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1. Introduction. Let 1 < β < 2. Given any x ∈ [0, (β − 1)−1], a
sequence (an) ∈ {0, 1}N is called a β-expansion of x if

x =

∞∑
n=1

an
βn
.

Sidorov [20] proved that for any 1 < β < 2, almost every point in [0, (β−1)−1]
has uncountably many expansions. If (an) is the only β-expansion of x, then
we call x a univoque point with unique expansion (an). Denote by Uβ the
set of univoque points in base β. There are many results concerning unique
expansions: see [9, 12] and references therein.

Let (an) be a β-expansion of x. If for any k ≥ 1 and any (b1 · · · bk) ∈
{0, 1}k there exists some k0 such that

ak0+1ak0+2 · · · ak0+k = b1 · · · bk,

then we call (an) a universal β-expansion of x.

The dynamical approach is a good way to generate β-expansions effec-
tively. Define T0(x) = βx and T1(x) = βx− 1 (see Figure 1).

Let x ∈ [0, (β − 1)−1] with an expansion (an)∞n=1, and set Ta1···an =
Tan ◦ Tan−1 ◦ · · · ◦ Ta1 . We call {Ta1···an(x)}∞n=0 an orbit of x in base β. For
simplicity, we set Ta0(x) = x. Clearly, for different expansions, x has distinct
orbits. Evidently, for any n ≥ 1, we have

x =
a1
β

+
a2
β2

+ · · ·+ an
βn

+
Ta1···an(x)

βn
.
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Fig. 1. The dynamical system for {T0, T1}

The digits (an) are chosen in the following way: if Ta1···aj−1(x) ∈ [0, β−1),
then aj = 0, and if Ta1···aj−1(x) ∈ ((β − 1)−1β−1, (β − 1)−1], then aj = 1.
However, if Ta1···aj−1(x) ∈ [β−1, (β − 1)−1β−1], then we may choose aj to
be 0 or 1. Due to this observation, we call [β−1, (β − 1)−1β−1] the switch
region. All possible β-expansions can be generated using this idea [8, 3]. If
x has exactly k different expansions, then we say x has multiple expansions
[22, 6, 7].

There exists a criterion that characterizes unique expansions [9, 12]. How-
ever, few papers have considered universal expansions and multiple expan-
sions. In this paper, we shall use the dynamical approach to study universal
expansions.

Universal expansions have a close connection with the discrete spectra

D =
{ n∑
i=0

aiβ
i : ai ∈ {0, 1}, n ≥ 0

}
.

Let D = {y0 = 0 < y1 < y2 < · · · }. Define

L1(β) = lim sup
k→∞

(yk+1 − yk).

Erdős and Komornik [10] proved that if L1(β) = 0, then all the points of
(0, (β − 1)−1) have universal expansions. They also proved that if 1 < β ≤
4
√

2 ≈ 1.19, then L1(β) = 0. In particular, they proved that L1(
√

2) = 0.
Sidorov and Solomyak [23] also considered some algebraic numbers for which
L1(β) = 0, and their result has been improved by Akiyama and Komornik [1]
who proved that if 1 < β ≤ 3

√
2 ≈ 1.26, then L1(β) = 0. Feng [15] used

the result of [1] and some ideas in fractal geometry to show that for any
non-Pisot β ∈ (1,

√
2], if β2 is not a Pisot number, then L1(β) = 0.

Concerning generic results, Sidorov [21] showed that for any 1 < β < 2,
almost every point in [0, (β−1)−1] has at least one universal expansion. Dajani
and de Vries [4] used a dynamical approach to show that for any β > 1, almost
every point of [0, (β − 1)−1] has uncountably many universal expansions.
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The results of Sidorov [20] and of Dajani and de Vries [4] imply that the
set of points without universal expansions has zero Lebesgue measure. In
other words, the Lebesgue measure of Vβ is zero, where

Vβ = {x ∈ [0, (β − 1)−1] : x does not have a universal expansion}.
A natural question is to study the Hausdorff dimension of Vβ. Our main

result is Theorem 2.2, where we show that if β is the n-bonacci number
then the Hausdorff dimension of Vβ equals 1. For 1 < β < (1 +

√
5)/2, the

Hausdorff dimension of Vβ has a close connection with an old conjecture of
Erdős and Komornik [10]:

Conjecture 1.2. For any non-Pisot β ∈ (1, 1 +
√

5/2), L1(β) = 0.

This conjecture is true if β ∈ (1,
√

2] and β2 is not a Pisot number [15].
We briefly discuss the connection between the dimension of Vβ and this con-

jecture. If we were able to find some non-Pisot number 1 < β < (1 +
√

5)/2
such that the Hausdorff dimension of Vβ is positive, then L1(β) > 0. The
reason is that L1(β) = 0 implies that all the points of (0, (β−1)−1) have uni-
versal expansions. In other words, we would disprove the Erdős–Komornik
conjecture. Therefore, considering the Hausdorff dimension of Vβ is mean-
ingful to this conjecture.

The dimension of Vβ has a strong relation to open dynamical systems.
Roughly speaking, Vβ is a union of countable survivor sets generated by
some open dynamical systems. These open dynamical systems are smaller
than the usual open systems as we consider all the possible orbits, i.e. all
the possible orbits should avoid some holes. In this paper, we shall make use
of this tool to study the dimension of Vβ.

The paper is arranged as follows. In Section 2, we start with some nec-
essary definitions and notation, and then we state the main results of the
paper. In Section 3 we give the proofs, and in Section 4 we make some final
remarks.

2. Preliminaries and main results. In this section, we give some
notation and definitions. Let Ω = {0, 1}N, E = [0, (β − 1)−1], and let σ be
the left shift. The random β-transformation K is defined in the following
way [8].

Definition 2.1. K : Ω × E → Ω × E is defined by

K(ω, x) =


(ω, βx), x ∈ [0, β−1),

(σ(ω), βx− ω1), x ∈ [β−1, β−1(β − 1)−1],

(ω, βx− 1), x ∈ (β−1(β − 1)−1, (β − 1)−1].

We call [β−1, β−1(β− 1)−1] the switch region since in this region we can
choose the digit to be used and change from 0 to 1 or vica versa.
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When the orbits of points hit or enter the switch region, and we always
choose the digit 1, then we call this algorithm the greedy algorithm. More
precisely, the greedy map G : E → E is defined by

G(x) =

{
βx, x ∈ [0, β−1),

βx− 1, x ∈ [β−1, (β − 1)−1].

Let (ω, x) ∈ Ω×E. For any n ≥ 1, we denote by Kn(ω, x) = K(Kn−1(ω, x))
the nth iteration of K, and let π(ω, x) = x be the projection on the second
coordinate. We can study β-expansions via the following iterated function
system:

fj(x) =
x+ j

β
, j ∈ {0, 1}.

The self-similar set [14] for this IFS is the interval [0, (β − 1)−1]. This tool
is useful in the proof of Lemma 3.12.

Before we state our main results, we define some sets. Given 1 < β < 2
and any N ≥ 3, define

Eβ,N = {x ∈ [0, (β − 1)−1] : no orbit of x hits [0, β−N (β − 1)−1]},
Fβ,N = {x ∈ [0, (β − 1)−1] : the greedy orbit of x

does not hit [0, β−N (β − 1)−1]}.
We can give a simple symbolic explanation of Eβ,N : no β-expansion (an) of
any point in Eβ,N contains the block (00 · · · 0) (N zeros). Let

O = {π(Kn(ω, 1)) ∪ π(Kn(ω, (β − 1)−1 − 1) : n ≥ 0, ω ∈ Ω}
be the union of all possible orbits of 1 and of (β − 1)−1 − 1. An algebraic
number β > 1 is called a Pisot number if all of its conjugates lie inside the
unit circle.

Now we state our main results.

Theorem 2.2. For any n ≥ 2, let βn be the n-bonacci number satisfying

βn = βn−1 + βn−2 + · · ·+ β + 1.

Then dimH(Vβn) = 1.

The following result gives a sufficient condition under which the Haus-
dorff dimension of Fβ,N can be calculated.

Corollary 2.3. Let (1 +
√

5)/2 < β < 2. If all the possible orbits of 1
hit only finitely many points, then for any N ≥ 3, dimH(Fβ,N ) can be cal-
culated explicitly. In particular, for any Pisot number in (1, 2), dimH(Fβ,N )
can be calculated.

This result is indeed a corollary of [5, Theorem 4.2]. Generally, calculat-
ing the Hausdorff dimension of Eβ,N is not an easy problem. By definition,
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Eβ,N ⊂ Fβ,N for any N ≥ 3. Hence, Eβ,N is a smaller survivor set, and it is
difficult to calculate its dimension. However, for the sequence (βn), we have
the following asymptotic result.

Theorem 2.4. For any n ≥ 2 and N ≥ 3, let βn be the n-bonacci num-
ber. Then dimH(Fβn,N−1) ≤ dimH(Eβn,N ) ≤ dimH(Fβn,N ). Consequently,

lim
N→∞

dimH(Eβn,N ) = lim
N→∞

dimH(Fβn,N ) = 1.

Moreover, for any N > 2n+ 4, dimH(Fβn,N \Eβn,N ) > 0. Furthermore, we
can find some set of positive Hausdorff dimension such that every point in
this set has uncountably many expansions, but none of them is a universal
expansion.

The last statement strengthens one result of [21, Counterexample].
The following result is about the topological structure of Eβ,N .

Theorem 2.5. Given any N ≥ 3, for almost every β ∈ (1, 2), Eβ,N is a
graph-directed self-similar set.

3. Proof of main theorems. In this section, we give a proof of Theo-
rem 2.2. To begin, we recall some classical results and notation. An expan-
sion (an) is called the quasi-greedy expansion if it is the largest infinite expan-
sion, in the sense of lexicographical ordering. Denote σ((an)∞n=1) = (an)∞n=2

and σk((an)∞n=1) = (an)∞n=k+1. Let (αn) be the quasi-greedy expansion of 1.
The following classical result was proved by Parry [18].

Theorem 3.1. Let (an)∞n=1 be an expansion of x ∈ [0, (β − 1)−1]. Then
(an)∞n=1 is the greedy expansion if and only if

σk((an)∞n=1) < (αn)∞n=1 whenever ak = 0.

Lemma 3.2. For any n ≥ 2, let βn be the n-bonacci number. Then for
any N ≥ 3,

Fβn,N−1 ⊂ Eβn,N .
Proof. Since βn is the Pisot number satisfying βn = βn−1 +βn−2 + · · ·+

β + 1, it follows that the quasi-greedy expansion of 1 is (1n−10)∞. Hence
the block 1n−1 can appear in the greedy expansions. In other words, any
expansion in base βn can be changed into the greedy expansion using the
rule 10n ∼ 01n, i.e. the block 10n can be replaced by 01n without changing
the value of the corresponding number.

Given any point x /∈ Eβn,N , there exists an expansion of x such that its
coding, say (an), contains a block (0 · · · 0) of length N , i.e. there exists some
k0 such that ak0+1 · · · ak0+N = 0 · · · 0.

If (an) is the greedy expansion of x, then clearly x /∈ Fβn,N−1. As-
sume (an) is not the greedy expansion. We can transform (an) into the
greedy expansion of x by using the rule 10n ∼ 01n. Denote by (bn) that
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greedy expansion. Notice that the transformation used shrinks a block of
zeros in the sequence (an) by at most one term. To be more precise, if
ak0+1 · · · ak0+Nak0+N+1ak0+N+n = 0 · · · 0 1n (N zeros), then the correspond-
ing block is

bk0+1 · · · bk0+Nbk0+N+1bk0+N+n = 0 · · · 0︸ ︷︷ ︸
N−1

10n.

Thus, x /∈ Fβn,N−1.
Next, we want to prove that

lim
N→∞

dimH(Fβn,N ) = 1.

This result can be obtained by applying perturbation theory; it was essen-
tially proved by Ferguson and Pollicott [11, Theorem 1.2].

Lemma 3.3. For any 1 < β < 2, limN→∞ dimH(Fβ,N ) = 1.

Here we give a detailed proof of our desired limit.

Lemma 3.4.

lim
N→∞

dimH(Fβn,N ) = 1.

For simplicity, we assume n = 2; for n ≥ 3 the proof is similar but the
calculation is more complicated. We give an outline of the proof. First, we
give a Markov partition for [0, (β − 1)−1] using the orbit of 1. Hence, we
can define an adjacency matrix S and construct an associated subshift Σ
of finite type. Equivalently, we transform the original space {0, 1}N into a
subshift of finite type. Next, we define a submatrix S′ of S, and construct a
graph-directed self-similar set with the open set condition [17]. Finally, we
identify Fβn,N with a graph-directed self-similar set, and prove the desired
result.

Now we transform the symbolic space as follows.

Lemma 3.5. Let β = (1 +
√

5)/2 and x ∈ [0, (β−1)−1]. Then the greedy
expansion of x has a coding coming from some subshift of finite type.

Proof. We start by giving a Markov partition for the interval [0, (β−1)−1]
as follows. Let N ≥ 3, and set

a1 = 0, ai = β−N−2+i(β − 1)−1, 2 ≤ i ≤ N − 1,

aN = β−1 = β−2(β − 1)−1, aN+1 = 1, aN+2 = (β − 1)−1.

Define

A1 = [0, β−N (β − 1)−1],

Ai = [β−N+i−2(β − 1)−1, β−N+i−1(β − 1)−1], 2 ≤ i ≤ N,
AN+1 = [1, (β − 1)−1].
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It is easy to check that

T0(A1) = A1 ∪A2, T0(Ai) = Ai+1, 2 ≤ i ≤ N − 1,

and that T1(AN ) =
⋃N−1
i=1 Ai and T1(AN+1) = AN ∪AN+1. Hence, we have

the following adjacency matrix S = (sij)(N+1)×(N+1):

sij =



1, i = 1, j = 1, 2,

1, 2 ≤ i ≤ N − 1, j = i+ 1,

1, i = N, j = 1, . . . , N − 1,

1, i = N + 1, j = N,N + 1,

0, else.

Using S, we can construct a subshift Σ of finite type. For any

(αi) ∈ {1, . . . , N + 1}N,
we call {Aαi}∞i=1 an admissible path if there is some Tk, k = 0 or 1, such
that

Tk(Aαi) ⊃ Aαi+1

for any i ≥ 1. In terms of this definition, we have

Σ =
{

(αi)
∞
i=1 : αi ∈ {1, . . . , N + 1}, {Aαi}∞i=1 is an admissible path

}
.

Remark 3.6. Usually, we take the elements Ai of a Markov partition
closed on the left and open on the right, i.e. Ai = [ai, ai+1). Under our algo-
rithm, one has a choice at the endpoints. For example, the point β−1 is the
right endpoint of AN−3 and the left endpoint of AN−2. For this point, we can
implement T0 on Ak = [ak, β

−1] or T1 on [β−1, ak+2]. This adjustment is due
to the proof of Lemma 3.8. When we construct a graph-directed self-similar
set, we need a closed interval—see the graph-directed construction in [17].
This is the reason why we need some compromise here. Although our Markov
partition is a little different from the usual definition, this adjustment does
not affect our result.

By definition of Eβ,N , for any point x ∈ Eβ,N , all possible orbits of x
avoid the hole A1 = [0, β−N (β − 1)−1], which is the first element of the
Markov partition. By Lemma 3.5, x also has a coding in the new symbolic
space Σ. For simplicity, we denote by {αin}∞n=1 this coding of x in Σ. Since
x ∈ Eβ,N , the symbol 1 cannot appear in {αin}∞n=1.

Motivated by this observation, we construct a new matrix as follows.
We delete the first row and first column of S, denote the resulting matrix
by S′, and let Σ′ be the associated subshift generated by S′. Then S′ can
be represented by a directed graph (V,E). The vertex set consists of the
underlying partition {Ai}ki=2. For any two vertices, if one vertex is one of the
components of the image of another vertex, then we can find a similitude,
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which is the inverse of an expanding map, between these two vertices. For
instance, for the vertices A2 and A3, if T0(A2) = A3, then we can label a
directed edge, from A2 to A3, by a similitude f(x) = T−10 (x) = x/β. We
denote by E all admissible labels between pairs of vertices. Then by Mauldin
and Williams’ result [17], we can construct a graph-directed self-similar set
K ′N satisfying the open set condition; for the detailed construction, see [17, 5].

Now we have the following lemma.

Lemma 3.7. Let β = (1 +
√

5)/2. Then Fβ,N = K ′N up to a countable
set, i.e. there exists a countable set C1 such that Fβ,N ⊂ K ′N ⊂ C1 ∪ Fβ,N .

Proof. Evidently, Fβ,N ⊂ K ′N . Take x ∈ K ′N . Then by the definition of
K ′N , the greedy orbit of x does not hit [0, β−N (β−1)−1). If the greedy orbit
of x does not hit the closed interval [0, β−N (β − 1)−1], then x ∈ Fβ,N . If
there exists some (i1 · · · in0) such that

Ti1···in0 (x) = β−N (β − 1)−1,

then

x ∈
∞⋃
n=1

⋃
(i1···in)∈{0,1}n

fi1···in(β−N (β − 1)−1),

where f0(x) = β−1x and f1(x) = β−1x+ β−1. Therefore,

K ′N ⊂ Eβ,N ∪
∞⋃
n=1

⋃
(i1···in)∈{0,1}n

fi1···in(β−N (β − 1)−1).

Lemma 3.8. Let β = (1 +
√

5)/2. Then

dimH(Fβ,N ) =
log λN
log β

,

where λN is the largest positive root of the equation

xN−1 =
N−3∑
i=0

xi.

Moreover,

lim
N→∞

λN =
1 +
√

5

2
= β.

Proof. By Lemma 3.7, dimH(Fβ,N ) = dimH(K ′N ). Since K ′N is a graph-
directed self-similar set with the open set condition, we can explicitly cal-
culate its Hausdorff dimension: dimH(Fβ,N ) = log λN/log β, where λN is
the spectral radius of S′ (for the detailed method, see [17]). The second
statement is a simple exercise.

This finishes the proof of Lemma 3.4 for the case n = 2. For n ≥ 3, the
proof is similar.
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A similar result is available for the doubling map with hole [13]. Let
D(x) = 2x mod 1 be the doubling map defined on [0, 1). Given any ε > 0,
set

Dε = {x ∈ [0, 1) : Dn(x) /∈ [0, ε] for any n ≥ 0}.

Clearly, limε→0 dimH(Dε) exists. Hence, to find this limit it suffices to con-
sider the set

D2−N = {x ∈ [0, 1) : Dn(x) /∈ [0, 2−N ] for any n ≥ 0}.

We have the following result.

Example 3.9.

dimH(D2−N ) =
log γN
log 2

,

where γN is the N -bonacci number satisfying the equation

xN = xN−1 + xN−2 + · · ·+ x+ 1.

It is easy to see that limN→∞ γN = 2. Therefore,

lim
ε→0

dimH(Dε) = lim
N→∞

dimH(D2−N ) = 1.

Proof of Theorem 2.2. Let βn be an n-bonacci number. By Lemmas 3.4
and 3.7, we have

Eβn,N ⊂ Fβn,N ⊂ K ′N ⊂ Fβn,N ∪ C1.

By Lemma 3.4,

lim
N→∞

dimH(Fβn,N ) = 1.

Therefore,

dimH(Fβn,N ) = dimH(Eβn,N ) ≤ dimH(Vβn) ≤ 1,

which implies that dimH(Vβn) = 1.

It is easy to show that when β is a Pisot number, then all the possible
orbits of x ∈ Q([β])∩[0, (β−1)−1] hit finitely many points only. The following
lemma is standard. However for the sake of convenience, we give a detailed
proof.

Lemma 3.10. Suppose β is a Pisot number and x ∈ Q([β])∩[0, (β−1)−1].
Then the set

{π(Kn(ω, x)) : n ≥ 0, ω ∈ Ω}

is a finite set.

Proof. Let p(X) = Xd− q1Xd−1−· · ·− qd be the minimal polynomial of
β with qi ∈ Z, 1 ≤ i ≤ d. Since Q(β) is generated by {β−1, . . . , β−d}, there
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exist a1, . . . , ad ∈ Z and b ∈ N such that

x = b−1
d∑
i=1

aiβ
−i.

We assume that b is smallest possible to ensure uniqueness. Let β1 = β,
let β2, . . . , βd be the Galois conjugates of β, and set B = (bij)1≤i,j≤d =

(βi−1j )1≤i,j≤d. Define, for n ≥ 0 and ω ∈ Ω,

r(1)n (ω) = βn
(
x−

n∑
k=1

bk(ω, x)β−k
)
,

r(j)n (ω) = βnj

(
b−1

d∑
i=1

aiβ
−i
j −

n∑
k=1

bk(ω, x)β−kj

)
for j = 2, . . . , d.

Consider the vector Rn(ω) = (r
(1)
n (ω), . . . , r

(d)
n (ω)). We first show that the

set {Rn(ω) : n ≥ 0, ω ∈ Ω} is uniformly bounded (in n and ω). First note

that r
(1)
n (ω) = π(Kn(ω, x)), hence r

(1)
n (ω) ≤ 1/(β − 1) for all n and all ω.

Let η = max2≤j≤d |βj |. Then η < 1. For j = 2, . . . , d,

|r(j)n | =
∣∣∣b−1 d∑

i=1

aiβ
n−i
j −

n∑
k=1

bk(ω, x)βn−kj

∣∣∣
≤ b−1

d∑
i=1

|ai|ηn−i +
n∑
k=1

bk(ω, x)ηn−k ≤ b−1 max1≤i≤d |ai|+ 1

1− η
.

Let

C = max

{
1

β − 1
,
b−1 max1≤i≤d |ai|+ 1

1− η

}
.

Then r
(j)
n < C for all 1 ≤ j ≤ d, n ≥ 0 and ω ∈ Ω. Thus the set {Rn(ω) :

n ≥ 0, ω ∈ Ω} is uniformly bounded.

Next we show that for each ω ∈ Ω and n ≥ 0, there existsZn(ω) ∈ Zd such
that Rn(ω) = b−1Zn(ω)B. If β is a root of some polynomial p′(X) ∈ Z[X],
then the elements β2, . . . , βd are also roots of p′(X). Hence it is sufficient to
show that

(1) r(1)n = b−1
d∑

k=1

z(k)n (ω)β−k

for some z
(k)
n (ω) ∈ Z. The proof is by induction. Let n = 1 and note that

1 = q1β
−1 + · · ·+ qdβ

−d. Now
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r
(1)
1 (ω) = βx− b1(ω, x) = βb−1

d∑
k=1

akβ
−k − b1(ω, x)

d∑
k=1

qkβ
−k

= b−1
(d−1∑
k=1

(a1qk − b1(ω, x)bqk + ak+1)β
−k + (a1 − b1(ω, x)b)qdβ

−d
)

= b−1
d∑

k=1

z
(k)
1 (ω)β−k

with

z
(k)
1 (ω) =

{
(a1 − b1(ω, x)b)qk + ak+1 if k 6= d,

(a1 − b1(ω, x)b)qd if k = d.

Suppose now that r
(1)
i = b−1

∑d
k=1 z

(k)
i (ω)β−k for z

(k)
i ∈ Z. Since r

(1)
n =

π(Kn(ω, x)) for all n ≥ 0, we have

r
(1)
i+1 = βr

(1)
i − bi+1(ω, x) = βb−1

d∑
k=1

z
(k)
i (ω)β−k − bi+1(ω, x)

n∑
k=1

qkβ
−k

= b−1
(d−1∑
k=1

(
z
(1)
i (ω)qk − bi+1(ω, x)bqk + z

(k+1)
i

)
β−k

+
(
z
(1)
i (ω)− bi+1(ω, x)b

)
qdβ
−d
)

= b−1
d∑

k=1

z
(k+1)
i+1 (ω)β−k

with

z
(k)
i+1(ω) =

{
(z

(1)
i (ω)− bi+1(ω, x)b)qk + z

(k+1)
i (ω) if k 6= d,

(z
(1)
i (ω)− bi+1(ω, x)b)qd if k = d.

Thus, z
(k)
i+1(ω) ∈ Z. Setting Zn(ω) = (z

(1)
n , . . . , z

(d)
n ), we have Zn(ω) ∈ Zd and

Rn(ω) = b−1Zn(ω)B.
Since B is invertible, and Rn(ω) is uniformly bounded in n and ω, we

see that Zn(ω) is uniformly bounded, and hence takes only finitely many

values. It follows that (Rn(ω)) and thus r
(1)
n takes only finitely many values.

Therefore, the set {π(Kn(ω, x)) : n ≥ 0, ω ∈ Ω} is finite.

Corollary 3.11. Let β ∈ (1, 2) be a Pisot number. For any ai1 · · · ain ∈
{0, 1}n, the orbits of the endpoints of the interval fai1 ···ain ([0, (β− 1)−1]) hit
only finitely many points.

Proof. By symmetry, we only need to prove that for the left endpoint∑n
j=1 aijβ

−j , all of its orbits hit finitely many points. This is a direct con-
sequence of Lemma 3.10.
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Proof of Corollary 2.3 and Theorem 2.4. By Lemma 3.10, Corollary 3.11
and the main result of Mauldin and Williams [17], we can calculate the
Hausdorff dimension of dimH(Fβ,N ). By Lemma 3.2 and Corollary 2.3, we
have the asymptotic result of Theorem 2.4.

For the “moreover” statement of Theorem 2.4, we define

D = {10i110i210i3 · · · : n+ 1 ≤ ik ≤ N − 1

and there are infinitely many ik = N − 1}.
By Theorem 3.1, all the codings in D are greedy in base βn. Clearly, D has
uncountably many elements. Moreover,

p(D) =
{ ∞∑
j=1

ajβ
−j : (aj) ∈ D

}
⊂ Fβn,N .

Now we want to show that p(D)∩Eβn,N = ∅ and dimH(Fβn,N \Eβn,N ) > 0.
By the definition of D, for any 10i110i210i3 · · · there are infinitely many
ik = N − 1. Without loss of generality, we assume that i1 = N − 1, i.e. let

(ak) = 10N−110i210i3 · · · .
Using the rule 10n ∼ 01n, we have

x = (10N−110i210i3 · · · )β = (10N1n0i2−n10i3 · · · )β /∈ Eβ,N ,
where (bk)β =

∑∞
k=1 bkβ

−k. Hence, p(D) ∩ Eβn,N = ∅.
In order to prove dimH(Fβ,N \ Eβ,N ) > 0, it suffices to show that

dimH(p(D)) > 0. Here, the set (D,σ) is indeed a subset of some S-gap
shift [16] D ⊂ D′, where

D′ = {10i110i210i3 · · · : n+ 1 ≤ ik ≤ N − 1}.
The entropy of D′ can be calculated: h(D′) = log λ, where λ is the largest
positive root of the equation

1 =
∑

k∈{n+1,...,N−1}

x−k−1.

Now we construct a subset of p(D) as follows: Let J be the self-similar set
with the IFS {

g1(x) =
x

βn+2
+

1

β
, g2(x) =

x

βN
+

1

β

}
,

i.e.
J = g1(J) ∪ g2(J).

By the definitions of p(D) and J , we have J ⊂ p(D). Let

E :=
(
βN−1(βN − 1)−1, βn+1(βn+2 − 1)−1

)
.

It is easy to check that g1(E) ∩ g2(E) = ∅ and gi(E) ⊂ E. In other words,
the IFS satisfies the open set condition [14]. Hence, dimH(J) = s > 0, where
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s is the unique solution of the equation β(−n−2)s +β−Ns = 1. Consequently,

0 < dimH(J) = s ≤ dimH(p(D)).

For the last statement of Theorem 2.4, it suffices to consider the set
p(D).

Now we prove Theorem 2.5. We partition the proof into several lemmas.
The following result is essentially proved in [2]. For convenience, we give a
detailed proof.

Lemma 3.12. Let 1 < β < 2 and N ≥ 3. If there exists some (η1 · · · ηp) ∈
{0, 1}p such that Tη1···ηp(β

−N (β − 1)−1) ∈ (0, β−N (β − 1)−1), then Eβ,N is
a graph-directed self-similar set.

Proof. By assumption and the continuity of the Tj ’s, there exists δ > 0
such that

Tη1...ηp
(
β−N (β − 1)−1, β−N (β − 1)−1 + δ

)
⊂ (0, β−N (β − 1)−1).

Set H = [0, β−N (β − 1)−1 + δ]. We partition [0, (β − 1)−1] in terms of the
iterated function system

fj(x) =
x+ j

β
, j ∈ {0, 1}.

For any L we have

[0, (β − 1)−1] =
⋃

(i1,...,iL)∈{1,...,m}L
fi1 ◦ · · · ◦ fiL([0, (β − 1)−1]).

We assume without loss of generality that L is so large that

|fi1 ◦ · · · ◦ fiL([0, (β − 1)−1])| < δ

for all (i1, . . . , iL) ∈ {0, 1}L. Correspondingly, we partition the symbolic
space {0, 1}N into cylinders of length L. For every (i1, . . . , iL) ∈ {0, 1}L let

Ci1...iL =
{

(xn) ∈ {0, 1}N : xn = in for 1 ≤ n ≤ L
}
.

Then {Ci1...iL}(i1,...,iL)∈{0,1}L is a partition of {0, 1}N, and

fi1 ◦ · · · ◦ fiL([0, (β − 1)−1]) = π(Ci1...iL).

Let

F =
{

(i1, . . . , iL) ∈ {1, . . . ,m}L :

fi1 ◦ · · · ◦ fiL([0, (β − 1)−1]) ∩ [0, β−N (β − 1)−1] 6= ∅
}

and
F′ =

⋃
(i1,...,iL)∈F

π(Ci1...iL).

By our assumptions on the size of the cylinders, we have

[0, β−N (β − 1)−1] ⊂ F′ ⊂ H.
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Using these inclusions we can show that x /∈ Eβ,N if and only if there exists
(θ1, . . . , θn1) ∈ {1, . . . ,m}n1 such that Tθ1...θn1 (x) ∈ F′. If x /∈ Eβ,N , then
by the above observation there exists (θ1, . . . , θn1) ∈ {1, . . . ,m}n1 such that
Tθ1...θn1 (x) ∈ F′. Therefore, x has a coding containing a block from F. Con-
versely, if there exists (θ1, . . . , θn1) ∈ {1, . . . ,m}n1 such that Tθ1...θn1 (x) ∈ F′,
then the condition

Tη1...ηp
(
β−N (β − 1)−1, β−N (β − 1)−1 + δ

)
⊂ (0, β−N (β − 1)−1)

yields x /∈ Eβ,N . Taking F to be the set of forbidden words defining a
subshift of finite type, we see that Eβ,N is a graph-directed self-similar set
(see [5, 17]).

Schmeling [19] proved the following result.

Lemma 3.13. For almost every β ∈ (1, 2), the greedy orbits of 1 and the
lazy orbit of 1̄ = (β − 1)−1 − 1 are dense.

Proof of Theorem 2.5. Theorem 2.5 follows immediately from Lemmas
3.12 and 3.13.

4. Final remarks. Similar results are available if we consider β-expan-
sions with more than two digits. For some Pisot numbers, we may implement
similar ideas which are utilized in Lemmas 3.4 and 3.2. Finally, we pose a
problem.

Problem 4.1. Does there exist δ > 0 such that dimH(Vβ) = 1 for any
β ∈ (2− δ, 2)?
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