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A B S T R A C T

Background: In order to investigate associations between air pollution and adverse health effects consistent fine
spatial air pollution surfaces are needed across large areas to provide cohorts with comparable exposures. The
aim of this paper is to develop and evaluate fine spatial scale land use regression models for four major health
relevant air pollutants (PM2.5, NO2, BC, O3) across Europe.
Methods: We developed West-European land use regression models (LUR) for 2010 estimating annual mean
PM2.5, NO2, BC and O3 concentrations (including cold and warm season estimates for O3). The models were
based on AirBase routine monitoring data (PM2.5, NO2 and O3) and ESCAPE monitoring data (BC), and in-
corporated satellite observations, dispersion model estimates, land use and traffic data. Kriging was performed
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Abbreviations: CTM, chemical transport models; SAT, satellite-derived predictions; FULL, models developed using 100% of the monitoring sites; HOV, hold-out-
validation models developed on 80% of the number of sites

⁎ Corresponding author at: Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.
E-mail addresses: c.dehoogh@swisstph.ch (K. de Hoogh), j.chen1@uu.nl (J. Chen), jg435@leicester.ac.uk (J. Gulliver),

b.hoffmann@uni-duesseldorf.de (B. Hoffmann), oh@envs.au.dk (O. Hertel), mke@envs.au.dk (M. Ketzel), mariska.bauwelinck@vub.ac.be (M. Bauwelinck),
kelaar@Dal.Ca (A. van Donkelaar), ullah@cancer.dk (U.A. Hvidtfeldt), kkatsouy@med.uoa.gr (K. Katsouyanni), jochem.klompmaker@rivm.nl (J. Klompmaker),
Randall.Martin@Dal.Ca (R.V. Martin), esamoli@med.uoa.gr (E. Samoli), Per.Schwarze@fhi.no (P.E. Schwartz), m.stafoggia@deplazio.it (M. Stafoggia),
Tom.Bellander@ki.se (T. Bellander), M.M.Strak@uu.nl (M. Strak), kathrin.wolf@helmholtz-muenchen.de (K. Wolf), danielle.vienneau@swisstph.ch (D. Vienneau),
B.Brunekreef@uu.nl (B. Brunekreef), G.Hoek@uu.nl (G. Hoek).

Environment International 120 (2018) 81–92

Available online 31 July 2018
0160-4120/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2018.07.036
https://doi.org/10.1016/j.envint.2018.07.036
mailto:c.dehoogh@swisstph.ch
mailto:j.chen1@uu.nl
mailto:jg435@leicester.ac.uk
mailto:b.hoffmann@uni-duesseldorf.de
mailto:oh@envs.au.dk
mailto:mke@envs.au.dk
mailto:mariska.bauwelinck@vub.ac.be
mailto:kelaar@Dal.Ca
mailto:ullah@cancer.dk
mailto:kkatsouy@med.uoa.gr
mailto:jochem.klompmaker@rivm.nl
mailto:Randall.Martin@Dal.Ca
mailto:esamoli@med.uoa.gr
mailto:Per.Schwarze@fhi.no
mailto:m.stafoggia@deplazio.it
mailto:Tom.Bellander@ki.se
mailto:M.M.Strak@uu.nl
mailto:kathrin.wolf@helmholtz-muenchen.de
mailto:danielle.vienneau@swisstph.ch
mailto:B.Brunekreef@uu.nl
mailto:G.Hoek@uu.nl
https://doi.org/10.1016/j.envint.2018.07.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2018.07.036&domain=pdf


on the residual spatial variation from the LUR models and added to the exposure estimates. One model was
developed using all sites (100%). Robustness of the models was evaluated by performing a five-fold hold-out
validation and for PM2.5 and NO2 additionally with independent comparison at ESCAPE measurements. To
evaluate the stability of each model's spatial structure over time, separate models were developed for different
years (NO2 and O3: 2000 and 2005; PM2.5: 2013).
Results: The PM2.5, BC, NO2, O3 annual, O3 warm season and O3 cold season models explained respectively 72%,
54%, 59%, 65%, 69% and 83% of spatial variation in the measured concentrations. Kriging proved an efficient
technique to explain a part of residual spatial variation for the pollutants with a strong regional component
explaining respectively 10%, 24% and 16% of the R2 in the PM2.5, O3 warm and O3 cold models. Explained
variance at fully independent sites vs the internal hold-out validation was slightly lower for PM2.5 (65% vs 66%)
and lower for NO2 (49% vs 57%). Predictions from the 2010 model correlated highly with models developed in
other years at the overall European scale.
Conclusions: We developed robust PM2.5, NO2, O3 and BC hybrid LUR models. At the West-European scale
models were robust in time, becoming less robust at smaller spatial scales. Models were applied to 100×100m
surfaces across Western Europe to allow for exposure assignment for 35 million participants from 18 European
cohorts participating in the ELAPSE study.

1. Introduction

Ambient air pollution remains one of the main causes of morbidity
and mortality in the world (Cohen et al., 2017). WHO's global assess-
ment of ambient air pollution exposure estimated that one in nine
deaths annually are caused by ambient air pollution (WHO, 2016).
More recently, there is evidence showing that associations between
mortality and morbidity and long-term exposure to outdoor air pollu-
tion might have no threshold, and extend to concentrations below
current air quality limit values of the US EPA and EU (Beelen et al.,
2015). Recent studies conducted in North-America have shown that
long-term exposure to PM2.5 is associated with mortality also at low
exposures (i.e. below the current WHO guideline of 10 μg/m3) (Crouse
et al., 2015; Di et al., 2017; Pinault et al., 2017). Particularly in North-
America and Europe, tougher air quality policies have led to a reduction
in emissions and a gradual decline in ambient air pollution con-
centrations (EEA, 2017). Little, however, is known about the shape of
the exposure-response curve at low concentrations, and thus the impact
of low level concentrations on large populations remains uncertain.
The ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe)

study aims to fill this gap by investigating the relationship between long
term air pollution and morbidity and mortality at low PM2.5
(Particulate Matter < 2.5 μg), nitrogen dioxide (NO2), black carbon
(BC) and ozone (O3) exposures. Low levels are defined as air pollutant
concentrations below EU and/or US air quality limit values and/or
WHO guidelines. ELAPSE includes 11 cohorts with in-depth individual
data on lifestyle and 7 large administrative/national cohorts across
Europe (http://www.elapseproject.eu/). Cohorts were selected to re-
present a contrast in air pollution exposures between and within study
areas. The 11 detailed individual-level cohorts will be analyzed as a
pooled cohort, whereas the administrative cohorts will be analyzed
separately. Taken together, the evidence should allow collective con-
sideration and evaluation. This study therefore needs consistent models
that can provide valid exposures at two different spatial extents in
Western Europe: combining all study regions of the detailed individual-
level cohorts for the pooled analysis; and the national extents for the
administrative/national cohorts. The previously developed ESCAPE
LUR models (Beelen et al., 2013; Eeftens et al., 2012a) do not meet the
requirements for the ELAPSE project because they do not cover the full
national study areas. Secondly, methodological work by Basagana and
Wang has shown that more stable models can be developed based on a
larger number of model training sites than the 20 sites that the ESCAPE
PM models were based upon (Basagaña et al., 2012; M Wang et al.
2013). Finally, ESCAPE did not evaluate ozone.”
Cohorts in the ELAPSE study have different recruitment and follow-

up periods going back as early as the 1990's. Epidemiological studies
have used the back-extrapolation method to estimate exposures back in
time (Beelen et al., 2014; Chen et al., 2017). The method uses a well

validated air pollution surface as the base and assumes that the spatial
structure of this surface remains stable over time. Monitoring data from
routine monitoring sites are then used to re-scale the surface back or
forward in time (Cesaroni et al., 2012; Chen et al., 2010). Few studies
have been able to document the stability of spatial surfaces, mostly
focusing on NO2 and at the city level (Cesaroni et al., 2012; Eeftens
et al., 2011; R Wang et al. 2013) or national scale (Gulliver et al., 2013).
We thus evaluated the stability of these surfaces over time by com-
paring modelled estimates with historic monitoring data and by de-
veloping models for other years.
The aims of the paper are to:

1. develop and evaluate performance of fine spatial scale hybrid land
use regression models for four major health relevant pollutants
PM2.5, NO2, BC, O3 across Western Europe;

2. investigate the temporal stability of the spatial contrast at the West-
European and national scale.

This paper follows our recently published West-European fine scale
air pollution exposure models for PM2.5 and NO2 (de Hoogh et al.,
2016). Models were based on both 2010 ESCAPE and the European
Environment Agency (EEA) AirBase routine monitoring data, and
documented the contribution of satellite data and chemical transport
models (CTM) to LUR models. An important finding was that models
performed well when validated with data from the other measurement
network (i.e. ESCAPE model validated with AirBase sites and vice
versa). In the current paper we substantially extended this work, firstly
by adding BCO3 which are both health relevant pollutants. We also
improved the testing of the robustness of models by evaluating struc-
ture and predictions using five-fold hold-out-validation (HOV), fol-
lowing a study on land use regression models for ultrafine particles (van
Nunen et al., 2017). We further assessed improving the LUR models
using kriging and added new predictor variables with improved gran-
ularity, including 1×1 km satellite-derived PM2.5 to the previously
used 10×10 km satellite data. Finally we added an assessment of the
temporal stability of the models.

2. Materials and methods

2.1. Air pollution monitoring data

PM2.5, NO2 and O3 daily concentration data for 2010 were derived
from the AirBase v8 dataset (EEA, 2015). Only sites with ≥75% com-
pleteness of the total hours (NO2 and O3) or days (PM2.5) were ac-
cepted, and an annual average was calculated for PM2.5 and NO2. For
O3, we calculated the maximum running 8-hour mean for each day and
then averaged to obtain an annual, warm season (April through Sep-
tember) and cold season (January through March and October through
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December) average maximum running 8-hour mean. For BC, which is
not available through AirBase, we used the ESCAPE annual mean BC
concentrations (measured as PM2.5 absorbance based on reflectance
measurement of the filters) reflecting the time period 2009–2010.
Previous studies (Cyrys et al., 2012; Eeftens et al., 2012b) using AirBase
data documented no difference in average BC concentrations between
2000 and 2010, therefore we treated all BC measurements as 2010
annual mean concentrations. A detailed description of the ESCAPE
measurement campaign can be found elsewhere (Eeftens et al., 2012b).
Table S1 describes the number of sites and summary statistics of the air
pollution measurement data. The locations of the monitoring sites used
for the 2010 models are shown in Fig. S1. For temporal stability ana-
lysis we additionally included NO2 and O3 daily concentration data for
2000 and 2005 from AirBase v8 and daily PM2.5 concentration data for
2013 from Air Quality e-Reporting (www.eea.europa.eu/data-and-
maps/data/aqereporting-8). There were insufficient PM2.5 sites across
Western Europe before 2010.

2.2. Predictor variables

2.2.1. Satellite derived air pollution data
In addition to the satellite-derived (SAT) PM2.5 product (v3.01) used

in the previous paper (de Hoogh et al., 2016), we tested two additional
different SAT PM2.5 products, which have become available only re-
cently, as potential predictors. These were obtained from the global
dataset reported in van Donkelaar et al. (2015). Aerosol Optical Depth
(AOD) retrievals from the NASA MODIS (Moderate Resolution Imaging
Spectroradiometer), MISR (Multi-angle Imaging Spectroradiometer)
and SeaWiFS instruments were related to near-surface concentrations
using aerosol vertical profiles and scattering properties simulated by
the GEOS-Chem CTM, to produce an annual average PM2.5 dataset at a
0.1°× 0.1° (~10 km) resolution for 2010. In the previous paper we
used a dataset inferred from 2009 to 2011 (optimized for 2010), here
we additionally tested the inferred data from 2010 data only. We fur-
ther included the current, purely geophysical, global PM2.5 dataset
(V4.GL.02.NoGWR), which includes some information at the finer re-
solution of 0.01°× 0.01° (~1 km) published by van Donkelaar et al.
(2016). The pre-Geographically Weighted Regression dataset used here
includes AOD from multiple satellite products (MISR, MODIS Dark
Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) together
with simulation-based sources, with information content below ~10 km
provided by the MAIAC AOD retrieval. PM2.5 satellite data was offered
as a predictor to the PM2.5 models. No BC satellite data were available
and because BC is a major component of PM2.5, PM2.5 satellite data
were also offered to the BC models.
NO2 SAT estimates for 2010 were derived from the tropospheric

NO2 columns measured with the OMI (Ozone Monitoring Instrument)
on board the Aura satellite. Like PM2.5, the satellite column-integrated
retrievals were related to ground-level concentrations using the global
GEOS-Chem model, producing an annual gridded NO2 surface at a
10 km resolution (Bechle et al., 2013, 2015; Novotny et al., 2011). NO2
satellite predictors were offered to the NO2 models. No O3 satellite data
were available but, because NO2 is related to O3 formation and
scavenging, NO2 satellite data was also offered to the O3 models.

2.2.2. Chemical transport model (CTM) data
Pollutant estimates for 2010 from two long range CTM's were ob-

tained as potential predictor variables for the models. Annual PM2.5,
NO2 and O3 estimates were derived from the MACC-II ENSEMBLE
model at a 0.1°× 0.1° (~10 km) resolution (Inness et al., 2013). The
ENSEMBLE model provides a value at each pixel which is defined as the
median value of seven individual CTMs: CHIMERE, EMEP, EURAD,
LOTOS-EUROS, MATCH, MOCAGE and SILAM. Annual MACC-II ENS-
EMBLE averages for PM2.5, NO2 and O3 were offered to the respective
LUR models. We additionally acquired a second CTM dataset from the
Danish Eulerian Hemispheric Model (DEHM_v31102016) for PM2.5,

NO2, O3 and BC at a monthly 50× 50 km resolution (Brandt et al.,
2012). Annual DEHM averages were calculated for all pollutants and
offered to the respective LUR models, while warm and cold averages of
O3 were offered to the warm and cold season models.

2.2.3. Other predictor variables
The GIS predictor variables used in this study are described in more

detail elsewhere (de Hoogh et al., 2016; Vienneau et al., 2013). In brief,
road data, classified as ‘all’ and ‘major’ roads, were extracted from the
1:10,000 EuroStreets digital road network (version 3.1 based on Tele-
Atlas MultiNet TM, year 2008). Land cover data were extracted from
European Corine Land Cover 2006 data (ETC-LC, 2013) except for
Greece for which Corine Land Cover 2000 was used (ETC-LC, 2009).
The 100m resolution Corine datasets, with an initial 44 land classes,
were grouped into six main land cover groups. Elevation was extracted
from the SRTM Digital Elevation Database version 4.1 which has a re-
solution of 1 arc sec (approximately 90m) and a vertical error < 16m
(CGIAR-CSI, 2013). We additionally obtained 1× 1 km population data
for 2011 from Eurostat (EC, 2011).
Both road and land cover databases were intersected with a

100× 100m base polygon and the sum of road length (for ‘all’ and
‘major’ roads) and sum of land cover area (for the six grouped land
classes) were calculated. The 100× 100m polygons were converted to
grids and a focalsum procedure was applied to calculate these predictor
variables for different distances, i.e. “buffers”. All potential predictor
variables are listed in Table S2, and GIS analysis was conducted in ESRI
ArcGIS 10.5.

2.3. Model development and evaluation

A two-stage statistical procedure was applied to explain the spatial
variation in the measurement data. Firstly, separate standard LUR
models were developed based on all measurements for each pollutant.
LUR models were developed according to the ESCAPE protocol; i.e.
supervised stepwise linear regression as used in our previous paper (de
Hoogh et al., 2016). Predictor variables were only allowed to enter the
model if they adhered to the predefined direction of effect (see Table
S2). For example, road density, an indicator of traffic, has a positive
(+) effect in the prediction of NO2, PM2.5 and BC and therefore will
increase concentrations. Other variables like altitude and natural land
will have a negative (−) effect on the same pollutants, and will
therefore decrease concentrations. We allowed significant predictor
variables to enter the model when they added to the adjusted R2 of the
previous model step. Secondly, using the urban and rural background
sites only, we explored the remaining broad scale variation in the re-
siduals. Ordinary kriging was applied to the residuals using the GSTAT
R package (LUR+kriging). If kriging was not successful (i.e. we could
not fit a kriging function through the residuals) we offered longitude
and/or latitude to the LUR model as additional predictors.
For each pollutant, six LUR models for 2010 were developed. The

main model was developed using all sites (FULL). To test the robustness
and stability of this model we additionally developed five hold out
validation (HOV) models (HOV1, HOV2, … , HOV5), each built on 80%
of the monitoring sites with the remaining 20% used for validation.
Sites were selected into five groups (20% of sites) at random, stratified
by site type and country.
HOV was performed after the LUR modelling and after the kriging

(when applicable) using the criteria R2 and root mean square error
(RMSE). The main model (FULL, developed on all available sites) was
evaluated against the 5 HOV samples.
For PM2.5 and NO2 we were able to perform an additional in-

dependent comparison with the ESCAPE monitoring datasets.
Comparisons were performed at different scales: 1) overall (all ESCAPE
sites); 2) overall ELAPSE (ESCAPE sites falling in ELAPSE study areas);
and 3) matched to individual ELAPSE study areas (both detailed in-
dividual-level and administrative cohorts). Since the BC model was
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developed using the ESCAPE measurements, no independent compar-
ison was possible.

2.4. Stability of spatial structure

In back extrapolation we assume that the spatial structure remains
the same going back in time. To investigate the stability of the spatial
structure of the models, and to test this assumption, we developed
models for NO2 and O3 (2000 and 2005) using the same methods de-
scribed in Section 2.3. For PM2.5 it was not possible to develop models
for 2000 and 2005 due to the lack of monitoring data (12 and 165 in
2000 and 2005 respectively), instead we developed a model for 2013
(number of included monitoring sites= 732). The FULL models were
mapped at a 100× 100m resolution across the study area and for the
different years we visually inspected the spatial patterns.
As we did not have access to cohort geocodes, we created a random

point file of 150,000 points across the full rectangular extent of the
study area. After intersecting with the study area boundary, approxi-
mately 44,000 points remained which was considered a sufficient
number to evaluate the stability. These points were intersected with all
the raster surfaces: 2010 for PM2.5, NO2 and O3 (annual, cold season
and warm season); 2013 for PM2.5; and 2005 and 2000 for NO2 and O3.
Comparisons of model predictions were made for the West-European
countries combined and at the national scale reporting R2, RMSE and
fractional bias (FB). In addition we calculated population weighted
annual means (see Eq. (1)) (Briggs et al., 2007) for PM2.5, NO2 and O3,
using the 1×1 km GEOSTAT population database (EC, 2011).

Pop w exposure (pop conc)/ pop= × (1)

We additionally evaluated the correlation of annual average mea-
surements (plus summer and winter average for O3) for those AirBase
stations with measurements going sufficiently back in time.

2.5. Population exposure

For 2010, we calculated the total population of West-European
countries (based on the GEOSTAT 2011 population grid dataset (EC,
2011)) residing in PM2.5 and NO2 concentration classes.

3. Results

3.1. Air pollution models 2010

The performance statistics (squared Pearson correlation (R2) and
RMSE) and model structure of the FULL hybrid models for all pollutants
are presented in Table 1 including the LUR component and, where
applicable, the combined LUR+kriging component. The variograms of
the kriging models for PM2.5, O3 in the warm and cold season are shown
in Fig. S2. A detailed model description, including constants, coeffi-
cients, incremental R2 and RMSE can be found in Table 2 for PM2.5 and
the Supplementary material for the other pollutants (Table S3) and
years (Table S4). Fig. 1 shows the mapped surfaces at a 100× 100m
resolution of the FULL models for all pollutants.

3.1.1. PM2.5 models
The PM2.5 LUR model developed on all available monitoring sites

(FULL) explained 62% of spatial variation of the measured PM2.5 con-
centrations (Table 1). Apart from satellite and CTM estimates, the LUR
model included altitude, all roads, natural areas, ports and residential
area. The satellite variable was the strongest predictor in all models
explaining approximately 48% of the spatial variation in measured
PM2.5 concentrations. Comparing the predicted increase in PM2.5 across
a change from the 1st to the 99th percentile of each predictor, satellite
and CTM PM2.5 were associated with the largest contrast in PM2.5. The
model included large scale predictors (CTM, SAT at 10×10 km) and
small-scale road, natural and residential land (50–200m) predictors.
Kriging increased the explained variation to 72%.
The difference between the calibration and HOV R2 of the FULL

PM2.5 model was small (72% vs 66%) confirming that overfitting was
unlikely to be a big problem in the model development (Table 2). Si-
milar predictor variables as in the FULL model were retained in the
validation models, with only ports and urban green not always present
in each model. Consistently, predictions of the six models (FULL and 5
HOV) at the 44,000 randomly selected sites were very highly correlated
documenting the robustness of the model (Fig. S3).
The mapped FULL PM2.5 model (see Fig. 1) showed predicted levels

of PM2.5 > 20 μg/m3 in major cities and the Po area (the Po river basin
running from the Western Alps to the Adriatic Sea) in Italy. Large parts

Table 1
Model structurea and performance of 2010 LUR models.

Pollutant Stage Method N sites R2 RMSEb Full LUR modelc

PM2.5 Training LUR 543 62.2 3.17 3.19+13.24*SAT-PM25+7.08*MACC-PM25−3.82*
ALT+2.17*ALRD100− 2.07*NAT50+2.39*POR800+ 1.41*RES200LUR+Kriging 72.2 2.71

HOV LUR 58.7 3.30
LUR+Kriging 66.4 2.97

BCd Training LUR 436 54.4 0.56 0.99+0.85* MACC-PM25+0.30* SAT-PM25+0.68*MJRD100+0.40* ALRD50+ 0.45*
ALRD700+ 0.90*RES3000 – 0.12*UGR1000 – 1.16*YHOV LUR 51.4 0.58

NO2d Training LUR 2399 58.8 9.38 3.30+22.73*MACC-NO2+7.04* ALRD50+ 3.92* ALRD300+12.32*
MJRD100+ 15.73*ALRD2000− 3.38*NAT400+ 4.1*POR700+ 5.8*RES300HOV LUR 57.5 9.51

O3 annuald Training LUR 1747 65.1 6.73 40.54+ 25.51*MACC-O3− 2.49*ALRD50− 4.75* ALRD200− 3.24*
MJRD200− 1.57*POR4000−1.94*RES500− 4.13*RES2000+8.82*ALT+2.48*X−10.05*YHOV LUR 63.4 6.87

O3 warm Training LUR 1730 45.5 10.07 30.00+ 32.57*DEHM-O3− 6.87* ALRD200−6.03* MJRD100−5.95*PORT5000−4.79*RES2000+ 5.70*ALT
LUR+Kriging 69.6 7.51

HOV LUR 44.5 10.15
LUR+Kriging 59.9 8.63

O3 cold Training LUR 1716 67.7 7.43 1.00+37.62*MACC-O3− 3.35* ALRD200−3.48* MJRD50− 1.61* MJRD
700+5.81*NAT700− 4.18*RES1200−1.10*TBU100+ 2.21*UGR1000+ 6.84*ALTLUR+Kriging 83.3 5.33

HOV LUR 66.5 7.55
LUR+Kriging 75.3 6.99

a Regression slope in μg/m3, except BC (10−5m−1), multiplied by the difference between the 1st and 99th percentile of each predictor to allow comparison across
predictors.
b RMSE in μg/m3, except BC (10−5m−1).
c ALT= altitude, ALRD= all roads, MJRD=major roads, IND= industry, POR=ports, UGR=urban green, TBU= total build up, NAT=natural land,

RES= residential, POP= sum of population, X=North-South trend, Y= East–West trend, SAT= satellite, MACC=MACC dispersion model, DEHM=DEHM CTM.
Number in subscript depicts the buffer size (e.g. ALRD100= sum of all road length within 100m).
d No valid variograms were possible on the residuals of these models.
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of Northern Europe had low (<10 μg/m3) predicted PM2.5 concentra-
tions.
We tested the three different PM2.5 satellite products in preliminary

PM2.5 model development and found that the 0.1°× 0.1°inferred
2009–2011 product v3.01 produced the best results (see the
Supplementary material section 1 and Table S5 for a more detailed
description).

3.1.2. NO2 models
The FULL NO2 model explained 59% of the spatial variation

(Table 1 and Table S3). In all models the CTM variable was the stron-
gest predictor explaining approximately 29% of variation in NO2 con-
centrations, followed by the small (100–300m) and larger scale
(2000m) road variables. All roads, major roads, natural and residential
predictor variables consistently appeared in every model. Predictions of
the six models (FULL and 5 HOV) models at the 44,000 randomly se-
lected sites were very highly correlated (Fig. S3). None of the variogram
models adequately fit the residuals at the NO2 background monitoring
sites, nor did including longitude and/or latitude help explain the re-
siduals (p-value of coefficient not significant). The mapped NO2 esti-
mates (Fig. 1) showed more variation compared to PM2.5. Major roads
and cities clearly stood out with predicted concentrations generally>
30 μg/m3. Away from sources in rural areas, NO2 levels dropped below
15 μg/m3.

3.1.3. O3 models
Around half of the spatial variation in the annual O3 measurements

was explained by the CTM (MACC-O3) variable. Other variables con-
sistently entering all 6 annual models were roads, residential land cover
and altitude (Table S3). Ports entered the FULL model and 4 of the 5
HOV models. The CTM was associated with much larger contrast in O3
than the other predictors. Predictions of the 6 models (FULL and 5
HOV) models at the 44,000 randomly selected sites were very highly
correlated (Fig. S3). No reliable kriging function could be fit through
the residuals of O3 background monitoring sites. However, latitude and

longitude variables were fit to the models. The FULL model had a R2 of
65% (HOV models ranging from 63 to 68%).
Like the annual O3 model, the cold season O3 model was dominated

by the MACC predictor variable, explaining nearly 60% of the spatial
variation in measured O3 concentrations. Roads, residential land and
altitude variable entered in all 6 cold season models. Kriging explained,
on average, an additional 16% of the spatial variation, bringing the
final performance of the FULL O3 cold model to 83% (80% to 85% for
the 5 validation models).
The O3 warm season models also contained a CTM variable, but

unlike the annual and cold season O3 models where the annual MACC
CTM variable entered, here the warm season DEHM CTM variable was
the stronger predictor. Other variables entering in all models were
roads, ports, residential land and altitude. The performance of LUR
models was moderate (R2 ranging from 44 to 48%) but with ad-
ditionally fitted kriging functions, we increased the explained variation
to 70% for the FULL model (67% to 73% for the 5 validation models).
Maps of the FULL O3 models (Fig. 1 and S4) showed similar general

patterns for annual and cold season, with the highest predicted O3
concentrations in Southern Europe and lower concentrations in more
central areas (England, the Netherlands, Germany and northern Italy).
Areas of high altitude also tended to have higher predicted O3 levels
compared areas of lower altitudes. Predicted O3 concentrations for the
warm season showed a somewhat different spatial pattern with a much
clearer negative North-South gradient than the cold season model.

3.1.4. BC models
For the FULL BC LUR model we achieved an explained variation of

54% (FULL model) and between 52 and 57% for the 5 HOV models
(Table 1, Table S3). For all 6 models, the CTM MACC-PM2.5 contributed
24 to 30% of the explained spatial variation. Roads, PM2.5 SAT esti-
mates, urban green land, residential land and natural land were also
included consistently in FULL and HOV models. Predictions of the 6
(FULL and 5 HOV) models at the 44,000 randomly selected sites were
very highly correlated (Fig. S3). The BC model included large

Table 2
Structure and performance of LUR modelsa for PM2.5 for full dataset and five hold-out validation datasets for 2010.

Theme Variableb FULLc HOV1 HOV2 HOV3 HOV4 HOV5

(Constant) 3.19 3.46 3.53 3.14 3.49 3.32
Satellite SAT-PM25 13.24 12.98 12.39 13.19 12.68 13.55
CTM MACC-PM25 7.08 7.32 7.45 7.17 7.09 6.93
Altitude ALT −3.82 −3.82 −4.10 −3.93 −3.54 −3.73
Roads ALRD100 2.17 2.89 2.23 2.00

MJRD50 1.98
MJRD100 2.26

Urban green UGR700 −1.08
UGR800 −0.98

Nature NAT50 −2.07 −2.24 −2.72 −2.26
NAT100 −2.31 −2.12
NAT300
NAT400

Ports POR800 2.39 3.19 2.95 2.46 2.35
Residential RES50 0.89

RES200 1.41 1.72 1.44 1.48
RES300 1.39

Training (LUR) R2 62.2 62.0 63.1 61.1 60.8 66.0
RMSE 3.17 3.26 3.10 3.30 3.22 2.95

HOV (LUR) R2 58.7 62.2 53.9 67.4 68.1 50.3
RMSE 3.30 2.93 3.67 2.68 3.01 3.94

Training (LUR+Kriging) R2 72.2 71.4 70.5 76.8 76.0 63.3
RMSE 2.71 2.55 2.94 2.26 2.61 3.38

HOV (LUR+Kriging) R2 66.4 67.7 66.0 72.3 74.0 57.9
RMSE 2.97 2.71 3.15 2.47 2.72 3.61

a Regression slope μg/m3 were multiplied by the difference between the 1st and 99th percentile of each predictor to allow comparison across predictors.
b ALT=altitude, ALRD= all roads, MJRD=major roads, IND= industry, POR=ports, UGR=urban green, TBU= total build up, NAT=natural land,

RES= residential, POP= sum of population, X=North-South trend, Y=East-West trend, SAT= satellite, MACC=MACC dispersion model, DEHM=DEHM CTM.
Number in subscript depicts the buffer size (e.g. ALRD100= sum of all road length within 100m).
c FULL refers to all sites; HOV1 is first holdout validation dataset (80% stratified random sample).
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contributions from large-scale predictors (CTM PM2.5, Y-coordinate and
residential density) and small-scale predictors (roads and residential
density).
Due to the clustered nature of the BC monitoring data it was not

possible to perform kriging. Latitude was best able to explain the

residuals.
When mapped across Western Europe (Fig. 1), BC predicted con-

centrations showed a distinct North – South division, with low
(≤0.8 10−5m−1) BC concentrations in Scandinavia and the north of
the UK, and higher> 0.8 10−5m−1 in the rest of Western Europe.

PM2.5 2013 PM2.5 2010 BC 2010

NO2 2010 NO2 2005 NO2 2000

O3 warm 2010 O3 warm 2005 O3 warm 2000

10-5m-1

Fig. 1E. Mapping of hybrid west European LUR models for PM2.5, BC, NO2 and O3 warm season at 100×100m (μg/m3, BC 10−5m−1).
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Mediterranean Europe had the highest concentration > 1.2 10−5m−1.
Traffic sources were also clearly identifiable in the inset with major
roads visible around Paris.

3.2. Comparison at ESCAPE sites

We performed an independent external comparison for PM2.5 and
NO2 FULL models using measured concentration data from the ESCAPE
study. Table 3 shows the correlations at different scales including the
mean and standard deviation of measured concentrations at the

ESCAPE measurement sites.
The PM2.5 FULL model explained 65% of variance overall (n=416)

with a small fractional bias (FB=−2%). The explained variance is
almost identical to the HOV R2 of 66% (Table 1). Restricting the ana-
lysis to the overall area with ELAPSE cohorts (n=255) led to a slight
decrease in the explained variance (59%) and a small overestimation
(FB=−10%). The comparison at each ELAPSE study areas separately
(detailed individual-level and administrative cohorts) revealed a large
range in the explained variation, 8% for EPIC Oxford and English ad-
ministrative cohort to 66% for HNR, also with the FB varying from −2

Table 3
Comparison of PM2.5 and NO2 ELAPSE models at ESCAPE monitoring sites.

Pollutant PM2.5

Measurements

Name ESCAPE area R2 RMSE FBa Mean SD Nb

Overall 64.8 3.41 −0.02 15.86 5.73 416
Overall ELAPSE 58.7 2.85 −0.10 14.16 4.43 255

ELAPSE cohorts
HUBRO Oslo, NO 18.4 2.04 −0.30 8.59 2.20 19
CEANS Stockholm County, SE 39.0 1.32 −0.04 8.29 1.64 19
DCH Copenhagen, DK 40.1 1.26 −0.18 11.12 1.58 20
EPIC-NL NL 12.6 1.71 −0.02 17.35 1.80 34
EPIC OXFORD London-Oxford, Manchester, UK 7.6 2.23 −0.26 10.55 2.29 39
HNR Ruhr Area, GER 65.5 0.97 −0.06 18.52 1.61 20
KORA Munich-Augsburg, GER 31.5 1.44 −0.16 14.34 1.70 20
VHM&PP Vorarlberg, AU 22.4 1.74 −0.19 13.34 1.92 20
E3N Paris, FR 38.7 3.30 −0.24 16.02 4.10 20
EPIC VARESE n.a. – – – – – –
DNC n.a. – – – – – –

Administrative ELAPSE cohorts
Dutch NL 12.6 1.71 −0.02 17.35 1.80 34
English London-Oxford, Manchester, UK 7.6 2.23 −0.26 10.55 2.29 39
Rome Rome, IT 43.0 2.51 0.16 19.77 3.24 20
Danish n.a. – – – – – –
Norwegian
Swissc Lugano. CH – – – – –
Belgianc Antwerp, BE – – – – –

Pollutant NO2

Measurements

ESCAPE area R2 RSME FB Mean SD N

Overall 49.4 11.47 −0.08 29.32 16.12 1396
Overall ELAPSE 45.8 10.28 −0.13 29.74 13.95 780

ELAPSE cohorts
HUBRO Oslo, NO 7.0 12.74 −0.19 24.29 13.05 39
CEANS Stockholm County, SE 55.0 5.03 −0.50 15.49 7.44 39
DCH Copenhagen, DK 59.0 5.99 −0.54 17.82 9.21 41
EPIC-NL NL 75.9 5.10 −0.26 28.76 10.32 68
EPIC OXFORD London-Oxford, Manchester, Bradford, UK 53.9 8.64 −0.17 29.82 12.67 119
HNR Ruhr Area, GER 54.0 6.74 −0.20 33.16 9.76 40
KORA Munich-Augsburg, GER 64.0 5.79 −0.13 26.82 9.58 40
VHM&PP Vorarlberg, AU 47.0 5.29 −0.10 22.59 7.17 40
E3N Paris, Grenoble, Lyon, Marseille, FR 52.6 12.37 −0.01 34.42 17.90 160
EPIC VARESE Varese, IT 34.0 13.78 0.10 36.53 16.54 20
DNC n.a. – – – – – –

Administrative ELAPSE cohorts
Dutch NL 75.9 5.10 −0.26 28.76 10.32 68
English London-Oxford, Manchester, Bradford, UK 53.9 8.64 −0.17 29.82 12.67 119
Rome Rome, IT 51.0 9.72 0.23 42.64 13.71 40
Danish n.a. – – – – – –
Norwegian n.a. – – – – – –
Swiss Basel, Geneva, Lugano. CH 13.7 7.55 −0.16 30.03 8.09 121
Belgianc Antwerp, BE – – – – –

a FB= Fractional Bias calculated as 2 ∗ (mean observations−mean predictions) / (mean observations+mean predictions).
b N=number of ESCAPE monitoring sites (the same for black carbon and PM2.5).
c Covers only a small part of the area, with insufficient number of sites.

K. de Hoogh et al. Environment International 120 (2018) 81–92

87



Ta
bl
e
4

St
ab
ili
ty
an
al
ys
is
at
co
un
tr
y
le
ve
l:
pr
ed
ic
tio
ns
of
th
e
20
10
LU
R
m
od
el
ve
rs
us
m
od
el
s
fr
om
ot
he
r
ye
ar
s
at
ra
nd
om
ly
se
le
ct
ed
po
in
ts
(i
n
sq
ua
re
d
co
rr
el
at
io
n,
R2
in
pe
rc
en
ta
ge
s,
RM
SE
in
μg
/m
3 )
.

PM
2.
5
20
13

N
O
2
20
05

N
O
2
20
00

O
3
20
05
aa

O
3
20
00
aa

O
3
20
05
ca

O
3
20
00
ca

O
3
20
05
w
a

O
3
20
00
w
a

Re
gi
on

R2
(%
)

RM
SE

R2
(%
)

RM
SE

R2
(%
)

RM
SE

R2
(%
)

RM
SE

R2
(%
)

RM
SE

R2
(%
)

RM
SE

R2
(%
)

RM
SE

R2
(%
)

RM
SE

R2
(%
)

RM
SE

N

A
ll
W
es
t
Eu
ro
pe
an
co
un
tr
ie
s

88
.2

1.
9

91
.9

1.
9

90
.9

2.
0

85
.8

3.
5

78
.8

4.
3

80
.4

4.
3

44
.3

7.
3

84
.3

4.
6

76
.4

5.
6

44
.0
00

EL
A
PS
E
co
un
tr
ie
s

Co
m
bi
ne
d

89
.3

1.
9

92
.6

2.
0

91
.4

2.
1

82
.7

3.
2

82
.0

3.
3

87
.0

3.
3

45
.1

6.
9

81
.6

4.
6

78
.3

5.
0

34
,7
62

A
us
tr
ia

60
.1

2.
0

86
.7

1.
3

87
.4

1.
9

81
.9

3.
7

82
.7

4.
1

80
.9

3.
4

67
.4

6.
7

82
.5

3.
4

64
.5

3.
9

10
50

Be
lg
iu
m

84
.1

1.
0

90
.9

1.
4

84
.6

2.
3

81
.5

1.
9

87
.4

1.
9

89
.6

1.
9

81
.7

2.
4

86
.5

2.
0

70
.6

2.
5

35
2

Sw
itz
er
la
nd

52
.5

1.
9

91
.5

1.
2

92
.6

1.
8

94
.6

2.
4

95
.2

2.
7

88
.2

3.
3

85
.5

5.
1

87
.9

3.
5

88
.7

4.
6

50
3

G
er
m
an
y

57
.6

1.
2

85
.0

1.
3

80
.5

2.
2

64
.0

2.
7

69
.2

3.
0

75
.5

3.
1

29
.4

4.
7

47
.3

3.
8

63
.7

4.
4

42
32

D
en
m
ar
k

48
.8

1.
1

88
.8

0.
8

84
.8

1.
6

73
.0

1.
2

71
.1

1.
3

71
.0

1.
6

59
.6

1.
8

63
.6

1.
5

73
.2

1.
6

52
7

Fr
an
ce

57
.4

1.
5

89
.0

1.
1

82
.9

1.
9

83
.2

2.
7

80
.4

3.
5

87
.6

3.
0

55
.0

5.
2

76
.3

3.
4

86
.8

4.
1

64
75

Ita
ly

82
.6

1.
7

81
.9

1.
6

82
.6

2.
3

59
.9

4.
4

64
.8

4.
9

90
.0

4.
3

16
.6

9.
8

11
.9

5.
2

1.
6

12
.3

35
48

N
et
he
rl
an
ds

70
.1

0.
9

87
.9

1.
6

81
.9

2.
7

60
.4

2.
2

71
.8

2.
1

73
.0

2.
3

35
.6

3.
0

79
.3

2.
2

53
.1

2.
6

45
4

N
or
w
ay

59
.3

0.
9

83
.3

0.
5

83
.4

0.
8

88
.6

1.
7

79
.4

2.
4

79
.0

2.
2

71
.7

3.
1

61
.1

3.
0

79
.4

2.
4

34
49

Sw
ed
en

86
.2

0.
9

93
.1

0.
5

91
.3

0.
8

65
.5

1.
6

45
.1

2.
2

78
.9

1.
7

63
.3

2.
9

76
.6

1.
6

87
.4

1.
7

53
53

U
ni
te
d
Ki
ng
do
m

89
.8

1.
2

95
.3

1.
1

93
.0

2.
0

71
.8

2.
0

78
.1

2.
1

81
.9

3.
3

74
.3

3.
4

52
.2

2.
5

53
.0

3.
3

28
45

N
on
EL
A
PS
E
co
un
tr
ie
s

G
re
ec
e

64
.4

1.
2

86
.5

0.
9

83
.3

1.
6

40
.9

3.
7

49
.5

3.
8

14
.2

6.
6

6.
0

7.
6

34
.7

3.
9

19
.4

5.
1

15
49

Fi
nl
an
d

44
.2

1.
0

92
.7

0.
4

89
.7

0.
8

52
.4

1.
0

46
.3

1.
2

25
.2

2.
4

67
.9

1.
6

70
.2

1.
3

69
.7

1.
6

40
08

H
un
ga
ry

53
.9

0.
9

84
.3

0.
9

84
.8

1.
2

50
.8

1.
3

38
.4

1.
6

21
.6

3.
9

59
.4

2.
5

54
.1

1.
2

38
.6

2.
3

11
18

Ir
el
an
d

73
.9

0.
8

92
.7

0.
6

90
.2

1.
0

52
.0

1.
3

49
.1

1.
4

79
.1

2.
4

68
.8

2.
2

61
.1

1.
2

61
.6

2.
3

84
1

Li
th
ua
ni
a

56
.3

0.
9

89
.7

0.
6

85
.1

1.
0

52
.9

1.
1

40
.8

1.
2

65
.3

1.
9

74
.7

1.
4

54
.8

0.
9

24
.4

1.
7

78
0

Lu
xe
m
bo
ur
g

68
.3

0.
9

89
.0

1.
3

77
.9

2.
2

73
.9

1.
3

75
.4

1.
4

74
.1

2.
6

78
.3

2.
2

47
.2

1.
8

57
.7

1.
4

31
Po
rt
ug
al

63
.8

1.
1

85
.4

1.
0

87
.0

1.
6

71
.3

1.
9

67
.4

2.
2

62
.1

3.
3

51
.5

3.
5

33
.0

2.
4

37
.4

3.
9

10
15

Sp
ai
n

69
.4

1.
1

77
.8

1.
2

79
.7

1.
7

65
.6

2.
8

58
.5

3.
6

62
.8

4.
4

41
.4

5.
6

42
.9

3.
4

38
.9

7.
0

59
74

a
O
3
a
fo
r
an
nu
al
,c
fo
r
co
ld
se
as
on
an
d
w
fo
r
w
ar
m
se
as
on
.

K. de Hoogh et al. Environment International 120 (2018) 81–92

88



to −30%. We note that the number of sites is relatively small for the
individual area comparisons.
NO2 FULL models also showed reasonable associations for overall

(49%) and overall ELAPSE (46%). The explained variance was modestly
lower than the HOV R2 of 57% (Table 1). FB indicated a small over-
estimation of 13% for the ELAPSE overall area. At the ELAPSE detailed
individual-level cohorts the correlations for NO2 were generally better
than for PM2.5: all were> 47% except for HUBRO (7%) and EPIC
VARESE (34%). FB showed overestimation for all areas, except for
ELAPSE areas in Italy.

3.3. Air pollution models for different time periods and stability analysis

3.3.1. Models for 2000, 2005 (NO2 and O3) and 2013 (PM2.5)
The performance statistics of the PM2.5, NO2 and O3 models for

different years are presented in Table S4. The 2013 PM2.5 LUR models
explained 64% of spatial variation in the PM2.5 measurements. The LUR
models had some similarities with the 2010 models, with MACC, SAT,
roads and natural land entering all models. Neither reliable kriging
models nor longitude/latitude variables improved the models.
No NO2 MACC CTM estimates were available for the years 2000 and

2005, so only DEHM NO2 for 2000 and 2005 estimates were offered to
the NO2 model development. Otherwise the NO2 models showed a si-
milar structure with the 2010 NO2 LUR models (CTM, roads, natural
land, residential land and ports in all models), but performed slightly
less well (R2 NO2 2000= 56%; R2 NO2 2005= 52%).
O3 models for 2000 and 2005 were able to respectively explain 60%

and 49% (annual), 82 and 42% (warm season), 52 and 70% (cold
season) of the variation in measured concentrations. The 2000 and
2005 annual and warm O3 models contained DEHM CTM variables
whereas no DEHM variable entered the cold season models. Kriging
models explained an additional ~25% of spatial variation in the 2000
warm season and the 2005 cold season models. Latitude and longitude
variables were entered to the other models.
Fig. 1 shows the maps of PM2.5 (2013, 2010), NO2 and O3 warm

season (2010, 2005, 2000). Similar patterns over multiple years were
observed with, for example, high predicted PM2.5 concentrations for
both 2010 and 2013 in the Po valley in North Italy and low PM2.5
concentrations in Scandinavia. Spatial patterns in the NO2 and O3
concentrations maps for the 3 years also appeared broadly similar.

3.3.2. Comparison of model predictions for Western Europe across years
Table 4 (and Fig. S5) shows the results of the stability tests at

country level. Agreement in spatial variation was generally high at the
overall EU country and combined ELAPSE country level (> 76%) for all
comparisons, except for the O3 cold season surface (44% when 2000

model compared to 2010). At the national level, focusing on ELAPSE
countries only, we observed some heterogeneity in the associations.
Both 2000 and 2005 NO2 surfaces showed a high agreement with the
2010 NO2 surface (all ELAPSE countries > 80%). The agreement be-
tween PM2.5 surfaces developed for 2010 and 2013 showed more
variability, with four ELAPSE countries > 80% (UK, Sweden, Belgium
and Italy), the Netherlands 70% and the rest between 48 and 60%.
There was a high variability between the associations of the different O3
surfaces. The agreement between O3 annual surfaces of 2000 and 2005
with 2010 was reasonable, all ELAPSE countries had>60% explained
spatial variability, with the exception of Sweden (2000) with 45%.
Except for the 2005 O3 cold (all ELAPSE countries > 60%), the O3 cold
and warm season surfaces were less stable over time with large ranges
of explained spatial variability. Italy performed poorly with 1.6%,
11.9% and 16.6% for respectively 2000 warm season, 2005 warm
season and 2000 cold season (combined with the largest RMSE's).
NUTS areas are standard administrative divisions of EU countries

for statistical purposes. We performed the stability analysis using the
same 44,000 random points at the NUTS1 area level (see Fig. S6) to
gain a better understanding of the stability at the sub-national level.
Similar to the national level, there was a good agreement for all areas
for NO2 2000 and 2005 when compared to the 2010 surface
(R2 > 0.60). For more details see the Supplementary material Section
2.

3.3.3. Comparison of measurements
We additionally evaluated the relationship between measured

average concentrations for those AirBase stations with measurements
going sufficiently back in time between 2010 and 2005 and 2000
(Table 5). In Western Europe the measured concentrations between the
different years yielded high correlations. When focusing on ELAPSE
participating countries, high correlations were also observed for the
majority of the countries and years.

3.4. Population exposure

Based on our modelled concentrations (FULL models), a respective 8
million (2%) and 371 million (89%) people live in areas with estimated
PM2.5 concentrations greater than the EU annual PM2.5 limit value of
25 μg/m3 and the WHO annual guideline of 10 μg/m3. 32 million (8%)
of people live in areas with modelled NO2 concentration greater than
the EU and WHO annual NO2 guideline of 40 μg/m3 (see Table S6).
Table S7 shows that population weighted concentration levels across
the whole of our study area do not drastically fluctuate over time and
are generally low (PM2.5–11 μg/m3 and NO2 < 20 μg/m3).

Table 5
Correlations between concurrent AirBase measurements (background sites only) in 2010 with 2000 and 2005 (NO2, O3 annual, warm and cold season) and 2013
(PM2.5) in R2 (number of sites) for EU and separately for ELAPSE countries.

NO2 O3 annual O3 warm O3 cold PM2.5

2000 2005 2000 2005 2000 2005 2000 2005 2013

EU 85.8 (546) 86.7 (794) 71.6 (572) 72.3 (836) 68.3 (576) 67.7 (843) 77.9 (555) 79.5 (817) 79.3 (247)
Austria 86.1 (66) 94.6 (77) 87.8 (77) 89.9 (86) 72.1 (79) 79.5 (88) 91.3 (75) 92.4 (84) 96.7 (8)
Belgium 95.4 (16) 93.2 (26) 88.2 (22) 88.1 (28) 76.7 (22) 75.9 (29) 91.5 (22) 94.6 (25) 85.5 (19)
Switzerland 97.7 (21) 94.7 (21) 90.9 (21) 89.2 (23) 75.0 (21) 86.0 (23) 97.5 (21) 92.1 (23) n.a. (0)
Germany 90.9 (185) 93.5 (213) 73.3 (181) 77.6 (206) 58.4 (182) 59.9 (206) 80.5 (175) 88.3 (201) 46.4 (63)
Denmark n.a. (2) 93.4 (6) n.a. (0) 41.0 (6)⁎ n.a. (0) 18.6 (6)⁎ n.a. (0) 72.7 (6) 95.5 (3)⁎

France 86.0 (169) 90.1 (261) 70.9 (179)⁎ 82.5 (301) 66.3 (184) 82.0 (307) 80.1 (173) 85.7 (294) 52.5 (57)
Great Britain 88.2 (27) 90.0 (44) 72.9 (35) 71.7 (55) 67.5 (31) 66.1 (51) 77.7 (35) 76.8 (54) 59.4 (28)
Italy 65.9 (30) 73.7 (109) 38.0 (26) 20.5 (87) 20.3 (26) 1.2 (90)⁎ 74.9 (23) 68.4 (88) 84.5 (44)
Netherlands 89.2 (23) 92.5 (26) 30.0 (19) 30.0 (25) 1.1 (19)⁎ 2.6 (25)⁎ 59.5 (20) 69.6 (23) 68.3 (15)
Norway n.a. (2) 100 (3) 2.8 (6) 49.7 (7) 46.3 (6)⁎ 72.4 (7) 73.2 (6) 91.1 (7) 15.5 (5)⁎

Sweden 96.6 (5) 96.8 (8) 67.5 (6) 0.8 (12)⁎ 40.9 (6)⁎ 15.4 (11)⁎ 93.2 (5) 30.1 (12) 84.5 (5)

⁎ Not significant (p > 0.05).
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4. Discussion

We developed West-European LUR models at a 100×100m spatial
scale for four priority pollutants. The models including large scale sa-
tellite data and CTM and small-scale traffic and land use predictors
explained between 54% (BC) and 83% (O3 cold season) of the measured
variability in concentrations. The explained variance at fully in-
dependent sites was only slightly less than the internal hold-out vali-
dation: 65% vs 66% for PM2.5 and 49% vs 57% for NO2. Predictions
from the 2010 model correlated highly with models developed for 2000
and 2005 (2013 for PM2.5) at the overall European scale, with squared
correlations larger than 76%, except for the O3 cold season of 2000
(44%). The temporal correlation was more variable when evaluated at
the country and especially at the NUTS1 level. Correlations between
measured concentrations at the EU level between 2010 and 2005 and
2010–2000 for NO2 and O3 (R2 between 68% to 87%) and for PM2.5
2010–2013 (R2 79%) were even higher than modelled concentrations.
Based on our modelled surfaces, 371 million and 32 million people in
Western Europe live in areas with air pollution levels exceeding the
WHO annual guidelines for PM2.5 and NO2 respectively.

4.1. Interpretation of 2010 models

PM2.5 SAT and CTM available at a 10×10 km scale were the
strongest predictors in the PM2.5 models, consistent with PM2.5 being a
largely regionally varying pollutant. Eeftens et al. (2012a) reported that
81% of the variability in the ESCAPE annual average PM2.5 con-
centrations was due to between study area contrast. The modest con-
trast related to the small-scale road variable is consistent with the
overall mean ratio of 1.14 comparing traffic and background sites
within ESCAPE (Eeftens et al., 2012a). Roads, ports and residential
areas represent the contribution of local sources, with altitude, and
nature/urban green representing pollution sinks. Applying kriging to
the residuals of the LUR model explained an extra 10% of the variation,
suggesting that the SAT and CTM predictors did not fully capture the
large scale variation of PM2.5 across Europe. Alternatively, the number
of sites was insufficient to train the model. Kriging was not feasible for
the 2013 model, possibly due to the larger number of sites.
In the BC models, satellite and CTM PM2.5 also contributed strongly,

raising potential concerns when applying the PM2.5 and BC models in
the epidemiological analysis as it might be difficult to tease apart their
respective contribution to health effects. Compared to the PM2.5
models, small-scale road predictors contributed more to the BC pre-
diction. The FULL model contained three road variables with a similar
magnitude to the CTM and SAT predictors. This is consistent with the
observation in ESCAPE that 52% of the variability was due to within-
study area variability (Eeftens et al., 2012a). The overall ratio of BC
concentrations measured at traffic/urban background sites was 1.38
(Eeftens et al., 2012a). The residuals of our initial model showed a clear
north-south gradient, which was captured by a Y-coordinate in the
model, documenting that the models did not predict the large scale
contrast of BC across Europe sufficiently. MACC and satellites do not
represent BC, whereas DEHM modelled BC at a larger scale
(50× 50 km scale). It is likely that limitations in emission data for BC
may have impacted the performance of the models.
After the CTM predictor variable, small-scale road variables were

the strongest predictors in the NO2 models. Motorized traffic is a
dominant source of local NO2 concentrations, as illustrated by the
overall ratio of 1.63 for concentrations measured at traffic vs. urban
background ESCAPE monitoring sites (Cyrys et al., 2012). In ESCAPE,
60% of the variability of NO2 was due to within-study area variability
(Cyrys et al., 2012). The NO2 models could not be further improved by
kriging or geographical coordinates, suggesting that the CTM ade-
quately captured the large scale variation across Europe. We previously
suggested that CTM's were better developed for NO2 than for PM2.5
when discussing the contribution of CTM and SAT to PM2.5 and NO2

LUR models (de Hoogh et al., 2016).
In O3 models, CTM (the ensemble MACC for the annual and cold

period and DEHM for the warm season) were the dominant predictor
variables, consistent with O3 being a regional pollutant. The model
further predicted higher concentrations at higher altitude, in ac-
cordance with a previous European LUR model (Beelen et al., 2009).
Predicted lower concentrations near roads were consistent with
scavenging of O3 by NO2. In both the warm and cold season, kriging
substantially improved the models, likely illustrating limitations in the
CTM. Kriging did not contribute to the annual model, possibly because
the annual average combined the two different spatial patterns of the
cold and warm seasons.
Few studies have combined LUR and kriging in air pollution models.

Young et al. (2016) evaluated the additional value of satellite data and/
or kriging on NO2 LUR models across the USA for 1990–2012. Models
with both satellite data and kriging performed best, increasing the
average cross-validation R2 from 0.72 (just applying LUR) to 0.85. Sa-
tellite or kriging alone yielded respective average R2’s of 0.81 and 0.84.
Although we found improvement of model performance with kriging
for the PM2.5 and O3 models, we did not see the same result in our NO2
models. This might be due to the difference in scale of the two studies.
Young et al. (2016) estimated NO2 concentrations at a 25× 25 km
resolution, thereby not explaining intra-urban variation but rather fo-
cusing on more regional background. This study operates at a much
smaller resolution (100×100m) and, at least for NO2, the residual
concentrations after LUR were too variable, even at background sites,
for reliable kriging functions. In a previous study distinguishing global,
regional and urban scales, universal kriging improved PM10, O3 and
NO2 European models compared to regression models (Beelen et al.,
2009). In that study, the analysis was based on 1 ∗ 1 km estimates.
Relatively few studies have tested the robustness by developing

HOV models and assessing the structure of the models. Johnson et al.
(2010) evaluated PM2.5, NOx and benzene LUR models in New Haven,
CT, USA by including hold-out validation using varying sizes of
training/testing groups. van Nunen et al. (2017) performed a 10-fold
cross validation when developing UFP LUR models in six study Eur-
opean areas. We observed that the model predictions from our FULL
model correlated very highly with the 5 HOV models at the 44,000
independent sites, suggesting that the developed models were robust.
The correlations in our study were higher than that observed for the
UFP models based on short-term monitoring at 160 sites in some of the
cities (van Nunen et al., 2017).

4.2. Comparison with other European models

Previously we published the development of hybrid PM2.5 and NO2
LUR models for the same study area, showing that satellite-derived
(SAT) estimates and CTM estimates contribute considerably to the ex-
plained variance in PM2.5 and NO2 measurements (de Hoogh et al.,
2016). The models presented in this paper confirm our previous find-
ings. Moreover, by additionally including kriging to explain residuals at
background monitoring sites, we improved the PM2.5 hybrid models
from 62 to 72% (R2). This improvement was also observed when tested
using the independent ESCAPE monitoring dataset, showing an im-
provement from 53 to 65% (R2). For NO2 models, where the inclusion
of longitude explained some of the residuals, the R2 remained the same
(both 58%); but the improved NO2 model described here yielded a
higher independent validation (R2) of 49% compared to 43% in de
Hoogh et al. (2016). Additionally we evaluated the performance of SAT
and CTM derived estimates by comparing monitored AIRBASE data and
satellite derived PM2.5 (R2= 0.48) and NO2 (R2=0.13) and CTM
PM2.5 (R2= 0.41) and NO2 (R2=0.29). SAT and CTM (MACC) surfaces
explain less of the measured spatial variation than when these datasets
are used within a hybrid LUR framework as presented in this paper.
Vienneau et al. (2013) also developed European NO2 and PM10 LUR

models, for 2005–2007, showing that the inclusion of satellite data
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substantially improved model performance. The NO2 model explained a
comparable fraction of the variation (46–56%) to our models. The CTM
predictor outperformed the satellite data in our NO2 model, a predictor
variable not available in the study by Vienneau et al. (2013).
To date few studies have attempted to model pollutants other than

NO2 and PM. European O3 LUR models have been previously developed
by Beelen et al. (2009) for the year 2001 at the global (R2= 0.53), rural
(R2= 0.63) and urban (R2= 0.06) scale. Our annual O3 model per-
formance for 2000 yielded a higher R2 (0.63) possibly due to the in-
clusion of DEHM estimates in our model. In addition we further de-
veloped seasonal O3 models.

4.3. Application of 2010 models in epidemiological studies

The models developed and described here will be used for the ex-
posure assessment in ELAPSE for 7 administrative cohorts and a pooled
cohort comprising of 11 local cohorts across 11 countries in Europe
(Norway, Sweden, Denmark, United Kingdom, the Netherlands,
Belgium, Germany, France, Switzerland, Austria and Italy). For the
pooled cohort, the (moderately) high explained variance in hold-out
validation and external validation over the full area suggests that ex-
posure assessment is robust. For individual cohorts, comparison with
ESCAPE data in the respective study areas showed more variable re-
sults, especially for PM2.5. This implies that our West European model
should be applied with caution in a small area (part of a country) unless
local validation is possible. The difference between NO2 and PM2.5
could be due to the relatively small number of sites for PM2.5 and the
smaller contrast in PM2.5 within cohorts compared to NO2.
For the administrative cohorts, direct comparisons of the Dutch,

Rome and to some extent national English and Swiss (NO2 only) study
areas with the ESCAPE data are possible due to overlaps between the
ESCAPE and ELAPSE study areas/regions. The West European ELAPSE
models explained variation well, except for PM2.5 in the Netherlands
(possibly due to small variation) and NO2 in Switzerland. The findings
for Switzerland do not directly apply to the Swiss cohort, as the eva-
luation was limited to three cities whereas the Swiss cohort includes the
entire population including those in rural and Alpine areas. We have no
ready explanation for these findings, and can only speculate that a more
locally generated model may better capture area-specific small-scale
concentration differences than a pan-European model, which tends to
smooth intra-urban differences over several very different study areas.

4.4. Spatial stability of models and measurements over time

This is one of the few studies which has tested the stability of spatial
structure of air pollution exposure models at a continental scale, by
developing models for different time points and comparing the re-
spective estimates. Most studies evaluated LUR models at a national or
sub-national scale by linear regression using historical monitoring data,
allowing the constant and coefficient to change (Cesaroni et al., 2012;
Chen et al., 2010; Eeftens et al., 2011; Gulliver et al., 2013; Gulliver and
de Hoogh, 2015; Levy et al., 2015). Gulliver et al. (2016), however,
produced separate NO2 LUR models for 1991 and 2009 for the UK and
found that the year-specific 1991 model yielded similar exposures as
the back-extrapolated 2009 model. R Wang et al. (2013) developed NO2
LUR models for 2003 and 2010 for Vancouver, Canada, and when ap-
plied to measurements of the other year were able to explain 52 to 61%
(2003 model to 2010 measurements) and 44 to 49% (2010 model to
2003 measurements) of the spatial variation. These studies suggest that
the spatial structure of the different models were similar, at least at a
national or city level. It is difficult to compare the findings of the
analyses carried out in this study with the studies conducted at the sub-
continental scale. In this study we specifically assessed the stability of
the spatial structure by comparing the concentration surfaces of the
different models based on a set of ~44,000 random points spread across
the study area. At the EU scale (all countries combined and ELAPSE

countries combined) there was a high squared correlation (> 76%)
between the other year models (PM2.5 2013, NO2 and O3 2000, 2005)
and the corresponding 2010 models, with the only exception the O3
2000 cold season model (~45%). Other countries that performed
poorly for O3 2000 cold were Germany and the Netherlands. The poorer
temporal correlation for O3 may be due to the smaller spatial contrast
when evaluating at a smaller spatial scale. Another explanation may be
that there are different CTM predictions used in the LUR models for
2010 (MACC-O3 for annual and cold O3) compared to 2000 and 2005
for which only the DEHM model was available.
Correlations between annual average measured concentrations at

sites that were in operation for an extended time period were even
higher. The higher correlation for measurements was probably due to
the only moderately high explained variance of the models and differ-
ence in availability of predictor variables across years. A difficulty in
the interpretation of monitoring data is the limited number of sites with
continuous data, especially for PM2.5.
The temporal stability of the estimated spatial surface for most of

the pollutants has positive consequences for further application in long-
term epidemiological studies especially those including cohorts which
started one or two decades ago and which will have had several follow-
ups since then. The 2010 surfaces produced here can be used with some
confidence as the base for back-extrapolation.
For several areas we now have study-area specific ESCAPE models

and Europe wide ELAPSE models. The ESCAPE models are based upon a
smaller number of training sites but may be more specific for the area.
The spatial extent of ESCAPE PM models has limited the analysis of
some ESCAPE cohorts (e.g. only Paris in the national French E3N cohort
and Copenhagen in the Danish DCH cohort). The ELAPSE model can be
applied to larger areas e.g. entire France, Denmark. In general, Europe
wide models may be better when large areas are studied. In interna-
tional multi-center studies, the use of a single harmonized model is
important to standardize exposure assessment.

5. Conclusions

We were able to develop robust PM2.5, NO2, BC and O3 LUR models.
At the West-European scale models were robust in time, becoming less
robust at smaller spatial extents. In terms of model performance we
improved on previously published European NO2 and PM2.5 models and
developed new models for BC and O3 explaining large fractions of the
variance. We showed, by five-fold hold-out validation plus an in-
dependent comparison, that the models were spatially robust at the
West-European and, to a lesser degree, at the national scale. At the
West-European scale, PM2.5, NO2 and O3 models were robust in time.
For BC models we were not able to perform a stability analysis. At
smaller spatial scales, models were less robust in time, especially for O3.
The models presented here will be used to assign exposures in the
ELAPSE study and will be made available for other studies in Europe.
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