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1 Introduction

As suggested by its title, this is a thesis on holography. The majority of peo-
ple will associate this with the science of creating holograms, which encode
all information about some three-dimensional structure on a two-dimensional
image. While the most famous examples of such holograms often occur in
science �ction, there are also many practical applications. For example, our
credit cards contain holograms that are used for authentication purposes.
Moreover, according to some media, a hologram of the late Ronnie James
Dio is currently being used in live concerts.1 In 1971, Dennis Gabor was
awarded the Nobel Prize in Physics for inventing the holographic method.
About twenty years later, holography gained an alternative meaning in

the context of the so-called holographic principle of quantum gravity [4, 5].
A particular case of this principle, called the AdS/CFT correspondence [6],
roughly states that some physical systems without gravity in d dimensions
have an equivalent description in terms of a theory with gravity in d + 1
dimensions. Because of the di�erence in dimensions, the former could then
be seen as a holographic image of the latter.2 Therefore, this correspondence
is also known under the name of holography. In this thesis we aim to use this
alternative meaning of holography to construct a model for ultracold atomic
gases at unitarity.

1.1 Unitary gases

First and foremost, let us illustrate the physical systems that we ultimately
want to study in this thesis. These are ultracold, strongly interacting, atomic
gases. We start by discussing the meaning of these three italicized adjectives
(and the adverb) in more detail.

1This is actually fake news: the hologram of Dio is not really a hologram, but rather an
image created by the so-called Pepper's ghost illusion technique.

2Although this has led to many claims that the world we live in is a hologram, it is better
to view this nomenclature as just a metaphor.
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1 Introduction

Winter is coming

How cold is ultracold? Typically, experiments involving ultracold gases are
carried out at temperatures that range from nanokelvins to microkelvins,
although even temperatures of the order of tens to hundreds of picokelvins
have been achieved [7, 8]. Given that a winter night below 250 K is usually
already considered quite cold, this indeed validates the use of the pre�x
`ultra'. Another justi�cation for this can be found by comparing to the
cosmic microwave background radiation, which has a temperature of about
3 K.
Nevertheless, in physics we do not usually compare quantities with an ar-

bitrary everyday scale, such as a winter night's temperature. Instead, we
compare with the other relevant scales that are present in the physical sys-
tem of interest. A physically more interesting observation can be found by
considering the interaction potential between the atoms. For ultracold gases,
the range R of this potential is typically much smaller than the thermal de
Broglie wavelength Λth, which scales as T−1/2. In particular, the tempera-
ture T in these gases is such that the typical energy corresponding to two
scattering atoms is too low to overcome the centrifugal barrier3 that has
to be added to the interaction potential, even for orbital quantum number
l = 1. The collision processes between two atoms are therefore dominated
by s-wave scattering, for which l = 0 and this barrier vanishes. This leads to
the important conclusion that we can use the s-wave scattering length a as a
parameter that completely determines the interatomic interactions in these
systems. As we shall see later, this scattering length can diverge. When this
happens, the system is said to be at unitarity.4

The next relevant scale is set by the density n, or equivalently the average

3As a reminder, this barrier is proportional to l(l + 1).
4This nomenclature stems from the following. When calculating the scattering amplitude
fk of two atoms in the gas with a relative momentum of magnitude ~k, one can show
that conservation of probability requires that |1 + 2ikfk| = 1 [9] and furthermore that
this in the long-wavelength limit leads to

fk '
−1

a−1 + ik
. (1.1)

As a consequence, the largest value of |fk| that is allowed by the unitarity of the
evolution operator is given by |fk| = 1/k, which is attained in the unitarity limit
a→∞, i.e., when the scattering length diverges.

2



1.1 Unitary gases

interparticle spacing d ' n−1/3. Ultracold gases are normally very dilute,
which means that also d is much larger than the range of the interaction
potential R. However, as the temperature is very low in these systems, we
can have that d ' Λth. This means that the temperature is of the order of
the critical temperature at which the system becomes quantum degenerate,
i.e., quantum statistics become important.

Fermions vs. bosons

Another adjective we promised to discuss is atomic. Needless to say, this
implies that the constituents of the ultracold gas are atoms. The important
distinction we should make is between bosonic and fermionic atoms. In
comparison to unitary bosons, unitary Fermi gases have been studied much
more extensively in the lab. Although there is also much interest in the
experimental realization of a unitary Bose gas, this turns out to be more
complicated to achieve, owing to the so-called E�mov e�ect.
In 1970, E�mov predicted the existence of a set of three-body bound states

in a system of bosons near the resonance of a two-body interaction that
occurs at unitarity [10]. Approaching the resonance at 1/a = 0 from below,
the �rst of such three-body states already appears at some �nite value a1 < 0,
where no two-body bound state exists. Increasing a gives rise to more trimer
states, where the scattering length at which the nth state appears is given by
an ' 22.7an−1. Moreover, the energy of these states obeys En ' En−1/22.72

[11, 12]. According to this, at unitarity an in�nite amount of E�mov trimers
should exist, whose binding energies can become arbitrarily low. Such E�mov
states have indeed been observed in experiments with ultracold Bose gases
at strong coupling [13, 14].
The existence of these E�mov states negatively impacts the lifetime of a

unitary Bose gas. This is because when three atoms collide and a bound
state is formed, the increase in kinetic energy to compensate the binding
energy is often enough for the atoms to escape the trapping potential of the
cloud. This leads to a three-body loss rate L3 de�ned by

Ṅ/N = −L3

〈
n2
〉
, (1.2)

where Ṅ denotes the derivative with respect to time of the particle number N
and the brackets denote a trap average. For a dilute gas at zero temperature

3



1 Introduction

this loss rate follows the scaling behavior [11]5

L3 ∝ a4. (1.3)

This indeed leads to quite a leviathan loss rate as the unitarity limit is
approached. On the other hand, at nonzero temperature the loss rate remains
�nite as a→∞, but then it scales as [15�17]

L3 ∝ Λ4
th ∝ T−2, (1.4)

which still strongly enhances the loss near resonance at extremely low tem-
patures. Although this loss rate impedes the experimental realization of a
metastable unitary Bose gas, many experimental attempts have been per-
formed [17�19].

Controlling scattering and creating universality

As mentioned before, the s-wave scattering length a plays the role of the
relevant measure for the interactions in ultracold gases. Strongly interacting,
the �nal phrase we promised to discuss, therefore means that |a| is large,
in fact even much larger than the interparticle distance d. In this thesis we
are particularly interested in the unitarity limit, where a diverges. Such a
resonance already occurs for simple interaction potentials such as a spherical
well with depth −|V0| and radius R. Solving the radial Schrödinger equation
for the relative motion of the two scattering atoms with this potential yields
a scattering length [20]

a = R

1−
tan

√
|Ṽ0|√
|Ṽ0|

 , (1.5)

where we de�ned the dimensionless interaction strength Ṽ0 ≡ mR2V0/~2 of
the potential, with m the atomic mass. The resonance can be seen in Fig.
1.1. Also shown in this �gure is the energy of the bound state that exists for
the shown values of V0. We see that the resonance occurs at the same point
at which this weakly bound state appears.
5Here and in eq. (1.4) we ignore a prefactor that is log-periodic in a and T respectively,
due to the E�mov tower of trimer states.
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1.1 Unitary gases
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Figure 1.1: The scattering length a and the dimensionless molecular bound-state
energy Ẽm ≡ mR2Em/~2 for the spherical-well potential as a function
of the dimensionless interaction strength Ṽ0 ≡ mR2V0/~2. The black
dashed line denotes the location of the resonance. Close to the reso-
nance, the energy of the bound state is given by Em = −~2/ma2 with
a ≥ 0.

In 1993 [21], it was discovered that it should be possible to gain exper-
imental control over the energy di�erence between the weakly bound state
and the continuum threshold of the two colliding atoms at E = 0 by using a
so-called Feshbach resonance.6 Here one uses a molecular state that di�ers
from the two scattering atoms in its magnetic moment, which leads to di�er-
ent Zeeman shifts when applying a magnetic �eld. Quite amazingly, this has
the consequence that it is possible to e�ectively tune the scattering length in
these systems by simply applying a magnetic �eld. This was veri�ed experi-
mentally �ve years later in Ref. [23] in an ultracold gas of sodium atoms, as
shown in Fig. 1.2. The e�ective scattering length a(B) in this system is now
given by

a(B) = abg

(
1− ∆

B −B0

)
, (1.6)

6Herman Feshbach's �eld of research was actually nuclear physics. Ironically, when a
colleague who had just read the term `Feshbach resonance' in a paper came to ask
Feshbach what it was, his �rst reaction was `Beats me!'. It is, however, unknown
whether this was a joke [22].
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1 Introduction

Figure 1.2: Experimental observation of a Feshbach resonance. Here the scatter-
ing length a is normalized by its background value abg that appears in
eq. (1.6). Reprinted by permission from Springer Nature Customer Ser-
vice Centre GmbH: Springer Nature, Nature, Observation of Feshbach

resonances in a Bose�Einstein condensate, S. Inouye, M. R. Andrews,
J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn et al., copyright 1998
[23].

where abg is the scattering length away from the resonance and ∆ and B0

are the width and the position of the resonance respectively. Note that this
is indeed very similar to the situation that occurs in Fig. 1.1, the main
di�erence being that the magnetic �eld strength now e�ectively allows for
experimental control over the interaction strength V0.
This exceptional experimental control over the scattering properties has

made ultracold gases an ultrahot research topic. It has for example led to
many studies on the transition from the BCS regime where 1/kFa < −1, to
the BEC regime where 1/kFa > 1 [24�29]. Here kF is the Fermi wavenumber,
which at zero temperature is �xed by the density by k3

F = 6π2n/(2s+1) with
2s+ 1 the spin degeneracy. Note that we use this de�nition also for bosonic
gases in the following. Furthermore, it is possible to create ultracold gases at
strong coupling by tuning the magnetic �eld near the value B0 in eq. (1.6),

6



1.1 Unitary gases

and in particular we can study the properties of the gas at unitarity.
An interesting feature of unitary gases is that the only two relevant length

scales that are left are the thermal de Broglie wavelength Λth and the inter-
atomic spacing d ∝ k−1

F that is set by the density n.7 At zero temperature d
is the only scale left. Consequently, all dimensionless thermodynamic quan-
tities, such as the ratio µ/εF of the chemical potential and the Fermi energy
εF = ~2k2

F /2m, must become constants. In other words, the thermodynamic
properties of unitary gases are universal [30]. These universal constants can
be measured in experiments. Theoretically, we can already demonstrate the
universality by for simplicity considering fermions described by BCS theory
in the unitarity limit. This theory is based on the BCS wave function for the
many-body ground state

|ΨBCS〉 =
∏
k

(
uk + vkψ

†
k,↑ψ

†
−k,↓

)
|0〉 , (1.7)

where ψ†k,σ creates an atom with momentum ~k and spin σ. Minimizing the
energy with respect to the coe�cients uk and vk then yields the famous gap
equation and the equation for the density [31]. In this manner we obtain at
zero temperature that

−m
2π~2a

=

∫
d3k

(2π)3

(
1√

(εk − µ)2 + ∆2
− 1

εk

)
, (1.8)

n =

∫
d3k

(2π)3

(
1− εk − µ√

(εk − µ)2 + ∆2

)
. (1.9)

Here εk = ~2k2/2m with k = |k| and the gap ∆ is the order parameter of
BCS theory. We note that the integrand in eq. (1.9) gives the momentum
distribution. For any given value of kFa, the system above can be solved
for µ and ∆ in terms of the Fermi energy. In particular, at unitarity the
left-hand side of eq. (1.8) vanishes, so that we can write it as

∫ ∞
0

dk

1− k
2√(

k
2 − x

)2
+ 1

 = 0, (1.10)

7Note that here we once again assume that kFR � 1, i.e., the range of the interaction
potential is negligible. However, for an atomic Bose gas R could in fact play a role
when including E�mov physics.
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Figure 1.3: (a) The left-hand side of eq. (1.10) as a function of x = µ/∆. Find-
ing the root of this function shows that eq. (1.10) holds for x ' 0.86.
(b) The momentum distribution as a function of k/kF , where the red
curve was obtained by multiplying the blue curve by k4/k4F to reveal
the asymptotic behavior. The contact parameter that follows from this
is C/k4F ' 0.24, or in terms of the chemical potential, C~4/µ2m2 ' 2.7.

where k ≡ ~k/
√

2m∆ and x ≡ µ/∆. This can be numerically solved for x
to �nd x ' 0.86, as shown in Fig. 1.3a. After this we can write eq. (1.9) as

y ≡
(

∆

εF

)− 3
2

=
3

2

∫ ∞
0

dk k
2

1− k
2 − x√(

k
2 − x

)2
+ 1

 ' 1.76, (1.11)

which we have evaluated numerically using the previously found value for
x. We therefore indeed �nd that dimensionless quantities such as x and
∆/εF = y−2/3 are universal numbers, i.e., they do not depend on what species
of atoms the gas consists of. Moreover, we can now plot the momentum
distribution as shown in Fig. 1.3b, which asymptotically behaves as C/k4.
This universal behavior de�nes the contact parameter C [32], which has also
been measured experimentally at unitarity [33].
We can use the obtained values of the constants x and y above to calculate

some other common dimensionless constants for unitary gases. These include
ξ and β that are de�ned by ∆ = ξεF and µ = (1+β)εF . From BCS theory we
obtain that ξ = y−2/3 ' 0.69 and β = xy−2/3 − 1 ' −0.41. We can compare
this to the experimental values ξ ' 0.5 and β ' −0.6 that were obtained in

8



1.2 Holography

unitary Fermi gases [27, 28, 34]. The di�erence is easily explained, since BCS
theory corresponds to the weakly interacting regime 1/kFa� 1, so that BCS
theory is not expected to hold at unitarity. Theoretically, it is challenging
to compute these universal constants more precisely, as we cannot perform
perturbation theory in the strongly interacting regime. Nevertheless, more
elaborate models based on for example Monte-Carlo simulations [35, 36] and
renormalization-group methods [37] have been able to reproduce the above
experimental values of the constants.
If, despite the complications caused by E�mov physics, it is possible to

create a metastable Bose gas at unitarity, then these Bose gases are also
expected to exhibit universal properties. However, the universal constants
such as β ≡ −1 + µ/εF will have di�erent values from their fermionic coun-
terparts, as the constituents of the Bose gas obey di�erent statistics. Still,
for comparison to the currently available experiments it may prove necessary
to include the three-body e�ects if we wish to model unitary bosons. This
spoils the universality, as this introduces an additional scale to the system
which is dependent on the atomic species [11]. On a positive note, the in-
clusion of E�mov physics also introduces many new interesting phenomena,
such as a much richer phase diagram [38].

1.2 Holography

Having explained our physical system of interest, we now turn to our com-
putational tool. This is based on a completely di�erent physical theory than
quantum mechanics, namely general relativity. The central object of this
theory is the metric gµν that determines the geometry of the spacetime. In
particular, we will be interested in theories of gravity described by the action

S =
c3

16πGd+1

∫
dd+1x

√
−g (R− 2Λ) , (1.12)

with Gd+1 Newton's gravitational constant in d + 1 spacetime dimensions,
R the Ricci scalar and g the determinant of the metric. Most importantly,
the action includes a cosmological constant Λ that is negative, as opposed
to the one in the universe we live in. The spacetime corresponding to the
above action is the so-called anti-de Sitter spacetime,8 often abbreviated as
8For now we ignore the black-hole solutions.
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1 Introduction

AdSd+1, or simply AdS.

What makes this spacetime useful to us, is that it is conjectured to be
dual to a strongly coupled conformal �eld theory (CFT) in d spacetime di-
mensions, which lives on the (conformal) boundary of the AdS spacetime.
This conjecture originates from string theory and is known as the AdS/CFT
correspondence, or sometimes as gauge/gravity duality or holography. More
precisely, the original form of this conjecture states that a type IIB string
theory on a AdS5×S5 spacetime is dual to N = 4 supersymmetric Yang-Mills
theory in four spacetime dimensions [6]. This means that it is possible to
compute quantities in this CFT by performing calculations in the string the-
ory. Moreover, the latter can be reduced to general-relativity calculations by
taking the low-energy limit and the classical limit of the string theory. The
duality then tells us that in this limit the CFT becomes (in�nitely) strongly
coupled and that the number of colors Nc in the CFT goes to in�nity. The
latter is known as the large-N limit, where N is the number of degrees of
freedom in the CFT.

Stringy details aside, the point here is that the AdS/CFT correspondence
provides a tool of describing strongly coupled, scale-invariant �eld theories,
with a large number of degrees of freedom. Nevertheless, from a condensed-
matter perspective it would be more interesting to describe other �eld theo-
ries than the supersymmetric one above. In principle, the way to go is then
to start from a string theory such as the above-mentioned one and modify it
a bit, which hopefully results in a more interesting CFT. Although this ap-
proach, called the top-down approach, yields precise results on the CFT side,
it is in practice intractable to perform the modi�cations needed to arrive at
a �eld theory that describes a certain system of interest.

In this thesis we therefore exclusively employ the alternative bottom-up
approach to the duality. This is based on the more general holographic
principle that relates an (asymptotically) AdSd+1 spacetime to a strongly
coupled �eld theory in d dimensions, without explicitly invoking string the-
ory. Equating the partition functions of these theories, the large-N limit
then implies that the free energy of the �eld theory can be found from the
on-shell action of the AdS spacetime. The calculational tool that is central

10



1.2 Holography

to this bottom-up approach is given by the celebrated GKPW9 rule [39, 40]〈
ei

∫
ddxJ(x)O(x)

〉
CFT

= eiSAdS[φ→J ]/~. (1.13)

Basically, this tells us that we can deform the CFT by an operator O, that
is sourced by J , by adding a �eld φ to the AdS spacetime which has this
source J as its on-shell boundary value. The latter is implied by the nota-
tion SAdS[φ→ J ].10 The GKPW rule then gives us the generating functional,
so that we can calculate all the correlation functions of O by studying �uc-
tuations of the scalar �eld in the gravity theory. This procedure is discussed
in more detail in chapter 2.
The plan of action of bottom-up holography is then as follows. We start

with an AdS spacetime, also known as the bulk, described by the action
in eq. (1.12). Next, we introduce additional content to the bulk in order
to introduce the desired deformations in the CFT. To �nd out exactly what
should be added to the gravity theory, we appeal to the so-called holographic
dictionary, which is based on the GKPW rule and translates between quan-
tities in the �eld theory and their gravitational duals. Below, we list some
entries taken from this dictionary that we will use in this thesis.

• To introduce a temperature in the boundary theory, we must add a
black hole to the bulk. The temperature is then given by the Hawking
temperature of this black hole.

• To study the �eld theory at a nonzero chemical potential, we must add
a U(1) gauge �eld to the gravity theory. This is part of a more general
entry, which states that a global symmetry on the boundary is dual to
a local symmetry in the bulk.

• A scalar �eld in the bulk is dual to a composite scalar operator on the
boundary. The bulk mass of the scalar �eld determines the conformal
dimension of the operator. A speci�c case of this entry can be used to
introduce a mass deformation in the boundary [41], as we discuss in
more detail in chapter 3 and chapter 5.

9Named after Gubser, Klebanov, Polyakov and Witten.
10More precisely, the source is in general not equal to the value of φ at the boundary, but

it is found from the near-boundary behavior of φ on shell.
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• A Dirac spinor in the bulk is dual to a chiral operator on the bound-
ary.11 Therefore, to get a Dirac fermion on the boundary, we need two
Dirac spinors in the bulk, as we show in chapter 3.

Finally, having added all the necessary ingredients to the bulk, we apply the
GKPW rule once again to compute the correlation functions in the boundary
theory.
A drawback of the bottom-up approach is that it yields expectation values

of composite operators in the CFT, whose microscopic origin remains con-
cealed. It is therefore a more phenomenological approach to holography than
the top-down path. The obvious advantage is that it leads to less sophis-
ticated models, that are given by eq. (1.12) supplemented with the actions
of the additional �elds and which are already able to reveal many universal
features of physical systems. Moreover, it allows us to avoid the behemoth of
technical wizardry that arises when truncating string theories. Nonetheless,
we should keep in mind that the mathematical validity of bottom-up models
depends on the existence of an embedding of the bulk in a higher-dimensional
string theory.

1.3 Unitary gases with holographic interactions

In the previous sections, we described the physical system we are interested
in and the computational tool we are going to apply. What makes atomic
gases at unitary suitable for a description based on holographic machinery?
For starters, unitary gases are strongly coupled systems, in which the at-
tractive interactions between the atoms diverge. Furthermore, as we have
seen in section 1.1, at unitarity the thermodynamic properties of the sys-
tem become universal. This is a consequence of the system being almost
scale invariant, meaning that the only scale in these gases at zero temper-
ature is set by the density. In section 1.2 we have seen that holography is
used to describe exactly this type of theories. In particular, it enables us to
compute universal features of (deformed) scale invariant theories at strong
coupling. Combined with the fact that these systems can be experimentally

11This is true for the examples considered in this thesis, where the number of spacetime
dimensions of the boundary theory is d = 4. For odd d, however, we get a Dirac fermion
on the boundary.
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1.3 Unitary gases with holographic interactions

realized using Feshbach resonances, ultracold gases at unitarity thus present
a benchmark problem for experimental tests of the holographic principle.
Naturally, before we can make sense of any comparison with experiments,

we need to compute something that is experimentally measurable. There-
fore, a prominent quantity in this thesis is the single-particle spectral function
ρ(ω,k), which in atomic gases can be measured using radio-frequency spec-
troscopy. It is found from the imaginary part of the single-particle Green's
function and satis�es a frequency sum rule which in our conventions reads∫

dωρ(ω,k) = f, (1.14)

with f the number of degrees of freedom, e.g., f = 4 for a Dirac fermion,
f = 2 for a nonrelativistic spin-1/2 particle and f = 1 for a nonrelativistic
spinless particle. To compute such a spectral-weight function, we consider
an elementary �eld ψ and couple it to a composite operator O that lives in a
strongly interacting CFT with a large amount of degrees of freedom N . The
corresponding action is given by

S =

∫
d4k

(2π)4

(
ψ†(k)G0(k)−1ψ(k) + gψ†(k)O(k) + gO†(k)ψ(k)

)
+ SCFT,

(1.15)
where g is a coupling constant, G0 is the noninteracting Green's function
of ψ and SCFT is the action governing the (deformed) CFT. Although the
microscopic interpretation of the composite operator O is camou�aged by
the bottom-up approach, from a condensed-matter perspective we think of
it as part of a CFT that is described by collective variables of ψ. We can
now integrate out the CFT to obtain the e�ective action

Se� =

∫
d4k

(2π)4
ψ†(k)

(
G0(k)−1 − Σ(k)

)
ψ(k), (1.16)

where the self-energy Σ(k) = g2GO(k) is given by the two-point function of
O, because the large-N limit suppresses the connected parts of n-point func-
tions for n > 2. This is the point where holography comes in, which we use to
compute the two-point function GO by means of the GKPW rule mentioned
in section 1.2. This approach, in which we use holography to describe the
self-energy of an elementary �eld, is also known as semiholography. In chap-
ter 3 and 5 we discuss how to implement this approach in the bulk, in such
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Figure 1.4: Illustration of the method used to �nd the Green's function for ψ with
holographic interactions. Here the self-energy, depicted by the dashed
curve, is found by linearly coupling the �eld ψ to the CFT through the
operator O. Essentially, the self-energy is then computed by having the
�eld probe into the gravitational bulk that is dual to the CFT in which
O lives. Here r is the additional radial coordinate of the bulk theory,
such that the boundary is at r =∞ and there is a black-hole horizon at
r = r+.

a way that the appropriate sum rule is satis�ed by construction. Because
holography usually describes relativistic theories, note that the �eld ψ above
is also relativistic, such as a Klein-Gordon �eld or a Dirac spinor. Thus, to
obtain the spectral function for a single atom from this procedure, we must
take the nonrelativistic limit, which we discuss in chapter 4 for the fermionic
case.
The ultimate goal of this thesis is to model the universal properties of uni-

tary gases by computing single-atom spectral functions with this procedure.
Note that we can obtain the universal thermodynamic properties from these
spectral functions by �rstly �nding the momentum distributions

N(k) =

∫
dωρ(ω,k)nB/F (ω), (1.17)

with nB/F the Bose-Einstein or Fermi-Dirac distribution respectively, and
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subsequently use these to �nd the density

n =

∫
d3k

(2π)3
N(k). (1.18)

This density as a function of temperature and chemical potential gives us
the equation of state, from which all thermodynamic functions follow.

1.4 Outline of the thesis

As stated, our holy grail is the construction of a holographic model for unitary
atoms. This thesis presents our progress towards this achievement. Basically,
we can subdivide the road towards this goal in three steps:

1. Construct a CFT by �nding a suitable gravitational background

2. Add probe �elds on top of this background to compute single-particle
spectra containing a mass gap

3. Take the nonrelativistic limit of the spectra by making the mass gap
large

Each of the following three chapters can be thought of as a single step in this
process for the unitary Fermi gas.
In more detail, in chapter 2 we discuss the holographic superconductor,

which is one of the �rst attempts to describe a condensed-matter system us-
ing the AdS/CFT-correspondence. Although we already study some spectral
functions in this chapter, the main importance of this chapter for the rest
of this thesis is to provide an extensive discussion of the gravitational back-
ground of the holographic superconductor. Hence, this chapter represents
step 1 above, as this background is very similar to the one that is used in
the other chapters.
In particular, in chapter 3, which represents step 2 above, we use a similar

background to obtain spectra of Dirac fermions from holography that include
a mass gap. Since recently it has been discovered that also a number of
electronic condensed-matter systems have an e�ective description in terms
of Dirac theory, this chapter also discusses the interpretation of our obtained
spectra in this perspective.
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In chapter 4 we then use the method from chapter 3 to prepare spectral
functions that contain a mass gap and subsequently study the nonrelativistic
limit of such spectral functions, thereby completing step 3. We also discuss
the equation of state that results from these spectral functions of nonrela-
tivistic fermions.
As an encore, chapter 5 contains some �rst results of our ongoing research

to apply the above three-step process to bosons as well.
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2 The holographic superconductor

background

2.1 Introduction

Ginzburg-Landau theory [42] has been used to describe physics near a con-
ventional superconducting phase transition with great success. Based on the
Landau approach to continuous phase transitions, it makes use of a complex
order parameter which acquires a nonzero expectation value in the super-
conducting phase. As this is a phenomenological model, a microscopic inter-
pretation of the order parameter was not included. This interpretation was
provided by Gor'kov several years after the Ginzburg-Landau theory [43],
using the microscopic model of superconductivity by Bardeen, Cooper, and
Schrie�er [31]. Here, superconductivity is described as the condensation of
Cooper pairs, which consist of a pair of electrons on top of a �lled Fermi
sea, bound together due to a phonon-mediated attractive interaction. By el-
egantly using a variational Ansatz for the BCS ground state, BCS mean-�eld
theory has succeeded in producing many accurate quantitative results that
have been con�rmed experimentally in weakly coupled superconductors.
As BCS mean-�eld theory only describes superconductors in the weakly

coupled regime, several di�erent approaches have been used to study strongly
coupled superconductors. One example of such an approach is Eliashberg
theory, which goes beyond the BCS mean-�eld theory by providing a more
accurate treatment of the phonons interacting with the electrons. The self-
energy due to these interactions now includes retardation e�ects, in contrast
to the BCS model. Consequently, the Eliashberg formalism is able to pro-
vide more accurate quantitative results [44] than the BCS formalism. How-
ever, in the class of high-temperature superconductors, the pairing mecha-
nism cannot be described by means of interactions with phonons. Therefore
even the Eliashberg approach is inapplicable and methods to describe high-
temperature superconductors remain mysterious. Fermion gases at unitarity
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2 The holographic superconductor background

are superconductors at in�nite coupling.1 These have been described by
numerical approaches based on the quantum Monte Carlo method [45�47].
Moreover, an analytical description by means of renormalization group the-
ory can be found in Ref. [37].
A novel approach to strongly coupled systems, which has become very

popular over the past decade, is the use of the holographic duality. Inspired
by ideas in Refs. [48, 49], a bottom-up approach of the AdS/CFT correspon-
dence to superconductivity was �rst given in Ref. [50], followed by many
other papers [51]. One of the most used models within this framework de-
scribes the superconducting phase transition as the condensation of some
complex order parameter in the boundary theory that arises from a dual
complex scalar �eld in the classical gravitational theory. From this model,
many characteristics of superconductivity have been reproduced, such as
the diverging DC conductivity, an energy gap, and a Meissner e�ect [52].
The microscopic interpretation of the order parameter is not known, since
bottom-up holography usually provides us with expectation values of un-
known composite operators rather than the single-particle or single-pair op-
erators which naturally arise in condensed-matter systems. It is therefore
unsurprising that results obtained through this approach are generally dif-
ferent from BCS derivations. However, one might wonder whether a phe-
nomenological Ginzburg-Landau theory can still be applied. The answer to
this question seems positive, based on e.g. the mean-�eld critical exponents
near the transition temperature [53].
The long-term aim of this work is to study ultracold fermion gases at uni-

tarity using a holographic approach. The holographic superconductor men-
tioned above seems like a logical starting point towards this aim, since this
model should in principle also consist of strongly correlated fermions. We
therefore study the properties of the holographic superconductor in detail in
this paper. The outline is as follows. In section 2.2, we discuss the back-
ground theory that will be used throughout this paper. This includes a short
review of the holographic superconductor solution and a comparison with a
number of universal BCS results. Moreover, our notation and conventions
are introduced here. Section 2.3 covers the scalar �eld �uctuations on top

1Although these fermion gases at unitarity consist of Cooper pairs in a condensed state,
the Cooper pairs consist of neutral fermions. Therefore the term super�uid may be
more appropriate.
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of the holographic superconductor background, including the resulting two-
point function of the order parameter in the dual theory in the normal phase.
Using a gradient expansion we then arrive at a local Ginzburg-Landau theory
for the holographic superconductor. A similar calculation was performed in
Ref. [54] above the critical temperature. We end with a brief discussion on
the superconducting phase in section 2.4.

2.2 The holographic superconductor

In this section, we describe the bulk geometry that we use throughout this
paper. This geometry was introduced in Ref. [52]. The purpose of this
section is to outline its properties that are most relevant to our results, as
well as to introduce our notation and conventions. After giving the bulk
solutions, we specify on how many and on which parameters this solution
exactly depends. We end the section by discussing the superconducting phase
transition that appears in the dual �eld theory and comparing its properties
with universal results which follow from BCS theory.
For the sake of generality, we give the gravitational bulk for an arbitrary

spatial dimension d. However, we will always specify to d = 4 when discussing
the dual �eld theory, which then has three spatial dimensions. Although
many high-Tc superconductors consist of layers and are thus e�ectively two-
dimensional, we are interested in three-dimensional superconductors here.
Examples of these include the ultracold gases at unitarity mentioned in the
introduction.

2.2.1 The gravity solutions

The gravitational background that we use follows from the action that de-
scribes gravity minimally coupled to a U(1) gauge �eld Aµ and a charged
scalar �eld φ. In SI units, it is given by

S =

∫
dd+1x

√
−g
[

c3

16πG
(R−2Λ)− 1

4µ0c
F 2−

(
|Dφ|2 +

m2c2

~2
|φ|2

)]
. (2.1)

Here the scalar �eld has mass m and charge q. Furthermore, G and µ0

are Newton's constant and the vacuum permeability in d spatial dimensions
respectively. In addition, Λ < 0 is the cosmological constant and Dµ is the
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gauge covariant derivative

Dµ = ∇µ −
iq

~
Aµ . (2.2)

The equations of motion that follow from this action describe the gauge �eld
and the scalar �eld backreacting on the geometry. Here, we consider static
solutions to these equations, with planar symmetry. The metric Ansatz can
then be written as [52]

ds2 = −f(r)e−χ(r)c2dt2 +
1

f(r)
dr2 +

r2

L2
dx2

d−1 , (2.3)

where the AdS radius L is given by L2 = d(d−1)/(−2Λ). Here the coordinate
r runs from the horizon r = r+, where f(r+) = 0, to the boundary at r =∞.
Demanding there to be no conical singularity in the imaginary-time geometry
at r+ gives the Hawking temperature

kBT =
~cf ′(r+)e−χ(r+)/2

4π
, (2.4)

where kB is Boltzmann's constant. Furthermore, the gauge �eld is temporal,
i.e., A = At(r)dt, and we choose a gauge in which φ is real. With these
Ansätze the equations of motion become

φ′′ +

(
f ′

f
+
d− 1

r
− χ′

2

)
φ′ −

m2c4 − q2A2
t
eχ

f

~2c2f
φ = 0 , (2.5)

A′′t +

(
d− 1

r
+
χ′

2

)
A′t − 2

q2µ0cφ
2

~2f
At = 0 , (2.6)

χ′ +
32πG

(d− 1)c3
r

(
φ′2 +

q2A2
t e
χ

~2c2f2
φ2

)
= 0 , (2.7)

f ′ +

(
d− 2

r
− χ′

2

)
f − rd

L2
+

16πG

(d− 1)c3
r

(
eχA′2t
2µ0c3

+
m2c2

~2
φ2

)
= 0 . (2.8)

Our gravitational background consists of solutions to these equations, which
we consider next.
Firstly, we consider the solution with a trivial scalar �eld pro�le. This is

just the well-known Reissner-Nordström black brane, given by φ = χ = 0,

At =
µ

q

[
1−

(r+

r

)d−2
]

(2.9)
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and

f =
r2

L2
−
(r+

r

)d−2 r2
+

L2
+

8πG

µ0c6

d− 2

d− 1

(
µ

q

)2 [(r+

r

)2(d−2)
−
(r+

r

)d−2
]
. (2.10)

This solution exists for any temperature T . We have written the solution
such that the integration constant µ has indeed the dimension of energy,
consistent with its interpretation as a chemical potential in the dual �eld
theory. A peculiar feature of this solution is that the event horizon and
hence the entropy remain nonzero when T = 0, making this a very unstable
phase at low temperatures.
The other solution we consider has a nontrivial scalar �eld. From the

equations of motion, we can derive that as r → ∞, this scalar �eld behaves
as

φ = φs

( r
L

)−∆−
+ φv

( r
L

)−∆+

+ . . . (2.11)

with ∆± = d/2 ± ν ≡ d/2 ±
√
d2 + 4 (mcL/~)2/2. The particular solutions

for which the source φs = 0 are holographic superconductor solutions in so-
called standard quantization.2 Upon imposing the boundary conditions that
we discuss in the next subsection, we can numerically �nd multiple of such
solutions which can be characterized by the number of zeros of φ. These
hairy black branes only exist below a certain critical temperature Tc, which
is proportional to µ and depends on d, m2, and q. Keeping µ �xed, we
have checked that the solutions where the scalar �eld has no nodes have the
highest critical temperature. In Fig. 2.1 three solutions for φ with a di�erent
number of nodes are plotted just below their critical temperature.
Note that the parameter m2 is constrained by the Breitenlohner-Freedman

bound to (mcL/~)2 > −d2/4, so that the coe�cients ∆± are always real.
Moreover, we will restrict ourselves to (mcL/~)2 ≤ −d2/4 + 1. By doing
so, we can compare our results in the following section to results where
alternative quantization is used. Within this range for m2, hairy black brane
solutions should exist for any q [55]. However, �nding solutions for q < 1
turned out to be very di�cult numerically.
Choosing the solutions with the lowest thermodynamic potential for a �xed

µ, i.e., using the grand-canonical ensemble, our gravitational background is
2In alternative quantization, φv = 0 is used instead. This is only possible when the term
with φs in eq. (5.30) has a normalizable fall-o�.
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Figure 2.1: The scalar �eld pro�le for three di�erent solutions of the equations of
motion with q̃ = 3 and m̃2 = −3.5. Here we already use the dimen-
sionless quantities φ̃, q̃, and m̃2 de�ned in eq. (2.12). For each solution
the temperature is �xed slightly below the critical temperature, so that
φ̃ remains small. The solution with zero nodes has the highest critical
temperature, namely kBTc0/µ ≈ 0.075. The solution with one node has
Tc1 ≈ 0.22Tc0 and the one with two nodes Tc2 ≈ 0.031Tc0.

given by the Reissner-Nordström solution for temperatures above Tc. Below
Tc, the hairy black brane where the scalar �eld has no zeros is thermody-
namically favorable [53]. We can show that for T = 0, the event horizon
of this hairy black brane vanishes [55], so that we no longer su�er from the
abovementioned instability of the Reissner-Nordström solution.

2.2.2 Free parameters and boundary conditions

An important property of the solutions is the number of parameters we can
tune. Hence we proceed by listing the boundary conditions imposed on the
solutions. First of all, we introduce the following dimensionless �elds and
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coordinates: 

(t̃, x̃, r̃) = (ct,x, r)/L

m̃ = cL
~ m

Ãt̃ =
√

16πG
µ0c6

At

φ̃ =
√

16πG
c3

φ

q̃ =
√

µ0c6

16πG
L
~cq.

(2.12)

Notice that this eliminates G, µ0, and L from the equations of motion. In
the remainder of this paper we will only use dimensionless units derived from
the ones above, while omitting the tildes on the quantities. This implies that
energy scales, such as qAt, µ, and kBT , are measured in units of ~c/L,
whereas all length scales are measured in units of L. The results can easily
be converted back to SI units using eq. (2.12).
Upon introducing the dimensionless quantities from eq. (2.12) in the action

in eq. (3.1), we obtain that

S/~ =
c3Ld−1

16πG~
S̃ ≡ NGS̃, (2.13)

where S̃ is the dimensionless action that no longer explicitly contains the
quantities G, µ0, and L. Hence, the action is proportional to the dimension-
less constant NG, which is related to the integer N of the large-N limit of
the dual �eld theory. The dimensionless quantities in eq. (2.12) are de�ned
exactly such that they do not depend on N . However, some SI quantities in
the action necessarily contain a dependence on N , and therefore on G, as we
will see later on.
Given a dimension d, the remaining parameters that determine the bulk

geometry are m2 and q. Furthermore, as the equations of motion are of
�rst order for χ and f and of second order for At and φ, we need six initial
conditions for a particular solution. Finally, we have the position of the event
horizon r+, at which we will impose the initial conditions.
Two conditions at the event horizon are given by At(r+) = 0 and f(r+) =

0. Furthermore, multiplying eq. (2.5) by f and evaluating at r+ yields the
constraint

f ′(r+)φ′(r+) = m2φ(r+), (2.14)

leaving three initial conditions. Requiring the solution to be asymptotically
AdS implies requiring that χ(∞) = 0. This condition can be incorporated
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by �rst using the initial condition χ(r+) = 0 and afterwards rescaling the
solution using the symmetry

eχ → C2eχ, t→ Ct, At → At/C, (2.15)

with C = e−χ(∞)/2, which leaves the equations of motion invariant. Finally,
we �x another initial condition by requiring φs = 0 in eq. (5.30), correspond-
ing to an unsourced vacuum expectation value. We are thus left with only
one initial condition that is unspeci�ed.
Using another symmetry of the equations of motion given by

r → ar, (t,x)→ (t,x)/a, f → a2f, At → aAt, (2.16)

we can obtain any solution from a solution with r+ = 1. Thus we see that
our bulk solution can only nontrivially depend on d, m2, q and, due to the
unspeci�ed initial condition, on one additional parameter which we take to
be kBT/µ.
Naturally, the geometry of the Reissner-Nordström black brane does not

depend on the parameters m2 and q. The dependence on these parameters
becomes visible only after including scalar �uctuations to this background.

2.2.3 The phase transition and Ginzburg-Landau theory

To describe the theory on the boundary, we concentrate on the case d = 4,
such that the boundary has three spatial dimensions. After having solved the
equations of motion, we can extract boundary values corresponding to phys-
ical quantities from the solution. From the scalar �eld expansion eq. (5.30),
we obtain the order parameter 〈O〉 = 2νφv which is sourced by φs, see e.g.
Ref. [56]. Similarly, we can expand the gauge �eld near the boundary as

At =
µ

q
− nq

2
r−2 + . . . . (2.17)

Here we have written the integration constants in such a way that µ corre-
sponds to the dimensionless chemical potential, measured in units of ~c/L.
The quantity n corresponds to a dimensionless number density in the dual
�eld theory. Finally, given a bulk solution, we obtain the temperature of the
dual �eld theory from the Hawking temperature in eq. (3.3).
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From the discussion in the previous subsection it follows that for a given q
andm2 physical quantities can depend on kBT/µ, but may also contain a de-
pendence on NG. This dependence follows directly from the proportionality
of the bulk action to NG in eq. (2.13). Additionally, we may wonder about
the physical meaning of the bulk parameters. The mass m determines the
scaling dimension of the order parameter 〈O〉, as follows from the expansion
in eq. (5.30). The charge q also de�nes a property of the �eld theory. In
particular, it is related to the structure constants that appear in the three-
point functions [49]. Note that the dimensionless charge q does not give the
charge of the operator 〈O〉, which can most easily be seen from its de�nition
in eq. (2.12). As we have no numerical value of the AdS radius L and the
constants µ0 and G in d = 4 dimensions, the proportionality factor between
the charge in SI units and its dimensionless counterpart remains unknown.
Thus, even if we consider 〈O〉 as an expectation value related to Cooper pairs,
so that we know there are two particles involved, we do not know the value
of q. Finally, we have the parameter NG, which is proportional to the integer
N of the large-N limit. Hence in this limit we still have a �nite parameter
N/NG.
As the source term in the background is put to zero by construction,

the dual theory acquires an unsourced expectation value below Tc. This
corresponds to an order parameter of a phase transition which spontaneously
breaks the U(1) symmetry. In Fig. 2.2 the order parameter is shown as a
function of the ratio kBT/µ for various values of q and m2. We can deduce
from this that the phase transition is always of second order. Therefore, we
can describe the order parameter 〈O〉 with a Ginzburg-Landau model. More
speci�cally, such a model can be represented by the action

S = −
∫

dt

∫
d3x

(
α|O|2 +

β

2
|O|4

)
, (2.18)

where α and β are temperature-dependent real coe�cients. For β > 0, there
appears a nontrivial global minimum

〈O〉 =

√
−α
β
, (2.19)

when α becomes negative below the transition temperature. Note that we
have chosen the expectation value of O to be real here, which corresponds to

25



2 The holographic superconductor background

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

T/μ

〈O〉

μΔ+

(a) q = 3

0.00 0.02 0.04 0.06 0.08
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T/μ

〈O〉

μΔ+

(b) m2 = −3.5

Figure 2.2: The expectation value of the order parameter as a function of the tem-
perature. In (a), q is �xed and m2 decreases from m2 = −3 for the
curve with the lowest critical value of T/µ to m2 = −3.9 for the curve
with the highest critical value of T/µ, with steps ∆m2 = −0.1. In (b),
m2 is �xed and q increases from q = 1 for the curve with the lowest
critical value of T/µ to q = 10 for the curve with the highest critical
value of T/µ. We plotted integer values of q here. The exception is
the dashed orange curve for q = 1.4, which was added to show that the
dependence on q of the expectation value of the order parameter at zero
temperature is not monotonic.

the gauge choice of a real φ in the bulk theory. Moreover, the numerical data
yields that 〈O〉 ∝ |T − Tc|1/2 near Tc. This suggests the conventional choice
α(T ) ≈ α0(T − Tc) and β = β0 6= 0 for the coe�cients near Tc, as from this
we indeed obtain the well-known mean-�eld result 〈O〉 ∝ |T − Tc|1/2 in the
superconducting phase. The temperature dependence of α and β is con�rmed
by the calculations performed below. However, it is in this bottom-up case
not possible to extract such a temperature dependence from a microscopic
theory, since as mentioned in the introduction, the microscopic origin of the
order parameter is not known. It may however be possible to formulate a
microscopic theory using a top-down approach, where one starts with the
full duality between type IIB string theory and super Yang-Mills theory, and
performs consistent truncations to arrive at the desired model.
Although the above Ginzburg-Landau model can be applied for all the cases
shown in Fig. 2.2 , the parameters in the model can be seen to depend on q
and m2. For example, the value of the order parameter at zero temperature
has a nontrivial dependence on both m2 and q. The �gure shows that this
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2.2 The holographic superconductor

(a) Critical temperature (b) α0/β0

Figure 2.3: (a) The critical temperature as a function of the parameters q and m2.
(b) The proportionality constant between the order parameter and |T −
Tc|1/2 near the critical temperature as a function of q and m2. The
tildes above the parameters imply that they are scaled with appropriate
powers of µ to make their scaling dimension zero.

dependence is not monotonic. In general, the critical temperature increases
upon increasing q or |m2|, as shown in Fig. 2.3a.3 The coe�cients α and
β also depend on q and m2. In Fig. 2.3b we have shown this dependence
for the coe�cient α0/β0, which is the square of the proportionality constant
between 〈O〉 and |T − Tc|1/2 near the transition temperature. Scaling the
temperature by Tc and the order parameter by its value at T = 0, we obtain
from Fig. 2.2 the plots in Fig. 2.4 . We see that the rescaled curves show
very little dependence on m2 and q, except for lower values of q. The black
curve corresponds to BCS theory. This is a universal result, i.e., this curve
is common to all BCS superconductors. Hence, deviations from this curve
are a result of strong-coupling e�ects.
In BCS theory, the order parameter corresponds to the energy gap ∆ of

the fermionic single-particle excitation spectrum. The quantity 〈O〉 does not
in general have the (scaling) dimension of energy. Nevertheless, since both ∆
and 〈O〉 show mean-�eld behavior near the transition temperature, 〈O〉 could
be proportional to the gap. The proportionality constant can still depend on
q and m2 in a nontrivial way. This proportionality constant should cancel in
Fig. 2.4 , i.e., 〈O〉 / 〈O〉T=0 = 〈∆〉 / 〈∆〉T=0. We have therefore attempted to

3We have checked that in alternative quantization, the critical temperature increases
upon decreasing |m2|.
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Figure 2.4: The scaled order parameter 〈O〉 / 〈O〉T=0 as a function of T/Tc for dif-
ferent values of q and m2. We have used all values of q and m2 which
are plotted in Fig. 2.2 as well. The black curve is the result from BCS
theory. Apart from the red curve and dashed orange curve, correspond-
ing to q = 1 and q = 1.4 respectively and m2 = −3.5, the dependence
on q and m2 seems small. The other curves have q ≥ 2.

extract this proportionality constant from this �gure in a di�erent manner,
using the fact that at small temperatures we have the behavior [57]

〈∆〉 (T )

〈∆〉 (0)
− 1 ∝ exp

[
− 〈∆〉 (0)/T

]
. (2.20)

However, as we approached zero temperature, our numerical data became
too inaccurate to reliably obtain the gap from this expression.
Finally, we have shown in Fig. 2.5a the dependence of the zero-temperature
(dimensionless) number density n(0) on the parameters q and m2. This
number density is determined from the bulk solution using eq. (2.17). Notice
that for a given q and m2, the ratio n(0)/µ3 is �xed. In contrast, since the
action is proportional to NG as de�ned in eq. (2.13), the total density in SI
units contains an additional factor of NG with respect to its dimensionless
counterpart. The exact relation is

n = NGñL
−3, (2.21)
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2.2 The holographic superconductor

(a) (b)

Figure 2.5: (a) The total number density of the holographic superconductor at zero
temperature. (b) The parameter β ≡ −1 + µ/εF as a function of q and
m2. Here we have taken N/NG = 1.

where we temporarily restored the tilde to distinguish the dimensionless den-
sity ñ from the dimensionful one n. It follows that the total density diverges
in the large-N limit. However, we are interested in the density of one species,
i.e., the total density divided by the number of species N . This density coin-
cides with the density numerically obtained from eq. (2.17) up to the factor
NG/N , which remains an unknown parameter, but should in principle be
�xed by a top-down approach.

The �xed value of n(0)/µ3 is reminiscent of an ultracold fermion gas near
a Feshbach resonance [58]. In such an ultracold gas, there are two indepen-
dent length scales at zero temperature. One of these is the s-wave scattering
length a, which controls the strength of the interaction between the fermions
within a Cooper pair. The other length scale is the inverse Fermi wave-
length k−1

F , which at zero temperature is related to the number density by
n = k3

F /(3π
2) for a single fermion species with two spin components. All

dimensionless thermodynamic quantities can then be expressed as a func-
tion of the dimensionless quantity 1/kFa. In the weakly coupled BCS limit
there are small attractive interactions, so that 1/kFa becomes very negative,
whereas in the BEC limit 1/kFa is positive and the Cooper pairs form two-
body bound states. In the strongly coupled regime 1/kF |a| < 1 there is a
smooth crossover between the BEC and BCS regime, which is appropriately
called the BEC-BCS crossover. In the unitarity limit, 1/kFa = 0 as a di-
verges, such that the thermodynamics can only depend on kF . Similar to the
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2 The holographic superconductor background

situation in our dual �eld theory, dimensionless quantities like µ/εF ≡ 1 +β,
with εF the Fermi energy, then become universal constants. This is one of
the claims of the so-called universality hypothesis [30].
The function β(kFa), not to be confused with the parameter β in the

Ginzburg-Landau action in eq. (2.18), can be determined from experiments.
For an ideal gas at zero temperature one has µ = εF , so that β = 0. In the
weakly coupled BCS limit one has small attractive interactions, so that β
becomes a small negative number. For an ultracold Fermi gas at unitarity,
the variational BCS wave function yields that β = −0.4 [9], whereas Monte-
Carlo simulations show that β ≈ −0.6 [45] and experiments have yielded
β = −0.7 ± 0.1 [59]. Naturally the strong coupling yields a deviation from
the BCS theory result. In Fig. 2.5b , we have plotted the constant β for
the holographic superconductor. To obtain this �gure, we assume that the
bosonic order parameter comes from a pair of fermions4 with Fermi velocity
c, such that εF = ~ckF . This is because εF is de�ned with respect to the ref-
erence system dual to AdS spacetime without hair, which yields a relativistic
�eld theory where the Dirac cones are just given by ω = ±c|k|. Moreover,
we have �xed the number of species to N = NG. For the values of q and m2

shown, we see that the result obtained in Fig. 2.5b has the right order of
magnitude for a super�uid in the BEC-BCS crossover regime.
The question now arises how high the critical temperature of the strongly

coupled superconductor in the dual �eld theory actually is. As we have
already noticed from Fig. 2.3a , the critical temperature is highest when m2

is close to the BF-bound and q is large. As shown in Fig. 2.6a , the critical
ratio of T and µ saturates for large q to Tc/µ ≈ 0.16 ≈ 1/2π. These values
are comparable to the regime of unitary Fermi gases. If we rescale Tc by the
Fermi energy instead, using the same value for NG/N as before, we obtain
Fig. 2.6b . We obtain that Tc/εF ∝ q2/3 for large values of q. Due to this
dependence on q and NG/N , we cannot unambiguously compare the value
of Tc/εF to other results, obtained for example by experiments or quantum
Monte-Carlo simulations. Finally we note that in alternative quantization,
the critical temperature is the highest when m2 is close to the upper bound
m2 = −3. Then the ratio Tc/µ saturates to about 1.7, which is more than
ten times larger than in normal quantization.

4This means that N corresponds to the number of fermionic species in our theory. See
[1] for further details on this.
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Figure 2.6: The critical temperature scaled by (a) the chemical potential and (b)
the Fermi energy respectively. In both �gures, m2 = −3.9999. In (b),
we used N/NG = 1.

2.3 Order parameter �uctuations

In the previous section, we have speci�ed which gravitational background and
corresponding dual �eld theory we use. In this section, we study the scalar
�eld �uctuations on top of this background. From these we subsequently
determine the two-point function corresponding to the order parameter dy-
namics in the normal phase of the dual �eld theory and describe this with a
time-dependent Ginzburg-Landau model.

2.3.1 Calculating two-point functions

When given an action for the bulk theory, there is a well-known procedure
for calculating the corresponding retarded Green's function of the boundary.
This gives information about the dynamics of the system, e.g., the quasinor-
mal modes coincide with the poles of the retarded Green's function [60]. Let
us �rst sketch how to �nd this retarded Green's function. A more extensive
explanation of this approach can be found e.g. in Ref. [61]. Consider a bulk
action that depends on the �elds ΦI . Here, the index I labels the di�erent
�elds in the theory, which are in our case the scalar �eld φ, the gauge �eld
Aµ, and the metric gµν . To obtain the Green's function, we expand the ac-
tion up to second order in the �uctuations δΦI of the bulk �elds around their
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2 The holographic superconductor background

expectation values
〈
ΦI
〉
. The result can be written in the form

S(2) = −1

2

∫
dd+1x δΦ†G−1

B δΦ + S
(2)
∂ , (2.22)

where S(2)
∂ is a boundary action and G−1

B is a linear operator acting on δΦ.
This de�nes the linearized equations of motion in the bulk as

G−1
B δΦ = 0. (2.23)

Because the matrix G−1
B is in general not diagonal, this becomes a coupled

system of linear ordinary di�erential equations.
Near the boundary, we can expand the solutions to the linearized equations

of motion as
δΦI = δΦI

sr
−∆I
− + δΦI

vr
−∆I

+ + . . . . (2.24)

Here, the values of the exponents ∆I
± depend on which �eld is considered.

For example, for the scalar �eld the exponents are given in eq. (5.30). Fur-
thermore, the coe�cients δΦI

v correspond to �uctuations in the expectation
values of the operators in the dual �eld theory. The δΦI

s are the source
�uctuations. In general, the �uctuation of a single source will lead to �uctu-
ations in the expectation value of all operators. This is a direct consequence
of the fact that the linearized equations of motion in eq. (2.23) are coupled.
Writing the �uctuations in Fourier space as

δΦI(r,x, t) =

∫
ddk

(2π)d
δΦI(r, k)eikax

a
, (2.25)

with the dimensionless four-momentum ka = (−ω,k),5 we can write the
boundary action S(2)

∂ in the form

S
(2)
∂ =

1

2

1

(2π)d

∫
dω

∫
dd−1k δΦ†sGRδΦs. (2.26)

The matrixGR(ω,k) is the retarded Green's function of the boundary theory
in Fourier space. It describes the dependencies of the �uctuations of the
expectation values δΦv on the �uctuations of the sources δΦs. These are
5The frequency and the wavevector are made dimensionless in the way consistent with
eq. (2.12) i.e., ω̃ = ωL/c and k̃ = kL.
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in turn found from the solutions to the linearized equations of motion in
eq. (2.23), using infalling boundary conditions at the horizon in order to get
the retarded Green's function [60].
Now, suppose that we wish to study the full dynamics of the order param-

eter �uctuations by computing the correlator
〈
O′∗O′

〉
, which is proportional

to one of the components of the matrix GR in eq. (2.26). By computing the
on-shell action we obtain

S
(2)
∂ =

1

2

1

(2π)d

∫
dω

∫
dd−1k[2ν (δφ∗sδφv + h.c.)] + . . . , (2.27)

where we remind the reader that ν ≡
√
d2 + 4 (mcL/~)2/2, see after eq. (5.30).

The bulk action does not contribute, as it vanishes due to the linearized equa-
tions of motion in eq. (2.23). The terms represented by the dots are associated
with contributions from the other �elds, but cannot yield any terms propor-
tional to δφ∗sδφs. Moreover, the hermitian conjugate (h.c.) terms contribute
to the correlator

〈
O′O′∗

〉
. From the expression above it follows that

i
〈
O′
∗
O′
〉

= 2ν

(
∂δφv
∂δφs

)
δΦI 6=φs

. (2.28)

This expression denotes the variation of δφv with respect to δφs, where the
other sources are kept constant under this variation. We can calculate this
as follows. Since in general the order parameter �uctuations are in�uenced
by variations of all the sources in the theory, we can write the scalar �eld
�uctuations near the boundary as

δφ = δφsr
−∆− + δφvr

−∆+ + . . .

= δφsr
−∆− + aIδΦ

I
sr
−∆+ + . . . , (2.29)

where the sum over I is over all the �eld �uctuations and where aI are
frequency and momentum dependent functions. In this case, from eq. (2.28)
we would have i

〈
O′∗O′

〉
= 2νaφ. Now assume that we have obtained a

numerical solution to the linearized equations of motion eq. (2.23), which
is a formidable task in practice. Then we would be able to read o� the
coe�cients δφv and δφs. Since δφv in general includes contributions from
sources other than δφs, we cannot �nd

〈
O′∗O′

〉
from simply taking the ratio

of these coe�cients. However, exploiting the linearity of eq. (2.23) enables
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us to �nd a solution which on the boundary only sources the scalar �eld
�uctuations. We then have that all source �uctuations δΦI

s vanish except for
δφs, so that δφv = aφδφs in eq. (2.29). As a consequence, for this particular
solution the correlator

〈
O′∗O′

〉
can be found from the ratio of δφv and δφs.

6

Above the critical temperature, the �uctuations of the order parameter
are decoupled from the other hydrodynamic �uctuations in the theory. In
the bulk theory, we can then �nd a solution to the linearized equations of
motion by simply setting δAµ and δgµν to zero. As a consequence, we can
then �nd the retarded Green's function of the order parameter by solving(

DµD
µ −m2

)
δφ = 0. (2.30)

This equation is found from the linearized equations of motion in eq. (2.23) by
just putting the other �uctuations to zero. Basically, this corresponds to the
bulk-to-boundary propagator shown in Fig. 2.7. Here, the scalar �eld �uc-
tuations propagate into the bulk without coupling to the other �uctuations
that are present there. In Fourier space, eq. (2.30) for the order parameter
�uctuations can be written as

δφ′′ +

(
f ′

f
+
d− 1

r
− χ′

2

)
δφ′ −

m2 − (qAt + ω)2 eχ

f + |k|2
r2

f
δφ = 0. (2.31)

The conjugate equation holds for δφ∗. Notice that this implies that δφ∗ is not
coupled to δφ. This implies that ∂δφv/∂δφ∗s = 0. As a consequence, we can
always calculate the Green's function by �rst numerically solving eq. (2.31)
and then computing the ratio of the resulting coe�cients δφv and δφs. As
usual, we require infalling boundary conditions at the horizon, corresponding
to the retarded Green's function. Naturally, besides depending on frequency
and momentum, this two-point function depends on the background param-
eters, i.e., on q, m2 and T/µ.

2.3.2 Green's function in the normal phase

To obtain the retarded Green's function in the normal phase, we must solve
eq. (2.31) with χ = 0, and with At and f given by eqs. (2.9) and (2.10)
6With this particular solution, we can also �nd other correlators that follow from ex-
pressions like

δAµ,v
δφs

. In fact, with this solution we can �nd exactly one column of the
retarded Green's function matrix.
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2.3 Order parameter �uctuations

Figure 2.7: (a) Illustration of the bulk-to-boundary propagator. The dashed curve
denotes the scalar �eld �uctuations propagating into the bulk geometry.
This �gure is an adapted version of Fig. 2 in [62].

respectively. We have done so numerically. Using the numerical solution, we
obtain the retarded Green's function by using Eqs. (2.29) and computing
the ratio of δφv and δφs, because in the normal phase the �uctuations are
decoupled.
Approaching the transition temperature from above, the physics can be

described with a time-dependent Ginzburg-Landau model. This can be rep-
resented by the action

S = −
∫

dt

∫
d3x

(
iaO∗∂tO + γ|∇O|2 + α|O|2 +

β

2
|O|4

)
, (2.32)

which incorporates the result of eq. (2.19). The �rst two terms of the inte-
grand capture the long-wavelength and low-frequency behavior of the order
parameter. Like α and β, the coe�cients γ and a depend on the temperature.
The coe�cient a is complex, since the system shows dissipation of the order
parameter. This implies that the imaginary part of a is negative. Physically,
dissipation occurs as a consequence of temperature �uctuations, which can
cause the fermion pairs to break up. From the above action, we obtain the
retarded Green's function of O in this model from the part of the action that
is quadratic in the order parameter �uctuations, which we can subsequently
compare with the retarded Green's function obtained holographically. Thus,
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this is a tree-level calculation, even though AdS/CFT should provide us with
the full partition function of the dual �eld theory. The reason is that con-
tributions of higher orders in the �uctuations are suppressed by the large-N
limit, implicit in the AdS/CFT correspondence, and loop diagrams come
with factors of 1/N . This claim is motivated by the mean-�eld result for
the critical exponent in Fig. 2.2 , which does not change when taking into
account only Gaussian �uctuations.
Since the order parameter has a vanishing expectation value in the normal

phase, the part of the Ginzburg-Landau action that is quadratic in the order
parameter �uctuations O′ ≡ O − 〈O〉 = O is given by

Squad =
−1

(2π)4

∫
dω

∫
d3kO′

∗
(ω,k)[aω+γ|k|2 +α0(T−Tc)]O′(ω,k) (2.33)

near the transition temperature Tc. From this we obtain that the two-point
function is given by

GR,O(ω,k) =
1

aω + γ|k|2 + α0(T − Tc)
. (2.34)

This result should hold for small frequencies and momenta, i.e., ω � µ and
|k| � µ, since the Ginzburg-Landau action in eq. (2.32) only contains the
leading orders of the gradient expansion. Comparing the above expression to
our numerical results, we can determine the coe�cients α0, a, and γ near Tc.
The result is shown in Fig. 2.8 . Together with the result from Fig. 2.3b in
the previous section, we then obtain all the coe�cients in eq. (2.32) near the
critical temperature. Although quantitatively, the results clearly depend on
m2 and q, the qualitative physics does not seem very di�erent for di�erent
values of these parameters. Therefore we will restrict the following discussion
of the retarded Green's function to the �xed values q = 3 and m2 = −3.5.
From the retarded Green's function GR,O, we can obtain the spectral func-

tion
ρ(ω,k) =

1

π
ImGR,O(ω,k). (2.35)

This is an interesting quantity, as it yields the dispersion relations of the
modes accessible to the order parameter dynamics as well as the correspond-
ing lifetimes. In Fig. 2.9 this quantity is shown at the temperature T = 1.5Tc.
Here we have plotted the absolute value of the spectral function, noting that
the spectral function itself is negative for ω < 0. Moreover, we have exploited
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(a) α0 (b) γ

(c) Re(a) (d) Im(a)

Figure 2.8: The parameters in the Ginzburg-Landau action as a function of q and
m2. The parameter β follows from Fig. 2.3b . The tildes above the
parameters imply that they are scaled with appropriate powers of µ to
make them dimensionless.

rotational invariance to �x the direction of k, such that k denotes the compo-
nent in that direction. Naturally the spectral function is symmetric in k. In
accordance with the Green's function in eq. (2.34) obtained in the Ginzburg-
Landau model, we see that the spectral function vanishes for ω = 0, since α,
β, and γ are real coe�cients. Furthermore, for small ω and k, we also see a
quadratic dispersion as predicted by eq. (2.34), which is shifted upward from
ω = 0 since α is nonzero. When ω is large compared to µ and Tc, we recover
the spectral function from pure AdS, which is given by (see e.g. Ref. [60])

ρAdS(ω,k) =
2ν

π
Im

(√
−ω2 + |k|2

2

)2ν
Γ(−ν)

Γ(ν)
, (2.36)

where ν =
√
d2 + 4m2/2 as before and Γ denotes the gamma function. In
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Figure 2.9: The spectral function for T = 1.5Tc, q = 3, and m2 = −3.5. Here and in
all following plots of the spectral functions, we have shown the absolute
value of the spectral functions and divided by a factor µ2ν to make them
dimensionless.

Fig. 2.9 we observe that the spectral weight �lls the light cone which is
shifted down by the chemical potential, i.e., |ω + µ| = |k|. This cone is
shown in black in the �gure, where the momentum space domain is taken
small enough such that shift is still visible.
In Fig. 2.10 , the spectral function for T = Tc is shown. As before, we

can distinguish two regimes here, namely the UV regime in which we recover
the AdS result and the IR regime in which the physics can be described
with the Ginzburg-Landau model. In the latter regime we again see the
quadratic dispersion predicted by eq. (2.34), which gives a peak centered at
ωpeak = −γ|k|2Re(a)/|a|2 since now α = 0 in eq. (2.18).
Notice that in Ref. [54], a similar approach to the retarded Green's func-

tion is given for the zero-momentum case. Although the UV results are dif-
ferent because Ref. [54] uses alternative quantization, the IR results are com-
parable, i.e., in both cases the results can be described in the low-frequency
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Figure 2.10: The spectral function as T → Tc for q = 3 and m2 = −3.5.

limit with the Ginzburg-Landau model.

2.4 Discussion

Determining the full Green's function in the superconducting phase requires
a formidable numerical calculation. To this end, we must solve the full system
of linearized equations of motion for the �uctuations in the scalar �eld δφ,
the gauge �eld δAµ and the metric tensor δgµν , where this time the bulk
geometry is given by the numerical functions f , χ, At and φ discussed in the
previous section. Fortunately, the remainder of this thesis focusses on single-
particle spectral functions that are found by having probe �elds propagate
on a gravitational bulk theory. Since these probe �elds do not backreact
on the bulk geometry, including coupling between �uctuations of di�erent
bulk �elds will not be necessary. As such, we restricted our discussion in
this chapter to the normal phase. However, in Ref. [1] we provide for an
alternative calculation which gives more insight in the physics of the order
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parameter dynamics in the superconducting phase.
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3 Massive Dirac fermions from holography

3.1 Introduction

The holographic principle has established itself as a common instrument for
the description of strongly coupled systems. While originally applied to su-
persymmetric theories such as N = 4 super-Yang-Mills theory [6, 39, 40],
it was soon realized that the correspondence could be used to model real-
world systems as well, such as quantum chromodynamics and the quark-gluon
plasma [63, 64]. In addition, over the past decade holography has been ex-
tended to include condensed-matter theory, which has led to the description
of many strongly coupled condensed-matter phenomena by means of weakly
coupled gravitational theories [50, 56, 65, 66]. These descriptions provide a
great tool to compute thermodynamic and hydrodynamic properties, and be-
sides this, also the spectra of bosonic or fermionic operators that are present
in the dual condensed-matter �eld theory.
Condensed-matter systems are usually described by nonrelativistic Dirac

fermions. In holography, a common approach to cope with nonrelativistic
systems is to use a Lifshitz background, which leads to a dynamical scaling
exponent z in the boundary theory that is di�erent from its value in relativis-
tic theories, i.e., z 6= 1 [67�70]. Alternatively, an asymptotically anti-de Sitter
gravity theory may have an emergent infrared (IR) Lifshitz geometry with
a scaling exponent z di�erent from 1, so that the dynamics obtained from
such theories can be reminiscent of nonrelativistic physics when restricted to
the long-wavelength and low-frequency limit. However, Lifshitz backgrounds
generally yield gapless particle-hole symmetric spectra and in both of these
approaches, a missing ingredient is a Dirac mass in the spectrum. Such mod-
els are therefore great candidates for the description of e�ectively massless
systems, such as single- or bilayer graphene, or the more recently discovered
Dirac and Weyl semimetals [56, 62, 71]. For other purposes, it is desirable to
extend the holographic model to also be able to describe spectral functions
of massive fermionic operators that are ubiquitous in condensed matter. In
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this work we study the fermionic spectral functions that are obtained from
such an extension.
To see what such an extension entails, it is important to realize that the

reason that the fermionic spectra obtained from holography are in general
gapless is twofold. Firstly, by introducing a probe Dirac spinor in the grav-
itational bulk theory, the fermionic spectral function on a boundary theory
corresponds to a chiral fermion and is therefore massless [72�76]. Secondly,
introducing a mass in the boundary theory requires introducing a new scale
in the conformal �eld theory (CFT), which implies that it is necessary to
add a deformation to the bulk. The latter deformation was introduced in
Refs. [41, 77], which focused on a model for the conductivity of a topolog-
ical Weyl semimetal. In this paper, the model used to obtain the fermionic
spectral functions includes such a deformation, as well as an additional Dirac
spinor in the bulk, yielding the required amount of degrees of freedom on the
boundary to describe a Dirac fermion. A model with two Dirac fermions in
the bulk has already been used in Ref. [78] to study Dirac semimetals. In
this work we additionally introduce a coupling of the two Dirac fermions in
the bulk to provide a coupling between the chiral fermions on the boundary,
which is necessarily present for massive fermions. A similar construction was
very recently described in Ref. [79], which appeared while completing this
paper, where the approach was used to study semimetals with nodal lines.
We would like to stress that our emphasis here is not on Weyl or nodal-line
semimetals, but more generally on the description of fermionic spectra in
condensed-matter systems which generally contain a Dirac mass. In these
spectra, this mass can for instance be interpreted as an e�ective mass or
gap in a band structure, which is the viewpoint taken here. However, an
alternative viewpoint of the framework we present could be to interpret this
mass as a real particle mass. This could then serve as a starting point for
a holographic description for e.g. strongly coupled ultracold Fermi gases,
which contain massive atoms.
In experiments we are usually interesed in single-particle spectral func-

tions rather than the correlation functions of a composite fermion that are
typically obtained in holography. Such single-particle spectral functions can
be obtained from semiholography [80, 81]. Therefore, this paper also covers
the incorporation of the aformentioned extension to massive Dirac fermions
in a semiholographic framework.
This paper is organized as follows. In section 2, we �rstly present the pro-
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3.2 Obtaining massive Dirac fermions from holography

cedure to obtain the Dirac fermion dynamics from holography. This means
that we �rst specify a suitable gravitational background and then present
the equations corresponding to the probe fermions propagating on top of
this background. Moreover, in this section we also outline the procedure to
obtain both the holographic and the semiholographic Green's functions. We
present our results in section 3, where we compute the fermionic spectra using
numerical solutions to the equations presented in section 2. Concluding in
section 4, we discuss our results and comment on possible future directions.

3.2 Obtaining massive Dirac fermions from

holography

In this section we outline the procedure that we follow to obtain the dynam-
ics of a Dirac fermion with a Dirac mass from holography. This procedure
basically consists of solving two sets of coupled di�erential equations. We
start by describing the �rst set, which gives us the gravitational bulk back-
ground that �xes quantities such as the temperature and chemical potential
in the boundary �eld theory. We then derive the second set of di�erential
equations, which describes the propagation of probe fermions in this bulk
and gives us the holographic Green's function in the boundary theory. Fi-
nally, we derive an expression for the semiholographic Green's function of
the Dirac fermion. To this end we use a dynamical-source model which is
very similar to the one described in [81], where the semiholographic Green's
function for a chiral fermion is derived.
We refer to appendix 3.A for conventions on the Dirac theory and the

dimensionless units. Moreover, we always work in d = 4 spatial dimensions
in the bulk, implying that we consider a three-dimensional system on the
boundary.

3.2.1 Gravitational theory

We wish to study a boundary theory containing massive Dirac fermions at
nonzero chemical potential. As is well known, we can introduce the chemical
potential by adding a U(1) gauge �eld Aµ to the bulk [56]. As in Ref. [41],
we describe the mass deformation by adding a scalar �eld φ to the bulk.
The mass of φ is �xed to m2

φ = −3, such that the operator dual to φ has
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3 Massive Dirac fermions from holography

dimension ∆ = 2 +
√

4 +m2
φ = 3. This agrees with the dimension of the

operator
〈
ψ̄ψ
〉
in a free boundary theory. Hence, the dimensions of the

resulting deformation of the boundary theory match the dimensions of a free
fermionic mass deformation Mψψ̄ψ. We discuss the choice of the mass m2

φ

in more detail in section 3.2.2.3. The source of the scalar �eld then acts as
a Dirac mass Mψ on the boundary. The gravitational background we use
therefore follows from the action:

Sbackground =

∫
d5x
√
−g
(
R+ 12− 1

4
F 2 − 1

2

(
(∂φ)2 +m2

φφ
2
))

. (3.1)

Considering static solutions with planar symmetry, we write the Ansatz for
the metric as

ds2 = −f(r)e−χ(r)dt2 +
dr2

f(r)
+ r2dx2 , (3.2)

where (t, r,x) denotes the spacetime position in the bulk. Moreover, we use
a temporal gauge �eld A = At(r)dt and φ = φ(r) due to planar symmetry.
The coordinate r is such that the black-brane horizon is at r = r+, where
f(r+) = 0, and the boundary is at r =∞. The Hawking temperature is then
given by

T =
f ′(r+)e−χ(r+)/2

4π
(3.3)

and gives the temperature of the boundary theory. The equations of motion
describing the background theory are

φ′′ +

(
f ′

f
+

3

r
− χ′

2

)
φ′ +

3

f
φ = 0 , (3.4)

A′′t +

(
3

r
+
χ′

2

)
A′t = 0 , (3.5)

χ′ +
r

3
φ′2 = 0 , (3.6)

f ′ +

(
2

r
− χ′

2

)
f +

r

6
eχA′2t −

r

2
φ2 − 4r = 0 . (3.7)

Notice that this background is very similar to those used to describe the holo-
graphic superconductor [52], with a �xed bulk scalar mass and an uncharged
bulk scalar. Therefore, following the arguments in Ref. [52], a solution to
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3.2 Obtaining massive Dirac fermions from holography

these equations is again determined by two initial conditions at the horizon
r+, namely φ(r+) and A′t(r+), assuming At(r+) = 0. Moreover, using the
following symmetry of the equations of motion,

r → ar, (t,x)→ (t,x)/a, f → a2f, At → aAt, (3.8)

we can put r+ = 1. However, in contrast to the holographic superconductor,
the solutions we consider here will also have a �xed nonzero scalar source
term φs, which is dual to the Dirac mass on the boundary. This means that
both initial conditions that determine the background remain free, since we
do not have to shoot for a solution without a source. The background is then
described by two parameters, which are any two dimensionless ratios formed
with the temperature T , the source φs and the chemical potential µ per unit
charge, which follows from the boundary value of At.
One may wonder what happens with the instability that causes the phase

transition for the holographic superconductor. A condition for this instability
of the Reissner-Nordström solution (with φ = 0) against the spontaneous
formation of scalar hair is given by [55]

q2
φ >

m2
φ

2
+
d(d− 1)

8
. (3.9)

Since in our case d = 4,m2
φ = −3 and qφ = 0, we do not satisfy this condition.

Hence we do not expect this instability to occur, so that a solution with a
nontrivial scalar pro�le should always have a nonzero source term.

3.2.2 Dirac Fermions

We can calculate fermionic Green's functions by having probe Dirac fermions
propagate on the �xed background described in the previous section. This is
similar to the procedure presented in Refs. [74, 81]. However, the resulting
fermionic Green's functions on the boundary correspond to a chiral fermion.
The reason is that the Dirac equation in the bulk imposes a relation between
the two chiral components of the probe fermion on the boundary. Let us
quickly review this case. Denoting the probe fermion by ψ, we de�ne the
components

ψR,L =
1

2
(1± Γr)ψ, ψL =

(
0
ψ−

)
, ψR =

(
ψ+

0

)
, (3.10)
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where the plus (minus) sign corresponds to ψR (ψL). Note that ψ = ψR +
ψL, whereas ψ± are two-component spinors with de�nite chirality on the
boundary. We then add the following action to the bulk:

SWeyl = igf

∫
d5x
√
−gψ̄

(
/D −M

)
ψ + igf

∫
d4x
√
−hψ̄RψL. (3.11)

Here M is the bulk Dirac mass, gf is a coupling constant, Dµ = ∇µ − iqAµ
with∇µ the spinor covariant derivative and q the fermion bulk charge, so that
the chemical potential of the spinor is µ = qAt(∞). The boundary action is
included to make the variational principle well de�ned, and is consistent with
the Dirichlet boundary condition δψR = 0. As shown in Ref. [81], writing
out the Dirac equation

(
/D −M

)
ψ = 0 in chiral components reveals that the

relation between them can be written in the form

ψ−(r, k) = −iξ(r, k)ψ+(r, k), (3.12)

where we Fourier transformed the spinors on slices of constant r. As a
consequence, the action (3.11) evaluated on shell can be written as

Son shell
Weyl = −igf

∫
r=r0

d4k

(2π)4

√
−hψ†+ψ− = −gf

∫
r=r0

d4k

(2π)4

√
−hψ†+ξψ+.

(3.13)
Here r0 is a cut-o� surface, which as we shall explain later is important when
computing a Green's function. Ultimately, we take the limit of r0 going
to in�nity. From the above action it is clear that ξ is proportional to the
holographic Green's function for the chiral boundary operator that is sourced
by the boundary value of the chiral spinor ψ+. In other words, the chiral
component ψR of ψ acts as a source for the chiral operator whose expectation
value is contained in ψL, so that after integrating out ψL we are left with
the e�ective action for a chiral fermion. As described in e.g. Ref. [81], from
the Dirac equation we can then derive a di�erential equation for ξ. Solving
this using infalling boundary conditions, the holographic retarded Green's
function for the chiral operator O that couples to ψ+ then follows from

GO(k) = lim
r0→∞

r2M
0 ξ(r0, k). (3.14)

In the procedure above we have seen that we have to integrate out half of the
degrees of freedom of the probe fermion. Therefore, in order to describe a
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3.2 Obtaining massive Dirac fermions from holography

Dirac fermion on the boundary, we double the amount of degrees of freedom
by introducing two bulk fermions ψ(1) and ψ(2). Our goal is then to derive an
e�ective action similar to equation (3.13), but this time with four-component
spinors. Using the Dirichlet boundary conditions δψ(1)

R = 0 and δψ(2)
L = 0, we

can derive such an e�ective action that contains the two chiral fermions ψ(1)
+

and ψ(2)
− . In order to describe a massive Dirac spinor, we also need to couple

these chiral components. We do this by introducing a Yukawa interaction
in the bulk, that couples the two fermions to the scalar �eld with coupling
constant gY . The total action, including the boundary terms consistent with
the abovementioned Dirichlet boundary conditions, then looks as follows:

SDirac = igf

∫
d5x
√
−g
(
ψ̄(1)

(
/D −M

)
ψ(1) + ψ̄(2)

(
/D +M

)
ψ(2)

)
+ igY

∫
d5x
√
−gφ

(
ψ̄(1)ψ(2) + ψ̄(2)ψ(1)

)
+ igf

∫
d4x
√
−h
(
ψ̄

(1)
R ψ

(1)
L − ψ̄

(2)
L ψ

(2)
R

)
. (3.15)

Note that we took the mass of ψ(2) to be −M so that the asymptotic be-
haviors of the sources ψ(1)

R and ψ(2)
L are equal [78]. The equations of motion

following from this action are(
/D −M

)
ψ(1) = −λφψ(2), (3.16)(

/D +M
)
ψ(2) = −λφψ(1), (3.17)

where λ = gY /gf . Notice that without the Yukawa term, we would just end
up with two copies of eq. (3.13) and therefore describe two uncoupled chiral
fermions. The corresponding Green's function would then be ungapped, and
could therefore not correspond to the Green's function of the fermions that
appear in the Dirac mass deformation that we introduced by adding the
scalar �eld to the background. Hence a term such as the Yukawa term is
necessary if we want to describe the dynamics of the Dirac fermion at the
boundary. There may however be other possibilities to couple the two chiral
components. This Yukawa term has the additional advantage that it does
not change scaling dimensions of the operators dual to the bulk spinors.
Let us now de�ne the two bulk Dirac spinors Ψ ≡ ψ

(1)
R + ψ

(2)
L and η ≡
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ψ
(1)
L − ψ

(2)
R , i.e.,

Ψ =

(
ψ

(1)
+

ψ
(2)
−

)
, η =

(
−ψ(2)

+

ψ
(1)
−

)
. (3.18)

With our choice of the Dirichlet boundary conditions, Ψ contains the sources.
Similarly to the chiral case, we would then like to integrate out the other
components that are contained in η, and derive an e�ective action for Ψ.
Evaluating the action (3.15) on shell, the bulk terms vanish and we can
write the boundary term as

Son shell
Dirac = igf

∫
d4x
√
−hΨ̄η. (3.19)

Rescaling the spinors to get rid of the spin connection, see the discussion
around eq. (3.76) in appendix 3.A.2 for details, the Dirac equation in mo-
mentum space can be written as

−
(
err∂r +M

)
η +

(
i/̃k + λφ

)
Ψ = 0, (3.20)(

err∂r −M
)

Ψ +
(
i/̃k − λφ

)
η = 0. (3.21)

Here k̃µ = (−(ω + qAt),k) so that the slash operator has no r-component.
As in the chiral case, this imposes a relation between Ψ and η which can be
written as

η(r, k) = −iΞ(r, k)Ψ(r, k). (3.22)

The on-shell action then becomes

Son shell
Dirac = gf

∫
r=r0

d4k

(2π)4

√
−hΨ̄ΞΨ. (3.23)

Here we can see that the 4 × 4 matrix Ξ is related to the Green's function
for the fermionic operator O that is sourced by the boundary value of the
Dirac spinor Ψ. More precisely, using infalling boundary conditions that we
specify later, the holographic Green's function is given by

GO(k) = − lim
r0→∞

r2M
0 Γ0Ξ(r0, k). (3.24)

We will proceed by deriving a di�erential equation with which we can com-
pute Ξ directly.
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3.2 Obtaining massive Dirac fermions from holography

3.2.2.1 Computing the holographic Green's function

Using the Dirac equations in (3.20) and (3.21), we can derive a di�erential
equation which we can solve for Ξ, thereby obtaining the holographic Green's
function through eq. (3.24). Taking the derivative of (3.22) gives

Ξerr∂rΨ = ierr∂rη − err∂rΞΨ. (3.25)

Multiplying (3.21) by Ξ from the left and substituting the above then gives

ierr∂rη − err∂rΞΨ−MΞΨ + Ξ
(
i/̃k − λφ

)
η = 0. (3.26)

Eliminating ∂rη using (3.20) and η using (3.22) ultimately gives(
−(err∂r + 2M)Ξ + i

(
i/̃k + λφ

)
− iΞ

(
i/̃k − λφ

)
Ξ
)

Ψ = 0. (3.27)

This shows that we can compute Ξ by solving the �rst-order nonlinear di�er-
ential 4× 4 matrix equation between the brackets. However, we can greatly
reduce the amount of equations we need to solve by exploiting rotational
symmetry to set kµ = (−ω, 0, 0, k3). Using symmetry we can then write1

Ξ = Ξ0Γ0 + Ξ3Γ3 + ΞcI4 (3.28)

where I4 is the 4 × 4 identity matrix. The Ansatz above in (3.28) shows
that there are only three degrees of freedom for which we have to solve.
However, it is more insightful to write the equations in eq. (3.27) in terms of
Ξ± ≡ Ξ0 ± Ξ3. This yields

(err∂r + 2M)Ξ± =
(
ω̃e0

0 ∓ k3e
3
3

) (
1− Ξ2

c

)
+
(
ω̃e0

0 ± k3e
3
3

)
Ξ2
± + 2iλφΞcΞ±,

(err∂r + 2M)Ξc =
(
ω̃e0

0 + k3e
3
3

)
Ξ+Ξc +

(
ω̃e0

0 − k3e
3
3

)
Ξ−Ξc

+ iλφ
(
1 + Ξ2

c − Ξ+Ξ−
)
, (3.29)

where ω̃ = ω + qAt. As a check, notice that for λ = ψ(2) = 0 the lower-left
2 × 2 block of Ξ corresponds to the matrix de�ned in (3.12) for the chiral
case. From (3.28) we see that the eigenvalues of this block are exactly Ξ±.

1This can also be shown by solving (3.21) for η and reading o� the matrix structure of
Ξ.
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Setting λ = Ξc = 0 in (3.29) indeed recovers the equation for the chiral case,
see e.g. Eq. (2.31) in Ref. [81].
These equations can now be solved numerically to obtain the matrix Ξ. As

they are �rst-order ODE's, we need to impose one initial condition for each
component. Since only e0

0 diverges at r+, we demand that in both equations
the coe�cient of this factor vanishes at the horizon. The second equation
then yields either Ξc(r+) = 0 or Ξ+(r+) = −Ξ−(r+). However, the latter
is not consistent with the infalling boundary conditions, for which we know
from the chiral case that the result is Ξ±(r+) = i. We conclude that we must
impose Ξc(r+) = 0. The �rst equation then gives that Ξ±(r+) = ±i, where
the infalling boundary conditions require that we choose +i for both cases.

3.2.2.2 Obtaining the semiholographic Green's function

Next, we use semiholography to derive an expression for the single-particle
Green's function. We note that our approach is slightly di�erent from the
work in Ref. [80], where the authors use semiholography to capture universal
IR physics. In contrast, our objective is to use semiholography to obtain the
Green's function of an elementary fermion that is for instance measurable
in ARPES experiments. To this end, we follow the approach outlined in
Ref. [81] for the chiral case, which is constructed such that the obtained
semiholographic Green's function GR satis�es the sum rule that in our case
reads

1

4π

∫ ∞
−∞

dω Im TrGR(ω,k) = 1. (3.30)

This procedure implies that we interpret the ultraviolet (UV) cut-o� surface
at a �xed radial coordinate r = r0 as the boundary on which the single
fermions live and interact with the CFT. In practice this means that the
sources become dynamical and that the holographic Green's function derived
above becomes the self-energy of the elementary fermion. In particular we
note that the semiholographic Green's functions obtained in this manner are
not restricted to IR physics, as the sum rule above also implies.
Above we have calculated the holographic contribution to the e�ective

action, which is given by eq. (3.23). To this we add the free action on the
UV brane for the source Ψ:

SUV = iZ

∫
r=r0

d4x
√
−hΨ̄

(
/D − M̃0

)
Ψ. (3.31)
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Note that we can add this action since we chose the Dirichlet boundary
condition corresponding to δΨ = 0. The total e�ective boundary action can
then be written as

Se� =
Z
√
−h
r0

∫
r=r0

d4k

(2π)4
Ψ̄
(
−Γak̃a − iM̃0r0 +

gfr0

Z
Ξ
)

Ψ, (3.32)

where we Fourier transformed the �elds and used that e0
0 ≈ 1/r0 for r0

near the boundary. Notice that the kinetic term now becomes canonically

normalized upon rescaling the �elds as Ψ →
√
r0/Z

√
−hΨ. We can then

take the following limit:

r0 →∞, gf → 0, M̃0 → 0,

g ≡
gfr

1−2M
0

Z
= const., M0 ≡ M̃0r0 = const. (3.33)

The e�ective action for the elementary Dirac fermion Ψ can then be written
as

Se� =

∫
d4k

(2π)4
Ψ†G−1

R Ψ. (3.34)

Here the inverse Green's function is given by

G−1
R (k) =

(
σ · k̃ iM0

−iM0 −σ̄ · k̃

)
+ Σ (3.35)

where σ = (I2, σ
i) and σ̄ = (−I2, σ

i) with σi the Pauli matrices, and where
we de�ned the self-energy

Σ(k) ≡ gΓ0 lim
r0→∞

r2M
0 Ξ(r0, k). (3.36)

Using again the rotational symmetry to choose the momentum as k̃µ =
(−ω̃, 0, 0, k3) and using the notation of (3.28), we can also write the Green's
function as

G−1
R (ω, k3) = Γ0

(
(ω̃ + gΞ0) Γ0 + (−k3 + gΞ3) Γ3 + (−iM0 + gΞc) I4

)
.

(3.37)
This expression is evaluated at the boundary, so that ω̃ = ω + µ. We ab-
sorbed a factor r2M

0 in the components of Ξ, such that these are �nite at
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the boundary r0 → ∞. The above expression shows that Ξ0 is related to a
wavefunction renormalization, whereas Ξc acts like a mass renormalization.
When g becomes large, the inverse Green's function will be dominated by

the self-energy in eq. (3.36). In this limit we recover the holographic Green's
function, albeit rescaled by 1/g and in alternative quantization. The latter
implies that this Green's function corresponds to the Dirichlet boundary
conditions δψ(2)

R = δψ
(1)
L = 0, which gives the inverse of the Green's function

in standard quantization.

3.2.2.3 Interpreting semiholography

Before continuing to our results, we brie�y comment on the physical picture
we have in mind when applying the semiholographic procedure described
above. On the one hand, we introduce free single fermions Ψ living on a UV
cut-o� surface, located at r0. On the other hand, we have a (deformed) CFT,
containing a composite fermionic operator O.2 In essence, what happens in
semiholography is that we linearly couple these two theories and subsequently
integrate out the CFT part in order to obtain the e�ective Green's function
of the fermion. In other words, we describe single fermions Ψ interacting
with a fermionic operator O of the CFT.
Since we are doing bottom-up holography, it is not known what the ex-

act physical interpretation of O is. A possible interpretation is to describe
single fermions interacting with a completely unrelated composite fermionic
operator. However, the physical picture we have in mind is a fermionic
condensed-matter system, which at long wavelengths is described by a CFT
with a number of collective variables of these fermions, e.g. electrons or
atoms. In this case, the composite operator O in the CFT `contains' the
single fermion of interest, such as the electron or the atom. Such a `self-
consistent' interpretation imposes additional restrictions on our model. One
example is the choice of the parameter m2

φ in the bulk, which we then should
indeed choose such that it describes a free-fermion mass deformation. This is
because we know that the elementary fermion is described by a free theory in
the far UV. Hence, if the fermion is a building block of the CFT, such a mass
deformation should exist in the CFT. In contrast, if the CFT is unrelated to
the fermion Ψ, we might as well have chosen a di�erent value for m2

φ, as it is

2In the description above, O is the operator sourced by Ψ.
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not clear that a mass-like deformation introduced by the dual �eld φ in the
CFT should necessarily correspond to that of a free fermion.3

In our model, both theories contain a mass scale. In the theory describ-
ing the elementary fermion, this mass is denoted by M0. In the CFT the
mass scale is set by the source φs of the scalar �eld φ. The self-consistency
requirement mentioned above means that also these two mass scales should
be related, and enables us to �x the ratio M0/φs. An argument for this is
given in appendix 3.C. Although we use the �xed value presented there, i.e.,
M0/φs = 4

√
π2/3, we do not expect substantial qualitative di�erences in our

semiholographic spectra when choosing a slightly di�erent value for this ratio
or for m2

φ for that matter.

3.3 Fermionic spectral functions

Given a Green's function G(ω,k), we can compute the spectral function
de�ned as

ρ(ω,k) =
1

π
Im TrG(ω,k). (3.38)

Here we can take the holographic Green's function G = GO de�ned in
eq. (3.24) to obtain the spectral function of the fermionic operator O, or we
can take G = G−1

O to obtain the holographic spectral function in alternative
quantization. Alternatively, we can use the semiholographic Green's function
GR de�ned in eq. (3.35) to obtain the spectral function for the elementary
fermion Ψ. We can think of this as moving away from the limit g →∞ which
corresponds to the holographic Green's function in alternative quantization.
It is however important to keep in mind that the holographic results can be
obtained independently of semiholography. An important property of the
semiholographic Green's function is that in contrast to the holographic one,
it obeys the sum rule in eq. (3.30), i.e.,∫ ∞

−∞
dωρ(ω,k) = 4. (3.39)

This implies that GR is indeed the Green's function of an elementary Dirac
fermion, which is a measurable quantity that contains the information about
the spectrum of the fermion dynamics. Moreover, this property allows us to
3See Ref. [82] for a holographic model where the value of m2

φ is varied.
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compute momentum distribution functions. The spectral function is normal-
ized such that the sum rule gives the number of degrees of freedom, i.e., 4
for a Dirac fermion.
Before presenting our results, we take a moment to stress on which param-

eters the spectral functions depend. For the holographic spectral function
this means we should state on which parameters the function Ξ(ω,k) de-
pends. Firstly, this matrix depends on the gravitational background, which
is speci�ed by the scales T , µ,4 and φs. Besides this, the self-energy depends
on the parameters λ, q and M , which all appear in eq. (3.27). Here, λ de-
scribes the coupling strength between the chiral components of the fermion.
Therefore, it is necessarily nonzero for fermions with a mass term. Moreover,
the bulk charge q and bulk mass M of the probe fermions are dimensionless
parameters that de�ne the CFT in which we calculate the two-point function.
For the semiholographic spectral function, M is restricted to the range
|M | < 1/2. This is necessary for the sum rule and the Kramers-Kronig
relations to hold [81]. The semiholographic spectral function depends on
all the parameters above and in addition on g and M0 through eq. (3.37).
The parameter g is nonnegative and describes the strength of the coupling
between the fermions Ψ and the CFT, i.e., the strength of the self-energy.
Here the limit g →∞ recovers the holographic Green's function in alternative
quantization, whereas g = 0 corresponds to a free massive Dirac fermion.
The mass scale M0 is �xed by φs as explained in section 3.2.2.3 and in
appendix 3.C. In this work we scale all dimensionful quantities with M0.
This means that from this point on all quantities we refer to are implicitly
scaled by the appropriate power of M0 to make them dimensionless.5 We �x
q = 1 and M = 1/4 unless stated otherwise. We expect that changing these
values should result mostly in quantitive rather than qualitative di�erences
in the spectra. In this paper we mainly focus on the low-temperature case
T = 1/100, unless stated otherwise.

3.3.1 Undoped spectra

First of all, we concentrate on the undoped case, i.e., µ = 0. Of �rst impor-
tance is to verify whether the procedure from section 3.2 gives us spectral
functions of fermions described by massive Dirac theory. It is important
4Actually, µ = qAt(r =∞) which also depends on q, but this dependence is trivial.
5E.g. instead of T/M0 we say T .
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Figure 3.1: (a) The holographic spectral function. (b) The holographic spectral
function in alternative quantization. In both (a) and (b), λ = 1. The
legend on the right holds for both �gures. Here, and in all the following
plots, all quantities are made (scale) dimensionless by dividing by the
appropriate power of M0, and we choose q = 1, M = 1/4, T = 1/100
unless stated otherwise.

to note that both the holographic and the semiholographic spectral func-
tions must contain a gap. This is because using the procedure we apply, the
spectrum obtained in semiholography should correspond to strongly coupled
gapped Dirac fermions. The self-energy, i.e., the holographic Green's func-
tion, then contains the e�ect of strong interactions between these fermions.
If the gap were caused by the parameterM0 only, the spectral function would
instead correspond to gapped fermions interacting with a strongly coupled
gapless CFT, which is not what we are after in this work. We therefore start
this section by verifying the appearance of a gap in the holographic spectral
functions.
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3.3.1.1 Holographic spectra

In �gure 5.1a we show the holographic spectral functions for λ = 1, in both
standard and alternative quantization. These contain a gap as desired.6 To
obtain this gap it is imperative that λ is nonzero, since this parameter de-
scribes the coupling between chiral components. As a consequence, when
λ = 0 we expect no gap in the self-energy, and neither do we expect a peak
at nonzero ω in alternative quantization. This is indeed the case, as is shown
in �gure 3.2, where we study the dependence on λ of the peak appearing
in the holographic spectral function in alternative quantization. We observe
that a peak at nonzero ω appears for values of λ higher than a nonzero lower
bound. Furthermore, for larger values of λ, the position of the peak grows
approximately linearly with λ, whereas the height remains almost constant.
We expect these results by noting that eq. (3.27) only depends on the com-
bination λφ, rather than λ and φ seperately. Therefore, asymptotically the
relevant scale is λM0 rather than M0.7 In the low-temperature regime, λM0

is then the only dimensionful scale left and we therefore expect the peak to be
proportional to λM0. This also explains the discrepancy observed in �gure
3.2b at low λ, since here the scale T/λM0 becomes large. We have indeed
observed that a peak appears for smaller values of λ as well when lowering
the temperature further. However, the initial conditions corresponding to
eq. (3.29) depend on λ but not on M0. It is therefore not completely obvious
to us that the position of the peak should grow linearly with λ, but the nu-
merics show that this is indeed the case. Finally, notice that due to the width
of the peak, a large enough value of λ is needed before the gap appears. This
spread is not solely due to the nonzero temperature, which we have checked
numerically by calculating the same spectral functions at lower temperatures
and not observing a decrease in the width. As a consequence the observed
peak cannot correspond to a long-lived quasiparticle, which we indeed would
not expect from a holographic spectral function describing unparticles in a
mass-deformed conformal �eld theory.

6Note that this is not a hard gap.
7In holography the relevant scale is actually the source φs rather than M0, but as stated
before their ratio is �xed in this work.
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Figure 3.2: (a) The holographic spectral function in alternative quantization at zero
momentum. The legend shows the used values of λ. (b) The dependence
of the peak position ωP on λ.

3.3.1.2 Conductivity

Having shown that a gap is introduced in the holographic spectral functions,
it is interesting to see if the CFT now indeed behaves as an insulator. We can
check whether this is the case by calculating the conductivity of the CFT.
In order to do so, we introduce �uctuations of the gauge �eld component
δAx(xµ) = δax(r)e−iωt to the theory. These �uctuations are not coupled to
�uctuations of the other �elds, even though the background has a nontrivial
scalar pro�le. In particular, in contrast to the holographic superconductor
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Figure 3.3: The (a) real and (b) imaginary part the conductivity σ of the CFT. The
legend shows the value of the temperature for both �gures.

model, these gauge �uctuations are not coupled to the scalar �uctuations
δφ because the scalar �eld is uncharged. Moreover, the metric �uctuations
δgtx are not sourced because we are still considering the undoped case. The
�uctuations δax then satisfy the equation of motion8

δa′′x +

(
f ′

f
− χ′

2
+

1

r

)
δa′x +

eχω2

f2
δax = 0. (3.40)

This equation has the asymptotic solution

δax = δax(0) + δax(1)r
−2 +

ω2

2
δax(0)r

−2 log(r) + · · · . (3.41)

By analyzing the action up to second order in the �uctuations, we can then
�nd that the conductivity is given by [83]

σ(ω) = 2
δax(1)

iωδax(0)
− ω

2i
, (3.42)

where the coe�cients δax(0) and δax(1) are found by solving eq. (3.40) with
infalling boundary conditions at the horizon.
The results shown in �gure 3.3 show that the conductivity does not behave

as an insulator. For high temperatures the DC conductivity σ(0) is linear

8In eq. (3.40) and eq. (3.41), we have not scaled dimensionful quantities like ω and δax(1)
by the mass M0.
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in T , as we know from the conductivity in a Schwarzschild background [84].
For low temperatures, where the mass scale dominates, this linearity breaks
down as expected. However, the mass scale does not induce a gap in the CFT
conductivity. A possible explanation for this is the presence of other degrees
of freedom in the CFT that are not gapped out by the mass deformation
introduced in the model. A similar result was found in Refs. [1, 41]. We
could have anticipated this result as well from the fact that the calculation
is independent of the coupling λ, which as we saw in the previous section
generates the gap in the spectral functions. We expect however that the
fermionic contribution to the conductivity, which can be calculated using the
semiholographic fermionic Green's function using the approach explained in
Refs. [78, 85, 86], does contain a gap and describes an insulator.

3.3.1.3 Semiholographic spectra

The holographic spectra in section 3.3.1.1 show that the self-energy of the
semiholographic Green's function contains a gap. Therefore, the gap in the
semiholographic spectra is caused by both the bare mass M0 and the gap
in the self-energy. Note that here we are assuming a nonzero coupling λ.
Otherwise, the Dirac �eld Ψ would correspond to two independent Weyl
fermions. Another way of seeing this is by noting from eq. (3.29) that Ξc = 0
when either λ = 0 or φ = 0.
In �gure 3.4 we show the semiholographic spectral function for λ = 1 and

g = 1, which also contains a gap. For the speci�c set of parameters chosen
there, we see that the mass is renormalized to a value smaller than the bare
mass. From our previous analysis of �gure 3.2b, which gives the values of
the renormalized mass for large g, we know that this is not always the case.
This is again evident in �gure 3.5, where we study the dependence of the
spectral functions at zero momentum on the coupling constants g and λ.
The values of λ in the �gures are large enough such that the self-energy has
a gap. Clearly, for g = 0 the spectral function resembles that of a free Dirac
fermion with mass M0. Upon increasing g, for both values of λ in the �gures
the mass �rst renormalizes to a smaller value, but ultimately converges for
large g to the value shown in �gure 3.2b that is obtained in the holographic
spectral functions, which depending on the value of λ can be either smaller
or bigger than the bare mass. A remarkable feature in both the cases shown
is that there exists a value of g at which the mass renormalizes to zero. This
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Figure 3.4: The undoped spectral function of the elementary fermion for λ = 1 and
g = 1.

can be understood from the general form of the Green's function in eq. (3.37),
where we see that the mass is renormalized with a value proportional to g.
To be more precise, by studying the symmetries of the equations in eq. (3.29),
we can write the Green's function for small values of ω and k3 as

G−1
R (k) =

(
Z0σ · k iMe�

−iMe� −Z0σ̄ · k

)
(3.43)

where Z0 and Me� are given by

Z0 = 1 + g∂ωΞ0(kµ = 0), (3.44)

Me� = M0 + igΞc(kµ = 0). (3.45)

Referring to appendix 3.B for details, we note that Z0 and Me� are real
constants and Z0 > 0. From this expression it follows that the e�ective mass
changes sign when g assumes the critical value

gc =
iM0

Ξc(kµ = 0)
. (3.46)

60



3.3 Fermionic spectral functions

(a) λ = 1 (b) λ = 1

(c) λ = 2 (d) λ = 2

Figure 3.5: The semiholographic spectral function at zero momentum for several
values of g. The legends show the value of g/gc. In (a) and (b), λ = 1
and gc = 0.56. In (c) and (d), λ = 2 and gc = 0.39. These spectral
functions are symmetric in ω due to particle-hole symmetry. In (c) the
peaks are all very sharp because they are at frequencies inside the gap
of the self-energy for λ = 2.

This signals a topological quantum phase transition similar to the one ob-
tained by changing the sign of the mass in free Dirac theory9 [87�89]. This
can for example be seen by de�ning a winding number as in Ref. [88], which
changes when inverting the sign of the Dirac mass.10 We note that this tran-
sition is topological only when the symmetry protecting this winding number
is not broken during the transition. Due to the symmetry of the Dirac equa-
tion it is not possible to determine which sign of the mass corresponds to

9Strictly speaking we cannot see the quantum phase transition, since the temperature in
our numerical computation is never exactly equal to zero.

10Alternatively, this can be done by studying the behavior of the eigenspinor components
of the Dirac Hamiltonian under a parity transformation.
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Figure 3.6: The spectral function at λ = 1 and g = gc = 0.56.

a topologically trivial or nontrivial state. However, regardless of the initial
sign of the mass of a state, we can say that to adiabatically transform this
state into a state with a changed sign of the mass, i.e., a changed winding
number, requires going through a gapless state, given that the protecting
symmetry is respected during this transition. At the quantum critical point,
Me� = 0 and the spectrum looks like that of a massless quasiparticle, as
shown in �gure 3.6. Since the dispersion of the peak now resides inside the
gap, this time it does look like an in�nitely long-lived quasiparticle.

What we have thus shown is that the introduction of the additional scale g
in semiholography induces a topological quantum phase transition. This scale
is restricted to nonnegative values. Therefore, having obtained a solution
for Ξ, it is possible to �nd a quantum critical solution by choosing g as in
eq. (3.46), but only if Im[Ξc(kµ = 0)] > 0. It turns out that for λ > 0 this
is always the case, although λ should be large enough to create a gap for
eq. (3.46) to hold. Hence for positive λ, the Dirac fermion described by the
holographic limit g → ∞ will always be topologically distinct from the free
fermion described by g = 0. From the symmetry described in appendix 3.B
we can also immediately see that for λ < 0 this is not the case, since then
Im[Ξc(kµ = 0)] < 0. This can also be seen in �gures 3.7 and 3.8. Moreover,
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Figure 3.7: The spectral function at λ = −1 for several values of g. The legend
shows the value of the dimensionless coupling g.

from the symmetry described in appendix 3.B that relates the self-energy
corresponding to the bulk mass M to the one for −M , it follows that this
conclusion does not change when changing the sign of M . Speci�cally, this
symmetry implies that when changing only the sign of M , the new value of
gc is equal to the inverse of the old one. In fact, numerical analysis shows
that gc is proportional to λ−2M . Again, we can partially understand this by
noting that in eq. (3.29) the asymptotically relevant scale is λM0 rather than
M0, so that at low temperatures and kµ = 0 the asymptotic equation yields
that Ξc ∝ (λM0)2M . However, solving the equation asymptotically yields an
integration constant of which it is not entirely clear to us why its dependence
on λ is negligible.
All the spectral functions presented in this section satisfy the sum rule in

eq. (3.39), which we have veri�ed numerically. However, in e.g. �gures 3.6
and 3.4, we see that for nonzero g there is also spectral weight at frequencies
higher than the position of the peak. This implies that due to interactions the
spectral weight of the peak decreases. Numerically integrating over frequency
reveals that for the case presented in �gure 3.4 the two red peaks carry less
than half of the total spectral weight, which shows the signi�cant e�ect of the
interactions. The spread in the spectral weight continues to grow for higher
g. In �gure 3.8, for large enough values of |λ| we can clearly distinguish
the spectral weight of the peaks due to the renormalized bare mass from
the weight that originates from the self-energy. This self-energy contains a
continuum rather than a peak, as we can see from �gure 3.1a. Therefore,
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Figure 3.8: The spectral function at g = 0.5 and zero momentum as a function of λ.
Here, the quantum critical point is clearly visible for λ = 1.25, whereas
there is no critical point for a negative value of λ.

rather than an avoided crossing, we observe that the spectral weight merges
into one broad peak for small values of λ. Moreover, in this �gure we also
see once again that a quantum phase transition occurs at a critical positive
value of λ.

3.3.2 Doped spectra

We now turn to the case of nonzero chemical potential. Here we restrict
ourselves to µ > 0, as the solution for µ < 0 then easily follows from particle-
hole symmetry as described in appendix 3.B. One trivial e�ect of the chemical
potential is that the spectrum will appear shifted in frequency due to the use
of grand-canonical energies. More interesting e�ects such as the formation of
Fermi surfaces occur for large enough values of µ. In this subsection we �rstly
study holographic spectral functions containing such Fermi surfaces. We then
proceed with the semiholographic Green's functions with which we can also
compute the corresponding momentum distribution functions. Finally, we
study the dependence on the couplings g and λ of the characteristics of the
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Figure 3.9: The holographic spectral function for µ = 2 and λ = 1 in (a) standard
and (b) alternative quantization. The Fermi surface is most clearly
visible in alternative quantization, where kF = 1.58.

theory near the Fermi surfaces.

3.3.2.1 Formation of Fermi surfaces in the holographic spectra

The formation of Fermi surfaces in holographic models was studied before in
e.g. Refs. [62, 73�76]. Here we investigate how this formation depends on
the parameters in our model, in particular on the size of the gap, i.e., on λ.
In the spectral functions, Fermi surfaces appear as long-lived quasiparticle
states at the chemical potential, i.e., at ω = 0. In other words, they appear
as poles in the low-temperature spectral function at ω = 0 and at a nonzero
Fermi momentum k = kF . Examples of such spectral functions containing
a Fermi surface are shown in �gure 3.9 in both standard and alternative
quantization. In this �gure we have set µ = 2 and λ = 1. The Fermi surface
is most clearly visible in alternative quantization. For a Fermi surface to
appear in our model we need a su�ciently large chemical potential. This is
of course a consequence of the gaps in our spectra. Moreover, we expect that
since for larger values of λ the gap grows, the chemical potential required
for the formation of a Fermi surface will be higher. Conversely, for a �xed
chemical potential there exists a critical coupling λc at which the Fermi
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(a) (b)

Figure 3.10: (a) The Fermi momentum kF corresponding to the holographic Green's
function in alternative quantization as a function of the coupling λ.
The Fermi momentum is scaled with its value at λ = 0 and the coupling
λ is scaled with the value λc at which the Fermi surface vanishes. The
black curve corresponds to eq. (3.47). (b) The Fermi momentum at
λ = 0 and the critical coupling λc, both scaled with the chemical
potential µ.

surface vanishes. This can indeed be seen in �gure 3.10, where we plot the
Fermi momentum of the spectral function in alternative quantization as a
function of the coupling λ. From �gure 3.10a it follows that when scaling
the Fermi momentum with its value at λ = 0, denoted by kF,0, the resulting
curve is given by

kF
kF,0

=

√
1− λ2

λ2
c

. (3.47)

Hence, this curve is independent of µ. Interestingly, this result is very rem-
iniscent of a second-order mean-�eld quantum phase transition between a
state with a Fermi surface and a state without one, if we think of the Fermi
momentum as an order parameter. A quantum phase transition between
such states was also found in the semiholographic model studied in Ref.
[62] and in Ref. [79] in the context of nodal-line semimetals. Furthermore,
the result looks similar to the result in non-interacting Dirac theory where
kF =

√
µ2 −m2, with m the Dirac mass of that theory. This suggests that

also here we can approximate the band in �gure 3.9b by ω+ µ =
√
k2 +m2,

up to some mass and wavefunction renormalization. Identifying the mass in

66



3.3 Fermionic spectral functions

our model with λ,11 this seems to suggest that kF,0 ∝ µ and λc ∝ µ. As
shown in �gure 3.10b, this is indeed what we obtain from our numerics when
µ is large enough. For smaller chemical potential the mass and wavefunction
renormalization still depend on µ. Notice that the intersection of the curves
in 3.10b with the vertical axis occurs at nonzero values, which indicates that
also for small chemical potentials kF,0 and λc are proportional to µ to leading
order.
Another feature that is visible in the spectral function in �gure 3.9b is a

second band that is close to the chemical potential, i.e., near ω = 0. Here
the height of the peak is higher for lower values of k. A similar feature
was observed in the spectral functions in Ref. [73], where the band was
interpreted as a so-called critical Fermi ball. Moreover, Refs. [74, 75] report
the formation of multiple Fermi surfaces in their models. However, in our
model, the imaginary part of the Green's function near the second band is
nonzero, so this does not cause additional Fermi surfaces. Since the band is
situated at the chemical potential, independent of the value of λ, it appears
to indicate the existence of a many-body fermionic bound state in the theory
due to the presence of the Fermi surface that hybridizes with the composite
fermions described by the spectral function. We have found that the band
is also present for nonzero values of µ that are small enough such that the
band is inside the gap. Therefore the binding energy of this bound state, as
compared to the band gap, can be positive or negative in our models.

3.3.2.2 Semiholographic spectra

Fermi surfaces in semiholographic models have been studied before in Refs.
[62, 80, 90]. Here, we investigate the in�uence of a �nite semiholographic
coupling g on our fermionic spectra. The semiholographic spectral function
is shown in �gure 3.11a for g = 4 and otherwise the same parameters as in
�gure 3.9. Qualitatively the spectrum bears resemblance to the holographic
spectrum in alternative quantization in �gure 3.9b, but we observe quantita-
tive di�erences in the size of the gap and the location of the Fermi surface.
Figure 3.11b shows the dependence of the Fermi momentum on both the
couplings λ and g. Here we have taken µ = 2, such that at g = 0 there
is a Fermi surface located at kF =

√
µ2 −M2

0 =
√

3, independent of λ.

11This identi�cation can be justi�ed by �gure 3.2b.

67



3 Massive Dirac fermions from holography

0

0.08

0.16

0.24

0.32

0.40

(a)

0.001 0.01 0.1 1 10 100 1000
0.0

0.5

1.0

1.5

2.0

g

kF

-10

-1
1

100

1

2

2.355

10

(b)

Figure 3.11: (a) The spectral function for µ = 2, λ = 1 and g = 4. There is a Fermi
surface at kF = 1.72. (b) The Fermi momentum kF as a function of g.
The legend shows the value of the coupling λ.

Furthermore, in the limit of large g the Fermi momentum converges to the
holographic value shown in �gure 3.10. Since this value is independent of
the sign of λ, the Fermi momenta for λ = ±1 converge to the same value.
Moreover, as we have seen in the holographic case, the Fermi surface disap-
pears for large values of |λ|, but as seen in the �gure, the value at which it
disappears increases as we move away from the holographic limit. Finally,
we note that for λ > 0 the Fermi momentum �rst increases as we increase
g, after which it decreases to ultimately converge to the large-g value. Since
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the Fermi momentum is largest when the e�ective mass vanishes, the tops
of these curves correspond to the quantum critical points gc mentioned in
section 3.3.1, where the spectrum is gapless. The value of gc can however not
be derived from an equation similar to (3.46), since Ξc(kµ = 0) is not purely
imaginary for nonzero chemical potential. In contrast, for λ < 0 the Fermi
momentum converges to the large-g value without passing through such a
quantum critical point, in accordance with the �ndings in section 3.3.1.

Above we considered a case where µ > 1. Here, we have seen that for
g = 0 there is a Fermi surface. In contrast, in the limit g →∞, this is only
true if |λ| < λc, where λc can be determined from the asymptotic value in
�gure 3.10b. For �nite g, this generalizes to two g-dependent critical values
λc,+(g) > 0 and λc,−(g) < 0, so that the spectrum only contains a Fermi
surface when λc,− < λ < λc,+. From �gure 3.11b we see that λc,+ increases
as we lower g, and diverges to ∞ as g → 0. Moreover, as we can see by
comparing the curves for λ = ±10, we in general have that λc,− 6= −λc,+.
The case when µ ≤ 1 is slightly more complicated. Here, there is no Fermi
surface for the noninteracting case g = 0. However, we know from �gure
3.10b that there is a Fermi surface when g → ∞ for |λ| su�ciently small,
i.e., |λ| < λc. This means that in this case there must be a critical coupling
g above which a Fermi surface forms. On the other hand, for larger |λ|, there
is no Fermi surface when g = 0 and neither when g → ∞. In this case,
depending on the value of λ, a Fermi surface can form at an intermediate
value of g, which disappears again for larger g. Alternatively, there can also
be values of λ for which there is no Fermi surface for any value of g.

Besides the critical points mentioned above, we can �nd critical couplings
gc reminiscent of the ones mentioned section 3.3.1 at which the spectrum is
gapless. However, due to the nonzero imaginary part of the self-energy at
nonzero doping, the spectrum will in this case be gapless for a larger range
of values for g. Although interesting, showing the entire phase diagram with
the all of the abovementioned critical couplings for all values of g, λ and µ
is beyond the scope of the present paper.

The semiholographic spectral functions computed in this section obey the
sum rule. This allows us to de�ne and compute the momentum distribution
function, which we shall do next.
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Figure 3.12: The dependence of the momentum distribution function on (a) the
coupling g, (b) the coupling λ and (d) the temperature, and (c) the
dependence of the quasiparticle residue on g and λ. In all plots the
chemical potential is �xed to µ = 2 and in all plots except for (d), the
temperature is �xed to T = 1/100. In (a) λ = 1, in (b) g = 1 and
in (d) g = λ = 1. The dotted lines in (a) and (b) denote the Fermi
momenta of the corresponding curves of the same colors, as calculated
from the spectral functions. In (d), the gray line denotes the location
of the Fermi surface, which does not depend on temperature.

3.3.2.3 Momentum distribution functions

Since our numerical calculations are performed at a small but nonzero tem-
perature, the peaks at the Fermi surface have a small �nite width. Therefore
the previously obtained values of kF , which is a quantity de�ned at zero
temperature, are formally only approximately at the Fermi surface. Another
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indication of the Fermi surface is found by looking for a discontinuity in the
momentum distribution of the Dirac fermion, which is de�ned as

N(k) =

∫
dωρ(ω,k)nF (ω) (3.48)

where nF (ω) is the Fermi distribution function. In �gures 3.12a, 3.12b and
3.12d we have studied the dependence of this quantity on the parameters of
our system. Here we have �xed the chemical potential to µ = 2, as we expect
that this will not have a large impact on the qualitative behavior besides the
location of the Fermi surface. As expected, these momentum distribution
functions contain a discontinuity at the Fermi surface, although the discon-
tinuity is smoothed out by the �nite temperature. We have however checked
that the discontinuity becomes steeper as we decrease the temperature fur-
ther, as is shown in �gure 3.12d.
For small momenta, the value of N(k) depends on the couplings g and λ,

as shown in �gure 3.12a and 3.12b. The large deviation from 4 is indeed
a signature of strong interactions. It indicates that there is still nontriv-
ial spectral weight above the upper band which can for example be seen in
�gure 3.11a. For g = 100 the spread of spectral weight is so large that the
discontinuity is hardly visible in the �gure. In contrast, for g = 1/100, nearly
all spectral weight is contained in the two peaks in the spectrum. Further-
more, for large momenta, N(k) always approaches 2, independent of g and
λ. This shows that even though the spectrum contains a lot of nonzero spec-
tral weight besides the peaks, the weight is still evenly distributed between
the region above and below the gap due to the particle-hole symmetry of
the undoped system. The discontinuity in the distributions is related to the
quasiparticle residue Z, which we study in more detail shortly. Since the
momentum distribution as de�ned in eq. (3.48) is the momentum distribu-
tion function for the entire Dirac spinor, it contains both particle and hole
degrees of freedom of both chiralities. In the free theory, a discontinuity of 2
in the spectral weight corresponds to the spin degrees of freedom only, which
corresponds to Z = 1. More generally, the quasiparticle residue is equal to
one half times the discontinuity in the momentum distribution due to spin
degeneracy. Figure 3.12c shows that Z increases as λ increases, and decreases
for increasing g, in accordance with �gures 3.12b and 3.12a. Moreover, the
curves corresponding to λ = 4 and λ = 10 in �gure 3.12c terminate at a
�nite value of g. This is because as explained in section 3.3.2.2, when λ is
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high enough there is a critical value of g above which there is no Fermi surface.

The momentum distributions also slightly decrease at a momentum below
kF . This is for example clearly visible in �gure 3.12a for the case g = 1/5.
The reason is that the spectral functions contain a second band above the
gap, as was mentioned in the previous section and can also be seen in �gure
3.11a. Since this band is situated around ω = 0, it yields a contribution to
the momentum distribution for low momenta.

The quasiparticle residue displayed in �gure 3.12c is calculated using the
self-energy near the Fermi surface. For this purpose, we linearize the theory
around the Fermi momentum kF and ω = 0. Starting with eq. (3.37) and
de�ning the shorthand notation

ωr ≡ ω + µ+ gΞ0, (3.49)

kr ≡ k3 − gΞ3, (3.50)

Mr ≡M0 + igΞc, (3.51)

we see that we can write the trace of the Green's function as

1

2
TrGR =

−1

ωr −
√
k2
r +M2

r

− 1

ωr +
√
k2
r +M2

r

. (3.52)

Notice that this di�ers from a trivial free fermionic Green's function, since
in general ωr, kr and Mr are all complex functions of ω, k3 and all other
parameters in our model. On the other hand, we obtain an e�ective model
by linearizing the theory near the Fermi surface, i.e.,

1

2
TrGR =

−Z
ω − vF (k3 − kF )− iΣe�(ω, k3)

. (3.53)

This de�nes the quasiparticle residue Z, as well as the Fermi velocity vF ,
which are both real and positive. Moreover, it de�nes the e�ective self-
energy Σe� which is a real function of ω and k3 that vanishes at the Fermi
surface at zero frequency. We can compute expressions for these quantities
by comparing eq. (3.53) to eq. (3.52). To do so we �rst note that the latter is
dominated by the �rst term, since this contains a pole exactly at the Fermi
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surface.12 Neglecting the second term then yields

Z−1 ≈ − ∂ωRe

[(
1

2
TrGR(ω, kF )

)−1
]∣∣∣∣∣
ω=0

≈ 1 + ∂ωRe
[
gΞ0(ω, kF )

−
√(

kF − gΞ3(ω, kF )
)2

+
(
M0 + igΞc(ω, kF )

)2]∣∣∣∣∣
ω=0

. (3.54)

This expression allows us to calculate the quasiparticle residue by calculating
the self-energy near the Fermi surface and was used to create �gure 3.12c.
Note that for M0 = Ξc = 0 this reduces to the result in section 4.2.1. in Ref.
[62]. Moreover, note that the evaluation at kF gives an additional implicit
dependence on g and λ. However, since kF converges for large g, we can still
see from this expression that then Z ∝ 1/g, as we also observe in the �gure.
Deriving a similar expression for the Fermi velocity yields

vF ≈ 2Z ∂k3Re
[(
TrGR(0, k3)

)−1
]∣∣∣
k3=kF

≈ −Z∂k3Re
[
gΞ0(0, k3)

−
√(

k3 − gΞ3(0, k3)
)2

+
(
M0 + igΞc(0, k3)

)2]∣∣∣∣∣
k3=kF

. (3.55)

Finally, we have that the e�ective self-energy is given by

Σe� ≈ 2ZIm
[
(TrGR)−1

]
≈ −ZIm

[
gΞ0 −

√(
k3 − gΞ3

)2
+
(
M0 + igΞc

)2]
. (3.56)

We have plotted this e�ective self-energy in �gure 3.13a. As expected it
vanishes at zero frequency,13 which is related to the fact at the Fermi surface
12For µ < 0 the second term would dominate.
13In our numerics, it does not vanish exactly. We have however checked that this is due to

nonzero temperature. As we lower the temperature, the dependence Σe�(0, kF ) ∝ T 3/2

seems to approximate our results.
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Figure 3.13: (a) The e�ective self-energy Σe� at the Fermi momentum, and its (b)
�rst and (c) second derivatives. The legend in the lower right corner
holds for all �gures. In all graphs, µ = 2, g = 1 and λ = 1.

there is a peak with an in�nite lifetime τ = −2/Σe�. This is indeed visible in
�gure 3.11a. At nonzero ω, the width associated with the peak increases and
so the lifetime becomes shorter. Of interest is the leading order frequency
dependence of the self-energy Σe�. If the system behaves as a Fermi liquid,
Σe� should go to zero faster than ω. Figure 3.13b shows that this is indeed
the case, since the derivative of Σe� vanishes at ω = 0. Therefore the system
indeed behaves like a Fermi liquid. In �gure 3.13c we have also plotted the
second derivative of Σe�(ω, kF ) for low temperatures. At �rst sight, these
all seem to converge to a �nite value as ω → 0, so that we could conclude
that the self-energy follows Σe� ∝ ω2 for small ω. However, upon closer
inspection, the coe�cient of ω2 does not appear to converge as we lower
the temperature. This convergence is necessary since we are studying the
behavior near the Fermi surface, which is de�ned at zero temperature. The
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problem is that by determining the second derivative at zero frequency, we
are inspecting a region where ω . T , which does not correspond to the low-
temperature physics. We do observe that the second derivative converges to
a �nite value for ω ≈ 0.05. Here, T � ω, but ω is small compared to the
other scales of the system, i.e., the gap and the chemical potential. We also
see such a convergence for negative frequencies, but the convergence is to a
di�erent value. Although it is numerically di�cult to lower the temperature
even further, we believe that in the zero-temperature limit, the function in
�gure 3.13c converges to a �nite value as ω → 0, which is dependent on
whether the limit is taken from above or below.
Although it appears di�cult to extract the exact frequency dependence of

the e�ective self-energy at the Fermi surface, it is at least clear that it con-
verges to zero faster than linearly and the system is a Fermi liquid. Moreover,
since the second derivative clearly does not converge to 0, we can also con-
clude Σe�(ω, kF ) does not converge exponentially. We have checked that this
does not change in the holographic limit of large g. This is in contrast to
what is found in the models in [62, 91, 92] where fermionic systems are stud-
ied using backgrounds with a dynamical scaling exponent z that is emergent
in the IR geometry. There, the self-energy behaves as

Σe� ∝ exp

(
−
(
kzF
ω

) 1
z−1

)
. (3.57)

Apparently, our model does not contain such an exponential behavior, as
can also be checked by studying the IR geometry of our model in the zero-
temperature limit, which is similar to the one in section 5.2 in Ref. [55].14

3.4 Conclusions and discussion

In this work we provided a framework to study the dynamics of massive Dirac
fermions using holographic and semiholographic models. We �nd that a gap
is induced in the fermionic spectra by coupling two probe fermions in the
bulk theory through a Yukawa coupling with the scalar �eld that provides the
mass deformation. Moreover, by extending to a semiholographic model we
encounter a quantum critical point at which the e�ective mass of the fermion

14Note however that this reference contains the geometry for d = 3.
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vanishes. When turning on doping, we have seen that the Yukawa coupling
can be used as a parameter that triggers a quantum phase transition between
a state with a Fermi surface and a state without one. Studying the momen-
tum distributions near the Fermi surfaces using the semiholographic Green's
functions revealed that the described systems show Fermi-liquid behavior.
In particular, the e�ective self-energy at the Fermi momentum converges to
zero faster than linearly in frequency, as is expected from Pauli blocking.

An aspect that requires further research is the conductivity in the model.
In this work, we have only seen that the CFT conductivity does not behave
like an insulator despite the introduced mass deformation. It would be inter-
esting to study if the fermionic contribution to the conductivity does behave
like an insulator as expected. To this end we should �rst use the dressed
semiholographic fermionic Green's functions to calculate the current-current
correlation function from the one-loop diagram as in Refs. [78, 86]. The next
step would then be to also include the vertex corrections.

The principal result of this work is to provide a framework that allows
us to compute fermionic spectral functions that are relevant in the study
of strongly coupled condensed matter. In particular, using the method de-
scribed here allows us to include the mass of the fermions in condensed-matter
systems. As mentioned in the introduction, this can either be a real particle
mass or an e�ective mass or gap in a Dirac material. The viewpoint taken
in this work is the latter, where the Dirac theory is used as an e�ective
description. Basically, this means that the speed c that is set to unity in
this paper corresponds to the Fermi velocity of the free massless Dirac the-
ory. From the other point of view, we use Dirac theory to describe actual
fermionic particles, and the speed c corresponds to the speed of light. In
this case the newly introduced energy scale mc2, where m is the mass of the
fermion in the condensed-matter system under study, allows us to research
nonrelativistic physics by resorting to the appropriate regime in which the
other scales such as kBT , ~ω and µ are small compared to mc2. It would be
interesting to see if we can use this approach to for example study ultracold
Fermi gases at unitarity. Besides this, we can of course study a plethora of
strongly coupled condensed-matter physics by adding additional ingredients
in the bulk theory, such as chiral-symmetry breaking terms as was done in
Refs. [41, 77, 79].
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3.A Conventions

In this appendix we list our conventions. We �rstly specify the dimension-
less units used throughout the paper, and subsequently give our conventions
regarding the Dirac theory.

3.A.1 Units

The action for the gravitational background eq. (3.1) reads in SI units

S =

∫
d5x
√
−g

(
c3

16πG
(R− 2Λ)− 1

4µ0c
F 2 −

(
(∂φ)2 +

m2
φc

2

~2
φ2

))
.

(3.58)
Here G and µ0 are Newton's constant and the vacuum permeability respec-
tively in 4 spatial dimensions, and Λ < 0 is the cosmological constant. The
components of the metric gµν are dimensionless. De�ning the anti-de Sitter
radius as L2 = 6/(−Λ), the dimensionless units in this paper are obtained by
scaling length scales by L, so that Λ = −6. Moreover, we put Boltzmann's
constant kB = 1. Consequently, all energy scales, such as kBT , mφc

2 and
M0c

2, are in units of ~c/L. The dimensionless �elds are obtained as follows:

Ãt̃ =

√
16πG

µ0c6
At, (3.59)

φ̃ =

√
16πG

c3
φ. (3.60)

Here the left-hand sides are the dimensionless �elds used throughout the
paper, where we omitted the tildes.
The Dirac action in eq. (3.11) in SI units reads

S = igf

∫
d5x
√
−gψ̄

(
/D − Mc

~

)
ψ + igf

∫
d4x
√
−hψ̄RψL. (3.61)

Taking gf dimensionless, the Dirac �eld ψ has the dimension of
√
~/L2. The

dimensionless Dirac �eld can be de�ned by extracting this factor from the
�eld. Alternatively, there is always an undetermined dimensionless constant
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~c3/16πGL3 which can be included in the de�nition. However, this is equiv-
alent to a rede�nition of gf . Furthermore, the dimensionless charge q̃ that
resides in the covariant derivative is given by

q̃ =

√
µ0c6

16πG

L

~c
q. (3.62)

We remind the reader that the dimensionless quantities de�ned in this ap-
pendix are dimensionless in SI units, but can still have a nonzero scaling
dimension.

3.A.2 Dirac theory

Firstly, we de�ne Dirac's gamma matrices in �at spacetime as follows:

Γµ = γµ =

(
0 σ̄µ

σµ 0

)
for µ 6= r, (3.63)

Γr = γ5 =

(
I2 0
0 −I2

)
= iγ0γ1γ2γ3. (3.64)

Here Γa are the gamma matrices de�ned in the 4 + 1 spacetime of the bulk,
while γa are the usual gamma matrices in 3 + 1 dimensions. Notice as
well that these indices, such as a, are underlined, meaning that these are
tensors de�ned in �at spacetime, i.e., gab = ηab. Moreover, σ = (I2, σ

i) and
σ̄ = (−I2, σ

i) with σi the Pauli matrices.
Conjugate spinors are de�ned as

ψ̄ = ψ†Γ0. (3.65)

The gamma matrices in a curved background are de�ned using the vielbeins:

Γµ = eµaΓa. (3.66)

The vielbeins satisfy gµν = e
a
µe
b
νηab and the inverse vielbeins eµae

a
ν = δµν and

eµae
b
µ = δ

b
a. Computing these for the metric in eq. (3.2) gives
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e0
0 =

√
eχ(r)

f(r)
, (3.67)

err =
√
f(r), (3.68)

eii =
1

r
. (3.69)

The slash is de�ned by
/X = ΓµXµ. (3.70)

Finally, the Dirac action contains the covariant derivative /D = /∇ − iq /A.
Here the spinor covariant derivative ∇µ is de�ned as

∇µψ = ∂µψ + Ωµψ (3.71)

where Ωµ is given by

Ωµ =
1

8
ωµab[Γ

a,Γb] (3.72)

with ωµab the spin connection

ω
a
µb = eaνe

λ
bΓνµλ − eλb ∂µe

a
λ. (3.73)

For the metric in eq. (3.2) the only nonvanishing components of the spin
connection are ωttr = −ωtrt and ωiir = −ωiri. Using this, one can show that
the spinor covariant derivative can be written as

/∇ψ = /∂ψ + ΓrF (r)ψ (3.74)

where F is a function depending on the radial coordinate only. De�ning

p(r) = exp

(
−
∫ r

dr′F (r′)

)
, (3.75)

we have that
/∇ (pψ) = p/∂ψ. (3.76)

This demonstrates that rescaling both ψ(1) → pψ(1) and ψ(2) → pψ(2) in eqs.
(3.16) and (3.17) gets rid of the spin connection terms in the Dirac equations.
Moreover, this rescaling does not a�ect the matrix Ξ de�ned in eq. (3.22).
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3.B Symmetries

In certain cases we can reduce the amount of equations we need to solve by
using additional symmetries. From the equations in (3.29) and the imposed
initial conditions we can derive that

Ξ±(ω̃, k3) = Ξ∓(ω̃,−k3), (3.77)

Ξc(ω̃, k3) = Ξc(ω̃,−k3), (3.78)

Ξ±(ω̃, k3) = −Ξ∗∓(−ω̃, k3), (3.79)

Ξc(ω̃, k3) = −Ξ∗c(−ω̃, k3). (3.80)

The �rst two symmetries correspond to parity symmetry, whereas the last
two represent time-reversal symmetry. From these symmetries it follows that
we can solve the system for k3 ≥ 0 and use eq. (3.77) and eq. (3.78) to obtain
the results for k3 < 0. Moreover, when µ = 0, we only need to solve for
ω ≥ 0 according to eq. (3.79) and eq. (3.80), which then represent particle-
hole symmetry.
Also, the equations in (3.29) as well as the initial conditions are invariant

under sending both λ → −λ and Ξc → −Ξc. This symmetry allows us
to obtain solutions for λ < 0 from solutions with λ > 0. Furthermore,
multiplying the matrix equation between the brackets in (3.27) from both
the left and the right by Ξ−1 reveals that the equations are also invariant
under sending M → −M , λ → −λ and Ξ → Ξ−1. Consequently, solutions
for M < 0 can be obtained from solutions with M > 0. Finally, solutions
for µ < 0 can be obtained from solutions with µ > 0 by exploiting the
symmetries in eq. (3.79) and eq. (3.80).
The symmetries in eqs. (3.77)-(3.80) show that for k3 = 0 we have Ξ3 = 0,

and that for k̃µ = 0, Ξ± is real and Ξc is imaginary. This demonstrates that
the constants Z0 andMe� de�ned in eq. (3.44) and eq. (3.45) respectively are
real.

3.C RG equations

Throughout the paper, we have �xed the ratio of the scalar source φs and
the bare massM0 originating from the UV action eq. (3.31) to α ≡M0/φs =
4
√
π2/3. Here we present an argument for choosing this speci�c value. It

is important to realize that we could in principle consider models in which
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this ratio is a free parameter, so that independent from the argument made
here, our semiholographic results can also be seen as a speci�c case of such
models. Moreover, this value is not relevant for our holographic results.
For a mass m2

φ = −3, the asymptotic equations of motion in eqs. (5.4),
(5.5), (5.6) and (5.7) give

φ = φsr
−1 + φvr

−3 − φ3
s

6
r−3 log r . . . . (3.81)

Under a rescaling r → λr we then get

φ→ φs(λ)λ−1r−1 +φv(λ)λ−3r−3− φs(λ)3

6
λ−3r−3 (log r + log λ) . . . . (3.82)

As φ is invariant under this rescaling we get from comparing eq. (3.81) and
eq. (5.31) that

φs(λ) = φsλ, (3.83)

φv(λ) = φvλ
3 +

φ3
s

6
λ3 log λ. (3.84)

This yields the following RG equations for the coe�cients φs,v:

λ
dφs(λ)

dλ
= φs(λ), (3.85)

λ
dφv(λ)

dλ
= 3φv(λ) +

φs(λ)3

6
. (3.86)

Note that the term with the logarithm generates the nontrivial part of the
RG equation in eq. (5.35).
On the other hand, the two-point function found from semiholography is

〈
iΨ̄Ψ

〉
= Tr

∫
d4kE
(2π)4

1

−i/kE +M0 − iΣ̃

= Tr
∫

d4kE
(2π)4

1

k2
E +M2

0 + Σ̃2 − {/kE , Σ̃}

(
i/kE +M0 − iΣ̃

)
, (3.87)

where we used the Euclidean momentum with k2
E = |k|2 + k2

4 and k4 = iω
and where {., .} denotes the anticommutator. Note that the self-energy Σ̃
here di�ers from the self-energy Σ de�ned in eq. (3.36) by a factor of Γ0, since
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we are calculating
〈
Ψ̄Ψ
〉
rather than

〈
Ψ†Ψ

〉
. However, for large momenta

its components are also proportional to k2M .
Our goal is now to derive an RG equation for

〈
iΨ̄Ψ

〉
. To this end, we

integrate over a high-momentum shell for which |kE | ∈ (Λe−l,Λ) where Λ is
a UV cut-o� and l > 0. We then look for the logarithmic UV divergence,
which should yield the term in the RG equation that can be compared to
the nontrivial term in eq. (5.35). For the high momenta in the shell, the
integrand in eq. (3.87) can be expanded as

〈
iΨ̄Ψ

〉
Λ

=Tr
∫

Λ

d4kE
(2π)4

1

k2
E

(
1− M2

0 + Σ̃2 − {/kE , Σ̃}
k2
E

)(
i/kE +M0 − iΣ̃

)
+ . . . (3.88)

where the dots denote the integration over lower momenta and the second
integral is over the shell. Now it is clear that the logarithmic divergence
resides in the term15 proportional to M3

0 /k
4
E . To evaluate this term, we use

d4kE = 2π2k3
EdkE to get

〈
iΨ̄Ψ

〉
Λ

= · · · − M3
0

2π2

∫ Λ

Λe−l

dkE
kE

= · · · − M3
0 l

2π2
, (3.89)

so that
d
〈
iΨ̄Ψ

〉
dl

= · · · − M3
0

2π2
. (3.90)

Expressing this in terms of α as de�ned in the beginning of this appendix,
and identifying φv = −

〈
iΨ̄Ψ

〉
/α,16 we obtain

dφv
dl

= · · ·+ α4φ3
s

2π2
. (3.91)

Comparing this with eq. (5.35) then yields α4 = π2/3.

15Here we neglect the subtle case M = 0.
16This follows from comparing the on-shell Klein-Gordon action to the mass deformation.
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interactions and the unitary Fermi gas

4.1 Introduction

Our understanding of ultracold Fermi gases has signi�cantly progressed over
the past decade, due to the fact that the s-wave scattering length, which is
the relevant measure for the strength of the interactions in these systems, can
be conveniently engineered by tuning a magnetic �eld near a so-called Fesh-
bach resonance [21, 58]. This allows for an accurate experimental analysis of
ultracold gases in both the weakly and strongly coupled regime [24�29]. A
particularly interesting situation occurs exactly at resonance, where the ex-
ternal magnetic �eld is such that the scattering length diverges. At this point
collisions between the atoms are unitarity limited and the system becomes
almost scale invariant, in the sense that the only length scale at zero tem-
perature is the average interatomic distance that is set by the atomic density
and diverges at zero density. Consequently, the thermodynamic properties
of the Fermi gas become universal at unitarity [30].
Being strongly coupled, close to scale invariant and experimentally acces-

sible, these ultracold gases at unitarity present a benchmark problem for
the application of the holographic AdS/CFT correspondence, which aims to
describe a (possibly deformed) conformal �eld theory (CFT) as a boundary
property of a dual theory in a curved spacetime with one more spatial di-
mension [93]. This correspondence was discovered within string theory [6]
and for condensed-matter physics has especially had some successes in the
application to emergent relativistic systems such as graphene [71, 94] and
Weyl or Dirac semimetals [41, 56, 62, 77, 79, 82, 86, 95]. A common way
to deal with nonrelativistic systems in holography is to use instead of an
anti-de Sitter (AdS) spacetime background a so-called Lifshitz background
[67�70, 96] as a gravitational dual with a dynamical exponent z = 2. How-
ever, the fermionic spectra obtained in this way are generally particle-hole
symmetric and without a mass gap. Hence for the description of an ultracold
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gas of massive atoms, a di�erent approach is needed. The purpose of this
Letter is to provide this alternative approach to nonrelativistic holography,
which allows us to compute nonrelativistic single-particle spectra that can
in principle be compared with experiments. Our method uses as its start-
ing point results for the dynamics of Dirac fermions from holography [2],
from which we can also obtain single-particle spectra with a mass gap by
introducing a mass deformation in the CFT. The introduction of the mass
gap allows us to consider the nonrelativistic limit of such spectra, where this
mass scale, which contains the speed of light c, is large compared to all the
other energy scales in the problem. Our most important �nding below is
that we obtain a data collapse for the spectral functions in the limit c→∞,
i.e., the spectral functions are universal after an appropriate scaling with the
chemical potential.
An important advantage of our procedure is that it allows us to directly

compare results obtained from a holographic model with experimental data.
Therefore, we also extensively discuss the application of our method to ul-
tracold Fermi gases at unitarity. In particular, we determine the equa-
tion of state from the single-particle spectra, i.e., the density as a func-
tion of the chemical potential and temperature, which is shown in Fig.
4.1 and from which all thermodynamic functions follow. The equation of
state can be directly compared with results from experiments [34, 98�100]
and from other theoretical models that are based on for example quan-
tum Monte-Carlo methods [35, 36], the Luttinger-Ward formalism [101],
Wilsonian renormalization-group methods [37], or more recently the com-
plex Langevin model [97]. Of course, a quantitative comparison requires
�ne-tuning of the model parameters and possibly also examining di�erent
gravitational dual theories. This is beyond the scope of the present paper, in
which we primarily focus on the method to obtain universal nonrelativistic
spectra from holography. Therefore, the main purpose of the comparison to
the unitary Fermi gas is to show that our spectra are able to reproduce many
of its qualitative features.

4.2 Holographic interactions

To explain most clearly the physical content of our approach, we consider a
relativistic Dirac fermion Ψ with bare mass M0 and chemical potential µ0
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Figure 4.1: The universal equation of state obtained for our nonrelativistic fermions
with holographic interactions. The atomic density n divided by the ideal
Fermi gas density nid is shown as a function of the chemical potential
times the inverse thermal energy βµ ≡ µ/kBT . For comparison the inset
shows the experimental results of Ref. [34] (red) and the theoretical re-
sults from Ref. [97] (green) obtained by the complex Langevin method.
Note that our construction of the holographic interactions depends on
four dimensionless model parameters that are introduced in the text be-
low and that are not yet �ne-tuned to the experiments as these contain
e�ects of the inhomogeneity of the harmonically trapped gas and of the
phase transition to the super�uid state. The speci�c values used are
here the same as in Fig. 4.3.

that is linearly coupled to a strongly interacting CFT through a fermionic
operator O. Referring to the supplemental material for our conventions in
this section on the units (mostly ~ = c = 1) and on the Dirac theory in �at
and curved spacetimes 1, the corresponding grand-canonical action is

S =

∫
d4k

(2π)4

{
Ψ†γ0

(
− /K − iM0

)
Ψ + gΨ†O + gO†Ψ

}
+ SCFT, (4.1)

with kµ = (−ω,k), /K = γµKµ, γµ the gamma matrices, Kµ = (−ω− µ0,k),
g a coupling constant and SCFT the action of the deformed CFT containing

1See section 4.C for conventions on units and Dirac theory.
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4 Nonrelativistic fermions with holographic interactions

O. To make a connection with condensed-matter physics, we think of the
CFT as being formed out of collective variables of the single fermion Ψ. From
this perspective, the operator O is then a composite operator containing Ψ.
We remark that we employ holography in the spirit of a bottom-up approach,
in which we only know some global (universal) properties of the action of the
CFT. However, the exact microscopic content of the CFT is unknown, so
that it is not possible to give an explicit expression for SCFT. Nonetheless,
we discuss some possible microscopic connections to the unitary Fermi gas at
the end of the paper. The CFTs described by holographic models contain a
large number of degrees of freedomN [6], which implies that upon integrating
out the CFT we can write the retarded Green's function for Ψ as

G−1
R (ω,k) = −γ0

(
/K + iM0

)
− Σ(ω,k), (4.2)

with Σ(ω,k) ≡ g2GO(ω,k) the self-energy matrix for Ψ that due to the
implicit large-N limit only involves the two-point function GO of O. The
latter can be directly obtained from the dictionary of the AdS/CFT corre-
spondence.
Technically, we obtain the above Green's function GR from a holographic

dynamical-source model [62]. The calculation of the Green's function is then
a two-step process. The �rst step is to �nd the gravitational dual of the CFT,
also known as the bulk background, which consists of a so-called asymp-
totically anti-de Sitter spacetime with an additional spatial coordinate r.
Moreover, to have a nonzero temperature T and chemical potential µ0 in the
CFT, we need to have a black-hole horizon at r = r+ and a U(1) gauge �eld
A = Atdt in the bulk [56]. Finally, consistent with our above interpretation of
O, we need to introduce a mass deformation in the CFT. This we achieve by
adding also a real scalar �eld φ to the gravity theory [41]. The gravitational
background is then found by simultaneously solving the Einstein equations,
the Maxwell equations and the Klein-Gordon equation. Numerically, this is
achieved by integrating the coupled equations of motion for At(r), φ(r) and
the metric gMN (r), or equivalently the vielbeins eMN (r) 2, from the horizon
at r+ to the boundary at r =∞, where the CFT lives 3. Here we use capital

2In this chapter we use the convention that the lower index of the vielbein corresponds
to the �at index.

3See section 4.A for the actions and corresponding equations of motions used in this
section.
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4.2 Holographic interactions

(a) (b)

Figure 4.2: (a) A typical bulk solution of the gauge �eld At (blue) and the scalar
�eld rφ (yellow). The latter is multiplied by r so that its value at the
boundary at r =∞ gives the mass M0, up to the constant α = 4

√
3/π2

that is derived in Ref. [2]. From the value of At at the boundary we
can read o� the chemical potential divided by the charge q. (b) The
Witten diagram from which the self-energy for Ψ follows. The dashed
line gives the propagator GO, which follows from the propagation of the
Dirac fermions in the curved bulk spacetime.

Roman indices in the �ve-dimensional bulk spacetime, which, as opposed to
the Greek indices, include the radial r-direction. From the boundary values
of the solution we can then read o� the chemical potential and the mass M0,
as illustrated in Fig. 4.2a, whereas the temperature is equal to the Hawking
temperature that follows from the behavior of the metric at the horizon.
The second step is then to �nd the two-point function GO, that accord-

ing to the holographic dictionary follows by having two Dirac spinors, which
together contain the degrees of freedom of Ψ and O, propagate on the gravi-
tational background found in the �rst step, as illustrated in Fig. 4.2b. These
spinors have bulk charge q under the U(1) gauge �eld and bulk masses M
and −M , respectively. Furthermore, they are coupled to the scalar �eld φ
by a Yukawa coupling with strength λ, which is necessary to provide a cou-
pling between the chiral components of the boundary spinor Ψ [2]. From the
associated equations of motion for these bulk fermions, we can then derive
a di�erential equation for the 4 × 4 matrix Ξ, which is related to GO by
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4 Nonrelativistic fermions with holographic interactions

GO(ω,k) = − limr→∞ r
2Mγ0Ξ(r, ω,k). This equation reads

−(err∂r + 2M)Ξ + i
(
i /K + λφ

)
− iΞ

(
i /K − λφ

)
Ξ = 0, (4.3)

where now Kµ = (−ω − qAt,k) and /K = γνeµνKµ. It is supplemented with
the initial condition Ξ(r+) = iγ0, corresponding to purely infalling condi-
tions at the horizon. Having solved eq. (4.3), we �nd the spectral function
ρ(ω,k) = Im[TrGR(ω,k)]/π of Ψ which depends on the ratios kBT/M0c

2

and µ0/M0c
2 obtained from the gravitational background, and additionally

on the dimensionless parameters q, M , λ and g involved in our construction
of the holographic interactions. We comment on the physical signi�cance of
these model parameters at the end of the paper.

4.3 Nonrelativistic limit

The above (semi)holographic model yields relativistic spectral functions that
obey the frequency sum rule

∫
dωρ(ω,k) = 4 [81] and thus contain both

particle and antiparticle peaks, separated by a gap proportional to M0c
2 [2].

The introduction of this mass scale allows us to inspect the nonrelativistic
limit by considering temperatures and chemical potentials that are small
compared to this scale. For this, however, we �rst need a suitable de�nition
of the nonrelativistic chemical potential µ, which di�ers from µ0 de�ned
above as in the limit c→∞ we want to measure the chemical potential with
respect to the bottom of the particle band as illustrated in Fig. 4.3a. Hence,
when µ = T = 0 we expect a delta peak at (ω,k) = (0,0). De�ning µ∗0 as
the value of µ0 at which this occurs, the nonrelativistic chemical potential µ
is then proportional to µ0 − µ∗0.
Moreover, for a genuine nonrelativistic spectrum, we should observe that

in the regime where ~ω and ~ck are small compared to M0c
2, the spectral

functions no longer depend on the energy scaleM0c
2. Another way of saying

this is that the spectra should only depend on the ratio βµ rather than on
kBT/M0c

2 and µ/M0c
2 separately. An obvious strategy to �nd such spectra

is therefore to analyze spectral functions for several small values of T and µ,
keeping the ratio βµ �xed. Our numerical data shown in Fig. 4.3b reveals
that we can indeed �nd a data collapse in this limit, provided that we use
the nonrelativistic chemical potential µ = Z(µ0−µ∗0), with the wavefunction
renormalization factor Z de�ned by 1/Z = −2∂ωRe [TrGR(ω,0)]−1

∣∣
ω=ω0
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4.3 Nonrelativistic limit

(a)

(b) (c)

Figure 4.3: (a) Starting with a relativistic spectrum with particle and antiparticle
peaks, we obtain nonrelativistic spectra by inspecting the nonrelativis-
tic regime at small µ, where the antiparticle peak decouples. (b) The
spectral function at �xed βµ = 2 and k = 6kF /5, for several values
of kBT/M0c

2. The legend shows the values of kBT/M0c
2 in units of

10−4. (c) The universal spectral functions at �xed βµ = 2 for the val-
ues of k/kF shown in the legend. To make this �gure, we have �xed
kBT/M0c

2 = 10−4, but note that (b) shows that the dependence of
the universal spectral functions on this parameter is negligible. In both
(b) and (c) we used {q,M, λ, g} = {1, 49/100,−3/4, 1/3}, for which
~kF ' 2.1

√
µM0 and Z ' 0.3. A discussion on the choice of these used

model parameters can be found in section 4.B.
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4 Nonrelativistic fermions with holographic interactions

with ω0 the position of the peak at zero momentum. In Fig. 4.3c we show
the spectral functions obtained for βµ = 2 for several values of k. The
locations ω(k) of the peaks in these spectra indeed conform to a nonrela-
tivistic dispersion ω(k) = ~(k2 − k2

F )/2Me� with kF the Fermi momentum
and Me� ' 0.86M0 for the model parameters in the �gure that we have
chosen such that the spectral functions resemble those of the unitary Fermi
gas.
Finally, it is very important to realize that in principle the antiparticle

part of the spectrum is still present in our numerics due to the fact that
we can make the scale M0c

2 very large, but not truly in�nite. However,
this part must not be included in the nonrelativistic spectral function that
only describes the particles. Naturally, this part of the spectrum also does
not collapse. In practice this means that we should cut o� the spectrum
at some point inside the mass gap. Our results are not very sensitive to
this cuto�, provided the scale M0c

2 is taken large enough. By construction,
the �nal spectral functions then also satisfy the desired frequency sum rule∫

dωρ(ω,k) = 2 for spin-1/2 particles.

4.4 Unitary fermions

Unitary fermions constitute, similar to the �ndings above, a system described
at zero temperature by a set of universal constants and whose dimensionless
thermodynamic functions depend solely on βµ. An example of the former
is the constant βSF de�ned by µ = (1 + βSF)εF , with εF the Fermi energy.
Experiments as well as theoretical models have determined that at zero tem-
perature, so in the super�uid phase, βSF ' −0.6 [27, 28, 34, 36, 102, 103].
The same quantity in the normal phase should in principle be slightly less
negative, but is not accurately known at present. Therefore we have for sim-
plicity taken our model parameters such that also βN ' −0.6. To see this
from our spectra we can use that εF = ~2k2

F /2mid with mid the mass of
the ideal Fermi gas. The Fermi momentum ~kF ' 2.1

√
µM0 follows directly

from the dispersion in our spectral functions at low temperatures and the
value of the mass mid ' 0.94M0 we obtain from the dispersion of the critical
system near µ = T = 0, since our spectral functions indeed contain a very
sharp peak in this case.
From our spectral functions we can next calculate the momentum distri-
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(a)
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Figure 4.4: (a) The momentum distributions found from the spectral functions inte-
grated with the minimum cut-o� frequency ω = −10µ/~ and including
a wavefunction renormalization factor 1/Z. The legend shows the val-
ues of βµ. (b) The momentum distributions behave as 1/k4 for large
k, although there are some deviations if k is too large. The coloring is
the same as in (a). (c) The contact parameter scaled with µ2m2

id/~4, as
determined from the large momentum tails in (b).

butions N(k) =
∫

dωρ(ω,k)nF (~ω) with nF the Fermi-Dirac distribution.
These can ultimately be used to determine the equation of state that was
already shown previously in Fig. 4.1. Performing the calculation, whose
outcome is shown in Fig. 4.4a, we need to realize that the above-mentioned
wavefunction renormalization requires us to add an additional factor of 1/Z

91



4 Nonrelativistic fermions with holographic interactions

to the momentum distribution. In this manner the integral of N(k) over mo-
mentum space approaches the ideal result at low temperatures, as expected
from Luttinger's theorem. To understand also physically why this factor is
necessary, we note that the spectral functions we obtain generically consist
of the nonrelativistic low-frequency peak with a spectral weight of 2Z and a
long tail at higher frequencies that contains most of the remaining spectral
weight. Such tails are a recurring feature in holographic spectra and are
related to the non-analytic behavior (−ω2 + c2k2)M of the self-energy due to
the asymptotically AdS gravitational background. This tail persists even in
the low-temperature limit, where the momentum distribution only captures
the states at small negative frequencies. We can therefore interpret our spec-
tra as containing a `coherent' part of weight 2Z, which is shown in Fig. 4.3
and describes the nonrelativistic unitary fermions, and an `incoherent' part
of weight 2(1− Z).
Comparing the momentum distributions to the results of Ref. [104, 105],

we see that many features of the unitary Fermi gas are reproduced by our
nonrelativistic fermions. For instance, we have checked that the slope of
N(k) at the Fermi momentum does not diverge in the zero-temperature
limit, which signals a non-Fermi-liquid behavior and is in agreement with
Fig. 6 of Ref. [105]. Moreover, the characteristic asymptotic behavior of the
momentum distributions as C/k4 for large k in terms of the contact pa-
rameter C, is also seen in our data in Fig. 4.4b, although we observe some
relativistic corrections for even larger k. From this �gure we can also read
o� the contact parameter, which results in Fig. 4.4c. We remind that to
calculate the momentum distributions, we must introduce a frequency cuto�
inside the gap from which we start integrating the spectral functions. The
dependence on this cuto� is negligible for the momentum distributions in
Fig. 4.4a themselves, but the cuto� does have some in�uence on the tails in
Fig. 4.4b, as small deviations get ampli�ed by the factor k4. Given these un-
certainties and the fact that we can still �ne-tune several model parameters,
we �nd the agreement with Fig. 2b of Ref. [105] rather encouraging. Note
that our momentum distributions contain also an interesting crossing point,
which appears to be a universal feature of strongly interacting systems [106].
Finally, we calculate the total density by integrating the momentum dis-

tributions over momentum space. The result, normalized by the ideal Fermi
gas density for which the momentum distribution for µ > 0 reads Nid(k) =
2nF (µk2/k2

F,id − µ), is shown in Fig. 4.1. For low temperatures our result
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asymptotically approaches 1/(1 + βN)3/2 with βN ' −0.6, as expected. This
limit is not clearly visible in the data of Refs. [34, 97], since there at low
temperatures the unitary gas becomes super�uid, a feature that we have not
included yet but can also be achieved holographically.

4.5 Discussion and outlook

Up to now, we have used holography as a bottom-up approach in which the
various model parameters can be tuned to �t to experiments. However, the
holographic dictionary also provides insight into the physical signi�cance of
these parameters. For instance, the conformal dimension of the operator O
is equal to 2+M , and q and λ determine the strength of the CFT three-point
functions 〈O†O(Ψ†Ψ)〉 and 〈O†O(Ψ†γ0Ψ)〉, respectively. In the context of
the unitary Fermi gas a natural choice for the operator O is Ψ† multiplied
with the annihilation operator of a Feshbach molecule. If this identi�cation
is correct then g would correspond to the atom-molecule coupling of the
Feshbach resonance. Exploring these possible microscopic connections in
detail is beyond the scope of the present paper and is left for future work.
Continuing in the spirit of bottom-up holography, however, our approach
allows for many extensions by adding more ingredients to the gravitational
dual theory, such as the inclusion of the backreaction on the bulk geometry
by a complex scalar �eld that is dual to the super�uid order parameter and
the introduction of a spin and/or mass imbalance.

4.A Actions and equations of motion for the bulk

theory

In this section we present more details on the gravitational background that
is used to obtain the results in the main text. In particular, we present the
equations of motion that need to be solved in order to obtain this background.
Moreover, we present the equations of motion for the probe Dirac spinors
propagating on this background, which ultimately lead to the self-energy of
our spectral functions.
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4 Nonrelativistic fermions with holographic interactions

4.A.1 Gravitational background

The bulk theory contains a gauge �eld A = Atdt to account for the chemical
potential in the CFT and a scalar �eld φ to account for the mass deformation
in the CFT. The scalar �eld is tachyonic with mass m2

φ = −3, such that the
corresponding deformation of the CFT has the dimension of a fermionic mass
deformation.

The gravitational background follows from the backreaction of these �elds
on the geometry described by the metric gMN , which follows from the action

Sbackground =

∫
d5x
√
−g
(
R+ 12− 1

4
F 2 − 1

2

(
(∂φ)2 +m2

φφ
2
))

. (4.4)

Here, g is the determinant of the metric, R is the Ricci scalar, F = dA and
(∂φ)2 = ∂Mφ∂

Mφ. Moreover, we note that the �rst two terms in the La-
grangian density represent the standard Einstein-Hilbert Lagrangian R−2Λ,
since in our units the cosmological constant is given by Λ = −6 as explained
in Appendix 4.C.

For the metric ds2 = gMNdxMdxN we use the following Ansatz :

ds2 = −f(r)e−χ(r)dt2 +
dr2

f(r)
+ r2dx2 , (4.5)

where the metric components as well as At and φ only depend on the radial
coordinate r due to planar symmetry. The equations of motion following
from eq. (4.4) can then be written as

φ′′ +

(
f ′

f
+

3

r
− χ′

2

)
φ′ +

3

f
φ = 0 , (4.6)

A′′t +

(
3

r
+
χ′

2

)
A′t = 0 , (4.7)

χ′ +
r

3
φ′2 = 0 , (4.8)

f ′ +

(
2

r
− χ′

2

)
f +

r

6
eχA′2t −

r

2
φ2 − 4r = 0 , (4.9)
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4.A Actions and equations of motion for the bulk theory

where a prime denotes di�erentiation with respect to r. A gravitational
background then follows from solving this system with the initial conditions
f(r+) = 0, At(r+) = 0, χ(r+) = 0 and two free initial conditions φ(r+)
and A′t(r+). After solving the system, the solution is rescaled such that in
the end χ(∞) = 0 as required for asymptotically anti-de Sitter spacetimes.
It can be shown that φ′(r+) is not independent of the other initial conditions.

After numerically solving the above system of equations, we extract the pa-
rameters of the CFT. The temperature follows from the metric tensor via

T =
f ′(r+)e−χ(r+)/2

4π
, (4.10)

whereas the chemical potential per unit charge and the mass are given by
the boundary values µ0/q = At(∞) and M0 = limr→∞ rφ(r)/α respectively.
Here the proportionality constant α = 4

√
3/π2 is discussed in Ref. [2], how-

ever, note that there α is de�ned as what is 1/α here.

4.A.2 Probe spinors

The self-energy of our spectral functions follow from the solution Ξ of Eq.
(3) in the main text. To derive this equation, we have two Dirac spinors ψ(1)

and ψ(2) propagate on the bulk theory obtained from the equations of motion
above. These spinors have masses M1 = M and M2 = −M respectively and
are coupled to the gauge �eld AM with a charge q. The associated action is
given by

SDirac = igf

∫
d5x
√
−g
(
ψ̄(1)

(
/D −M

)
ψ(1) + ψ̄(2)

(
/D +M

)
ψ(2)

)
+ igY

∫
d5x
√
−gφ

(
ψ̄(1)ψ(2) + ψ̄(2)ψ(1)

)
+ igf

∫
d4x
√
−h
(
ψ̄

(1)
R ψ

(1)
L − ψ̄

(2)
L ψ

(2)
R

)
. (4.11)

where ψ̄ = ψ†Γ0, /D = ΓM (∇M − iqAM ), gf and gY are coupling constants,
h is the determinant of the induced metric on the boundary and ψ

(i)
R,L =

(1 + Γr)ψ(i)/2. The spinor covariant derivative ∇ and the Dirac matrices
in (4 + 1)-dimensional �at (ΓM ) and curved (ΓM ) spacetime are de�ned in
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Appendix 4.C. The action consists of a standard Dirac action for the spinors
ψ(i), a Yukawa term which is necessary to couple the chiral components of
the spinor on the boundary and a boundary action to be consistent with the
Dirichlet boundary conditions δψ(1)

R = 0 and δψ(2)
L = 0. De�ning λ = gY /gf ,

the equations of motion from the spinor are then(
/D −M

)
ψ(1) = −λφψ(2), (4.12)(

/D +M
)
ψ(2) = −λφψ(1). (4.13)

Next, we de�ne the Dirac spinors Ψ = ψ
(1)
R + ψ

(2)
L and η = ψ

(1)
L − ψ

(2)
R , in

terms of which the on-shell action is

Son shell = igf

∫
d4x
√
−hΨ̄η. (4.14)

The matrix Ξ is now de�ned in momentum space by

η(r, k) = −iΞ(r, k)Ψ(r, k), (4.15)

so that Ξ is related to the Green's function for the fermionic boundary opera-
tor sourced by the Dirac spinor Ψ on the boundary. Eq. (3) in the main text
then follows from the above de�nition when imposing the Dirac equations
for Ψ and η, which follow from rewriting the Dirac equations for ψ(1) and
ψ(2).

4.B On the choice of parameters used to obtain

nonrelativistic spectra

In general, a spectral function ρ(ω,k) depends on the gravitational-background
parameters kBT/M0c

2 and µ0/M0c
2 and the model parameters q, M and λ

and g. Not every set of the parameters {q,M, λ, g} is suitable to obtain uni-
versal nonrelativistic spectra with holographic interactions. Firstly, to satisfy
the frequency sum rule, we must have that −1/2 < M < 1/2 [81]. Moreover,
we can restrict to positive g since the spectral functions only depend on g2.
In this section we discuss some more restrictions on this set, which we have
taken into account for the values of the paramaters used in the main text.
In particular, �xing q and M , we �nd a restriction on λ.
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4.B On the choice of parameters used to obtain nonrelativistic spectra

To derive such restrictions, we should realize that the self-energy contains a
gap itself. If the peaks in the nonrelativistic spectral functions are situated
inside this gap, they will not be broadened and the resulting spectrum will
resemble a noninteracting one, containing delta peaks at each value of k.
Since the gap in the self-energy Ξ is proportional to |λ|M0c

2, we expect this
to occur for large values of |λ|. In the analysis below we indeed �nd an upper
bound for |λ|.

For k = 0, the peak in the nonrelativistic spectrum is not situated inside
the gap of the self-energy if we restrict to chemical potentials µ0 that are
greater than the critical chemical potential µ∗0 in the limit g →∞. Since for
nonrelativistic spectra µ0 ' µ∗0, we can write this criterion as

µ∗0(q,M, λ, g) > µ∗0(q,M, λ,∞). (4.16)

This condition should also be su�cient for nonrelativistic spectral func-
tions at nonzero k, provided that the di�erence between µ∗0(q,M, λ, g) and
µ∗0(q,M, λ,∞) is not nonrelativistically small. For parameters satisfying this
condition, we indeed �nd spectra containing peaks with a nontrivial width,
such as the ones in the main text.

To see what the above condition implies for the allowed sets of model param-
eters, we study the behavior of the critical chemical potential µ∗0 as a function
of λ and g for �xed q and M . Noting that at the critical chemical potential
we have that kF = 0, we can use that the Fermi momentum kF (λ, g, µ0) at
g =∞ depends on λ as

kF (λ,∞, µ0) = kF,0

√
1− λ2

λ2
c

, (4.17)

where kF,0 = kF (0,∞, µ0) and λc is de�ned as the positive value of λ at
which the Fermi momentum at g = ∞ is zero. This dependence is found
numerically and is shown in Fig. 4.5. All dependence on µ0 is contained in
kF (0,∞, µ0) and λc(µ0). Putting eq. (4.17) to zero yields that the critical
chemical potential at g =∞ is given by the solution of |λ| = λc(µ0). It was
furthermore found in Ref. [2] that except for small µ0, both kF,0 and λc are
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Figure 4.5: The Fermi momentum at g = ∞ as a function of λ depends on µ0

only through kF,0 and λc. Here, we used q = 1, M = 49/100 and
kBT = 10−4M0c

2, which is small enough to determine kF . The values
of µ0/M0c

2 are 1/2 (blue dots) and 1 (yellow dots). The black curve
shows the graph of

√
1− x2, with x = λ/λc.

linear in µ0 > 0, so that in this regime we can write λc ' Bµ0/M0c
2 with B

a positive coe�cient which depends on q and M . It follows that at g = ∞
we get

µ∗0(λ,∞) =
|λ|
B
M0c

2 (4.18)

so that the criterion in eq. (4.16) can be written as |λ|M0c
2 < Bµ∗0(λ, g).

We proceed by studying the dependence of the critical chemical potential µ∗0
on λ and g, of which the result is shown in Fig. 4.6. Clearly, for g = 0 we
have that µ∗0 = M0c

2. For λ < 0, we then �nd that µ∗0/M0c
2 is a monotonic

function starting at 1 and asymptotically approaching |λ|/B. In contrast,
when λ > 0 we observe that µ∗0/M0c

2 monotonically decreases to 0 for some
value of g, after which it monotonically increases to λ/B. These �ndings
indicate that we can only obey the criterion in eq. (4.16) if µ∗0(λ,∞) < M0c

2,
i.e.,

|λ| < B, (4.19)
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Figure 4.6: The critical chemical potential as a function the coupling g. Here |λ| =
3/4 for the red curves and |λ| = 2 for the green curves. The solid curves
correspond to positive λ and the dashed curves correspond to negative
λ. The dotted lines denote the asymptotic values of the curves, which
are equal to |λ|/B. Here we used q = 1 and M = 49/100, for which
B ' 1.33.

which for �xed values of q and M gives an upper bound for |λ|. From Fig.
4.6 we furthermore observe that there is no restriction on g for negative λ,
whereas for positive λ an upper bound for g2 is required to satisfy eq. (4.19).

For the parameters q = 1 and M = 49/100, which are used in the main
text, we have that B ' 1.33, so that our choice λ = −3/4 satis�es the crite-
rion above in eq. (4.19). We remark that we should not choose |λ| too small,
since then an additional peak near the chemical potential at ω = 0 appears
in our spectra. This leads to an avoided crossing between this peak and the
particle band, which makes it hard to de�ne the critical chemical potential.
Having opted for a negative λ, the above discussion imposes no further re-
striction on g. However, to obtain nonrelativistic spectra, we should not take
g too large. To see this, we note that we can think of g as a measure for
the region in momentum space where the holographic interactions dominate
the free kinetic part of the Green's function. As a consequence, for large
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4 Nonrelativistic fermions with holographic interactions

g we �nd that the tails at higher frequencies in the spectral functions that
were mentioned in the main text persist until deep in the relativistic regime.
Moreover, the spectral weight in the gap is then no longer negligible. This is
not the case for the value g = 1/3 used in the main text, which we have taken
to reproduce the value βN ' −0.6. Finally, the chosen value for M in the
main text is also related to the above-mentioned tails. We �nd that choosing
M close to its supremum 1/2 avoids long tails extending to relativistic ω. In
particular, the spectral functions decay faster than 1/ω for large ω, i.e., for
ω � µ but still within the nonrelativistic regime, as is necessary to obey the
sum rule.

4.C Conventions on units and Dirac theory

The action for the gravitational background in eq. (4.4) in SI units reads

S =

∫
d5x
√
−g

(
c3

16πG5
(R− 2Λ)− 1

4µ5c
F 2 −

(
(∂φ)2 +

m2
φc

2

~2
φ2

))
.

(4.20)
Here G5 and µ5 are Newton's constant and the vacuum permeability respec-
tively, de�ned in 4+1 spacetime dimensions. Using the cosmological constant
Λ we can de�ne the anti-de Sitter radius as L2 = 6/(−Λ), noting that the
cosmological constant is always negative in the asymptotically anti-de Sit-
ter spacetimes that we are dealing with. The dimensionless gauge �eld and
scalar �eld are then de�ned as

Ãt̃ =

√
16πG5

µ5c6
At, (4.21)

φ̃ =

√
16πG5

c3
φ. (4.22)

The tildes, which we omit in the main text, denote dimensionless quantities.
The metric signature is mostly plus and its components are de�ned by ds2 =
gMNdxMdxN , with xM = {ct, r,x} where capital Roman letters refer to
(4 + 1)-dimensional spacetime, as opposed to Greek letters for which xµ =
{ct,x}. With this de�nition of the metric, the components gMN are already
dimensionless. All dimensionless units in main text are obtained by scaling
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4.C Conventions on units and Dirac theory

all length scales by L, i.e., putting Λ = −6. As a consequence, when putting
~ = 1 and c = 1, all energy (or mass) scales are expressed in units of ~c/L (or
~/cL). This is also true for the temperature T , setting Boltzmann's constant
kB = 1. Finally, the Dirac �elds in eq. (4.11) are in units of

√
~/L and the

dimensionless charge of the probe �eld is given by

q̃ =

√
µ5c6

16πG5

L

~c
q. (4.23)

In the main text we use the dimensionless units de�ned here for bulk param-
eters such as M and q. For quantities de�ned in the CFT we use SI units,
which means we restore c, ~ and kB.

The Dirac matrices in �at (3 + 1)-dimensional spacetime are given by

γµ =

(
0 σ̄µ

σµ 0

)
(4.24)

where σ = (I2, σ
i) and σ̄ = (−I2, σ

i) with σi the Pauli matrices and I2 the 2×2
identity matrix. Moreover, we use underlined indices for tensors and Dirac
matrices de�ned in �at spacetime, so that gMN = ηMN = diag(−1, 1, 1, 1, 1).
The gamma matrices ΓM in (4 + 1)-dimensional �at spacetime are given by
Γµ = γµ for µ 6= r and

Γr = γ5 ≡ iγ0γ1γ2γ3 =

(
I2 0
0 −I2

)
. (4.25)

The vielbeins eMN that appear in the Dirac action in eq. (4.11) in curved
spacetime are de�ned by

gMN = e
P
Me

Q

NηPQ (4.26)

where the inverse vielbeins satisfy eMP e
P
N = δMN and ePMe

N
P = δ

N
M . For the

metric in eq. (4.5) this gives

e0
0 =

√
eχ(r)

f(r)
, (4.27)

err =
√
f(r), (4.28)

eii =
1

r
. (4.29)
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4 Nonrelativistic fermions with holographic interactions

In the main text, we have omitted the underlines and only use the Dirac
matrices in �at spacetime. Moreover, all vielbeins in the main text are such
that their lower index corresponds to the �at one.

The spinor covariant derivative ∇M , which also appears in the Dirac action
in eq. (4.11), is de�ned as

∇Mψ = ∂Mψ + ΩMψ (4.30)

with ΩM given by

ΩM =
1

8
ωMNP [ΓN ,ΓP ] (4.31)

and the spin connection ωMNP given by

ω
M
NP = e

M
Q e

R
PΓQNR − e

Q
P ∂Ne

M
Q . (4.32)

Here ΓMNP denotes the Christo�el connection. The spin connection does not
appear in the equation for Ξ in the main text, as we can remove it by rescaling
the probe spinors by a function depending on r only, see appendix A.2 in
Ref. [2] for details.
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5 Towards nonrelativistic bosons from

holography

5.1 Introduction

Ultracold Fermi gases at or near unitarity provide a rich playground for
modelling strongly coupled physics. The principal reason for this is that the
discovery [21] and the experimental observation [24] of Feshbach resonances
in ultracold gases have greatly improved the experimental accessibility of this
regime. This has led to many theoretical models of such ultracold gases [3,
35�37, 97, 101] that can be directly compared to the abundant experimental
data [25�29, 34, 98�100]. In particular, due to the universal behavior that
these Fermi gases exhibit in the unitarity limit, they constitute a perfect test
case for the application of the AdS/CFT correspondence to nonrelativistic
systems. This has been explored in Ref. [3].
An analogous comparison for ultracold strongly coupled Bose gases is more

intricate. Although Feshbach resonances exist for both fermions and bosons,
the stability of the Bose gas is burdened by a large atomic loss rate. This
loss rate, which is caused by three-body recombination processes due to the
existence of so-called E�mov states [10], increases in the vicinity of the reso-
nance [11] and at low temperatures [15�17]. It is therefore more complicated
to experimentally realize a unitary Bose gas that is metastable for a suf-
�ciently large amount of time. In spite of this, if such a metastable Bose
gas can indeed be created, it should exhibit universal features similar to its
fermionic counterpart.
We therefore examine here the construction of a holographic model for

such ultracold Bose gases by generalizing the approaches in Refs. [2, 3] to
the bosonic case. This method �rstly consists of introducing a mass gap in
the spectrum of relativistic bosons obtained by holography. Subsequently, we
should study the nonrelativistic limit, in which this newly introduced mass
scale is large compared to all the other scales in the system. As a starting
point, we will work towards a universal metastable Bose gas, assuming that
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5 Towards nonrelativistic bosons from holography

we can neglect the loss rate caused by E�mov trimers. However, this is still
work in progress. In this chapter we mainly concentrate on the �rst step
towards this goal, i.e., introducing a mass gap in the spectrum of a Klein-
Gordon �eld obtained from (semi)holography.
The outline of this chapter as follows. We start by describing in section 5.2

the method to obtain the spectral function of an elementary Klein-Gordon
�eld from holography. To this end we generalize the dynamical-source model
in Ref. [81] to the case of bosons, already including a mass deformation in
the bulk. In section 5.3 we subsequently show, for zero chemical potential,
that this procedure indeed introduces a mass gap in both the holographic
and semiholographic spectra. Finally, we present some of our �ndings when
turning on the chemical potential in section 5.4. These �ndings, however,
require more research which is postponed to future work. In this chapter we
use the same dimensionless units as in chapter 3.

5.2 Obtaining massive bosons from holography

In this section we discuss a procedure that yields the dynamics of a massive
boson from holography. This procedure consists of two steps that are similar
to those used to obtain massive fermions in Ref. [2]. In the �rst step we
determine the gravitational background, which �xes the temperature, chem-
ical potential and the bare mass parameter in the boundary �eld theory.
The second step consists of determining the holographic Green's function
of the massive scalar �eld in the boundary. This amounts to solving the
Klein-Gordon equation of this scalar �eld on top of bulk geometry found
previously. Lastly, in this section we also derive the semiholographic Green's
function of the scalar �eld using a dynamical-source model and discuss the
corresponding frequency sum rule.

5.2.1 Gravitational theory

The boundary we wish to study consists of massive spinless bosons at a
nonzero chemical potential µ and at a temperature T . To this end we can
take the gravitational background as in Ref. [2], which includes a black brane
that gives rise to a temperature in the �eld theory, a gauge �eld A = Atdt
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5.2 Obtaining massive bosons from holography

that yields a chemical potential and a scalar �eld φ to account for a mass
deformation. The action for this background reads

Sbackground =

∫
d5x
√
−g
(
R+ 12− 1

4
F 2 − 1

2

(
(∂φ)2 +m2

φφ
2
))

, (5.1)

where F = dA. In contrast to Ref. [2], we now �x the mass of the scalar
�eld to m2

φ = −4, saturating the Breitenlohner-Freedman bound. In this
way, the operator dual to φ has dimension ∆ = 2 and the dimension of
the corresponding deformation in the boundary theory matches that of a
free bosonic mass deformation. The source of the scalar �eld provides the
bare mass M2

0 for the elementary Klein-Gordon �eld on the boundary, up
to a proportionality constant that we discuss in appendix 5.A. We use the
following Ansatz for a static metric tensor with planar symmetry:

ds2 = −f(r)e−χ(r)dt2 +
dr2

f(r)
+ r2dx2 , (5.2)

where (t, r,x) denotes the spacetime position in the bulk, with the boundary
being at r = ∞. This metric has a black-brane horizon at r = r+, so that
f(r+) = 0. The temperature in the �eld theory is then equal to the Hawking
temperature of this black brane, given by

T =
f ′(r+)e−χ(r+)/2

4π
, (5.3)

where the prime denotes di�erentiation with respect to r.
The gravitational bulk is now found by solving the equations of motion,

which are given by

φ′′ +

(
f ′

f
+

3

r
− χ′

2

)
φ′ +

4

f
φ = 0 , (5.4)

A′′t +

(
3

r
+
χ′

2

)
A′t = 0 , (5.5)

χ′ +
r

3
φ′2 = 0 , (5.6)

f ′ +

(
2

r
− χ′

2

)
f +

r

6
eχA′2t −

2

3
rφ2 − 4r = 0 . (5.7)
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5 Towards nonrelativistic bosons from holography

A solution to these equations is speci�ed by the two initial conditions φ(r+)
and A′t(r+), see e.g. the discussion in Ref. [2]. The corresponding boundary
theory is described by two dimensionless parameters, formed out of the three
dimensionful parameters T , µ and M0.
We remark that we only consider solutions that correspond to a nonzero

massM0. According to Ref. [55], for our current setup there should also exist
holographic-superconductor solutions, for which the scalar source vanishes.
This is because we satisfy the criterion

q2
φ >

m2
φ

2
+
d(d− 1)

8
, (5.8)

where in our case d = 4, m2
φ = −4 and qφ = 0. We will not consider these

unsourced solutions, and neither will we consider solutions where the pro�le
of the scalar φ has nodes.

5.2.2 Green's function for the massive boson

As dictated by the holographic dictionary, we obtain the bosonic Green's
function by having a probe complex scalar �eld σ propagate on the bulk
described above. Note that this scalar �eld is di�erent from the real scalar
�eld φ which induces the mass deformation. The dynamics of the probe
scalar are described by the bulk action

SKG = −gb
∫

d5x
√
−g
(
|Dσ|2 +m2

σ|σ|2
)

+ Sbdy, (5.9)

where gb is a coupling constant, Dµ = ∇µ − iqAµ with ∇ the covariant
derivative, q is the bulk charge of σ under the U(1) gauge �eld Aµ so that
the chemical potential equals qAt(∞), mσ is the bulk mass of the probe
scalar and Sbdy is a boundary action that we specify later. The Klein-Gordon
equation that follows from eq. (5.9) reads(

D2 −m2
σ

)
σ = 0. (5.10)

Fourier transforming σ on slices of constant r, we can write this as

σ′′ +

(
f ′

f
− χ′

2
+

3

r

)
σ′ −

m2
σ + |k|2

r2
− (ω + qAt)

2 eχ

f

f
σ = 0, (5.11)
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5.2 Obtaining massive bosons from holography

where now σ = σ(r;ω,k). Here the functions f , At and χ are �xed and
given by the bulk geometry described in the previous subsection. From this
equation we can derive that asymptotically, the behavior of σ is described
by two linearly independent fall-o�s,1 i.e.,

σ = σsr
−∆− + σvr

−∆+ + · · · , (5.12)

where ∆± = 2± ν with
ν ≡

√
4 +m2

σ. (5.13)

The coe�cient σs now corresponds to a scalar source in the boundary theory.
The boundary action in eq. (5.9) that is consistent with this interpretation
is given by

Sbdy = −gb
∫
r=r0

d4x
√
−h∆−|σ|2, (5.14)

where r0 is a cuto� surface that will ultimately be sent to in�nity.2 Including
this boundary action, we can indeed show that the total on-shell action in
momentum space can be written as

Son shell
KG = gb

∫
d4k

(2π)4
σ∗s(k)GO(k)σs(k), (5.15)

where kµ = (−ω,k) and where GO is the Green's function for the expectation
value of the operator O = 2νσv that is sourced by σs, i.e.,

GO(k) = 2ν
σv(k)

σs(k)
. (5.16)

In short, the above implies that to �nd the holographic Green's function
of the massive boson in the �eld theory, we must solve the Klein-Gordon
equation in eq. (5.11) and subsequently determine the ratio of the resulting
coe�cients σv and σs. For the retarded Green's function, we must supplement
eq. (5.11) with infalling boundary conditions at the horizon, which implies
that σ behaves as3

σ ∝ (r − r+)−
iω

4πT . (5.17)
1For the values of m2

σ we will be considering, the dots in the expansion in eq. (5.12)
contain no powers of r with exponents in the interval (−∆+,−∆−).

2We have neglected a factor of
√
f/r0 in the boundary action, since for large r we have

that f = r2 to leading order.
3The other behavior near the horizon that is allowed by eq. (5.11) is σ ∝ (r− r+)iω/4πT .
This behavior corresponds to outgoing boundary conditions and yields the advanced
Green's function instead.
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5 Towards nonrelativistic bosons from holography

5.2.3 Semiholographic Green's function

To make a connection with the unitary Bose gas, the object we ultimately
want to obtain is the Green's function for an elementary boson. Therefore,
we consider here a relativistic Klein-Gordon �eld ϕ, which we linearly couple
to the strongly interacting (deformed) CFT through a bosonic operator O.
The corresponding grand-canonical action for this setup is given by

S =

∫
d4k

(2π)4

{
−ϕ∗

(
K2 +M2

0

)
ϕ+ gϕ∗O + gO∗ϕ

}
+ SCFT (5.18)

where Kµ = (−ω − µ,k), K2 = − (ω + µ)2 + |k|2 and SCFT is the action of
the CFT that contains O. From the above, we can �nd the e�ective semi-
holographic Green's function for the elementary scalar �eld ϕ by integrating
out the CFT, which yields

G−1
R (ω,k) = − (ω + µ)2 + |k|2 +M2

0 − Σ(ω,k), (5.19)

where Σ = g2GO, so that the Green's function GO serves as the self-energy of
ϕ.4 Here we implicitly used that the CFT contains a large number N of de-
grees of freedom, which makes sure that only the two-point function of O ap-
pears in the self-energy. This two-point function follows from the AdS/CFT
correspondence using the procedure described in the previous subsection.
We note that the picture to keep in mind is a condensed-matter system

that is described by elementary bosons corresponding to ϕ and collective
variables thereof. Consistent with this viewpoint, the composite operator O
should then be interpreted as such a collective variable, which contains ϕ.
According to the discussion in Ref. [2], this self-consistent picture imposes
a �xed relation between the source of the scalar �eld and the free mass
parameter, which in the present case is given by M2

0 /φs = 2π, see appendix
5.A for details.

5.2.3.1 Dynamical-source model

Similar to what was done in Ref. [81] for chiral fermions and in Ref. [2]
for Dirac fermions, we can derive the semiholographic Green's function in
4Note, however, that Σ has units of energy squared. This is because to de�ne the non-
relativistic Green's function, we need a wavefunction renormalization factor which is
dimensionful, as opposed to the one in the fermionic case.
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eq. (5.19) from a dynamical-source model. In order to do so, we start with
the holographic contribution to the e�ective action given in eq. (5.15), which
is de�ned on a UV brane at a �xed radial coordinate r = r0. We then add a
free action for the source σs on the UV brane that we write as

SUV = −Zr−2∆−
0

∫
r=r0

d4x
√
−h
(
|Dσs|2 + M̃2

0 |σs|2
)
, (5.20)

where we extracted a factor of r−2∆−
0 so that Z is dimensionless. Conse-

quently, the total e�ective boundary action becomes

Se� = −Zr2ν−2
0

∫
d4k

(2π)4
σ∗s(k)

(
K2 + M̃2

0 r
2
0 −

gb
Z
r2−2ν

0 GO

)
σs(k), (5.21)

where we used that
√
−h ' r4

0 and qAt ' µ for r0 near the boundary and
that 4 − 2∆− = 2ν. To obtain a canonically normalized kinetic term, we
then rescale the source as σs → r1−ν

0 /
√
Zσs ≡ ϕ. Subsequently, we take the

limit

r0 → ∞, gb → 0, M̃0 → 0, (5.22)

such that

g2 ≡ gb
Z
r2−2ν

0 = const., M0 ≡ M̃0r0 = const. (5.23)

The e�ective action then becomes

Se� = −
∫

d4k

(2π)4
ϕ∗(k)GR(k)−1ϕ(k), (5.24)

with GR as in eq. (5.19).

5.2.3.2 Sum rule

The retarded Green's function GR(ω,k) in eq. (5.19) corresponds to an ele-
mentary scalar �eld ϕ. To demonstrate the sum rule, we use the case where
the background is given by a pure anti-de Sitter spacetime as an example,
where there is also no deformation by temperature, chemical potential or
mass. The holographic Green's function is then given by [60]

GAdS
O (k) = 2ν

(
k

2

)2ν Γ(−ν)

Γ(ν)
, (5.25)
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with k2 = −(ω + iε)2 + |k|2. This yields the retarded Green's function

GAdS
R (k) =

1

k2 + g̃k2ν
, (5.26)

with

g̃ ≡ g221−2ν Γ(1− ν)

Γ(ν)
. (5.27)

Using the similarity to eq. (3.15) in Ref. [81], we conclude that GR has
no poles in the upper half-plane if we restrict ourselves to ν ∈ (0, 1). This
corresponds to tachyonic masses in the range m2

σ ∈ (−4,−3). In this range
we also automatically have that g̃ > 0, although it should be noted that
we already anticipated this result by restricting ourselves to gb/Z > 0 when
we de�ned g2. De�ning the spectral function ρ(ω,k) = ImGR(ω,k)/π, it
therefore follows that ∫

dω ωρAdS(ω,k) = 1. (5.28)

The necessary factor of ω follows from dimensional analysis and is consistent
with the canonical commutation relation [ϕ̇∗(x), ϕ(x′)] = iδ(x − x′) of an
elementary scalar �eld ϕ, where the dot denotes a time derivative. We remark
that ρAdS itself integrates to 0 as it is odd in ω.
The above sum rule should also hold for more general gravitational back-

grounds when using ν ∈ (0, 1), provided we do not introduce any poles in the
upper half-plane. Although this is generally di�cult to check analytically,
we will always check this by numerical integration when needed.

5.3 Bosonic spectral functions

What we should �rst of all demonstrate is that the spectra obtained from
the procedure above indeed resemble those of strongly interacting massive
Klein-Gordon �elds. This implies that not only the semiholographic, but
also the holographic spectral function should be gapped, as the self-energy
should contain the e�ect of the strong interactions between massive bosons.
In this section we therefore start by studying the appearance of this gap
by �rstly calculating the undoped holographic spectra, found from the holo-
graphic Green's function in eq. (5.16), which corresponds to the semiholo-
graphic self-energy. We furthermore study the holographic spectral functions
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Figure 5.1: The absolute value of the holographic spectral function in standard (a)
and alternative (b) quantization, for m2 = −3.5. Here, and in all fol-
lowing plots in this section, all quantities are made (scale) dimensionless
by dividing by the appropriate power of M0 and we use T/M0 = 1/100.

in alternative quantization, where σv plays the role of the source instead.5

The latter can also be found from the semiholographic spectral functions
in the limit g → ∞. We then proceed by moving to �nite g and studying
the semiholographic spectral functions. The resulting spectra in the case of
zero doping are shown in Fig. 5.1 and indeed show the desired gap. We
thus �nd that the deformation in the CFT by the scalar �eld φ is su�cient
to gap the bosonic spectra, as opposed to the fermionic spectra in Ref. [2]
where an additional Yukawa coupling of the probe Dirac �elds to φ was re-
quired. Therefore our holographic spectra without doping only depend on
temperature and the parameter m2

σ.
We investigate the dependence of the gap on the parameterm2

σ by studying
the position of the peak at zero momentum that appears in the holographic
spectrum in alternative quantization. The result is shown in Fig. 5.2. Most
importantly, we observe that the gap is present for all allowed values of the
bulk mass of the probe scalar. We furthermore see that for more negativem2

σ

the position of the peak shifts to higher frequencies and the width increases.

5This is only possible in the range m2
σ ∈ (−4,−3). Moreover, we need a boundary action

di�erent from eq. (5.14) for this.
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Figure 5.2: (a) The holographic spectral function in alternative quantization at zero
momentum, where the legend shows the used value of m2

σ. The spectral
functions are antisymmetric in frequency due to particle-hole symmetry.
(b) The m2

σ-dependence of the position of the peak maximum ωP in the
spectra.
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Figure 5.3: The absolute value of the semiholographic spectral function for m2
σ =

−3.5 and g = 1.
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Moving on to �nite g, we see that the semiholographic spectral function in
Fig. 5.3 contains a gap that is renormalized to a value smaller than M0. As
we have seen in Fig. 5.1, the same occurs in the limit g → ∞ for any value
of m2

σ. To see whether this is generic, we calculate the spectral functions at
zero momentum for several values of m2

σ and g. The result of this calculation
is shown in Fig. 5.4. What we observe here is that for bulk mass values near
m2
σ = −3, as in Fig. 5.4a, the peak position as a function of g indeed

monotonically decreases fromM0, approaching the value shown in Fig. 5.2b.
However, this is no longer true for values of m2

σ closer to the BF bound.
Here, the peak shifs to higher frequencies for small g. After this, the peaks
in Fig. 5.4b shift to lower frequencies again and approach the value shown
in Fig. 5.2b. Alternatively, for masses very close to the BF bound m2

σ = −4
the peak may continue to move to higher frequencies as in Fig. 5.4c, while at
the same time a second peak appears near the value shown in Fig. 5.2b. At
some g, the maximum spectral weight of this second peak exceeds that of the
�rst peak, causing the discontinuity in Fig. 5.4d. In short, we �nd that the
peak location does not necessarily renormalize to a value smaller than M0

for any g. Contrarywise, we also observe that the low-frequency interval of
the spectral functions with negligible spectral weight generally shrinks, with
an upper limit that does renormalize to a value smaller than M0, due to the
large width of the peaks. Hence, the holographic interactions always reduce
the size of the gap.

Band structures in condensed matter often have an e�ective description in
terms of Dirac theory, where the speed of light plays the role of the Fermi
velocity. For the bosonic spectra obtained in this section, such an inter-
pretation as an e�ective description of a nonrelativistic condensed-matter
system is less obvious. It may therefore be unsurprising that as opposed to
the spectra obtained in Ref. [2], our spectra do not exhibit exotic features
such as a critical coupling g at which the boson becomes e�ectively mass-
less. Nonetheless, we can still hope to obtain nonrelativistic physics from our
model using the method described in Ref. [3]. This means we introduce a
chemical potential to bring the bottom of the particle band near ω = 0 and
subsequently take the nonrelativistic limit to decouple the antiparticle part
of the spectrum. The fact that our spectra always contain a gap is therefore
very promising, as this is crucial to be able to apply said method.
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5 Towards nonrelativistic bosons from holography

(a) m2
σ = −3.2 (b) m2

σ = −3.8

(c) m2
σ = −3.94 (d)

Figure 5.4: (a)-(c) The semiholographic spectral function at zero momentum for
several values of m2

σ. The legends show the value of g. (d) The position
of the peak in the spectral functions as a function of g2, where the legend
shows the value of m2

σ. The value of ωP shown here corresponds to the
frequency at which the spectral function has its global maximum.

5.4 Doped spectra and outlook

Our next mission is to study the spectral functions of ϕ with µ > 0. The e�ect
of a nonzero chemical potential is that it breaks the particle-hole symmetry.6

As we work grand canonically, the spectrum will appear to have shifted down
in frequency. Similar to the procedure in Ref. [3], we can then attempt to
de�ne a nonrelativistic chemical potential µNR with respect to the bottom of
the particle band in the spectrum. This means that at µNR = 0 and T = 0
the spectrum should have a delta-peak at (ω,k) = (0,0).
In pursuit of this goal we therefore study the behavior of µ∗(T, g), which

6This symmetry implies that for µ = 0 we have that ρ(ω,k) = ρ(−ω,k), which is a
consequence of the initial condition in eq. (5.17).
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Figure 5.5: The behavior of µ∗/M0, at which the semiholographic Green's function
contains a pole, as a function of T/M0. Here we �xed m2

σ = −3.5 and
q = 3. The legend shows the value of g. Here the dots are the values we
computed, whereas the curves show a �t to µ∗ = α+ β

√
T + γT , where

the three coe�cients depend on g.

we de�ne as the value of the chemical potential µ at which such a delta-peak
occurs. At this value, the semiholographic Green's function in eq. (5.19)
should have a pole. We therefore plot the �rst positive value of µ at which
the inverse Green's function at zero frequency and momentum vanishes in
Fig. 5.5, for �xed bulk parameters m2

σ = −3.5 and q = 3. Although µ∗ does
seem to converge to a nonzero value at T = 0, its temperature dependence
is rather peculiar. In particular, as shown in the �gure, µ∗ seems to behave
approximately as µ∗(T )− µ∗(T = 0) ∝

√
TM0 at low temperatures. Restor-

ing SI units then reveals that this is proportional to the speed of light c.
This makes it very hard to de�ne the nonrelativistic chemical potential, as it
seems that even in the nonrelativistic limit where T � M0, a small change
in temperature leads to a very large di�erence in the position of the pole as
c→∞.
Another curious property of µ∗ in Fig. 5.5 is that for small g, it does not

seem to converge to µ∗ = M0. To investigate why this behavior occurs, we
�rst note that the position of the pole in the Green's function is given by the
solution of

GO(0;µ∗) =
M2

0 − µ∗2

g2
, (5.29)
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Figure 5.6: (a) The Green's function GO as a function of µ/M0 (black curve) for
T/M0 = 1/250, q = 3 and m2

σ = −3.5. Here the dashed curves are
given by the right-hand side of eq. (5.29), where the legend shows the
value of g. The vertical dotted line shows the value of the smallest root
of GO. (b) The lowest value of the chemical potential at which the
self-energy at zero frequency and momentum has a pole, as a function
of the temperature for q = 3 and m2

σ = −3.5. The �t in red is given by
µ∗O ' 0.14M0 + 2.3

√
TM0 − 1.2T .

where the left-hand side is evaluated at (ω,k) = (0,0) and does not depend
on g. The value of the Green's function of O as a function of µ is shown in
Fig. 5.6a for a �xed temperature of T/M0 = 1/250. The right-hand side of
eq. (5.29) is shown in this �gure as well, for several values of g. Hence, µ∗

follows by reading o� the �rst intersection of the dashed curves with the black
curve. The most outstanding feature in this plot is the pole in the Green's
function GO, which occurs at some value µ = µ∗O. This pole resembles the
one that occurs in the Green's function of the order parameter �uctuations
in the holographic superconductor when approaching the critical point from
the normal phase. As opposed to the holographic superconductor case, here
we have an additional scale in our system set by M0, so that µ∗O is not
necessarily proportional to the temperature, as is shown in Fig. 5.6b.
The above-mentioned pole at µ∗O acts as an upper bound for µ∗ that is

independent of g. This easily follows from the fact that GO < 0 for µ = 0, as
can be seen from Fig. 5.6a.7 Since for all g the right-hand side of eq. (5.29)
is positive at µ = 0 and vanishes at µ = M0 > µ∗O, any dashed curve in
Fig. 5.6a indeed has to intersect GO at some µ∗ < µ∗O. This is true for

7We have checked that this is true for any value of m2
σ.
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any nonzero g, which explains why we do not observe the convergence to
µ∗ = M0 for small g. Moreover, the large-g behavior of µ∗ in Fig. 5.5 is
also explained by Fig. 5.6a, where we see that it approaches the value at
which GO vanishes, denoted by the vertical dotted line. This also follows
immediately from inspecting eq. (5.29).
The above analysis shows that the strange behavior of µ∗ is mainly caused

by the existence and the behavior of the pole of GO. This makes it compli-
cated to �nd a suitable de�nition of the nonrelativistic chemical potential.
Such a de�nition and the subsequent study of the nonrelativistic regime is
left for future work. For now, we remark that a possible direction is to
see whether we can de�ne a nonrelativistic chemical potential depending on
temperature. Alternatively, we may have to de�ne µ∗ using a solution of
eq. (5.29) at a higher µ, although we note that GO has more poles there.
Finally, we can tune the bulk parameters, in particular q, to see if this leads
to a more favorable behavior of the self-energy.

5.A RG equations

In this work we �xed the ratio of the source φs of the scalar �eld in the
gravitational background and the square of the bare mass parameterM2

0 that
appears in the UV action in eq. (5.20) to α ≡M2

0 /φs = 2π. We remark that
it is principle possible to regard α as a free parameter in the semiholographic
Green's function and that the value of α does not a�ect the result in the
holographic limit g → ∞. In this section we present an argument for the
speci�c value of α quoted above.
From the equations of motion for the background in eqs. (5.4)-(5.7), we

can derive that near the boundary the scalar �eld behaves as

φ = φsr
−2 log r + φvr

−2 + · · · . (5.30)

We now consider a rescaling r → λr so that φ becomes

φ→ φs(λ)λ−2r−2 (log r + log λ) + φv(λ)λ−2r−2 + . . . . (5.31)

However, φ is invariant under such a rescaling. Hence, from comparing the
coe�cients in the above equations of r−2 and r−2 log r we �nd

φs(λ) = φsλ
2, (5.32)

φv(λ) = φvλ
2 − φsλ2 log λ. (5.33)
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This lead to the following RG equations for φs,v:

λ
dφs(λ)

dλ
= 2φs(λ), (5.34)

λ
dφv(λ)

dλ
= 2φv(λ)− φs(λ). (5.35)

The second of these equations contains a nontrivial term that originates from
the logarithm in eq. (5.33).
Moreover, using the two-point function found from the semiholographic

e�ective action in eq. (5.19), we have that〈
|ϕ(x)|2

〉
=

∫
d4kE
(2π)4

1

k2
E +M2

0 − g2GO
(5.36)

where k2
E = |k|2 + k2

4 with k4 = iω. To derive the RG equation for
〈
|ϕ|2

〉
we introduce a UV cut-o� Λ and subsequently integrate over the high-
momentum shell |kE | ∈ (Λ, e−l,Λ), where l > 0. For these high momenta we
expand the integrand above as〈

|ϕ(x)|2
〉

=

∫
Λ

d4kE
(2π)4

1

k2
E

(
1− M2

0 − g2GO
k2
E

)
+ . . . . (5.37)

Here the dots contain the integration over lower momenta and we used that
for high momenta k2

E always dominates the Green's function GO. Evaluating
the logarithmically divergent term yields〈

|ϕ(x)|2
〉

= · · · − M2
0

8π2

∫ Λ

Λe−l

dkE
kE

= · · · − M2
0 l

8π2
(5.38)

where we used d4kE = 2π2k3
EdkE . This then leads to

d
〈
|ϕ(x)|2

〉
dl

= · · · − M2
0

8π2
. (5.39)

In terms of α as de�ned in the beginning of this appendix, this yields8

dφv
dl

= · · · − α2φs
4π2

, (5.40)

which gives α = ±2π after comparing with eq. (5.35). We pick α = 2π as φs
is positive in our numerical calculations.
8Here we use the on-shell Klein-Gordon action for φ.
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In de theoretische natuurkunde proberen we systemen uit de natuur te begrij-
pen door ze te vertalen naar wiskundige modellen. Zoals de titel al aangeeft,
is dit proefschrift hierop geen uitzondering. De systemen die we hier wil-
len beschrijven zijn extreem koude gassen, die bestaan uit atomen die sterke
wisselwerkingen met elkaar hebben. Deze systemen willen we vertalen naar
een vrij speciaal soort modellen, die ook wel bekendstaan als hologra�sche
modellen.

Ultrakoude gassen met ultrasterke wisselwerkingen

Laten we eerst wat meer ingaan op de systemen die we willen beschrijven.
Dit zijn ultrakoude gassen met typische temperaturen variërend van enkele
nanokelvins tot enkele microkelvins. Dat is grofweg een paar miljard keer
zo klein als de temperatuur uit het weerbericht van vandaag.1 Wat er zo
speciaal is aan deze ultrakoude gassen, is de grote mate van controle die
onze experimentele collega's over ze hebben. In het bijzonder is het relatief
eenvoudig om de e�ectieve interacties tussen de atomen in zo'n gas in te
stellen. Dit komt doordat de interacties in deze gassen door slechts één pa-
rameter worden bepaald: de zogenaamde verstrooiingslengte.2 De e�ectieve
waarde van die verstrooiingslengte kan experimenteel worden aangepast door
een magnetisch veld aan te leggen. Dit maakt het mogelijk om ultrakoude
atomen met zeer sterke wisselwerkingen te bestuderen. Er bestaat in het bij-
zonder een speci�eke waarde van het magnetische veld waarop een resonantie
optreedt, wat betekent dat de verstrooiingslengte oneindig groot wordt. We
spreken dan van unitaire gassen of atomen. In dit proefschrift zoeken we
naar een hologra�sche beschrijving van zulke ultrakoude unitaire gassen.

1Ervan uitgaande dat er vandaag geen records worden verbroken, ligt de temperatuur
tussen de 184 Kelvin en 330 Kelvin.

2Dit is een gevolg van de lage temperatuur van het gas. Zie de introductie in hoofdstuk
1 voor meer details.
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Gassen als hologrammen

Met een hologra�sche beschrijving bedoelen we simpelweg dat we een model
opstellen met behulp van een techniek die hologra�e heet. Bij dit woord den-
ken we natuurlijk meteen aan hologrammen, zoals die op onze creditcards
of uit series als Star Trek. Een de�niërende eigenschap van zulke hologram-
men is dat ze een driedimensionaal object afbeelden op een tweedimensionaal
oppervlak. Met andere woorden, het driedimensionale object en het tweedi-
mensionale oppervlak bevatten dezelfde informatie.
In dit proefschrift bestuderen we iets soortgelijks: we kijken naar twee

systemen die dezelfde informatie bevatten, terwijl een van deze systemen een
extra dimensie heeft. Toch is de hologra�e die we hier gebruiken van een
net iets andere soort. Ze is namelijk gebaseerd op het zogenaamde hologra-
�sche principe van de kwantumzwaartekracht. Dit principe3 postuleert dat
er een dualiteit bestaat tussen twee fysische systemen, namelijk een systeem
met zwaartekracht in d + 1 dimensies en eentje zonder zwaartekracht in d
dimensies. Zo'n dualiteit houdt in dat deze twee theorieën dezelfde fysica
beschrijven en dus dezelfde fysische informatie bevatten. Vanwege het ver-
schil in dimensies zou je het d-dimensionale systeem dus kunnen zien als een
soort hologra�sche afbeelding van het d+ 1-dimensionale systeem.
In dit proefschrift gebruiken we dit principe om modellen voor ultrakoude

gassen te op te stellen. Grof gezegd gaan we ervan uit dat we deze gassen, die
net als wij in drie dimensies leven, kunnen zien als hologra�sche afbeeldingen
van bepaalde gravitationele duale systemen in vier dimensies,4 in overeen-
stemming met het bovenstaande hologra�sche principe. Het uiteindelijke
doel is dan om die gravitationele dualen te vinden. Met andere woorden, we
stellen modellen op voor bepaalde zwaartekrachttheorieën die op het eerste
gezicht in de verste verte niet lijken op ultrakoude gassen. Echter, dankzij
de hologra�sche dualiteit kunnen we uit deze modellen toch informatie halen
over de fysische eigenschappen van ultrakoude atomen.
Unitaire gassen lijken om meerdere redenen een perfecte kandidaat voor

een aanpak gebaseerd op hologra�e. Ten eerste geeft het hologra�sche prin-
cipe een dualiteit tussen een theorie met sterke interacties en eentje met

3Om preciezer te zijn: we maken we in dit proefschrift gebruik van een van de bekendste
voorbeelden van het hologra�sche principe, namelijk de AdS/CFT-correspondentie.

4Hiermee bedoelen we ruimtelijke dimensies. Het systeem met zwaartekracht leeft dus in
een vijfdimensionale ruimtetijd.
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zwakke interacties. Aangezien zoals hierboven gezegd de interatomaire wis-
selwerkingen in unitaire gassen zeer sterk zijn, betekent dit dat we een duale
zwaartekrachttheorie moeten opstellen waar de wisselwerkingen zeer zwak
zijn. Dit is voordelig, omdat het meestal erg moeilijk is om berekeningen
uit te voeren voor systemen met sterke interacties. Daarentegen weten we
precies hoe we met systemen met zwaartekracht en zwakke interacties om
moeten gaan. Dit soort systemen wordt namelijk beschreven door Einsteins
algemene relativiteitstheorie, de theorie die de werking van zwaartekracht
beschrijft als een kromming van de ruimtetijd. Uit deze theorie volgen exoti-
sche5 voorspellingen voor ons universum, zoals het bestaan van zwarte gaten
en de recent waargenomen zwaartekrachtgolven. Wij gebruiken de relativi-
teitstheorie echter niet om een accurate beschrijving van ons universum te
geven, maar om een duale theorie voor unitaire gassen te vinden. De mo-
dellen die we hiertoe opstellen zijn nog veel exotischer, dat wil zeggen, zeer
verschillend van ons eigen universum.6 Ondanks die verschillen kunnen we
gelukkig nog steeds gebruik maken van de algemene relativiteitstheorie, maar
dan toegepast op net wat andere universa dan het onze.
Daarnaast beschrijft hologra�e universele eigenschappen van schaalinvari-

ante systemen, of deformaties daarvan. Ultrakoude unitaire gassen vertonen
precies zulk universeel gedrag, met andere woorden, de fysische eigenschap-
pen hangen niet af van het type atomen dat wordt gebruikt. Verder zijn ze
bijna schaalinvariant, in die zin dat de enige schalen die voorkomen in het
systeem worden gegeven door de dichtheid en de temperatuur van het gas.
Ondanks het feit dat unitaire gassen bij uitstek geschikt lijken voor de

hologra�sche methode, is het niet triviaal om zomaar een hologra�sch model
ervoor op te schrijven. Dit blijkt wel uit het feit dat dit proefschrift zo'n hon-
derd pagina's aan onderzoek bevat. Hoewel we hierin uiteindelijk een aantal
eigenschappen van zulke gassen kwalitatief weten te reproduceren, vormen
de hoofdstukken van dit proefschrift slechts een stap in de richting van zulke
modellen. We zullen nu kort ingaan op de inhoud deze hoofdstukken.

5Hoewel dit woord vaak met warme landen wordt geassocieerd, is de typische temperatuur
van zwarte gaten in theorie vaak nog kleiner dan die van ultrakoude gassen.

6Ze bevatten bijvoorbeeld zwarte gaten die er uitzien als een plat vlak. Verder beschrijven
ze een universum met vier ruimtelijke dimensies in plaats van drie. Ten slotte hebben
ze een negatieve kosmologische constante. De kosmologische constante is een grootheid
uit de relativiteitstheorie en bestaat ook in ons eigen universum, maar daar heeft ze
een positieve waarde volgens de recente kosmologische observaties.
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Supergeleiding en zwarte gaten

Een van de eerste toepassingen van hologra�e is een model voor supergelei-
ding, het verschijnsel waarbij een elektrische stroom zonder weerstand wordt
geleid. In hoofdstuk 2 bestuderen we dit model, dat bekendstaat als de holo-
gra�sche supergeleider. Het gravitationele duale systeem van deze superge-
leiders bestaat uit het `standaard' zwaartekrachtsysteem van de hologra�e,7

dat gedeformeerd is om een supergeleider met een temperatuur en een dicht-
heid te kunnen beschrijven.8 Deze twee ingrediënten, een temperatuur en
een dichtheid dus, zullen uiteindelijk ook voorkomen in de modellen die we
willen gebruiken voor de beschrijving van een unitair gas.

Massa kweken

Naast de twee bovengenoemde ingrediënten hebben wij nog een derde nodig.
Een atoomgas bestaat namelijk uit deeltjes met een massa. In hoofdstuk
3 laten we zien hoe we zo'n massa kunnen incorpereren in een hologra�sch
model. Verder gaan we hier in op hoe we met hologra�e elementaire deeltjes
zoals atomen9 kunnen beschrijven.

Weg met de relativiteit

Nu we een massa geïntroduceerd hebben, hebben we ook een extra energie-
schaal in ons model. Dit is een gevolg van Einsteins wereldberoemde formule
uit zijn speciale relativiteitstheorie, namelijk E = mc2, waar E de energie,
m de massa en c de lichtsnelheid is. Deze energieschaal komt typisch niet
voor in de beschrijving van ultrakoude gassen, omdat de lichtsnelheid daar
kan worden beschouwd als zijnde oneindig. Dit betekent met andere woor-
den dat de correcties als gevolg van het feit dat de lichtsnelheid eindig is,
oftewel de relativistische correcties, verwaarloosbaar zijn in deze systemen.

7Dit is de zogenaamde Anti-de Sitter-ruimtetijd.
8Naast deze twee ingrediënten bevat de hologra�sche supergeleider nog een extra de-
formatie. Deze is nodig om de overgang van een normaal naar een supergeleidend
materiaal te beschrijven.

9Een atoom bestaat natuurlijk uit allerlei subatomaire deeltjes en is in die zin dus niet
echt elementair. De energie die nodig is om een atoom te ontbinden is echter groot
genoeg om dit detail te kunnen verwaarlozen.
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We moeten daarom in onze hologra�sche modellen ook het gebied bekijken
waar deze extra energieschaal oneindig groot is ten opzichte van alle andere
energieschalen in ons model. Hoe we dit precies doen is het onderwerp van
hoofdstuk 4. Ook reproduceren we hier een aantal kwalitatieve eigenschap-
pen van unitaire gassen die zijn waargenomen in experimenteel geprepareerde
gassen.

Instabiele tegenhangers

Om koude microscopische systemen10 zoals ultrakoude gassen te beschrijven,
gebruiken we in de natuurkunde de wetten van de zogenaamde kwantumme-
chanica. Volgens deze wetten bestaan er ruwweg twee soorten deeltjes die
zich net wat anders gedragen, namelijk bosonen en fermionen. Het meeste
onderzoek in dit proefschrift gaat over unitaire gassen die bestaan uit fer-
mionische atomen. Een reden hiervoor is dat experimenteel geprepareerde
bosonische unitaire gassen vaak instabiel blijken. Desalniettemin wordt er
nog steeds veel onderzoek gedaan naar de realisatie van zulke gassen, wat
voor ons een reden is om ook hiervoor hologra�sche modellen op te stellen.
De eerste stappen in deze richting zijn te vinden in hoofdstuk 5.

10Preciezer gezegd, systemen waarvan de thermische gol�engte een grootte heeft die verge-
lijkbaar is met of groter is dan de gemiddelde afstand tussen de microscopische deeltjes.
Deze thermische gol�engte hangt af van de temperatuur en wordt groter naarmate de
temperatuur lager wordt.
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