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The survival probability P�c, t� of a random walk of t steps with static traps at concentration c is stud-
ied in two and three dimensions by an efficient Monte Carlo method based on a mapping onto a polymer
model. On the basis of the theoretical work of Donsker and Varadhan [Commun. Pure Appl. Math. 28,
525 (1975); 32, 721 (1979)] and of Rosenstock [J. Math. Phys. (N.Y.) 11, 487 (1970)] one expects a
data collapse for 2 ln�P�c, t��� ln�t� plotted vs

p
lt� ln�t� [with l � 2 ln�1 2 c�], in two dimensions,

and for 2t21�3 ln�P�c, t�� vs t2�3l in three dimensions. These predictions are well supported by the
Monte Carlo results.
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The problem of trapping in a random medium is
fundamental for understanding many important physical
processes in disordered systems. Practical applications
include some dynamical processes in disordered media,
kinetics of reactions, electron-hole recombinations in
random and amorphous solids, exciton trapping and an-
nihilation, etc. [1]. In the lattice version of this problem,
traps are randomly distributed on a lattice of dimension d.
Usually, all correlations between traps are ignored, largely
motivated by the fact that in most relevant physical situa-
tions the concentration of traps is small. Initially at time
t � 0, a large population of random walkers is uniformly
distributed over the lattice. Each walker hops from one
lattice site to a randomly chosen nearest-neighbor site, at a
rate of one hop per time unit. When a walker meets a trap,
it dies. The time dependence of the survival probability
of the walkers in the presence of traps is an interesting
problem, which has been analyzed both mathematically
and numerically in the literature [1–15]. The problem
is related to the properties of the density of states of the
electrons on a lattice with randomly distributed impurities,
which has been discussed in Refs. [14–17].

Theoretical treatments of the trapping problem usually
start by considering the configuration averaged survival
probability P�c, t�, where c is the concentration of static
traps. If we assign a label i � 1 · · · N to all different
random walks of t steps and introduce n�i, t� as the number
of different sites visited by the walk labeled i we can write
the survival probability as

P�c, t� � ��1 2 c�n�i,t�� , (1)

since the probability that a site is not a trap is equal to �1 2

c�. For short times P�c, t� is well approximated by the
Rosenstock (RS) [6] expression �1 2 c��n�i,t��. This leads
to exponential dependence on t for d $ 3 and exponential
dependence on

p
t in d � 1. The short-time limit in two

dimensions is discussed later in this Letter.
The behavior of the survival probability at long times

has been treated rigorously by Donsker and Varadhan [4];
the limit t ! ` is known in the literature as the Donsker-
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Varadhan (DV) limit. In the DV limit, the survival
probability P�c, t� in d dimensions does not decay ex-
ponentially, as simple intuition would suggest, but in a
rather more complicated way:

ln�P�c, t�� � 2Al2�d12td�d12, (2)

where A is a constant depending on dimension as well as
on the characteristics of the lattice and the random walk
process, and l � 2 ln�1 2 c�, with c the concentration
of static traps. An interpretation of this apparently unusual
behavior was given by Grassberger and Procaccia [5]: they
assign it to the existence of very rare large trap-free regions
where walkers can survive for a long time. With increas-
ing time ever larger trap-free regions become dominant;
the probability of finding such regions decreases exponen-
tially with their d-dimensional volume, but the decay rate
of particles moving within such a region is inversely pro-
portional to the square of its diameter. The optimal choice
of this diameter gives rise to the stretched exponential be-
havior of Eq. (2).

One important problem with the DV result is that it
does not say anything about how large t should be, in
order to observe this behavior, or what should be the
corresponding value of the survival probability. The issue
of the onset of the DV behavior has been studied numer-
ically by a variety of algorithms, resulting in estimates
which vary widely, apparently depending on the kind
of algorithms used in the calculation. Earlier results of
Klafter et al. [7], based on their numerical simulations,
suggest that P�c, t� should be less than 10221 for d � 2
to observe this behavior, whereas Fixman [8] obtained
a value of P�c, t� , 10267 in d � 3. Among others,
Havlin et al. [9] used an exact enumeration approach
and obtained P�c, t� & 10213 for both two and three
dimensions. The scanning method of Meirovitch [10]
supported the claims of Havlin et al. None of the above
studies have shown conclusively the crossover from the
early-time RS behavior to the asymptotic DV behavior,
except perhaps at very high trap densities. The most recent
progress comes from Gallos et al. [12], who have studied
© 2001 The American Physical Society 170601-1
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the problem numerically in d � 2, using the idea of
self-interacting random walks coupled with a “slith-
ering snake” algorithm. They plotted the quantity
2t20.1 ln�P�c, t�� as a function of t0.8l and obtained a
fairly satisfactory collapse, within their numerical preci-
sion; the theoretical basis for this kind of data collapse is,
however, unclear.

Our algorithm for the symmetric random walk on a
simple cubic or quadratic lattice, the case studied mostly
before, is also based on the identification of each random
walk of t steps with a polymer [18] of length t. A direct
Monte Carlo procedure to estimate the survival probabil-
ity would then be to generate a large number of random
walks, and average the quantity �1 2 c�n�i,t�. This proce-
dure would, however, give poor statistics with increasing
t, since the result would be dominated by the one or two
random walks that are the most compact. More accurate
Monte Carlo results can be obtained by biasing the ran-
dom walks generated towards more compact ones. Here,
the identification of random walks with polymers comes
into play. To each polymer configuration i we attribute an
energy, given by the Hamiltonian

H�i, t� � ln�i, t� . (3)

If we then sample polymer configurations at infinite tem-
perature, the average energy is equal to ln�i, t�, which in
turn equals ln�P�c, t��. Numerically more accurate results
are obtained, however, by generating polymer configura-
tions at some inverse temperature b. The likelihood for
a configuration i to be generated is then proportional
to its Boltzmann factor exp�2bH�i, t��, and as a conse-
quence there is a bias towards compact configurations.
Also from this ensemble, one can compute the survival
probability using

P�c, t� �
�exp�1bH�i, t�� �1 2 c�n�i,t��b

�exp�1bH�i, t���b

, (4)

where the averaging is performed over the ensemble gen-
erated at inverse temperature b. Note that at infinite tem-
perature, i.e., b � 0, there is no bias and we retrieve
Eq. (1). Interestingly, at inverse temperature b � 1 the
numerator equals unity and the inverse of the survival
probability equals the average of the inverse Boltzmann
weights. It turns out that the most accurate results are ob-
tained at some inverse temperature between 0 and 1; all
our results are obtained at b � 0.75.

We generate a Markov chain of polymer configurations
at inverse temperature b by proposing randomly chosen
single-monomer moves and accepting each proposed move
with the Metropolis acceptance probability

Pacc � min�1, exp�2bDE�� , (5)

where DE is the change in energy, defined by the Hamilto-
nian Eq. (3). The types of single-monomer moves that we
propose are depicted in Fig. 1. In a naive implementation,
170601-2
FIG. 1. Monte Carlo moves used in the simulation: exchange
of a pair of consecutive steps (left and middle panels) or re-
placement of the first or last step (right panel).

the computational effort per move would scale linearly
with polymer length because of the necessity to walk along
the polymer to compute the change in energy. However,
if one stores in each lattice site the number of times the
polymer visits that site, then the energy difference can be
computed easily: the energy increases by l if the monomer
moves to a site which is not visited before, decreases by
l if the monomer leaves a site that it visits only once, and
stays unaltered if either both or neither of these two situa-
tions holds. This administration is also easily updated: the
new site is visited one more time, while the old site is
visited one time less.

We now discuss numerical results obtained using our
algorithm outlined above. First, we concentrate on the
case of two dimensions. In Fig. 2, we have plotted the
logarithm of the survival probability P�c, t� for concentra-
tions c � 0.01, 0.02, . . . , 0.09; 0.1, 0.2, . . . , 0.9, and times
(polymer lengths) up to t � 825. In these simulations, we
start with a random walk, which is then simulated over 109

Monte Carlo steps per monomer, at an inverse tempera-
ture of b � 0.75. Data obtained during the first 50 000t
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FIG. 2. Monte Carlo results for the survival probability as
a function of time, for several trap concentrations on a two-
dimensional lattice: 2 ln�P�c, t�� is plotted as a function of
time t.
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FIG. 3. Collapse of the two-dimensional data: 2 ln�P�c, t���
ln�t� is plotted as a function of

p
lt� ln�t� in a double-

logarithmic plot. The solid lines are fits to the data, with slopes
2 and 1. They cross at the point (1.13, 3.5).

attempted Monte Carlo steps per monomer have been dis-
carded (thermalization). Comparing data points with the
average of their left and right neighbors, which were gen-
erated in independent runs, we estimate the relative error
in 2 ln�P�c, t�� to be 2%.

We now obtain a theoretically justified data collapse
based on the identification of a common scaling variable
for the DV and RS regimes. At short times and small
concentrations, we expect that the polymer configuration
closely resembles a random walk. In the case of two di-
mensions, this means that the number of different sites
visited scales as t� ln�t� [19]. Consequently, we deduce
that the RS behavior in two dimensions is properly de-
scribed by

2 ln�P�c, t�� 	 lt� ln�t� . (6)

At long times and large concentrations we expect to ob-
serve the DV behavior:

2 ln�P�c, t�� 	 �lt�1�2. (7)

To obtain the proper scaling variable, we equate the right
terms in Eqs. (6) and (7) and obtain

p
lt� ln�t� � 1; we

can use this as a scaling variable and rewrite Eqs. (6) and
(7) as

2 ln�P�c, t��
ln�t�

�

∑p
lt

ln�t�

∏2

;

2 ln�P�c, t��
ln�t�

�

p
lt

ln�t�
.

(8)

Thus we expect that if 2 ln�P�c, t��� ln�t� is plotted as
a function of

p
lt� ln�t�, the data for all values of trap

concentration c and time t collapse onto a single curve,
with an effective exponent that crosses over from 2 to 1.

In Fig. 3 we have performed this plot, using the same
data as in Fig. 2. Clearly, the data collapse is convincing
170601-3
0.01 1
10

10000

c

t

0.01 0.02 0.05 0.1 0.2 0.5 1
-15

-10

-5

0

c

lo
g 10

 [P
(c

,t)
]

FIG. 4. Location of the crossover probability P�c, t� as a func-
tion of trap concentration c, in two dimensions. The inset shows
the crossover time t as a function of c.

over the whole range of parameters used in our simulation.
A least-squares fit to the left and right data points gives
slopes of 1.98(3) and 1.01(2), consistent with the expected
slopes of 2 and 1 for the RS and DV regimes, respectively.
The numerical estimate of the point where these lines cross
is 2 ln�P�c, t��� ln�t� � 3.5 and

p
lt� ln�t� � 1.13. The

survival probability where the DV regime starts is then
given by 2 ln�P�c, t�� � 3.1

p
lt, for a suitable choice of

c and t. The fact that the survival probability at the start
of the DV regime is not a constant explains the wide range
of reported values for this quantity. The apparent depen-
dence of the results on the simulation methods can be un-
derstood because certain simulation methods are especially
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FIG. 5. Collapse of the three-dimensional data: 2t21�3 3
ln�P�c, t�� is plotted as a function of t2�3l in a double-
logarithmic plot. The solid lines are fits to the data, with slopes
1 and 2�5. They cross at the point (8.5, 6.3).
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FIG. 6. Location of the crossover probability P�c, t� as a func-
tion of trap concentration c, in three dimensions. The inset
shows the crossover time t as a function of c.

suited for high c-values, whereas other methods require
fairly low values of c. From our results one may conclude
that the DV regime can already start at a significant sur-
vival probability, depending on c; it should therefore be
observable experimentally.

To illustrate this in detail we plotted in Fig. 4 the
crossover values of both time and survival probability as
functions of the trap concentration.

In dimensions different from d � 2 it is equally pos-
sible to define a common scaling variable for the RS
and DV regimes, which ought to give rise to a data col-
lapse. For d , 2 one should consider ln�P�c, t�� as a func-
tion of �lt�d�2 and for d . 2 collapse should occur for
2t�2�d21� ln�P�c, t�� as a function of t2�dl. From these
expressions one first of all sees very clearly that d � 2
acts as a crossover value for the dimensionality, as sug-
gested already by the logarithmic terms in the 2d scaling
variables.

In particular, in three dimensions, where the number of
different sites visited increases linearly with time t, the RS
and DV regimes can be written as

2t21�3 ln�P�c, t�� � t2�3l ;

2t21�3 ln�P�c, t�� � �t2�3l�2�5.
(9)

To show the resulting data collapse in three dimensions,
we plotted in Fig. 5 2t21�3 ln�P�c, t�� as a function of
170601-4
t2�3l. All data have been obtained again with the polymer
algorithm described above. A least-squares fit to the left
and right data points gives slopes of 0.98(2) and 0.38(2),
consistent with the expected slopes of 1 and 2/5 for the RS
and DV regimes, respectively.

In Fig. 6 we also plotted the crossover time and survival
probability as functions of c for three dimensions. As one
might expect, the concentration dependence is even much
stronger than in two dimensions.

In summary, we have outlined an efficient algorithm
to investigate diffusion with random traps in an arbi-
trary concentration range. The simulation results for all
trap concentrations and times could be explained by a
crossover from the Rosenstock behavior at short times to
the Donsker-Varadhan behavior at long times. We have
identified the location of the crossover point, which in
contrast to earlier belief, does not simply yield a specific
value for the survival probability.
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