our analysis was able to take into
account important individual confounders, especially smoking. We
could also adjust for nutritional variables in 4 of the 7 study-specific
effect estimates, but cannot rule out residual confounding. While we
cannot exclude the possibility of some misclassification due to the
measurement campaigns taking place after recruitment of cohort par-
ticipants, we were, however, able to take into account information on

residential stability, which would tend to decrease the degree of ex-
posure misclassification.

We were not able to take into account the mobility of the individuals,
but had to rely on exposure estimates for the residential address at en-
rolment into the cohorts. Also, the LUR-model approach does involve some
degree of misclassification, and especially the performance of the models
for PM_S were among the lowest when evaluated by leave-one-out cross-
validation, presumably because of the small measured within-study area
contrasts. The average leave-one-out cross-validation (LOOCV) R? in the
present study with data from 7 geographical areas ranged between 7 and
61% for PM,5_S, with the highest values in DCH (61%) and VHM&PP
(53%) and the lowest in HUBRO. The sensitivity analyses excluding stu-
dies with a (LOOCV) R? yielded an only mildly attenuated effect estimate
with a widened confidence interval, resulting from the exclusion of three
of the seven cohorts. It is not clear whether the mild change is related to
the LOOCV or other characteristics of the cohorts. We further note that the
12 statistic of the overall analysis is 0%, suggesting that the variability in
estimates across cohorts is mostly due to random error.
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Overall, we would expect the misclassification related to low
LOOCYV R? to be non-differential and therefore to induce a bias towards
the null-effect. Also the relatively poor model fit would not contribute
to an erroneously increased effect estimate in the two-pollutant model:
indeed, if two pollutants are of similar influence, the pollutant for
which the concentrations are more precisely estimated would yield the
higher effect estimate. This is unlikely to be the case here, because the
model fit for PM, s mass was better than for PM, 5_S with validation R?
ranging from 42% to 78%.

In this analysis we tested 32 outcome-exposure combinations, so a
chance finding due to multiple testing cannot be fully excluded.
Nevertheless, the robustness of the results and the fact that 6 of the 7
cohort estimates were greater than one indicates that the result for S in
PMS, 5 is probably not due to chance. However, clearly additional spe-
cific studies are needed.

Taken together, our results indicate that S in the PM, 5 fraction, or
correlated air pollutants, may contribute to increased risk of cancer of
the stomach.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2018.07.030.
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