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While a three-dimensional (3D) scattering medium is from the outset opaque, such a medium sustains intriguing
transport channels with near-unity transmission that are pursued for fundamental reasons and for applications in
solid-state lighting, random lasers, solar cells, and biomedical optics. Here, we study the 3D spatially resolved dis-
tribution of the energy density of light in a 3D scattering medium upon the excitation of highly transmitting channels.
The coupling into these channels is excited by spatially shaping the incident optical wavefronts to a focus on the back
surface. To probe the local energy density, we excite isolated fluorescent nanospheres distributed inside the medium.
From the spatial fluorescent intensity pattern we obtain the position of each nanosphere, while the total fluorescent
intensity gauges the energy density. Our 3D spatially resolved measurements reveal that the differential fluorescent
enhancement changes with depth, up to 26 × at the back surface of the medium, and the enhancement reveals a strong
peak versus transverse position. We successfully interpret our results with a newly developed 3D model without
adjustable parameters that considers the time-reversed diffusion starting from a point source at the back
surface. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

The interference of multiple scattered waves in complex media
holds much fascinating physics such as coherent backscattering,
Anderson localization, and mesoscopic correlations [1–4].
Transport through complex media is described by so-called chan-
nels that are eigenmodes of the transmission matrix [5].
Remarkably, open transmission channels with near-unity transmis-
sion are predicted to perfectly transmit a properly designed inci-
dent field even if the medium is optically thick [6]. It has
recently been demonstrated that light is sent preferentially into
a combination of open and highly transmitting channels by the
spatial shaping of the incident wavefronts [7–9]. This development
has led to tightly focused transmitted light (henceforth referred to
as “optimized light”) [10–13], focusing inside a scattering medium
[14,15], enhanced optical transport through a scattering medium
[7,8,16–18], sending an image through a scattering medium [19],
and imaging inside a scattering medium [20–22].

In contrast, only a few studies address the energy density of
optimized light that plays a central role in diverse applications of
light–matter interactions, such as solid-state lighting [23,24], ran-
dom lasers [25], solar cells [26], biomedical optics [27], or control
of fluorescent proteins [28]. In the absence of wavefront control,

the ensemble-averaged energy density depends linearly on depth z
in the medium [1]. The critical questioning is how can the energy
density be controlled by exciting open channels, and what is the
resulting three-dimensional (3D) energy density. In particular, the
3D energy density profile of shaped light has not been experimen-
tally studied to date. Due to the inherent opacity, direct optical
imaging cannot be used to probe the 3D energy density profile. In
Ref. [29], it was shown that spontaneous emission of embedded
fluorescent nanoparticles does report the energy density, and it
was observed that the depth-integrated global energy density is
increased by wavefront shaping but the 3D profile could not be
resolved. Several studies on low-dimensional systems [30–36] in-
dicate that the energy density versus z position has a maximum
near the center of the sample, while the transverse �x, y� depend-
ence was not addressed. Thus, to investigate how the 3D local
optical energy density is controlled by wavefront shaping, a local
3D �x, y, z�-resolved measurement is called for.

In this work, we investigate the 3D local spatially resolved en-
ergy density in a 3D scattering medium, with optimized incident
light. Figure 1 illustrates our experiment: using a spatial light
modulator (SLM), we shape the incident green light to a focus at
the back surface of a disordered ensemble of ZnO nanoparticles,
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a procedure that is known to enhance the coupling of light into
highly transmitting channels [7,30,31,34]. The resulting energy
density is probed locally by fluorescent nanospheres. The density
of the nanospheres is so low that only one of them is present in the
illuminated volume. Wavefront shaping increases the local energy
density by an enhancement factor that we denote as ηf �x, y, z�.
Consequently, the fluorescence emission of a nanosphere, which
is proportional to the local energy density at its location, is
enhanced by the same factor. We performed measurements on
several nanospheres inside a sample, and for each individual
sphere we measured two key parameters, namely, the nanosphere
location �x, y, z� and the differential fluorescence enhancement
∂ηf∕∂F . Here the fidelity F quantifies the overlap between the
experimentally generated wavefront and the perfect wavefront
that optimally couples light to the target position [7].

2. MAIN OBSERVATION

Figures 2 and 3 show our main results: the measured differential
fluorescence enhancement ∂ηf∕∂F versus depth and transverse
position, respectively, in scattering samples with thicknesses of
L � 8� 2 μm and 16� 2 μm [37]. In Fig. 2, ∂ηf∕∂F increases
with depth z from front to back, and ∂ηf∕∂F increases up to 16
and 26 with thickness L. In the hypothetical situation where con-
trol of the incident light does not systematically change the
internal energy density we would find ∂ηf∕∂F � 0. The data de-
viate strongly from this condition, which shows that the energy
density is strongly controlled. We propose a 3D model without
free parameters that describes the data in Fig. 2 very well.

To verify the 3D character of ηf �x, y, z�, we translate the sam-
ple transversely along the x axis at constant depth. Figure 3 shows
the differential fluorescence enhancement ∂ηf∕∂F versus the
transverse displacement relative to the optical axis �x0, y0�. For
both samples, ∂ηf∕∂F reveals clear maxima, revealing the effect
of the optimized focus [38]. Due to cylindrical symmetry in the
transverse plane, similar behavior occurs versus both x and y, thus,
scanning the y coordinate [or even combinations (x � y) or
(x − y), etc.] is completely equivalent. The surface map in

Fig. 3 shows the cylinder-symmetric transverse distribution with
the measured data points. The observed strong dependence on
the transverse coordinate is also well described by our 3D model,
while it is not explained at all by previous 1D diffusion models
that are necessarily independent of �x, y� [30–36].

3. EXPERIMENTAL METHODS

A. Samples

The samples were prepared by spray painting a suspension of
ZnO nanoparticles and a low concentration of fluorescent par-
ticles on a glass slide (details in Supplement 1). After evaporation,
we obtained a dense ensemble of strongly scattering ZnO nano-
particles, with a transport mean-free path of l � 0.58�0.16

−0.10 μm.
The thickness L of the sample was controlled by the spraying
time, and we made 8 μm and 16 μm thick samples. Since the
lateral �x, y� extent of our samples (3 mm) is much greater than
the thickness and since the thickness is much greater than the
mean-free path, the photon transport in the samples is truly 3D.

B. Determination of the Depth of the Nanoparticle

The locations �x, y, z� of the fluorescent nanospheres are a priori
unknown since the nanospheres end up at random positions. To
determine the locations �x, y, z�, we first scanned the sample to
find isolated fluorescent spheres and then recorded the diffuse

Fig. 1. Schematic of our method to probe the 3D �x, y, z� spatially
resolved local energy density that is enhanced by wavefront shaping.
Incident green light is wavefront shaped to an optimized focus at the
back surface of a scattering medium (ensemble of ZnO nanospheres)
to preferentially excite open transmission channels. The scattering
medium is sparsely doped with fluorescent nanospheres that probe
the local energy density of the green incident light at different positions
�x, y, z� by emitting orange light in proportion to the local energy density
of the green excitation light.
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Fig. 2. Measured differential fluorescence enhancement ∂ηf∕∂F (blue
circles with error bars) versus depth z and scaled depth z∕l for two sam-
ples with thicknesses of (a) L � 8 μm and (b) L � 16 μm. The vertical
error bars are comparable to the symbol size. The fluorescent nanospheres
are centered on the optical axis at �x0, y0�. The red curve is the
energy density enhancement predicted by our 3D model. The green
dashed–dotted curve indicates a hypothetical absence of control of the
energy density.
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fluorescent spot at the back surface of the sample [see Fig. 4(a)].
We performed a Fourier transformation of the fluorescent spot
[see Fig. 4(b)] and filtered high-frequency noise. We model
the nanosphere as a point source in the 3D diffusion equation [14]
and fit the solution in Fourier space to the Fourier transform of
the fluorescence spot with the nanosphere depth z as the only
adjustable parameter; see Figs. 4(c)–4(d). For the particular
fluorescent nanosphere shown in Fig. 4, the depth is z �
3.3� 0.3 μm. To determine the z-error bar, we performed 100
measurements on a single nanosphere. Since the measured fluo-
rescent intensity varies for the 100 measurements, the mean and
standard deviation over the 100 measurements give z and z-error
bar, respectively. The variation in the z-error bars from each
nanosphere in Figs. 2 and 3 is probably because different nano-
spheres reveal different intensities (e.g., due to different doping or
bleaching).

C. Wavefront Shaping and Fidelity

Next, we performed wavefront shaping experiments with the op-
tical axis of the system centered on a nanosphere at coordinates
�x0, y0�. We obtained a feedback signal for the wavefront shaping
optimization from an area of 0.03 μm2, which is smaller than the
speckle area A � λ2e∕�2π� � 0.05 μm2. The output beam diam-
eter is estimated to be about 56 μm for an unoptimized incident
wavefront, corresponding to order of magnitude 104 transmission
channels. We used the piecewise sequential algorithm to find the
optimized incident wavefront [7,10], with N � 900 input

degrees of freedom on the spatial light modulator, as discussed
in Supplement 1.

Ideally, a perfectly shaped wavefront is the phase conjugate of
the wavefront originating from a point source located at the target
position [7]. A real wavefront in an experiment inevitably differs
from a perfect wavefront due to finite resolution, temporal
decoherence, modulation noise, and spatial extent of the gener-
ated field [7,10,39]. The deviation of the wavefront from the ideal
one due to all these effects can be represented in a single measure:
the fidelity F (that is the same as jγj2 in Refs. [7,29]).
Experimentally, the fidelity F is gauged as F � n2 · I opt∕I tot,
where n is the refractive index of the substrate, I opt the intensity
for the optimized wavefront, and I tot the total transmitted inten-
sity with an unoptimized reference wavefront [7,29]. Since a real
wavefront is the superposition of the perfectly shaped wavefront
that controls the energy density and a random error wavefront [7],
the energy density W e�x, y, z� due to a real incident wavefront is
necessarily a linear combination of the perfectly optimized energy
density W o�x, y, z� and a diffusive unoptimized energy density
W uo�x, y, z�

W e�x, y, z� � F ·W o�x, y, z� � �1 − F � ·W uo�x, y, z�: (1)

[The energy densities in Eq. (1) are ensemble averaged; see
Supplement 1]. By probing the fluorescent spheres at different
positions, we obtain the local energy density enhancement de-
fined as ηf �x, y, z� ≡W e�x, y, z�∕W uo�x, y, z�. Equation (1) leads
to a linear dependence of the energy density enhancement on
fidelity:

ηf �x, y, z� � 1� F ·
∂ηf
∂F

, (2)

with unity intercept and a slope ∂ηf∕∂F � �W o∕W uo − 1� that
we call the differential fluorescent enhancement [40].

Fig. 3. Differential fluorescence enhancement ∂ηf∕∂F versus
transverse displacement Δx relative to the optical axis for scattering
samples with thicknesses of (a) L � 8 μm [nanosphere at �y, z� �
�0, 5.9� 0.1� μm] and (b) L � 16 μm [nanosphere at �y, z� �
�0, 14.7� 0.2� μm]. Red circles are the measured data with error bars.
The light blue surface map and the blue solid line are the differential
energy densities along the transverse x position at y � 0, as predicted
by our 3D model.
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Fig. 4. Determining the depth z of a fluorescent sphere in the L �
8 μm sample. (a) Fluorescence image measured in real space by averaging
m1 � 41 data sets, each with a different random incident wavefront.
(b) Fourier transform of the data in panel (a). Intensities in (a) and
(b) are normalized to their maxima. (c) Solution of the diffusion equation
with a single fluorescent nanosphere at depth z � 3.3� 0.3 μm.
(d) Cross sections through the centers of (b) (blue circles) and
(c) (red line), respectively, showing a good match.
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D. Controlling Fidelity

To determine ∂ηf∕∂F from Eq. (2), it is necessary to control the
fidelity. Therefore, we systematically perturbed the optimized
wavefront by adding to each pixel a random phase noise. The
perturbed optimized pattern ϕp�i, j� is expressed as

ϕp�i, j� � ϕo�i, j� � δϕ�i, j�, (3)

where the indices �i, j� are the segments on the spatial light modu-
lator (SLM), ϕo�i, j� is the optimized phase pattern, and δϕ�i, j� is
the phase noise that takes random values between zero and a
maximum value δϕm. We varied δϕm from 0 to 2π in 41 steps,
and we measured the fidelity for each phase perturbation. We
expect that the phase noise gradually reduces the fidelity, which
is indeed observed in Fig. 5. For each perturbed phase we col-
lected a fluorescence image I p and m1 � 41 reference fluorescent
images I r, each with a random incident wavefront. (I p and I r are
integrated over all camera pixels within the fluorescent peak). We
determined experimentally the fluorescence enhancement ηf from
the ratio of I p and the average I r. We repeated the wavefront
shaping and fidelity scanning procedure m2 � 100 times on each
nanosphere to obtain an ensemble average.

The measured collection of �m1 · m2 � 4100� fluorescence
enhancement ηf data points versus fidelity F is shown in
Fig. 6 for one fluorescent nanosphere. While the data show inevi-
table variations, which are primarily due to a low-signal-to-noise
ratio from the intensity of single nanosphere (see Supplement 1),
the fluorescence enhancement clearly increases with F , to an aver-
age of 1.4 × at the maximum fidelity, as confirmed by the
rebinned data. From the linear dependence between ηf and F
with unity axis intercept [see Eq. (2)], we obtain the slope
∂ηf∕∂F that is directly obtained from the data, without any
extrapolation. The procedure above was done both versus depth
and versus transverse position, and all resulting differential fluo-
rescence enhancements ∂ηf∕∂F are shown in Figs. 2 and 3.

4. THEORY AND DISCUSSION

To model the 3D energy density W o�x, y, z� of optimized light,
we consider the optimized target to be a point source of diffuse
light, as shown in Fig. 1. The 3D energy density W dif �x, y, z� of
the point source is described by the 3D diffusion equation [1,14]
(for details, see Supplement 1). Light from the point source
diffuses in a cone from the back surface to the front surface,

preferentially via open channels. While the time reverse (or phase
conjugate) of the light transmitted to the front surface describes
light traveling to the target point at the back surface, part of the
light injected at the front surface contributes to a background,
notably in the space outside the optimized focus (see Fig. 1).
This background originates from the fact that open channels
do not form a complete basis and hence cannot compose an ideal
background-free focus [7,31]. Therefore, at perfect fidelity we
describe the optimized energy density W o�x, y, z� as a sum of
two components:

W o�x, y, z� � W of �x, y, z� �W bg�x, y, z�, (4)

with W of the energy density originating from the optimized fo-
cus, andW bg the background energy density. Following the maxi-
mal fluctuation approximation by Pendry et al., we describe W of

and W bg by assuming that the transmission channels consist of
only open and closed channels [41,42]. For open channels, it has
recently been shown that the energy density profile along z tracks
the fundamental mode of the diffusion equation [29,34,36]. To
obtainW of , we normalizeW dif �x, y, z� and map its z dependence
onto the spatial profile of the fundamental diffusion modeW m�1

(see Supplement 1). Similarly, we describe W bg by mapping the
fundamental diffusion mode onto a Gaussian profile with a con-
stant width along z. The amplitudes ofW fo andW bg are fixed by
the total transmitted intensity.

In our experiments, a fluorescent nanosphere at position
�x, y, z� is excited by the local energy density W o�x, y, z� in
the case of optimized light (modeled above) or W uo�x, y, z�
for unoptimized incident light. We describe W uo�x, y, z� as a
product of the solution of the 1D diffusion equation (versus
z) and a Gaussian [in �x, y��. Figure 7(a) shows the energy density
of optimized light at various depths calculated using Eq. (4) (see
Supplement 1). The energy density first spreads until about z �
3 μm and converges to a focus at the back surface of the sample.
These energy densities also serve to interpret transverse scans
as in Fig. 3: the scan in Fig. 3(a) taken near z � 6 μm in the
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L � 8 μm sample has a width of about 3 μm, which agrees well
with the calculated results in Fig. 7(a) (middle panel).

Figure 7(b) shows the �x, y�-integrated energy densities W o,
W uo, andW m�1 as functions of position z. The figure reveals that
W o matches withW m�1, both having a peak close to the center of
the sample and decreasing toward the sample surfaces. The agree-
ment of the two functions is expected sinceW m�1 is translationally
invariant along �x, y�. In addition, we find that both W o and
W m�1 are enhanced compared to the unoptimized density
W uo, as shown earlier [29]. Figure 7(c) shows the energy densities
of optimized and unoptimized light on the optical axis at
�x, y� � �0,0�. W o�x � 0, y � 0, z� increases steadily and has a
maximum close to the back surface of the sample. The peak close
to the back surface of the sample is attributed to the position of the
point source at z � L − l in the solution of the diffusion equation.
In contrast, W uo�x � 0, y � 0, z� increases only slightly until
around z � 1 μm and then decreases toward the back surface
of the sample. To the best of our knowledge, this is the first de-
scription of the energy density of wavefront-shaped light in 3D.

From the ratio of W o and W uo, we obtain differential fluo-
rescence enhancement ∂ηf∕∂F [see Eqs. (S11)–(S14)] that is plot-
ted as a function of depth z in Fig. 2. For both samples, our 3D
model shows that ∂ηf∕∂F increases steadily as z increases to the
back surface of the sample, in excellent agreement with the ex-
perimental data. The steady increase is mainly due to the focusing
of the energy density of optimized lightW o, as shown in Fig. 7(a).
Figures 2(a) and 2(b) also show that the twice thicker sample has
about twice greater differential fluorescence enhancement
∂ηf∕∂F . This effect was observed for many fluorescent particles
inside the scattering medium [29]. We attribute the dependence
of the fluorescence enhancement on sample thickness to the fluo-
rescent enhancement being determined by the ratio of optimized
and unoptimized intensities, the latter decreasing linearly versus
depth; see Fig. 7(b). Both agreements show that the intensity
enhancement observed on the back surface is associated with

the 3D enhancement of the local energy density in the bulk
of the scattering medium.

5. SUMMARY

By exciting highly transmitting channels in a 3D scattering
medium by wavefront shaping, we observe that the local energy
density is considerably enhanced. The enhancement increases to-
ward the back surface of the sample and has a maximum along the
transverse direction, revealing the effect of the optimized focus. A
3D model without adjustable parameters successfully describes
the experimental data. Our results thus offer new insights on
the 3D redistribution of the energy density in 3D scattering me-
dia, which is extremely useful to enhance the efficiency of energy
conversion in systems such as random lasers, solar cells, and white
LEDs. For white LEDs, wavefront shaping could serve to control
the color temperature by optimizing for warm or cold white light.
Our results also pertain to wavefront shaping of classical waves,
such as acoustic and pressure waves [43], and to quantum waves,
such as electrons in nanostructures.
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