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A B S T R A C T

Discovery of novel viruses in host samples is a multidisciplinary process which relies increasingly on next-
generation sequencing (NGS) followed by computational analysis. A crucial step in this analysis is to separate
host sequence reads from the sequence reads of the virus to be discovered. This becomes especially difficult if no
reference genome of the host is available. Furthermore, if the total number of viral reads in a sample is low, de
novo assembly of a virus which is a requirement for most existing pipelines is hard to realize.

We present a new modular, computational pipeline for discovery of novel viruses in host samples. While
existing pipelines rely on the availability of the hosts reference genome for filtering sequence reads, our new
pipeline can also cope with cases for which no reference genome is available. As a further novelty of our method
a decoy module is used to assess false classification rates in the discovery process. Additionally, viruses with a
low read coverage can be identified and visually reviewed. We validate our pipeline on simulated data as well as
two experimental samples with known virus content. For the experimental samples, we were able to reproduce
the laboratory findings.

Our newly developed pipeline is applicable for virus detection in a wide range of host species. The three
modules we present can either be incorporated individually in other pipelines or be used as a stand-alone
pipeline. We are the first to present a decoy approach within a virus detection pipeline that can be used to assess
error rates so that the quality of the final result can be judged. We provide an implementation of our modules via
Github. However, the principle of the modules can easily be re-implemented by other researchers.

1. Introduction

Samples from humans and animals suspected of a virus infection on
clinical grounds, are usually analyzed by classical and modern mole-
cular virological assays, when applicable supported by histo-pathology
data. Meanwhile, the advent of next-generation sequencing (NGS) has
provided us with the opportunity of reading all sequence information in
a biological sample, therefore becoming an important tool for virus
discovery which will undoubtedly find its way into routine virus di-
agnostic practice. However, virus detectionusing NGS data is by no
means a straightforward task, but should involve close communication
between the clinician, the virologist, the pathologist and the bioinfor-
matician (Smits et al., 2015; Smits and Osterhaus, 2013).

The overall problem of virus identification in NGS data from a host

sample is to identify all sequences that don't originate from the host
itself. While most sequencing reads will usually belong to the host or
other non-relevant microorganisms only a small proportion of reads
will belong to the virus to be discovered. The assignment of sequencing
reads to the host and other non-relevant organisms and viruses relies on
reference genomes available in databases. Here, we present a new
bioinformatics pipeline for virus metagenomics that is also applicable if
no reference genome data from the host is available.

Currently available bioinformatics pipelines or software solutions
for virus sequence detection in NGS data rely on approaches that can be
divided into two categories. Category I involve approaches, that first
remove all host reads from the sample and map or align the remaining
reads to a viral database. In this case, the host's reference genome se-
quence must be available in a sufficient quality to make sure that all
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host reads are removed and only non-host sequences are among the
unmapped reads. Such approaches work for example well with samples
from humans or mice and other species for which reference genome
data is available at the Ensemble database (Ensemble Database, n.d.).
Approaches from the category II first assemble the raw sequencing
reads (or only the unmapped reads) to larger contigs, which are further
used in the analysis pipeline. Larger contigs allow for a higher mapping
accuracy than short reads, and including an assembly step into a de-
tection pipeline is therefore advantageous. Nevertheless, to achieve
large contigs - that are longer than the single reads - the coverage of the
single viral strains of the sequencing reads must be high. If there are not
enough viral reads of a single strain in the sample, the gaps between the
reads are too large and contigs cannot be built preventing virus iden-
tification. A common element of the approaches in both categories is
that reads or contigs are aligned to a given virus sequence database, and
a sorted list of detected viruses (or at least taxonomic groups) is re-
turned. The approach we present here belongs to category I, i.e. raw
reads instead of contigs are mapped against reference genomes. In the
following, we provide a brief summary of other existing pipelines and
their usability in the case of samples generated with low sequencing
coverage and a non-availability of a host reference.

Among category II pipelines, Iterative Virus Assembler (IVA) (Hunt
et al., 2015) uses its own de novo assembler to generate contigs from
the raw or host-free reads. Generated contigs can afterwards be mapped
to a virus database using SMALT (SMALT, n.d.) and Kraken (Wood and
Salzberg, 2014) to determine the viral strain. IVA reports only the virus
strain that appears most frequently with quality information, whereas
the report produced by Kraken gives the user more information on the
identified taxa. Thus, the limitaion of IVA consists on de novo assembly
of contigs, which is not possible when the overall sequence coverage is
low and the generation of only a single viral strain. Another pipeline,
called RIEMS (Scheuch et al., 2015), also first assembles the raw reads
to contigs, which are afterwards mapped to a virus database using the
NCBI BLAST software suite (ftp://ftp.ncbi.nlm.nih.gov/blast/
executables/blast+). Assigned reads are then classified taxonomicaly.
As an additional feature, the RIEMS pipeline can also translate the as-
sembled sequences to amino acid sequences and use these sequences for
further detection on the protein level.

Among category I pipelines (i.e., direct mapping of sequencing
reads), the approach by Petty et al. (Petty et al., 2014) describes the
standard procedure in a human pilot study. The raw reads are first
mapped to the human reference genome, and the unmapped reads are
then mapped to a virus database. The removal of the host reads is a
crucial step and has been implemented in VirusFinder (Wang et al.,
2013), VirusHunter (Zhao et al., 2013), VirusSeq (Chen et al., 2012),
and Vy-PER (Forster et al., 2015). Mostly, these pipelines have been
demonstrated on example of human samples. In general, these pipelines
demand for a known host reference genome of sufficient quality to
remove all non-viral reads from the downstream analysis. First, host
reads are removed to obtain data cleaned from host sequences. If host
reads are kept in the data, false positive mapping to virus reference
sequences may occur. Second, further noise is removed from the data to
improve the mapping accuracy. By removing the host reads it is as-
sumed that only viral reads remain. Nielsen et al. (Nielsen et al., 2014)
describe a reference free identification and assembly without the im-
plementation as a software solution or ready to use pipeline. In the
following the mentioned pipelines of category I are described in more
detail.

VirusFinder (Wang et al., 2013) performs first a preprocessing step,
in which the raw sequencing reads are mapped to the human reference
genome using Bowtie2 (Langmead and Salzberg, 2012; Langmead et al.,
2009). Then, unmapped reads are extracted and aligned to a viral da-
tabase using BLAT (Kent, 2002). Finally, the reads are assembled using
Trinity (Grabherr et al., 2011). VirusFinder assumes a high sequencing
coverage so that good assembly results can be obtained, and is mainly
developed to detect virus integrations sites in the human genome. The

examples presented in the VirusFinder article have a sequencing cov-
erage ranging from 31.7× to 121.2×. The assembled contigs are then
used for the generation of phylogenetic trees and the estimation of
relationship to each other. VirusHunter (Zhao et al., 2013) uses BLASTn
to filter first the reads belonging to the host after some quality assess-
ment. The host-free reads are then classified using BLASTn and BLASTx
into taxonomic groups. Therefore, VirusHunter needs a good host re-
ference genome to filter the reads into host-free and host reads. In
addition, the repeated BLAST runs to process the reads are also time
consumable. VirusSeq (Chen et al., 2012) focuses on the identification
of viral strains in human cancer tissue. First all human sequence reads
are removed by mapping to the human reference genome. The re-
maining human-free reads are then aligned to a viral reference database
using the MOSAIK aligner in both steps (Lee et al., 2014). VirusSeq uses
the overall count number of matched reads to identify the viral strain.
Nevertheless, the threshold is set to 1.000 reads per virus regarding an
overall 30× coverage of the whole-genome sequencing data. This
threshold can be modified, but VirusSeq is developed for sample with a
high read coverage. Therefore, it cannot be used to analyze low cov-
erage datasets. Vy-PER (Forster et al., 2015) uses in the first step the
human reference genome to remove all host sequence reads. Reads,
which are not mapped to the human reference are then filtered and
aligned to the NCBI viral genome database using BLAT (Kent, 2002).
The described example on leukemia samples is done with a very high
coverage (80× cases and 40× controls), which is not a requirement,
but precondition for the elimination of false positives.

All mentioned pipelines of category II make use of an alignment or a
mapping software such as Blast or Bowtie2. A broader and more com-
prehensive overview on available mappers is given by Fonseca et al.
(Fonseca et al., 2012), in which the authors discuss the mapper char-
acteristics and the problems of comparing different mappers. In the case
of virus detection some specific issues play a role: 1) high heterogeneity
of the genomes, 2) mutation rates, 3) insertions of whole genomic areas,
and 4) infection of new hosts with adaptions of the viral genome.
Hence, problems occur when dealing with samples from a high variety
of potential virus infected species. First, a fully assembled reference
genome is only available for a small number of animals. Furthermore,
the quality of the reference genomes can differ as only the human and
mouse genome are of sufficient quality, whereas there is no good re-
ference genome available for many animals. Second, the number of
viral sequence reads in a biological sample depends on the production
circle of the virus, the time point of infection, and the selection of the
correct tissue type to get most of the virus out of the sample. Therefore,
the number of possible detectable viral sequences might be low. For
building contigs by an assembly process many viral sequence reads
must be available, i.e. a good coverage of viral reads must be given, and
these reads should not be contaminated with sequences from the host
organism. Both issues are not applicable to studies which don't focus on
human or mice samples with a small area of possible viral infection.

In this study, three bioinformatics modules for virus detection and
two example data samples are described. Module I allows to evaluate
the false positive findings by a decoy database approach, module II
shows the host-free mapping of DNA sequencing reads to an artificial
viral reference genome, and module III describes the mapping of the
translated DNA sequence reads to a artificial amino acid viral reference
genome. In the results section we demonstrate the results of a simula-
tion study using the decoy database (comparing different mapping
softwares within our pipeline) and present the analysis of two example
data sets. We close this article with some conclusions. Moreover, we
describe the combination of all three modules into a virus detection
pipeline in the supplementary material.

2. Methods

In this section, we describe in detail modules that form our new
virus detection pipeline. We chose a modular composition of our
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pipeline, so that individual modules can also be incorporated in other
existing pipelines. Module I uses a DNA mapper to detect virus species.
To run the mapper, an artificial genome is built in which all virus se-
quences available in a database are stringed together as a fasta-file.
Module II also uses an artificial genome based on the translation of DNA
virus sequences into amino acid sequences. Module III allows the esti-
mation of false positive rates by employing a decoy sequence database.
In addition, we describe visualization tools for the examination of the
mapping results of modules I and II in the supplementary material. The
raw information on the mapped reads is not sufficient to decide if a host
is infected by a viral strain. Therefore, we visualize our findings (Tukey,
1977) and determine quality values for the judgment of a relevant viral
detection (Supplementary Fig. 1).

2.1. Module I: decoy database

The decoy database works independent from the mapping algorithm
and can be used for the evaluation of a DNA or RNA mapping run in a
virus detection pipeline. After the sequence read mapping, the question
arises on how correct the single sequence reads were mapped, parti-
cularly because Bowtie2 and Star, as an example, allow reads to map
multiple times to the reference genome. Therefore, we adopt an ap-
proach by Reidegeld et al. (2008) (Reidegeld et al., 2008), who pro-
posed a decoy database to determine the false discovery rate in auto-
mated protein identification. Three decoy strategies were proposed: 1)
‘reverse’, meaning that the original reference genome is reversed in the
sequence order, 2) ‘shuffle’, where the original reference genome is
shuffled randomly to get another base pair order, 3) ‘random’, where
the protein mass was hold constant. The last one is not possible in the
case of DNA sequences. The reverse decoy strategy will not work, be-
cause the mappers are too sensitive. Thus, we shuffled the reference
genome to obtain a decoy reference database. The shuffling was done
by setting different k-mer distributions. Now, the question arises, which
k-mer distribution should be shuffled? The shuffling with k=1, i.e.
only shuffling the bases A, C, G, and T, will deliver no hit to the decoy
reference because the mappers are too sensitive. Hence, we used uSh-
uffle (Jiang et al., 2008) to test different shuffled k-mers to find the best
k for the shuffled database. The program uShuffle allows a given
genome and keep the specified k-mer distribution fix. However, uSh-
uffle can only handle sequences of length 9 ⋅ 106. Therefore, we built
blocks of this limited size and shuffled them accordingly to each
k={10,…,20}.

Fig. 1 shows the setting for the decoy database. First, the artificial
viral genome is duplicated and then shuffled with a given k, while the k-
mer distribution of the artificial reference is kept fix. Second, from a
given virus sequence, 50 paired reads of different lengths
(rl={75,150,300}) are drawn and combined with 5.000 paired reads
drawn from the decoy database with the same read length. Overall, 100
viral and 10.000 decoy reads were combined into one.fastq-file. The
quality of each base was set to Q=40. In the third step the reads were
mapped back to the artificial genome of true viral sequences and to the
decoy reference genome. In this whole process, a read can be mapped to

six possible regions, and the mapping result can be summarized in a
2×3 table. A true virus read can either be mapped to the correct virus,
to a false virus, or to the decoy database. The same can happen to a
decoy read. We found that case (d), in which the decoy read maps to the
true virus is very rare. In the simulation study below, we can determine
the quality of the three mappers given a shuffle k. To summarize the
section, the first aim is to determine the best k for the shuffling process
to generate the database and second to use the generated decoy data-
base as a measure of goodness for the viral detection.

From the mapping results of the simulation we generated a 2×3
contingency table (Table 1). For the evaluation of the simulation results
we define four classification statistics. First, the true positive rate for
the virus reads by tprv= a/(a+ b+ c), the true positive rate for the
decoy reads by tprd= f/(d+ e+ f), the overall true positive rate by

= +tpr tpr tpr( )d v
1
2 , and the false positive rate by fpr=(b+ c+ d+ e)/

n. We found for all three tested mapper a increase of the false positive
rate (fpr) if the shuffling k is increased. The true positive rate is de-
creasing with an increase of k for all mapper. The true positive rate for
the viral reads has a higher variability than the true positive rate for the
decoy reads. A longer read length increases the overall true positive rate
as expected (Fig. 2).

To determine the quality of the DNA mapping of a biological
sample, we generated a decoy database with the same length as the
artificial viral genome using a fixed k of 15. We decided to use k=15
after consulting the evaluation results presented in Fig. 2. For k > 15
the classification rate is dropping and therefore we use this k=15 for
the analysis of the biological samples. It must be mentioned that the
value of k depends on the particular virus database being used. Thus, a
different value might be appropriate when using other database set-
tings. The shuffling of the artificial genome could not be done in one
step, therefore we did the shuffling by 396 artificial chromosomes each
of the length of roughly 9 million bp. While running the pipeline, we
draw nrd=1000 decoy reads from one random chromosome and added
these decoy reads to the sample reads. After the DNA mapping we could
determine, if all decoy reads are mapped back to the decoy reference:
the true positive rate for the decoy reads (tprd) and how many reads are
mapped to the wrong reference: the false positive rate (fpr). In the case
of a biological sample, we can not distinguish between the true virus (a,
d) and the false virus (b, e). Therefore, the contingency table is reduced
to a 2× 2 table. Finally, we can estimate the multi mapping rate
mmr=(d+ e+ f)/nrd. Hence, the mmr is the number of mapped decoy
reads (d+ e+ f) divided by the predefined number of generated decoy

Fig. 1. Generation principle of the decoy fra-
mework. First, the artificial genome of the viral
strains is duplicated and then shuffled. During
the shuffling the original k-mer distribution of
the true genome is kept. Afterwards, paired
reads from one virus (shaded area) and random
decoy reads are drawn. Finally, the drawn reads
are mapped to the combined reference genome
consisting of the original viral sequences and the
shuffled ones. Each single read can be mapped
to three areas: i) to the original virus, ii) to a
different virus or iii) to the decoy genome.

Table 1
Contingency table of the possible outcomes by the decoy approach.

Reference

True virus False virus Decoy

Read Virus a b c n1.
Decoy d e f n2.

n.1 n.2 n.3 n
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reads nrd. Again, the membership of the reads to d and e can not be
distinguish and is therefore pooled.

2.2. Module II: DNA read mapping

NGS produces high amount of short sequencing reads, which can be
mapped to given reference genomes. The working principle of many
virus detection pipelines is based on sample from a human host. In this
regards, human sequence reads are removed by mapping all reads to
the human reference genome. Unmapped reads are then considered to
originate potentially from a virus. However, many practical virus de-
tection problems emerge when analyzing an exotic host species, such as
the tinamou, whale, or giraffe. For such species, no reference genome of
sufficient quality is available, and very often no reference genome is
available at all. However, existing pipelines of the category I can also be
run without filtering the host reads. In the case of virus detection, with
a low coverage of reads or a mutation of the virus strain, the approach
will work with a mapping error. We have introduced the decoy data-
base before, to judge these mapping errors and to bring the falsely
mapped reads errors into perspective to the true mapping rate.

To circumvent the problem of having no reference genome avail-
able, we omit the step of removing host reads. Instead, all reads are
directly mapped to all available viral sequences from the NCBI Genbank

combined as one “artificial virus reference genome” fasta file. We
downloaded approx. 2.4 million DNA sequences and approx. 3.3 mil-
lion amino acid sequences. To speed up the process, we used standard
DNA mappers such as BWA (Li and Durbin, 2009), STAR (Dobin et al.,
2013) or Bowtie2 (Langmead and Salzberg, 2012; Langmead et al.,
2009) to map the short DNA sequencing reads to the artificial viral
genome. All viral sequences, consisting of full viral genomes coding
domain sequences or only viral fragments, are stringed together to build
an “artificial” genome consisting only of viral sequences in a single
*.fasta file. This artificial genome, where the single viral sequences are
regarded as chromosomes, is used as a reference genome for the map-
ping process. We named each ‘chromosome’ by the NCBI GenBank ac-
cession number for the related virus and the aligned read counts are
reported by the mapper. Since only virus sequences are stringed to-
gether, unmapped reads can be considered to belong to the host or
other unknown sources. A large number of multiple read mappings
occur in this mapping process because sequences can overlap between
related virus strains. Normally, the so called ‘multi-maps’ are not de-
sired, but here we are able to detect families of different viral strains.

For this module, we evaluated three different mappers, which are
able to handle a high amount of chromosomes. The criterion used for
the selection consisted in choosing mappers that are widely used and
are still under maintenance. Therefore, we decided to evaluate the

Fig. 2. Mapping results by different DNA sequence mappers: Bwa, Star, and Bowtie2. On the y-axis the classification rates of the mapped viral and decoy reads is
shown. On the x-axis the k that is kept for the shuffling to generate the decoy reference is given. Three different read lengths were compared in our simulation study:
75, 150, and 300. The boxplots include the results of 100 runs with different virus strains: 100 reads were drawn from a virus strain and 10.000 reads were drawn
from the decoy reference.
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mappers BWA, STAR, and Bowtie2. A comprehensive analysis of the
three mappers and their properties can be found in the results section.
The mapper Bowtie2 was run with its default options. The number of
allowed read matched was risen to K=10. Therefore, a single read was
allowed to map to up to 10 viral sequences. The STAR and the BWA
mapper were run with default values.

In general the DNA mapping step must be seen as an exploratory
data analysis (Tukey, 1977). The mapping of DNA reads against a re-
ference fasta file is not uncommon. In the case of virus detection multi
maps are wanted because multi maps can describe a infection of a virus
family or a group of RNA viruses. However, the question remains open,
which of the DNA mapper delivers reliable results. Therefore, we build
up a decoy database to judge the mapping qualities in our specific
setting of the detection of low abundances of viral reads and exotic
hosts.

2.3. Module III: amino acid mapping

In module I, we dropped the gene information of each single virus
sequence by collapsing the sequences into one artificial genome. To
circumvent this disadvantage, we added a second layer of evidence. To
do this, we used the amino acid (AA) mapping as an additional module
in our virus detection pipeline. The overall number of approx. 2.4
million DNA sequences is complemented with approx. 3.3 million
amino acid sequences. Each amino acid sequence represents one
‘chromosome’ from the artificial DNA genome. Some virus strains have
only one or even no gene reported in their connected Embl-file.
Therefore, the number of amino acid sequences does not exceed dras-
tically the number of DNA sequences. All amino acid sequences were
combined into one artificial amino acid reference genome. Each
‘chromosome’ represents one amino acid sequence from a virus strain.
The information was stored into an SQL database to enable faster access
in the following steps of the pipeline. Details are described below in the
visualization module section in the Supplementary material. The gen-
eration of the artificial amino acid reference genome allows the map-
ping of translated DNA reads. We used the already implemented ap-
proach Pauda (Huson and Xie, 2013), which uses the DNA aligner
Bowtie2 for protein alignment to a reference database (For a short
description see the Supplementary material). Several changes to the
Pauda implementation were necessary to fulfill our requirements.
Supplementary Table 13 shows all changes with the connected program
line. Pauda only allows the mapping of single end reads. Therefore, we
used PANDAseq (Masella et al., 2012) to combine paired reads into
single end reads where necessary. The Pauda output is a BlastX-file,
which can be parsed and matching positions can be extracted. In ad-
dition, the raw amino read counts mapped to each viral gen is reported.
The amino acid mapping is heavily based on an good annotation. The
user can improve the results, if good curated annotation database is
available by its own.

3. Results

In this section, we first show the results of a simulation for the
evaluation of our analysis pipeline (Module I - III), in particular the
evaluation of the decoy approach (Module I). Furthermore, we show the
results of applying our virus detection pipeline to two example sample
files. A visualization of the findings can be found in the supplementary
material.

3.1. Evaluation of the decoy database

For the usage of the decoy database in a detection pipeline the k for
the generation of the decoy sequences must be determined. A small k
will cause no hits to the decoy database, while a large k causes an equal
decoy database in comparison to the sampled original reference. Fig. 2
and Supplementary Fig. 7 show the simulation results of 100 virus

strains with 100 reads combined with 10,000 decoy reads of read
lengths: 75, 150, and 300. Three different mapping tools were com-
pared: Bwa, Star, and Bowtie2. On the x-axis the used k of the shuffling
procedure for the generation of the decoy sequences is plotted and
shows the classification rates on the y-axis. Supplementary Fig. 7 shows
the percentage of remapped reads, i.e. the mappings to the decoy da-
tabase. Since the Bwa mapper does not allow multi maps the y-axis for
the Bwa results shows the percentage of mapped reads, while the other
two mappers allow multi maps, hence the y-axis shows mappings.

The Bwa mapper does not allow multi-mapping reads. Hence, with
an increase of k, the true virus reads that map to the true virus will
decrease (Supplementary Fig. 7). This is also true for the proportion of
the decoy reads mapped to the decoy region of the reference. The
number of virus reads mapped to the decoy reference is also increased
for higher values of k. This tendency can be lowered, if a longer read
length is provided. Further, the Bwa mapper shows a slower increase of
the fpr rate caused by the single mapping of each read. Therefore, it can
be concluded, that the Bwa mapper has problems to map a read con-
sistently if a high diversity of virus strains are in the sample. Even more
if the viral strains in the sample are closely related. Moreover, this
strong relationship occurs also frequently in our artificial virus data-
base, because many families and coding DNA sequences (CDS) regions
are very similar and connected. Therefore, we decided to remove the
Bwa mapper for the analysis of the biological samples below.

The Star aligner shows a nearly constant detection rate of about
100% of the reads for all virus reads mapped to the true virus. In
contrast to the Bowtie2 mapper the multi mapping rate of the true virus
to the true genome is lower (Supplementary Fig. 7). For higher k the
multi-mapping can be seen on the decoy reads mapped to the decoy
database. The percentage of falsely mapped virus reads to the decoy
genome increases with higher values of k but can be lowered with a
longer read length. The Star mapper shows the lowest variance of the
classification rates of the three mappers. Due to the fact that all virus
reads are correctly mapped, we consider STAR as the mapper for the
analysis of the biological samples.

Finally, we tested the Bowtie2 mapper. First high multi-mapping
can be observed (Supplementary Fig. 7). The true virus reads are
mapped multiple times to the true virus strain, as well as the decoy
reads to the decoy reference. In addition, the true virus reads are often
mapped to other viruses. This false mapping can only be observed with
the Bowtie2 mapper. In addition, the decoy reads are also mapped to
the virus reference. In this setting, the Bowtie2 mapper has problems
with the mapping of read length of 300. In this case, the performance is
lowered in all mappings. This property cannot be seen in Fig. 2 as
clearly as in Supplementary Fig. 7. Overall, less reads are mapped to the
reference with a read length of 300. Hence, we recommend to use both
types of Figures for the judgment of the mapper. Finally, Bowtie2 has
the highest overall variance of the classification rates. As an advantage,
the high amount of multi-mapped reads can allow the detection of quasi
species or families of related virus strains. Therefore, it is possible to
draw conclusions about the infectious virus strain even if its sequence is
not in the database. These cases can occur frequently, especially if the
host is an animal without reference genome available, as presented in
the following analyseis of two biological samples.

3.2. Evaluating the pipeline on the biological samples

In this work, we demonstrate the combination of the single modules
into one virus detection pipeline on recently published sequenced
samples. With our pipeline, we were able to rediscover the virus strains
identified in the original publications of the samples. To evaluate the
proposed modules on two biological data sets, we show the re-analysis
of two published high-throughput samples: a tinamou sample (NGS-
16007) (Jo et al., 2017a) and a fin whale sample (NGS-16021) (Jo et al.,
2017b). Fresh frozen liver tissue and formalin-fixed paraffin-embedded
(FFPE) brain tissue were used as starting material for the tinamou and
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fin whale samples, respectively. For both, a DNA and RNA extraction
was performed and were run as separate samples. Therefore, four
samples had been analyzed: NGS-16007-DNA, NGS-16007-RNA, NGS-
16021-DNA, and NGS-160021-RNA. For both species, no reference
genome was available. In general, reference genomes for birds and
water animals are rare. All raw reads were preprocessed as quality
control using Trimmomatic (Bolger et al., 2014). Trimmomatic re-
moved reads that were shorter than 50 bases and clipped nucleic bases
at the beginning and the end of the reads with a quality lower than 10.
We also removed potential left over Ilumina adapters. The sample NGS-
16007-DNA included 621,465 reads, 570,134 (91.74%) after quality
control, NGS-16007-RNA had 599,077 read, 539,977 (90.13%) after
quality control, NGS-16007-DNA consists of 208,281 reads, 158,625
(76.16%) after quality control, and NGS-16021-RNA consists of
675,244 reads, 583,798 (86.46%) after quality control. For the DNA
read mapping we used the Bowtie2 and the Star mapper. The reference
genome was the artificial genome consisting of approx. 2.4 million viral
sequences. The amino acid mapping was done by Pauda using Bowtie2
as mapper. We report a virus species as detected, if more than five read
are mapped to the species reference. The data examples used for our
pipeline evaluation have the advantage, that a PCR and corresponding
primers have confirmed the existence of the virus strains in the samples
as detailed by the related publications. To try out our pipeline, we refer
the reader to other example data sets available at Sequence Read Ar-
chives (Sequence Read Archives, n.d.).

The results for all four samples are shown in the Supplementary
Tables 1 to 8. Table 2 reports the overall number of detected species by
DNA read mapping. Due to the higher amount of multi-read mappings
by Bowtie2, it produced much more detected species than Star. Sup-
plementary Fig. 2 shows the scatter plot of the mapped read counts by
Bowtie2 and Star. It can be clearly seen, that Bowtie2 maps more reads
to the reference sequences than Star. We know from the already pub-
lished results that the sample NGS-16007 is infected with a DNA virus
(avian hepadnavirus: GenBank accession numbers KY977506 and
KY977507) and the sample NGS-160021 with an RNA virus (dolphin
morbillivirus: GenBank accession numbers KR337460, KY681807,
andKP835991). We are able to detect the avian hepadnavirus with rank
1 and 2 using Bowtie2, NGS-16007-DNA with 858,208 (KY977506) and
857,901 (KY977507) mapped reads, as well as the Star mapper, NGS-
16007-DNA with 907,899 (KY977506) and 598,367 (KY977507). Both
avian hepadnavirus strains are also ranked at position 1 and 2 on the
amino acid sequence mapping. Using Bowtie2, a full coverage of the
reference can be reached, 99% percent of the assembled read consensus
sequence is equal to the reference, and the mean base frequency is
above 91.1%. The numbers for the Star mapper are nearly the same
only the mean base frequency being lower at approx. 81%. Overall,
there is no difference between the usage of the DNA or RNA extraction
sample.

The true virus is also known for the NGS-160021 sample, which was
infected by a dolphin morbillivirus. The morbillivirus was not detected

using the NGS-160021-DNA sample. The findings for the NGS-160021-
DNA sample in the Supplementary Table 7 show only a low number of
DNA and AA hits, as well as worse coverage an mean base frequencies.
We will therefore judge these findings as false positives. The fpr of 0.5
(STAR) and 0.45 (Bowtie2) is also higher in this sample, which also
gives evidence towards a false positive sample without any infection of
a viral strain. On the other hand, the morbillivirus was identified using
the NGS- 16021-RNA sample. The top ranked hit can be seen in
Supplementary Fig. 1. The top 20 of the detected viral strains are
mainly connected to the dolphin morbillivirus (Supplementary
Table 8). This ranking would not be achieved by concentrating only on
the DNA sequence reads. The ranking is mainly driven by the amino
acid mapping, where the top hits are all connected to the dolphin
morbillivirus. This example shows the strength of the combination of
the DNA read sequence and the amino acid mapping. Moreover,
Bowtie2 is able to detect all three species while Star is only able to
detect two. Star looses one of the three species due to the lower amount
of multi-read mappings.

We evaluated also the coverage of Bowtie2 and Star. Supplementary
Figs. 7 to 9 show the read coverage of the reference. Both mapping tools
detect the true virus strain in the NGS-16007 sample with 100% cov-
erage (orange points). The difference of the multi-mapping and the
coverage can be seen in the NGS-16021-RNA sample. Bowtie2 generates
more hits and is therefore able to achieve a higher coverage of the true
findings (orange points). This behavior is also true for the percentage of
equal bases between the reference and the reads as well as the mean
base frequency of the mapped reads.

To judge the results of the artificial genome mapping and the
‘pseudo’ assembly of the DNA sequence reads, we used the assembler
(IVA) (Hunt et al., 2015) for accurate de novo assembly of RNA virus
genomes. IVA has an internal virus detection approach using Kraken
(Wood and Salzberg, 2014). Table 3 shows the lowest branches of the
Kraken report. Furthermore, we have blasted all assembled contigs
build by IVA using the NCBI blastn suite (Supplementary Tables 9 to
12). The Kraken results show the same tendency. The tinamou sample
(NGS-16007) is infected with a bird hepatitis B virus. The tinamou
hepatitis B virus was not in the Kraken database. Therefore, the hit
produced was the nearest possible one. The blastn results of the contigs
identified the tinamou hepatitis B virus. The fin whale sample of the
RNA extraction was also correctly classified as a Dolphin morbillivirus.
The blastn results could also detect parts of the dolphin morbillivirus,
but was not able to find the correct GenBank accession number men-
tioned in Jo et al. (2017) (Jo et al., 2017b). Overall, only a small pro-
portion of the virus reference genomes could be covered by the DNA
sequence reads.

4. Discussion

We have presented a new approach for the detection of viral se-
quences and families using high-throughput sequencing data for sce-
narios where no host reference genome is available. The three pre-
sented modules can be used separately or as a combination in a
complete virus detection pipeline. The use of the artificial genome al-
lows to overcome the missing of the host reference genome, while the
decoy approach is designed to judge the potential proportion of false
positives by the used mapper. The visualization of the mapped reads to

Table 2
Number of detected virus strains nvirus with more than five DNA read counts,
true positive rate of the decoy reads tprd, false positive rate fpr, and multi
mapping rate mmr.

Bowtie2 nvirus tprd fpr mmr

NGS-16007-DNA 130 0.74 0.28 2.32
NGS-16007-RNA 372 0.63 0.30 5.10
NGS-160021-DNA 421 0.72 0.45 2.89
NGS-160021-RNA 1351 0.82 0.44 7.63
STAR nvirus tprd fpr mmr
NGS-16007-DNA 7 0.99 0.20 1.04
NGS-16007-RNA 18 0.96 0.20 1.11
NGS-160021-DNA 40 0.94 0.50 1.02
NGS-160021-RNA 161 0.96 0.39 1.40

Table 3
Kraken report of the contigs generated by IVA.

Kraken

NGS-16007-DNA Parrot hepatitis B virus Parrot hepatitis B virus
NGS-16007-RNA Parrot hepatitis B virus Parrot hepatitis B virus
NGS-160021-DNA Parrot hepatitis B virus Parrot hepatitis B virus
NGS-160021-RNA Dolphin morbillivirus Duck adenovirus 2
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the reference removes false findings of badly mapped or uninformative
reads at the edges of the reference.

A clear advantage of our detection pipeline is its speed. With our
approach, the processing of a single sample takes 30min on average on
a Linux-cluster with 40 cores. The speed is mainly achieved by mapping
the sample fastq-file against the artificial genome fasta-file, wherein
chromosomes represent viruses or parts of them. This approach is
especially useful when sequencing is performed with a low coverage
which does not allow for the assembly of larger contigs. In an assembly
based pipeline, contigs could be aligned to virus reference genomes
using blast tools. Each contig would then get a list of potential origins
ordered by the E-value. Depending on the length of the contigs the
calculations would still be time-consuming. As determined by Scheuch
et al. (Scheuch et al., 2015), aligning 250.000 reads by the blastn
program takes approx. 128 h. This approach is therefore only reason-
able when host reads can be removed before the assembly procedure,
and when sequencing was performed with sufficient coverage for as-
sembly. Thus, our pipeline makes use of read mapping which is much
faster than read alignment. The higher speed comes with some un-
certainty in the mapping results. Therefore, we added a decoy, a amino
mapping and visualization layer to the judgment of the detection
findings.

Although the processing of an individual sample with our pipeline is
relatively fast, the building of the artificial genome is still time-con-
suming and may be limited by the available working memory. To
overcome the memory burden, different chunks or blocks of the arti-
ficial reference genome could be built and then analyzed sequentially.
Next, the final results from the chunks must be merged. As an asset, the
artificial genome has to be built once to make the pipeline run.

A further useful characteristic of our detection pipeline is that multi-
maps can occur, i.e. reads that map to multiple positions. This can
eventually be helpful to identify quasispecies or different strains of the
virus. As mentioned by Domingo et al. (Domingo et al., 1985; Domingo
and Schuster, 2016), RNA virus strains tend to build up quasispecies in
a biological sample: an extremely heterogeneous population of one
viral RNA strain with many mutation in its genome. Therefore, many
variations of one RNA strain may exists in the host. This is also a
common problem with the research on new zoonoses (Woolhouse et al.,
2016). Although the infectious RNA virus strain might not be detected,
because the strain is not very similar to the original NCBI GenBank
entry, single fragments of the virus might be identified and be part of
the artificial genome used in the pipeline. In this case, the multi-maps
produced by Bowtie2 are not a problematic feature but a possible so-
lution to detect all subtypes of the infectious RNA strain. To detect such
quasispecies our approach helps by using a ‘pseudo’ assembly of the
DNA sequence reads guided by the mapping positions on the reference
genome. In contrast, if the reads are directly assembled and compared
to the reference the problem of host polluted reads would occur. In
addition, the heterogeneous quasispecies and a majority of other
naturally occurring viral strains would drastically lower the assembly
quality of the generated contigs.

While multi-maps are useful for identifying quasispecies, their oc-
curence must still be controlled. Therefore, we tested different DNA
mappers on a decoy database to get on idea of the behavior of the
mappers. Especially, the awareness of false positive mapped reads in
the case of multi-mapping must be sharpened. Therefore, viral strains
with only a small number of mapped DNA sequence reads must be
handled with care and reproduced in the wet lab. The BWA mapper
allows no multiple read mappings, which turned out as a big drawback
in real experimental data and for the answering of many biological
questions.

In examples with real biological data, we were able to detect the
virus strains with our computational analyses. However, it is important
to take into account that the success of the analyses can also be de-
pendent on the sample material (frozen tissue/FFPE), the virus char-
acteristics (DNA/RNA), and stage of infection (acute/chronic). In the

case of the tinamou sample, which was a frozen tissue, avian he-
padnavirus (a DNA virus) was detected using datasets generated from
both DNA and RNA extractions. Whereas in the case of the fin whale
sample, which was an FFPE tissue, dolphin morbillivirus (an RNA virus)
was only detected using the dataset generated by RNA extraction.

In general, a computational virus detection pipeline can not be fully
automated and results remain uncertain. Therefore, we implemented
the decoy modul to assess different error rates. Finally, the pipeline
produces a sorted list of possible hits which must then be validated by
further laboratory assays. Thus, NGS data allows to get a starting point
for the validation in the wet lab. The DNA sequence reads and the as-
sembled contigs allow to design primers for later diagnostic stages. In
order to not omit a virus for further laboratory evaluation, we accept a
higher rate of false positives to have the power to detect all possible
infectious virus strains.

5. Conclusion

Current bioinformatics pipelines for virus discovery mostly assume
that reference genome data of the host is available or that the se-
quencing coverage is sufficiently large to assemble contigs. Our newly
developed pipeline is applicable if both requirements are not fulfilled.
The three modules we presented can either be incorporated in-
dividually in other pipelines or be used as a full pipeline. Further, we
evaluated the practicability of three different mappers for the detection
of viral reads. From this evaluation, we recommend the STAR or
Bowtie2 mapper which allow for possible multi mapping of reads. Thus,
quasi species and virus of the same family can be discovered. In con-
strast, the BWA mapper does not allow multi mapped reads and will
therefore spread reads over the family. We are the first to present a
decoy approach within a virus detection pipeline that can be used to
assess error rates so that the quality of the final result can be judged. We
provide an implementation of our modules via Github (https://
github.com/jkruppa/virDisco). However, the principle of these
modules can easily be re-implemented by other researchers.

Supplementary data to this article can be found online.
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