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Two models for the homotopy theory of ∞-operads

Hongyi Chu, Rune Haugseng and Gijs Heuts

Abstract

We compare two models for ∞-operads: the complete Segal operads of Barwick and the complete
dendroidal Segal spaces of Cisinski and Moerdijk. Combining this with comparison results already
in the literature, this implies that all known models for ∞-operads are equivalent — for instance,
it follows that the homotopy theory of Lurie’s ∞-operads is equivalent to that of dendroidal sets
and that of simplicial operads.

1. Introduction

The theory of operads is a convenient framework for organizing a variety of algebraic structures,
such as associative and commutative algebras, or more interestingly algebras which are
associative or commutative up to coherent homotopy. For us, operads will by default be
coloured operads, that is, we allow them to have many objects — these can be used to describe
structures such as enriched categories or a pair of rings together with a bimodule. Roughly
speaking, an operad O consists of a set of objects, for each list of objects (x1, . . . , xn, y) a
set of multimorphisms O(x1, . . . , xn; y) from (x1, . . . , xn) to y, equipped with an action of
the symmetric group Σn that permutes the inputs xi, and associative and unital composition
operations for the multimorphisms. More generally, we can consider enriched operads, where
the sets of multimorphisms are replaced by objects of some symmetric monoidal category, such
as vector spaces or chain complexes; these can be used to describe algebraic structures such as
Lie algebras or Poisson algebras.

In topology, we typically encounter operads enriched in topological spaces (or simplicial sets)
such as the En-operads of May [10]. There is an evident notion of (weak) homotopy equivalence
between such operads and one would like to consider the category of topological operads and
weak equivalences as a homotopy theory. Unfortunately, for many purposes it can be difficult
to work with this theory, because topological operads are in a sense too rigid — for instance,
a weak equivalence between topological operads P and Q need not induce an equivalence
between the homotopy theories of P-algebras and Q-algebras. Moreover, one often encounters
structures that are naturally seen as operad algebras in a homotopy-coherent sense, but can
be difficult to rigidify to fit in this framework — as a baby example, it is reasonable to think
of symmetric monoidal categories as ‘commutative monoids’ in the (2-)category of categories,
but actual commutative monoids require the associativity and symmetry conditions to hold
strictly, which is essentially never true for interesting examples.

For these reasons, it is desirable to have a usable theory of ‘weak’ or homotopy-coherent
operads, where composition of multimorphisms is only associative up to a (specified) coherent
choice of higher homotopies, and homotopy-coherent algebras for them. The foundations for
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a theory of such ∞-operads were set up by Lurie in [9]; his work gives a powerful framework
for working with homotopy-coherent algebraic structures, as evidenced by the many results
obtained in [9] after building these foundations.

Although Lurie’s model is by far the best developed version of ∞-operads, a number of
other models have been proposed, namely the dendroidal sets of Moerdijk and Weiss [11] and
the closely related models of complete dendroidal Segal spaces and dendroidal Segal operads
of Cisinski and Moerdijk [2], and the complete Segal operads of Barwick [1]. Moreover, just
as simplicial categories give a model for ∞-categories, we can consider simplicial operads as
a model for ∞-operads; appropriate model category structures on this category have been
constructed by Cisinski and Moerdijk [3] and by Robertson [13].

Some comparisons between these different models are already known.

• Cisinski and Moerdijk compare the three dendroidal models in [2], and also compare
dendroidal sets to simplicial operads in [3].
• Barwick compares his model to Lurie’s in [1].
• Heuts, Hinich and Moerdijk obtain a partial comparison between dendroidal sets and

Lurie’s model in [5]. However, their result is restricted to operads without units.

In this paper, our goal is to prove one of the missing comparisons: we will show that the
homotopy theory of Barwick’s complete Segal operads is equivalent to that of complete
dendroidal Segal spaces. To state a more precise version of our result, recall that Barwick’s Segal
operads are certain presheaves of spaces on a category ΔF, forming a full subcategory PSeg(ΔF)
of the ∞-category P(ΔF) of presheaves — we will refer to them as Segal presheaves on ΔF to
avoid confusion with the Segal operads of Cisinski and Moerdijk [3], which are a dendroidal
analogue of Segal categories. Similarly, the dendroidal Segal spaces of Cisinski and Moerdijk
are certain presheaves on a category Ω (we will likewise refer to them as Segal presheaves on
Ω), forming a full subcategory PSeg(Ω) of the ∞-category P(Ω) of all presheaves. We will define
a functor τ : Δ1

F → Ω, where i : Δ1
F ↪→ ΔF is a certain full subcategory, and prove:

Theorem 1.1. Composition with the functors i and τ induces equivalences of ∞-categories

PSeg(Ω) ∼−→ PSeg(Δ1
F) ∼←− PSeg(ΔF).

These functors restrict further to give equivalences between the full subcategories of complete
objects.

Here the complete objects are those whose underlying Segal spaces are complete in the
sense of Rezk [12]. We will prove that i gives an equivalence in Lemma 2.11, that τ gives an
equivalence in Theorem 5.1, and that we get equivalences on complete objects in Corollary 6.3.
In fact, these subcategories of complete objects are localizations of the respective ∞-categories
of Segal presheaves. A map of dendroidal Segal spaces is known to become an equivalence after
completion if and only if it is fully faithful and essentially surjective by a result of Cisinski
and Moerdijk. In Corollary 6.5 we apply Theorem 1.1 to deduce the analogous statement for
Barwick’s Segal operads.

Combining Theorem 1.1 with the above-mentioned comparison results already in the
literature, this implies that all known models for ∞-operads are equivalent. In particular,
we obtain the following interesting comparisons as an immediate consequence of our work,
answering a question of Lurie [9]:

Corollary 1.2. The homotopy theory of Lurie’s ∞-operads is equivalent to that of
dendroidal sets and to that of simplicial operads.
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Although we have chosen to use the language of ∞-categories in this paper, as we believe
this leads to a cleaner presentation of our work, our result can also be interpreted in the
language of model categories: the ∞-categories PSeg(Ω), PSeg(Δ1

F) and PSeg(ΔF) can be obtained
from Bousfield localizations of the projective (or Reedy) model structures on the categories
Fun(Ωop,SetΔ), Fun(Δ1,op

F ,SetΔ) and Fun(Δop
F ,SetΔ) of simplicial presheaves on Ω, Δ1

F and ΔF,
respectively. Moreover, it is easy to see that composition with i with τ give right Quillen functors
between these localized model structures (with left adjoints given by left Kan extensions). In
this language, our result says:

Corollary 1.3. The Quillen adjunctions

τ! : Fun
(
Δ1,op

F ,SetΔ
)
� Fun (Ωop,SetΔ) : τ∗;

i! : Fun
(
Δ1,op

F ,SetΔ
)
� Fun (Δop

F ,SetΔ) : i∗

are Quillen equivalences, where the categories involved are equipped with the Bousfield
localizations of the respective projective model structures at the Segal equivalences. Moreover,
they remain Quillen equivalences if we localize further to get the model structures for complete
objects.

Since a Quillen adjunction is a Quillen equivalence if and only if it induces an equivalence
of homotopy categories, this is an immediate consequence of Theorem 1.1.

1.1. Overview

In § 2 we review the definition of Barwick’s Segal operads, which we will call Segal presheaves
on ΔF. We also show that we can equivalently consider Segal presheaves on a full subcategory
Δ1

F of ΔF. Next, in § 3 we review the dendroidal Segal spaces of Cisinski and Moerdijk, which
we will similarly refer to as Segal presheaves on Ω. In § 4 we define the functor τ from Δ1

F to
Ω, and then in § 5 we prove our main comparison result, namely that composing with τ gives
an equivalence between the two ∞-categories of Segal presheaves. Finally, in § 6 we review the
definition of complete Segal presheaves on ΔF and Ω, and observe that these agree under our
equivalence.

1.2. Notation

This paper is written in the language of ∞-categories (or more specifically quasicategories), as
developed by Joyal [6], Lurie [8, 9] and others. We will use terminology from [8]; here we give
a few reminders.

• S is the ∞-category of spaces (or ∞-groupoids).
• If C is an ∞-category, we write P(C) for the ∞-category Fun(Cop,S) of presheaves of

spaces on C.
• Δ is the usual simplicial indexing category. We say a morphism φ : [n] → [m] is inert if

it is the inclusion of a subinterval in [m], that is, if φ(i) = φ(0) + i for all i, and active if it
preserves the end-points, that is, if φ(0) = 0 and φ(n) = m. The active and inert morphisms
form a factorization system on Δ.

2. Segal presheaves on ΔF and Δ1
F

In this section we review the model for ∞-operads introduced by Barwick in [1], which we will
refer to as Segal presheaves on ΔF. We also show that these are equivalent to Segal presheaves
on a full subcategory Δ1

F, which will be easier to relate to the dendroidal category later on.
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Definition 2.1. Write F for a skeleton of the category of finite sets (possibly empty), that
is, the category with objects k := {1, . . . , k}, k = 0, 1, . . . , and morphisms maps of sets. Let ΔF

be the category with objects pairs ([n], f : [n] → F) with a morphism ([n], f) → ([m], g) given
by a morphism φ : [n] → [m] in Δ and a natural transformation η : f → g ◦ φ such that

(i) the map ηi : f(i) → g(φ(i)) is injective for all i = 0, . . . ,m,
(ii) the commutative square

f(i) g(φ(i))

f(j) g(φ(j))

ηi

ηj

is a pullback square for all 0 � i � j � m.

We say an object ([n], f) ∈ ΔF has length n.

Notation 2.2. If ([n], f) is an object of ΔF, we will write f ij : f(i) → f(j) for the image
under f of the map i → j in n; we abbreviate f i(i+1) to f i+1.

Remark 2.3. An object of ΔF is thus a sequence

k0 → k1 → · · · → kn

of maps of finite sets. If kn = 1, we can think of this as a tree with levels: we think of the
elements of the sets ki as the edges of the tree — in particular, k0 is the set of leaves, and
the map ki → ki+1 assigns to an edge e in level i the unique outgoing edge of the vertex that
has e as an incoming edge; thus we can also think of the elements of ki with i > 0 as the
vertices of the tree. A general object of ΔF can then be thought of as a ‘forest’, that is, a
collection of trees indexed by kn. To define Segal presheaves we now want to impose relations
on presheaves on ΔF that force the value on a forest to decompose into the values at the basic
corollas, corresponding to the objects ([1],n → 1), as well as the single edge ([0],1).

Remark 2.4. Since morphisms in ΔF are required to induce pullback squares, given an
object ([m], f) ∈ ΔF and a morphism q : a → f(m), there exists an essentially unique morphism
([m], fa) → ([m], f) over id[m] with value q at m.

Remark 2.5. The projection ΔF → Δ is a Grothendieck fibration: given ([n], f) and
φ : [m] → [n], the map φ∗([n], f) := ([m], f ◦ φ) → ([n], f) is a Cartesian morphism. In general
a morphism (φ, η) : ([m], g) → ([n], f) is Cartesian if and only if ηi : g(i) → f(φ(i)) is an
isomorphism for all i.

Definition 2.6. We say a map (φ, η) : ([n], f) → ([m], g) in ΔF is

(1) injective if φ : [n] → [m] is injective;
(2) surjective if φ is surjective, and ηi : f(i) → g(φ(i)) is an isomorphism for all i (or

equivalently, if φ is surjective and (φ, η) is Cartesian);
(3) inert if φ is inert in Δ;
(4) active if φ is active in Δ, and ηi : f(i) → g(φ(i)) is an isomorphism for all i (or

equivalently, if φ is active and (φ, η) is Cartesian).
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The surjective and injective maps, as well as the active and inert maps, form factorization
systems on ΔF — this is clear since they are both lifted from factorization systems on Δ via the
fibration ΔF → Δ. We write ΔF,int for the subcategory of ΔF containing only the inert maps.

A presheaf F : Δop
F → S is a Segal presheaf if it satisfies the following three ‘Segal

conditions’:

(1) for every object ([n],k0 → k1 → · · · → kn) of ΔF, the natural map

F([n],k0 → · · · → kn) → F([1],k0 → k1) ×F([0],k1) · · · ×F([0],kn−1) F([1],kn−1 → kn)

is an equivalence;
(2) for every object ([1],k → l), the natural map

F([1],k → l) →
l∏

i=1

F([1],ki → 1)

(where ki is the fibre of k over i ∈ l) is an equivalence;
(3) for every object ([0],k), the natural map

F([0],k) →
k∏

i=1

F([0],1)

is an equivalence.

For us, a more convenient formulation of this definition will be the following:

Definition 2.7. Let Δel
F denote the full subcategory of ΔF,int spanned by the objects

([1],k → 1), for k � 0, and ([0],1), which we refer to as elementary objects. Then we say
a presheaf F : Δop

F → S is a Segal presheaf if the restriction F|Δop
F,int

is the right Kan extension

of its restriction to Δel,op
F . We write PSeg(ΔF) for the full subcategory of P(ΔF) spanned by the

Segal presheaves.

Remark 2.8. For X ∈ ΔF, write Δel
F/X for the category Δel

F ×ΔF,int (ΔF,int)/X ; then F ∈ P(ΔF)
is a Segal presheaf if and only if for every X ∈ ΔF the map F(X) → limE∈Δel

F/X
F(E) is an

equivalence. If we let XSeg denote the presheaf colimE∈Δel
F/X

E (where we regard E as a presheaf
via the Yoneda embedding), then this means that F is a Segal presheaf if and only if it is local
with respect to the maps XSeg → X for X ∈ ΔF. Thus PSeg(ΔF) is the localization of P(ΔF)
with respect to these maps — in particular, it is an accessible localization of P(ΔF); we write
LΔF : P(ΔF) → PSeg(ΔF) for the localization functor. We call the local equivalences for this
localization, that is, the maps that are sent to equivalences by LΔF , the Segal equivalences in
P(ΔF).

Definition 2.9. Let Δ1
F be the full subcategory of ΔF spanned by the objects ([n], f) such

that f(n) = 1. The active–inert and surjective–injective factorization systems on ΔF clearly
restrict to factorization systems on Δ1

F. We write Δ1
F,int for the subcategory of Δ1

F containing
only the inert maps. Since Δel

F is a full subcategory of Δ1
F,int, we can again define a presheaf

F : Δ1,op
F → S to be a Segal presheaf if the restriction F|Δ1,op

F,int
is a right Kan extension of its

restriction to Δel,op
F . Let i : Δ1

F ↪→ ΔF denote the inclusion. Then it is clear from the definition
that composition with i induces a functor i∗ : PSeg(ΔF) → PSeg(Δ1

F).
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Remark 2.10. A presheaf F ∈ P(Δ1
F) is again a Segal presheaf if and only if F is local

with respect to the maps XSeg → X for X ∈ Δ1
F. Thus PSeg(Δ1

F) is the localization of P(Δ1
F)

with respect to these maps — in particular, it is an accessible localization of P(Δ1
F); we write

LΔ1
F
: P(Δ1

F) → PSeg(Δ1
F) for the localization functor. We call the local equivalences for this

localization, that is, the maps that are sent to equivalences by LΔ1
F
, the Segal equivalences in

P(Δ1
F).

Lemma 2.11. The functor i∗ : PSeg(ΔF) → PSeg(Δ1
F) is an equivalence.

Proof. We will show that the right Kan extension functor i∗ : P(Δ1
F) → P(ΔF), which is right

adjoint to i∗ : P(ΔF) → P(Δ1
F), restricts to an inverse to i∗ on Segal presheaves. First of all, as

i∗ preserves colimits, it is easy to see that it sends Segal equivalences to Segal equivalences; it
follows that i∗ preserves the property of being a Segal presheaf. To see that i∗ indeed gives the
desired inverse, we will show that the natural transformations idP(ΔF) → i∗i∗ and i∗i∗ → idP(Δ1

F)

are equivalences on Segal presheaves.
Since i : Δ1

F ↪→ ΔF is the inclusion of a full subcategory, the functor i∗ is fully faithful, and
so i∗i∗ → idP(Δ1

F) is an equivalence for any presheaf on Δ1
F.

If F is a presheaf on ΔF, then the component of F → i∗i∗F at ([n], f) ∈ ΔF is the natural
map F([n], f) → lim((Δ1

F)/([n],f))op
F . If f(n) = k, let ([n], fi) for i = 1, . . . , k denote the subtree

f(0)i → f(1)i → · · · → f(n− 1)i → {i}
given by the fibres f(j)i of f jn : f(j) → f(n) = k at i ∈ k. To understand the limit i∗i∗F([n], f)
we will prove that the inclusion {fi : i = 1, . . . , k} ↪→ (Δ1

F)/([n],f) is cofinal. By Joyal’s version
of Quillen’s Theorem A [8, Theorem 4.1.3.1] it suffices to show that for every (φ, η) : ([m], g) →
([n], f) in (Δ1

F)/([n],f), the category {fi : i = 1, . . . , k}(φ,η)/ is weakly contractible. But it is
clear that this is the one-object set {fj}, where j = fφ(m)n(ηm(1)), which is certainly weakly
contractible.

It follows that (i∗i∗F)([n], f) � ∏
i∈f(n) F([n], fi), and the map F([n], f) → (i∗i∗F)([n], f)

is the natural map F([n], f) → ∏
i∈f(n) F([n], fi). But if F is a Segal presheaf then this map

is an equivalence (since (Δel
F )/([n],f) is the coproduct of (Δel

F )/([n],fi) over i ∈ f(n)). �

3. Segal Presheaves on Ω

We now recall the definition of the dendroidal category Ω. It was originally defined by Moerdijk
and Weiss [11] as a category of trees, with the morphisms given by the operad maps between
the free operads generated by these trees. A combinatorial reformulation of this definition was
later given by Kock [7], and it is his definition that we will recall here.

Definition 3.1. A polynomial endofunctor is a diagram of sets

X0
s←− X2

p−→ X1
t−→ X0.

A polynomial endofunctor is a tree if

(1) the sets Xi are all finite;
(2) the function t is injective;
(3) the function s is injective, with a unique element R (the root) in the complement of its

image;
(4) define a successor function σ : X0 → X0 as follows. First, set σ(R) = R. For e ∈ s(X2)

(which is the complement of R in X0), take e′ in X2 with s(e′) = e and set σ(e) = t(p(e′)).
Then for every e there exists some k such that σk(e) = R.
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Remark 3.2. The intuition behind this notion of ‘tree’ is as follows: we think of X0 as the
set of edges of the tree, X1 as the set of vertices (our trees do not have vertices at their leaves
or root), and X2 as the set of pairs (v, e) where v is a vertex and e is an incoming edge of v.
The function s is the projection s(v, e) = e, the function p is the projection p(v, e) = v, and
the function t assigns to each vertex its unique outgoing edge.

Remark 3.3. The name ‘polynomial endofunctor’ comes from the fact that such a diagram
induces an endofunctor of Set/X0 given by t!p∗s∗. We refer the reader to [7] for more discussion
of this.

Definition 3.4. A morphism of polynomial endofunctors f : X → Y is a commutative
diagram

X0 X2 X1 X0

Y0 Y2 Y1 Y0

f0 f2 f1 f0

such that the middle square is Cartesian. We write Ωint for the category of trees and morphisms
of polynomial endofunctors between them; we will refer to these as the inert morphisms between
trees, or as embeddings of subtrees.

Remark 3.5. By [7, Proposition 1.1.3] every morphism of polynomial endofunctors between
trees is injective, which justifies calling these morphisms embeddings.

The following two definitions fix some terminology which we will need later.

Definition 3.6. Let X be a tree. Then a leaf of X is an element of X0 which is not in the
image of t : X1 → X0.

Definition 3.7. We write Cn for the n-corolla, namely the tree

{0, 1, . . . , n} ←↩ {1, . . . , n} → {0} ↪→ {0, 1, . . . , n}.
We write η for the edge, namely the trivial tree

∗ ←↩ ∅ → ∅ ↪→ ∗.

Definition 3.8. If T is a tree, let sub(T ) be the set of subtrees of T , that is, the set of
morphisms T ′ → T in Ωint, and let sub′(T ) be the set of subtrees of T with a marked leaf, that
is, the set of pairs of morphisms (η → T ′, T ′ → T ), where the image of the first map is a leaf
of T ′. We then write T for the polynomial endofunctor

T0 ← sub′(T ) → sub(T ) → T0,

where the first map sends a marked subtree to its marked edge, the second is the obvious
projection, and the third sends a subtree to its root.

Definition 3.9. The category Ω has objects trees, and has as morphisms T → T ′ the
morphisms of polynomial endofunctors T → T

′
.

Remark 3.10. By [7, Corollary 1.2.10], the polynomial endofunctor T is in fact the free
polynomial monad generated by T , and the category Ω is a full subcategory of the Kleisli
category of the monad assigning the free polynomial monad to a polynomial endofunctor. This
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means that a morphism T → T
′
is uniquely determined by the composite T → T → T

′
. In fact,

more is true.

Lemma 3.11 [7, Lemma 1.3.5]. Any morphism T → T
′
in Ω is uniquely determined by the

underlying map T0 → T ′
0 on sets of edges.

Definition 3.12. It follows that Ωint is a subcategory of Ω; we say a morphism in Ω is inert
if it lies in the image of Ωint. We also say a morphism φ : T → T ′ in Ω is active if it takes the
maximal subtree to the maximal subtree, or equivalently if it takes the leaves of T to the leaves
of T ′ (bijectively) and the root of T to the root of T ′.

Remark 3.13. In [7] the inert morphisms are called free, and the active ones boundary-
preserving. Our terminology follows that of Barwick [1] and Lurie [9].

Proposition 3.14 (Kock [7, Proposition 1.3.13]). The active and inert morphisms form a
factorization system on Ω.

Definition 3.15. Let Ωel be the full subcategory of Ωint spanned by the objects Cn (n =
0, 1, . . .) and η. We say a presheaf F : Ωop → S is a Segal presheaf if the restriction F|Ωop

int
is

a right Kan extension of its restriction to Ωel,op. We write PSeg(Ω) for the full subcategory of
P(Ω) spanned by the Segal presheaves.

Remark 3.16. For T ∈ Ω, write Ωel
/T for the category Ωel ×Ωint (Ωint)/X ; then a presheaf

F ∈ P(Ω) is a Segal presheaf if and only if the map F(T ) → limE∈Ωel
/T

F(E) is an equivalence
for every T ∈ Ω. If we let TSeg denote the presheaf colimE∈Ωel

/T
E (where we regard E as a

presheaf via the Yoneda embedding), then this means that F is a Segal presheaf if and only
if it is local with respect to the maps TSeg → T for T ∈ Ω. Thus PSeg(Ω) is the localization of
P(Ω) with respect to these maps — in particular, it is an accessible localization of P(Ω); we
write LΩ : P(Ω) → PSeg(Ω) for the localization functor. We call the local equivalences for this
localization the Segal equivalences in P(Ω).

Remark 3.17. The ∞-category PSeg(Ω) corresponds to the model category of dendroidal
Segal spaces studied by Cisinski and Moerdijk [2].

4. From Δ1
F to Ω

In this section we will define a functor τ : Δ1
F → Ω. On objects, the functor τ takes an object

([n], f) in Δ1
F to the diagram

n∐
i=0

f(i) s←−
n−1∐
i=0

f(i)
p−→

n∐
i=1

f(i) t−→
n∐

i=0

f(i),

where s and t are the obvious inclusions and p takes x ∈ f(i) to f i+1(x) ∈ f(i + 1).
If (φ, η) : ([n], f) → ([m], g) is an inert map in Δ1

F, then we define τ(φ, η) to be the obvious
morphism

n
i=0 f(i) n−1

i=0 f(i) n
i=1 f(i) n

i=0 f(i)

m
j=0 g(j) m−1

j=0 g(j) m
j=1 g(j) m

j=0 g(j).
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Here the middle square is Cartesian, as required, since by definition η is a Cartesian natural
transformation.

To define τ for a general map in Δ1
F, it is convenient to first introduce an intermediate object

τ̃([n], f) between τ([n], f) and its free monad τ([n], f):

Definition 4.1. For ([n], f) ∈ Δ1
F, let subΔ1

F
([n], f) denote the set of subtrees of ([n], f)

given by maps in Δ1
F, that is, the set of inert maps ([m], g) ↪→ ([n], f) in Δ1

F, or equivalently the
set of pairs (x ∈ f(i), 0 � j � i), corresponding to the subtree

f(j)x → f(j + 1)x → · · · → f(i− 1)x → {x},

where f(k)x is the fibre of fki : f(k) → f(i) at x. Similarly, let sub′
Δ1

F
([n], f) be the set of

subtrees in subΔ1
F
([n], f) with a marked leaf, or equivalently the set of triples (x ∈ f(i), 0 � j �

i, y ∈ f(j)x). We then let τ̃([n], f) denote the polynomial endofunctor

n∐
i=0

f(i) ← sub′
Δ1

F
([n], f) → subΔ1

F
([n], f) →

n∐
i=0

f(i),

where the first map takes (x ∈ f(i), j, y ∈ f(j)x) to the marked leaf y and the second projects
it to (x ∈ f(i), j), and the third takes the subtree (x ∈ f(i), j) to its root x. The definition of τ
on inert maps clearly gives an injective map τ̃([n], f) ↪→ τ([n], f) of polynomial endofunctors,
and the canonical map τ([n], f) → τ([n], f) factors through this.

For a general map (φ, η) : ([n], f) → ([m], g), we then define a map of polynomial endofunctors
τ([n], f) → τ̃([m], g), that is,

as follows.

• The component
∐n

i=0 f(i) → ∐m
j=0 g(j) is the obvious map, given on f(i) by ηi : f(i) →

g(φ(i)).
• The component

∐n
i=1 f(i) → subΔ1

F
([m], g) is given by

(x ∈ f(i)) 
→ (ηi(x) ∈ g(φ(i)), φ(i− 1)).

• The component
∐n−1

i=0 f(i) → sub′
Δ1

F
([m], g) is defined by

(x ∈ f(i)) 
→ (ηi+1(f i+1(x)) ∈ g(φ(i + 1)), φ(i), ηi(x) ∈ g(φ(i))ηi+1(fi+1(x)))

We see that the middle square in the diagram above is then Cartesian, since η is a
Cartesian natural transformation, so this does indeed define a map of polynomial endofunc-
tors. We then define τ(φ, η) to be the map τ([n], f) → τ([m], g) induced by the composite
τ([n], f) → τ̃([m], g) ↪→ τ([m], g).

Lemma 4.2. τ is a functor Δ1
F → Ω.
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Proof. Since τ clearly preserves identities, it remains to check that it respects composition,
that is, that for

([n], f)
(φ,η)−−−→ ([m], g)

(ψ,λ)−−−→ ([k], h)

in Δ1
F the maps τ((ψ, λ) ◦ (φ, η)) and τ(ψ, λ) ◦ τ(φ, η) agree. But by Lemma 3.11 it suffices to

show that they are given by the same map on the set of edges. By definition, for τ(φ, η) this is
the map

∐n
i=0 f(i) → ∐m

j=0 g(j) given on f(i) by ηi : f(i) → g(φ(i)), so it is evident that the
two maps agree on the edge sets. �

The definition of τ immediately implies the following lemma.

Lemma 4.3. The functor τ preserves the surjective–injective and active–inert factorization
systems.

Lemma 4.4. The functor τ restricts to an equivalence Δel
F → Ωel. Moreover, for any X ∈ Δ1

F,
it induces an equivalence of categories Δel

F/X → Ωel
/τ(X).

Proof. The first claim follows immediately from the definition of τ . Since every object
E → τ(X) in Ωel/τ(X) lies in the image of τ , the induced functor ΔF,el/X → Ωel/τ(X) is
essentially surjective. We now observe that a morphism in Ωel/τ(X) is a commutative
diagram

E E

τ(X),

where the horizontal map is either the identity map or the image of a unique map of the
form ([0],1) → ([1], f) under τ . This shows that the functor ΔF,el/X → Ωel/τ(X) is also fully
faithful. �

Lemma 4.5. (i) The functor τ! : P(Δ1
F) → P(Ω) preserves Segal equivalences.

(ii) Composition with τ restricts to a functor τ∗ : PSeg(Ω) → PSeg(Δ1
F).

(iii) This functor has a left adjoint LΩ ◦ τ! : PSeg(Δ1
F) → PSeg(Ω).

Proof. To prove (i) it suffices to show that the images under τ! of the generating Segal
equivalences XSeg → X in P(Δ1

F) are Segal equivalences in P(Ω). But since τ! preserves colimits,
Lemma 4.4 implies that τ!(XSeg) � (τX)Seg, and so these maps are among the generating Segal
equivalences for P(Ω). Then the claims (ii) and (iii) are immediate consequences of (i). �

Lemma 4.6. For E ∈ Δel
F , the map E → τ∗(τE) in P(Δ1

F) is an equivalence.

Proof. First consider the case where E = ([0],1), so that τE = η. For any map of trees
ϕ : T → η, the tree T must be linear, that is, have only unary vertices. But then T = τ([n],
1 = · · · = 1) for some n and ϕ = τ(ψ) for the unique map ψ : ([n],1 = · · · = 1) → ([0],1) in
Δ1

F. It follows that τ∗η = ([0],1). The argument for E = ([1],k → 1) is similar. Note that τE
is the corolla Ck. Consider an X ∈ Δ1

F with a map τX → τE. If it is not surjective, then it
factors as τX → η → τE, where η → τE is the inclusion of some edge of Ck, and one reduces
to the previous case to see that τX → τE is the image of the unique map X → E in Δ1

F. If
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τX → τE is surjective, then clearly X must be of the form ([n],k � · · · � k → 1 = · · · = 1) for
some n � 1. Again one observes that there is a unique map X → E whose image is τX → τE,
which implies the lemma. �

5. Proof of the comparison result

Our goal in this section is to prove that the ∞-categories PSeg(Ω) and PSeg(Δ1
F) are equivalent.

More precisely, we saw in the previous section that the map τ : Δ1
F → Ω induces a functor

between the ∞-categories of Segal presheaves, and we will show that this gives the desired
equivalence:

Theorem 5.1. The functor τ∗ : PSeg(Ω) → PSeg(Δ1
F) is an equivalence of ∞-categories.

Since τ preserves inert-active factorizations, it restricts to a functor τint : Δ1
F,int → Ωint, and

we have a commutative diagram

where jΩ and jΔ1
F

denote the inclusions Ωint → Ω and Δ1
F,int → Δ1

F, and PSeg(Δ1
F,int) and

PSeg(Ωint) denote the full subcategories of P(Δ1
F,int) and P(Ωint) spanned by the presheaves

that are right Kan extensions of their restrictions to Δel
F and Ωel, respectively.

Lemma 5.2. The functor τ∗int : PSeg(Ωint) → PSeg(Δ1
F,int) is an equivalence.

Proof. Consider the commutative square

The map τ restricts to an equivalence Δel
F → Ωel by Lemma 4.4, so the bottom horizontal map

here is an equivalence. Moreover, the vertical maps are equivalences by [8, Proposition 4.3.2.15],
since PSeg(Ωint) and PSeg(Δ1

F,int) are by definition the ∞-categories of presheaves that are right
Kan extensions of presheaves on Ωel � Δel

F . By the 2-out-of-3 property, it follows that the top
horizontal map τ∗int is also an equivalence. �

Lemma 5.3. (i) The functor j∗Ω : PSeg(Ω) → PSeg(Ωint) has a left adjoint FΩ := LΩjΩ,!, and
the adjunction LΩjΩ,! � jΩ is monadic.

(ii) The functor j∗Δ1
F
: PSeg(Δ1

F) → PSeg(Δ1
F,int) has a left adjoint FΔ1

F
:= LΔ1

F
jΔ1

F,!
, and the

adjunction LΔ1
F
jΔ1

F,!
� jΔ1

F
is monadic.
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Proof. We will prove (i); the proof of (ii) is the same. The existence of the left adjoint
LΩjΩ,! is obvious, so by [9, Theorem 4.7.4.5] it remains to show that j∗Ω detects equivalences
and that j∗Ω-split simplicial objects in PSeg(Ω) have colimits and these are preserved by j∗Ω.
Since Ωint contains all the objects of Ω it is clear that j∗Ω detects equivalences, and we also
know that PSeg(Ω) has small colimits. Suppose then that we have a j∗Ω-split simplicial object
X• in PSeg(Ω), that is, j∗ΩX• extends to a split simplicial object X ′

• : Δop
−∞ → PSeg(Ωint). If we

consider X• as a diagram in P(Ω) with colimit X, then the colimit of X• in PSeg(Ω) is LΩX.
On the other hand, the colimit X is preserved by j∗Ω : P(Ω) → P(Ωint) (since this functor is a
left adjoint). But by [9, Remark 4.7.3.3], the diagram X ′

• is a colimit diagram also when viewed
as a diagram in P(Ωint), so j∗Ωint

X � X ′
−∞. This means that the presheaf X satisfies the Segal

condition, and so X � LΩX, that is, X is also the colimit of X• in PSeg(Ω). Since its image in
PSeg(Ωint) is X ′

−∞, this colimit is indeed preserved. �

The two preceding lemmas imply that PSeg(Ω) and PSeg(Δ1
F) are both the ∞-categories of

algebras for monads on P(Δel
F ) � P(Ωel). To show that these ∞-categories are the same, it will

therefore be sufficient to prove that these two monads are equivalent. Our proof of this makes
use of the existence of a right adjoint to τ∗:

Proposition 5.4. The functor τ∗ given by right Kan extension along τ restricts to a functor

τ∗ : PSeg(Δ1
F) → PSeg(Ω),

right adjoint to τ∗.

Let us show how to deduce Theorem 5.1 from this; the remainder of this section is then
devoted to proving Proposition 5.4.

Lemma 5.5. The canonical map τ∗intj
∗
Ωτ∗ � j∗Δ1

F
τ∗τ∗ → j∗Δ1

F
is a natural equivalence.

Proof. Recall the commutative diagram

We saw in the proof of Lemma 5.2 that the lower two vertical arrows are equivalences. Therefore
it suffices to check that for F ∈ PSeg(Δ1

F) and E ∈ Δel
F the natural map τ∗τ∗F(E) → F(E) is

an equivalence. We may identify the domain of this map as

(τ∗F)(τE) � lim
X∈(Δ1,op

F )τE/

F(X),

where (Δ1,op
F )τE/ � ((Δ1

F)/τE)op and (Δ1
F)/τE := Δ1

F ×Ω Ω/τE . But the unit morphism
E → τ∗τ!E � τ∗(τE) is an equivalence for E ∈ Δel

F by Lemma 4.6, hence (E, τE = τE) is a
terminal object in (Δ1

F)/τE . Therefore it is initial in (Δ1,op
F )τE/ and this implies the map is an

equivalence. �
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Proof of Theorem 5.1. By [9, Corollary 4.7.4.16] it suffices to show that the canonical natural
transformation FΔ1

F
◦ τ∗int → τ∗FΩ is an equivalence. But by Proposition 5.6 these functors are

both left adjoints, and so we have an equivalence of left adjoints if and only if the corresponding
transformation of right adjoints j∗Ωτ∗ → (τ∗int)

−1j∗Δ1
F

is an equivalence. This now follows from
Lemma 5.5. �

Proposition 5.4 is an immediate consequence of the following result, to which we now turn:

Proposition 5.6. The functor τ∗ : P(Ω) → P(Δ1
F) preserves Segal equivalences.

Our proof of Proposition 5.6 is based on the proof of [5, Proposition 5.5.9]. Before we give
it, we must introduce some notation and prove two technical lemmas:

Definition 5.7. For T ∈ Ω a tree with at least two vertices, let ∂extT denote the external
boundary of T , namely the presheaf on Ω constructed as the union of all the external faces of
T . To be precise, let sub(T ) be the full subcategory of (Ωint)/T on the proper subtrees of T
and define ∂extT to be the colimit of the composition sub(T ) → Ω → P(Ω).

Lemma 5.8. For T in Ω with at least two vertices, let (∂extT )Seg denote the colimit of the
functor

sub(T ) → P(Ω), S 
→ SSeg

(this is well-defined since the maps in Ω involved are all inert). Then the natural map
(∂extT )Seg → TSeg is an equivalence.

Proof. Let I → sub(T ) denote the Grothendieck opfibration associated to the functor
sending S to Ωel

/S . By [4, Corollary 5.7] we can regard (∂extT )Seg as the colimit of the functor
I → P(Ω) sending (S, (E → S) ∈ Ωel

/S) to E, and the map (∂extT )Seg → TSeg is the map on
colimits induced by the functor Φ: I → Ωel

/T that takes (S,E → S) to E → S → T . It therefore
suffices to prove that Φ is cofinal. But Φ admits a left adjoint, given by the functor sending
E → T to (E,E = E). �

For the following definition and lemma it will be clearer to work with (Segal presheaves on)
ΔF rather than Δ1

F; this makes no difference due to Lemma 2.11.

Definition 5.9. Let sd(Δn) denote the partially ordered set of faces of Δn (meaning
injective maps [m] ↪→ [n] in Δ) or equivalently the partially ordered set of non-empty subsets
of {0, . . . , n}; in other words, sd(Δn) is the barycentric subdivision of Δn. We will denote the
subset {i1, . . . , ik} where i1 < i2 < · · · < ik by (i1, . . . , ik). Given a full subcategory (that is,
partially ordered subset) G ⊆ sd(Δn) and X ∈ ΔF of length n, let X(G) denote the colimit in
P(ΔF) over ϕ ∈ G of ϕ∗X. For sd(Λn

i ) the subcategory containing all objects except (0, . . . , n)
and (0, . . . , i− 1, i + 1, . . . , n), we write Λn

i X for X(sd(Λn
i )).

Lemma 5.10. For any X ∈ ΔF of length n, the map Λn
n−1X → X is a Segal equivalence.

Proof. By the 2-out-of-3 property, it suffices to show that the map XSeg → Λn
n−1X is

a Segal equivalence. To prove this, we consider the following filtration of sd(Λn
n−1): we let

Gd ⊆ sd(Λn
n−1) contain all subsets of length at most d together with those of length d + 1 that

are of the form (i0, . . . , id−1, id − 1, id). Then Gn−2 = sd(Λn
n−1) and we have a filtration

XSeg → X(G0) → X(G1) → · · · → X(Gn−2) � Λn
n−1X.
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It thus suffices to show that the maps XSeg → X(G0) and X(Gd−1) → X(Gd) (d = 1, . . . ,
n− 2) are Segal equivalences.

Note that the map XSeg → X(G0) is an equivalence by construction; indeed, G0 consists
of the subsets with one element, together with the subsets of the form (i, i + 1). To see that
X(Gd−1) → X(Gd) is a Segal equivalence, we consider a filtration

Gd−1 = Hd
d ⊆ Hd+1

d ⊆ · · · ⊆ Hn
d = Gd,

where Hj
d is the full subcategory containing Gd−1 together with those objects (i0, . . . , ik) of Gd

with ik � j. Let T j
d denote the objects of length d + 1 in Hj

d that do not lie in Hj−1
d . Note that

for every σ ∈ T j
d the d-dimensional face diσ lies in Hj−1

d for i = d, while ddσ does not lie in
Hj−1

d . Using [8, Corollary 4.2.3.10] we therefore have pushout squares

σ∈T j
d

Λd+1
d σ∗X σ∈T j

d
σ∗X

X( j−1
d ) X( j

d).

Since pushouts of Segal equivalences are again Segal equivalences, by inducting on n this
completes the proof. �

Proof of Proposition 5.6. It suffices to show that the images under τ∗ of the generating
Segal equivalences TSeg → T for T ∈ Ω are Segal equivalences in P(Δ1

F). We will prove this by
induction on the number of vertices in T , noting that if T is η or T has one vertex, that is,
T ∈ Ωel, then the statement is vacuous. Given T ∈ Ω with two or more vertices, we have a
commutative square

(∂extT )Seg ∂extT

TSeg T.

Here the left vertical map is an equivalence by Lemma 5.8, and the top horizontal map is the
colimit over S ∈ sub(T ) of the maps SSeg → S. Since τ∗ preserves colimits and S has fewer
vertices than T for all S ∈ sub(T ), we know by the inductive hypothesis that τ∗ of this map is a
Segal equivalence. By the 2-out-of-3 property, to show that τ∗TSeg → τ∗T is a Segal equivalence
it therefore suffices to show that τ∗(∂extT ) → τ∗T is a Segal equivalence.

To prove this, we will consider a filtration on τ∗T . In order to define this we must first
introduce some terminology; let us say that a map ϕ : X → τ∗T is non-degenerate if it does
not factor through any non-trivial surjections in Δ1

F — more precisely, we require that for

every factorization X
ψ−→ Y → τ∗T with ψ a surjective map in Δ1

F, the map ψ must be an
isomorphism. We then say that ϕ is admissible if it is non-degenerate and preserves the root
vertex — more precisely, recall that if X = ([n], f), then the adjunct map τ(X) → T is a map
of polynomial endofunctors

n
i=0 f(i) n−1

i=0 f(i) n
i=1 f(i) n

i=0 f(i)

T0 sub (T ) sub(T ) T0;
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we say that ϕ is admissible if it is non-degenerate and the map
∐n

i=1 f(i) → sub(T ) takes the
root vertex of X, that is, f(n) = 1, to the root corolla of T viewed as a subtree of T .

We now define a subpresheaf Fn of the (discrete) presheaf τ∗T as follows: Fn(X) is the
union of the image of τ∗(∂extT )(X) with the maps X → τ∗T that factor through an admissible
morphism Y → τ∗T with Y of length � n.

Every map τ(Y ) → T with Y ∈ Δ1
F factors through an admissible map, so τ∗T �

colimn→∞ Fn; it hence suffices to show that the inclusions Fn−1 ↪→ Fn are all Segal equiv-
alences. Let Sn denote the set of isomorphism classes of admissible maps ϕ : τ(X) → T , where
X ∈ Δ1

F is of length n. For such a ϕ, we have that

• by the assumption that ϕ is non-degenerate, the faces d∗iX → X → τ∗T with i = 0, n
factor through τ∗(∂extT ), and so in particular through Fn−1;

• the faces d∗iX → X → τ∗T with 0 < i < n− 1 are admissible of length n− 1 and so factor
through Fn−1;

• the face d∗n−1X → X → τ∗T is not admissible — if it were, then it is straightforward to
see that ϕ must be degenerate, which is not the case by assumption.

Note also that if ϕ : X → τ∗T is non-degenerate and does not factor through ∂extT , but is not
admissible, with X of length n− 1, then there exists (up to isomorphism) a unique admissible
map ϕ′ : X ′ → τ∗T with X ′ of length n such that d∗n−1X

′ → X ′ → τ∗T equals ϕ. Choosing
representatives for the elements of Sn therefore gives a pushout diagram

Sn
Λn

n−1X Fn−1

Sn
X Fn.

Here the left vertical morphism is a Segal equivalence by Lemma 5.10, hence so is the right
vertical morphism. �

6. Completion

Definition 6.1. Let u : Δ ↪→ Δ1
F denote the fully faithful inclusion given by sending [n] to

([n],1 = 1 = · · · = 1). If F : Δ1,op
F → S is a Segal presheaf, then u∗F is a Segal space in the

sense of Rezk [12]. We say that F is complete if the Segal space u∗F is complete. Similarly,
we say a Segal presheaf F : Δop

F → S is complete if u∗i∗F is a complete Segal space, and that a
Segal presheaf F : Ωop → S is complete if and only if u∗τ∗F is a complete Segal space. We write
PCS(Δ1

F), PCS(ΔF) and PCS(Ω) for the full subcategories of PSeg(Δ1
F), PSeg(ΔF) and PSeg(Ω),

respectively, spanned by the complete Segal presheaves.

Remark 6.2. The ∞-categories PCS(Δ1
F), PCS(ΔF) and PCS(Ω) are accessible localizations

of PSeg(Δ1
F), PSeg(ΔF) and PSeg(Ω), respectively. In particular, the inclusions PCS(Δ1

F) ↪→
PSeg(Δ1

F), PCS(ΔF) ↪→ PSeg(ΔF) and PCS(Ω) ↪→ PSeg(Ω) all have left adjoints.

Putting together our results from the previous sections, we get

Corollary 6.3. Composition with the functors i and τ give equivalences of ∞-categories

PCS(Ω) ∼−→ PCS(Δ1
F) ∼←− PCS(ΔF).
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Proof. Immediate from Theorem 5.1, Lemma 2.11 and the definition of complete Segal
presheaves. �

Using results of Cisinski and Moerdijk in the context of dendroidal Segal spaces, this allows
us to characterize the morphisms that are local equivalences with respect to the complete
objects as the fully faithful and essentially surjective morphisms, in the following sense:

Definition 6.4. A morphism ϕ : F → G of Segal presheaves on Ω is fully faithful if for
every n the commutative square

(Cn) (Cn)

(η)×(n+1) (η)×(n+1)

is a pullback square. We say ϕ is essentially surjective if the morphism u∗τ∗F → u∗τ∗G of
Segal spaces is essentially surjective. Obvious variants of this definition also give notions of
fully faithful and essentially surjective morphisms between Segal presheaves on ΔF and Δ1

F.

Corollary 6.5. A morphism of Segal presheaves (on ΔF, Δ1
F or Ω) maps to an equivalence

of complete Segal presheaves if and only if it is fully faithful and essentially surjective. In other
words, the localization functors from Segal presheaves to complete Segal presheaves exhibit the
latter as the localization of the Segal presheaves at the fully faithful and essentially surjective
functors.

Proof. For Ω, this holds by [2, Theorem 8.11]. The other two cases then follow from
Theorem 5.1, Lemma 2.11 and the definitions of complete objects and fully faithful and
essentially surjective morphisms. �
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