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The short time behavior of nucleation probabilities is studied by representing nucleation as a
diffusion process in a potential well with escape over a barrier. If initially all growing nuclei start
at the bottom of the well, the first nucleation time on average is larger than the inverse nucleation
frequency. Explicit expressions are obtained for the short time probability of first nucleation. For
very short times these become independent of the shape of the potential well. They agree well with
numerical results from an exact enumeration scheme. For a large number N of growing nuclei the
average first nucleation time scales as 1/ log N in contrast to the long-time nucleation frequency,
which scales as 1/N . For linear potential wells closed form expressions are obtained for all times.

I. INTRODUCTION

For large systems in a metastable state the rate of nucleation of droplets of the stable phase is proportional to
system size, in other words the average time of formation of the first stable nucleus in a quasi-stationary metastable
system may be expected to be inversely proportional to its size. At first sight this may convey the impression that one
might shorten metastable lifetimes as much as one would like, just by making systems very large, but this is certainly
too simplistic. On a large lake at a temperature slightly below freezing, a few ice crystals will be formed instantly,
which subsequently will continue growing. But if the density of these crystals is very small it will still take a very
long time for the lake to freeze over completely. In such cases the nucleation time may be defined as the average
time it takes an arbitrary site in the system to become included in one of the growing stable regions. Quantitative
descriptions of this scenario have first been given by Kolmogorov [1], Johnson and Mehl [2] and Avrami [3]. The main
resulting effect is a reduction of the effective free energy barrier for nucleation by a factor of d+1, or slightly smaller,
depending on the details of the growth dynamics, in d dimensions.

Yet, for large, but not too large systems nucleation is brought about by the first nucleation core reaching supercritical
size, which leads to a nucleation rate that is proportional to system size. The basic condition for this to occur is a time
for growth of a supercritical nucleus throughout the system, shorter than the inverse nucleation rate. Furthermore, also
in even larger systems the distribution of the first nucleation time may be of great interest, in case this event will cause
an immediate dramatic change of the system. As an example of this, consider a condensator with plates separated
by a dielectricum in a metastable phase near a metal-insulator transition. The formation of a supercritical nucleus of
the metallic phase immediately will lead to discharging of the condensator. Other examples of such phenomena could
include explosive chemical reactions starting after the nucleation event (where we may generalize from nucleation
resulting from phase transformation to basically any process requiring the crossing of some free energy barrier that is
large compared to kBT ).

Especially for these cases it is important to realize that mostly, due to the initial preparation of the system, the
average time to the first nucleation in fact is longer than the inverse of the asymptotic nucleation rate. The reason is
that typically metastable states are formed by a rapid quench from a stable state, in which no large clusters of the
new stable phase are present. The asymptotic state with a constant nucleation rate, on the contrary requires a size
distribution for the nucleating clusters assigning non-zero probability (though small for large clusters) to clusters of
any subcritical size.

This situation may be likened to an uphill turtle race where a large number of turtles is released at the bottom
of a wide road leading up a hill, such that each of the turtles makes an independent random walk with a bias in
the downhill direction. After a long time the turtles that have not reached the top yet will be distributed in some
characteristic way along the slope, with most turtles near the bottom, but also some near the top, and an arrival
frequency ν per turtle. The average time between subsequent arrivals at the top will be (nν)−1, with n the number
of remaining turtles. The average time of the first turtle to reach the top, however, will be much longer than (Nν)−1,
with N the total number of turtles, due to the fact that initially all turtles are at the bottom. Roughly one may say
the first arrival time contains a delay contribution, which is the time needed to set up the quasi-stationary asymptotic
distribution starting from the initial state.
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In this paper I will address the distribution of first nucleation times by approximating the nucleation process as
a diffusion process in an abstract one-dimensional space, where the spatial coordinate indicates the sizes of growing
nuclei. The next section gives the exact solution for a linear potential, corresponding to the case where the uphill
road has constant slope. Section III treats the case of a general monotonic potential, section IV compares predictions
to results obtained by numerically solving the uphill diffusion equation and the last section contains some concluding
remarks.

II. EXACT SOLUTION FOR LINEAR POTENTIALS

Mean first passage times have been studied for a long time for diffusion in a potential well with the possibility of
escape over a potential barrier [4]. In one dimension explicit expressions are known. For long times the probability of
survival in the well without reaching the barrier takes the exponential form

Slong(t) = exp[−νlong(t − tD)], (1)

corresponding to an escape rate νlong. The delay time tD will depend on the initial distribution of the diffusor, but
typically be much shorter than the average escape time 1/νlong. The probability distribution of survival in the well
for a diffusor starting at some well-defined initial position has been studied much less. Yet the properties of this
distribution, especially for a starting point at the bottom of the well are of great interest in many practical situations.
We may use again our analogy of the turtle race from the bottom to the top of the hill. If we have N independent
turtles, all starting from the same initial distribution, the probability distribution for the time of first passage of the
top by any of them is related to the single-turtle survival probability as

P arr
N (t) = − d

d t
S(t)N . (2)

If S(t) were exponential for all times the distribution of first arrivals would be exponential likewise, with a maximum
at t = 0 and an average first arrival time inversely proportional to N . For very short times or very large N this
clearly is unrealistic; it ignores the fact that all turtles start at the bottom of the hill and therefore will require some
minimal time before they can arrive at the top at all. Obviously for short times the distribution of first arrivals has
to be quite different from exponential. Van Kampen [5] has considered the case where the turtles start somewhere on
the middle of the slope and describes the motion by a one dimensional diffusion equation of the form

∂ρ(x, t)

∂t
=

∂

∂x

{

D

[

∂ρ(x, t)

∂x
+

∂βφ(x)

∂x
ρ(x, t)

]}

. (3)

Here the diffusion constant D is assumed constant1, φ(x) describes the external potential representing the hill, and
β = 1/(kBT ), with T temperature and kB Boltzmann’s constant. Van Kampen then shows very elegantly that the
distribution function for first arrival at L, starting from x, for very short times is given by

P sh
1 (t) =

L − x√
4πDt3

exp−
(

(L − x)2

4Dt
+

β(φ(L) − φ(x))

2

)

. (4)

However, his result is restricted to really short times and it cannot be applied right away to the case where one starts
from the origin, with a reflecting boundary imposed there.

Here I will extend his results so as to remove these limitations. The case of a strictly linear potential is solved
exactly in the present section, and in the next section short time approximations are obtained for a potential hill of
general shape. In section IV a comparison is made to numerical solutions of the diffusion equation and it is confirmed
that the approximations made in section III are asymptotically correct for short enough times. The average time of
first arrival with N turtles starting from the origin is found to decrease as 1/ logN for large N .

To study the escape process in a potential φ(x) one may start by considering a continuous time random walk
(CTRW) on a discrete set of points 1, 2...L located at positions xn = n∆x, with jump rates Γ±(xn) for jumps to the
right and to the left respectively, defined through

1If D depends on x the equation may be transformed to a diffusion equation with constant D by replacing x by y satisfying
d y
d x

=
(

D
D(x)

)1/2

. The potential has to be adjusted accordingly.
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Γ±(x) =
Γ exp[ǫ±(x)]

exp[ǫ+(x)] + exp[ǫ−(x)]
, (5)

with

ǫ±(x) =
−β(φ(x ± ∆x) − φ(x))

2
. (6)

In a linear potential ǫ is a constant and the forward and backward jump rates Γ+ respectively Γ− are constants as
well. As a consequence, for each CTRW realization bringing a walker in n steps from position x to L the weight equals
the weight of the same realization in a symmetric CTRW with the same total jump rate Γ, times exp[−β(φ(L) −
φ(x)]/2)/ coshn ǫ. Now consider the continuum limit where ∆x → 0 and the jump frequency Γ is related to the
diffusion coefficient through

Γ(∆x)2/2 = D. (7)

In this limit we may identify n with Γt, and the denominator coshn ǫ becomes exp νsht, where I introduced

νsh ≡ 1

4
(βφ′)2D. (8)

The prime denotes the derivative with respect to x. Further, the probability density of first arrival at L at time t is
obtained with the aid of the method of images as

P1(x, L, t) =
L − x√
4πDt3

e−
β(φ(L)−φ(x))

2 e−
(L−x)2

4Dt e−
1
4 (βφ′)2Dt (9)

This is a well-known result, see e.g. Ref. [6]. It confirms Van Kampen’s short time behavior, but there is an
additional damping factor which becomes important at slightly longer times.

For obtaining the first arrival time distribution for escape at x = L with a reflecting boundary at x = 0 we can use
a convolution of the return probability at the origin R(t) with the probability density P abs

1 (∆x, L, t) for first arrival
at L starting from site 1, with an absorbing boundary condition at the origin. The latter may be calculated again by
relating the CTRW in a linear potential to the symmetric CTRW. The method of images, now applied both at x = 0
and x = L, yields

P abs
1 (∆x, L, t) = 4∆xe−

β∆φ
2 e−νsht ∂

∂t

e−
L2

4Dt

√
4πDt

, (10)

with ∆φ = φ(L) − φ(0). The effects of images resulting from repeated reflections were neglected, as these effects are
exponentially small in the parameter νshL2/D, which should be ≫ 1.

By integrating this equation over time one finds that the total probability that a walk starting from n = 1 will
escape before returning to the origin is given by

P abs = 2∆xe−
β∆φ

2

(νsh

D

)1/2

e
−

(

νshL2

D

)1/2

. (11)

For calculating the time dependent probability density for return to the origin of a walk starting at site 1 one
may consider a CTRW on a semi-infinite chain in a linear potential, but now with transitions from site 0 to the left
forbidden (implying that the total jump rate from site 0 is reduced to Γ+). Let X(t) denote the probability density
for a first return at time t to an initial site different from the origin, with the additional condition that this return is
from the right. One easily shows [7] that its Laplace transform satisfies the equation

X̃(z) =
Γ+Γ−

(Γ + z)2(1 − X̃(z))
(12)

with the solution

X̃(z) =
z + Γ −

√
z2 + 2Γz + Γ2ǫ2

2(z + Γ)
, (13)

where Eq. 5 was used. The Laplace transform for the distribution of return times at the origin now is obtained by
summing a geometric series over n returns as
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R̃(z) =

[

1 − 1

(z + Γ+)
(z + Γ)X̃(z)

]−1

=
z + Γ+

z
2 + Γ+ − Γ− + 1

2

√
z2 + 2Γz + ǫ2Γ2

. (14)

Next, note that, for fixed D, Γ scales as 1/ǫ2 as ǫ → 0. Therefore, dividing both the numerator and the denominator
of the expression above by Γ, keeping the dominant terms in ǫ and using Eqs. (5), (6) and (8), we end up with

R̃lin(z) =
1

ǫ(
√

z
ν0

+ 1 − 1)
, (15)

where the superscript denotes the solution for a linear potential. In the present case ν0 is identical to νsh. An inverse
Laplace transform yields

Rlin(t) =
βφ′Γ∆x

4

(

1 +
e−ν0t

√
πν0t

+ erf
√

ν0t

)

, (16)

with erf(x) = 2√
π

∫ x

0
d y exp(−y2). Now the first arrival distribution may be obtained from

P arr
1 (t) =

∫ t

0

d τR(τ)P abs
1 (∆x, L, t − τ) (17)

For the linear potential all integrations may be done in closed form with the result

P arr
1 (t) = e−β∆φ{e

−( L√
4Dt

−√
ν0t)2

√
πDt

(

βφ′D +
L

t

)

(18)

+2ν0

[

1 − erf(
L√
4Dt

−
√

ν0t).

]

}

For very short times this agrees with Van Kampen’s expression, Eq. (4).

III. GENERAL POTENTIALS

For potential hills of general shape Eq. (17) of course remains valid, but we do not have explicit solutions any more.
To assess the short time behavior of the arrival time distribution we need short time approximations for the the return
time distribution R(t) and the first arrival distribution with absorbing boundary conditions P abs

1 .
Let us restrict ourselves to cases in which the hill is high, i.e. β∆φ ≫ 1, the bottom of the hill is at the origin and the

top at x = L, there are no intermediate maxima and minima at almost the same height as the top or bottom, and the
shape of the hill near bottom and top is smooth over length scales on which the potential variations are of order kBT .
Under these conditions there are three well-separated time scales. A short timescale is given by tsh = L2

0/D, with
L0 a characteristic distance from the origin where the potential has increased by an amount of order kBT . On this
time scale an initial distribution localized near the origin approaches an equilibrium-like distribution over a potential
range of a few kBT around the origin. This is the range within which the major part of all turtles will be found at
any time. An intermediate time tmed, is set by the average time a turtle needs to get from bottom to top, in case
it does not return to the bottom. This is the time scale required to establish the full metastable distribution. The
longest time scale is tesc = ν−1

esc, the average escape time or arrival time. For the linear potential one may choose

tlinsh = (4νsh)−1 = 1/((βφ′)2D) = L2/((β∆φ)2D),

tlinmed = L2/(β∆φD),

tlinesc = tlinsh exp(−β∆φ). (19)

Under the given assumptions indeed all three scales are well separated, though the separation between tlinsh and tlinmed
is much smaller than that between tlinmed and tlinesc.

Now one may formulate short time approximations for more general hill shapes. Assign to each random walk
realization the Hamiltonian
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H({xi}) =
∑

i

{

φ(xi+1) − φ(xi)

2
+

1

β
log

(

exp[ǫ+(xi)] + exp[ǫ−(xi)]

2

) }

, (20)

with i running over all steps of the walk and xi the position before the i + 1th step. The probability for moving from
x0 to xt in a time t under specific boundary conditions BC then may be obtained as

P (x0, xt|BC) = 〈exp−βH〉x0,xt,BC P0(x0, xt|BC), (21)

with P0(x0, xt|BC) the corresponding probability for the unbiased random walk. The average 〈〉 runs over all unbiased
continuous time random walks, properly weighted, starting at x0, ending at xt and satisfying the required boundary
conditions. For short times this average may be replaced by the Rosenstock approximation [8]

P (x0, xt|BC) = e−β〈H〉x0,xt,BC P0(x0, xt|BC). (22)

In the continuum limit this reduces to

P (x0, xt|BC) = exp−β(φ(xt) − φ(x0)) +
〈

(βφ′)2/2 + βφ′′〉Dt

2
P0(x0, xt|BC), (23)

where the subscripts on the random walk average were omitted. Eq. (23) is especially useful as an approximation
for P abs

1 (∆x, L, t). For short times unbiased walks from ∆x to L with absorbing boundary conditions at the origin
and at x = L on average spend equal time in equal intervals, except for very small neighborhoods of the end points,

where the average time spent is smaller due to the absorbing boundaries. Therefore the average 〈 (βφ′)2

4 + βφ′′

2 〉 may
be replaced by a spatial average over the interval (0, L) and one obtains the approximation

P abs
1sh(∆x, L, t) = 4∆xe−

β∆φ
2 e−νabst ∂

∂t

e−
L2

4Dt

√
4πDt

, (24)

with νabs the spatial average of ( (βφ′)2

4 + βφ′′

2 )D.
For the return probability to the origin the approximation (23) in principle could be used as well, but in this case it

gives rise to somewhat cumbersome integrals involving error functions. And in fact we don’t really need this: for short
times in typical cases the diffusion effectively takes place near the origin in either a linear or a quadratic potential,
so one may approximate the return probability by the explicit expressions for these potentials. In the case of a linear
potential this becomes Eq. (16), with

ν0 =
(βφ′(0))2

4
, (25)

and φ′ replaced by φ′(0) likewise. For potentials that are quadratic near the origin the return probability may be
obtained from the Green function G(x, x0, t) for diffusion in a quadratic well [9] as

Rqu(t) = Γ∆xG(0, 0, t)

=
Γ∆xκ(0)

2
√

(1 − exp[−2βφ′′(0)Dt])
, (26)

with κ(x) defined as 2 κ(x) =
√

(2β|φ′′(x)|)/π. In either case the short time behavior of the arrival time distribution is
obtained according to Eq. (17) as the convolution of the return probability with the arrival probability with absorbing
boundary conditions. For times ≪ tsh the exponential damping factors exp−ν0t and exp−νabst may be ignored and
one finds that the arrival probability asymptotically behaves as

P arr
sh (t) =

Le−
β∆φ

2 e−
L2

4Dt

√
πDt3

, (27)

2This may be generalized to the case of a potential of form φ(x) = φ(0) + cxα, respectively φ(x) = φ(L) − c(L − x)α. In this
case one obtains κ = (βc)−1/αΓ(α+1

α
).
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irrespective of the shape of the potential.
To find the average first arrival time for very large numbers of turtles, notice that for times ≪ t0 the survival

probability for a single turtle may be obtained from Eqs. (17), (24) and (27) as

S(t) = 1 −
∫ t

0

d τP arr
sh (t) ≈ 1 − 4

√

Dt

πL2
e−

β∆φ
2 e−

L2

4Dt . (28)

The mean first arrival time for the case of N turtles may be found by setting the term subtracted from unity equal
to 1/N . This leads to

t̄esc(N) =
L2

4D

(

log N − β∆φ
2 − log(L

4

√

π
Dt̄esc(N))

) . (29)

From this one rapidly sees that for N ≫ exp(β∆φ/2) the first arrival time approaches zero as 1/ logN . This is much
slower indeed than the 1/N behavior one would find for smaller values of N , such that typically a quasi-stationary
distribution over the full slope is reached well before the first turtle escapes.

Eqs. (2), (27) and (28) may also be used to consider fluctuations in tesc(N). One readily finds that

(

tesc(N) − t̄esc(N)

t̄esc(N)

)2

∼ 1

log2 N
. (30)

So the distribution of tesc(N) becomes sharp for very large N . This is in marked contrast to the case of a Poisson
distribution, where relative fluctuations are independent of N .

IV. NUMERICAL RESULTS

Numerical results were obtained by solving discrete time random walks on a lattice of L sites, in a number of
different potentials. At each time step a fixed fraction Γ of the walkers are moved to their neighboring sites, with
jump probabilities satisfying Eq. (5). Walkers reaching the top of the hill are taken out of the system. This is
done most efficiently in an exact enumeration scheme, where one starts from an initial density distribution, typically
concentrated at the origin, and evolves this distribution in discrete time in accordance with the jump probabilities.
In this way it is possible to capture also the very small arrival probabilities at short times.

In all the calculations reported here L = 10, 000, Γ = 0.04 and the potential difference between bottom and top of
the hill is ∆φ = 20kBT . The potentials considered were of the forms

φ(x) = ∆φ x
L linear,

φ(x) = ∆φ ( x
L )2 quadratic,

φ(x) = ∆φ
(

2x
L −

(

x
L

)2
)

inverse quadratic,

φ(x) = ∆φ
(

4 ( x
L − 1

2 )3 + 1
2

)

cubic,
φ(x) = 1

2∆φ (1 − cos πx
L ) cosine.

Figure 1 shows a comparison of the first arrival probabilities resulting from the exact enumeration scheme to the
predictions of Eq. (17), combined with (24) and (16) or (26). The linear potential, for which we have the exact result
(18), provides a check on the accuracy of the discretized dynamics as an approximation for the diffusion equation3.
Figure 1 shows for the linear potential the ratio of the exact enumeration results to those of Eq. (18), as function of the
dimensionless time τ ≡ Γn/2L2, with n the discrete time in the enumeration scheme. On this scale the relaxation time
ν−1
0 corresponds to τ = 0.01. One sees that the discretization effects remain limited to less than 2.5%, on the shortest

time scales yielding an arrival probability different from zero within the computer accuracy. They decay to less than
1% for larger τ . Instead of Eq. (18) one may also use (17), combined with (24) and (16). This everywhere yields
slightly larger values, but the difference never exceeds 0.4%. For all the other potentials the results for times up to

3Here one should keep in mind that in actual applications often the diffusion equation is obtained as a continuum approximation
for dynamics that are in reality discrete in the spatial coordinates.
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tbr, with tbr = min(ν−1
0 , ν−1

abs), remain within a deviation of 3% of the analytic approximation. The largest deviations
occur for the cubic potential, which indeed of all potentials considered has the shortest tbr (namely tbr = 0.0011 · · ·).
Part of the deviations always are due to discretization errors, as seen already for the linear potential. But given
that the numbers divided upon each other to obtain these curves, easily vary over more than a hundred orders of
magnitude within the time range considered, errors of a few percent may be considered quite a good result.

D t /L2

PP
th11

arr/ arr

0.006 0.008 0.010.0040.002

1.2

1.15

1.1

1.05

1

0.95

FIG. 1. The time dependence of the escape probability is compared to the theoretical predictions for short times. For five
different shapes of the potential hill the ratio of the numerical solution of the diffusion equation to the theoretical expression
is plotted as function of Dt/L2. The exact enumeration results for the linear potential (diamonds) are compared to the exact
solution, Eq. (18) and those for the quadratic (crosses), the inverse qudratic (squares), the cubic (pluses) and the cosine
(triangles) potential to the numerical solution of Eqs. (17) together with (24) and (16) or (26)

V. DISCUSSION

In this paper I obtained the short time behavior of the first arrival probability at the top of a potential hill for a
diffusion process or random walk starting at the bottom. It is strongly suppressed during an initial time interval on
the order of the diffusion time from bottom to top in the absence of a potential. In the continuum diffusion description
it never becomes strictly zero for positive times, but it approaches zero extremely rapidly as time goes to zero. The
arrival probability for very short times becomes fully independent of the shape of the potential, but the time range
over which this holds becomes shorter as the potential gets higher and steeper near the origin.

For slightly longer times the inclusion of exponential damping factors in the expressions for the first arrival proba-
bility does become important. E.g. ignoring the second derivative term in the expression for νabs below Eq. (refp1sh)
leads to a deviation of roughly 20% at τ = 0.01 for the quadratic and the inverse quadratic potential, whereas the
deviations with the full expression are only about 1%.

It is obvious that the delay time tD introduced in Eq. (1) has to be of the order tmed, so the factor exp(νlongtD)
is very close to unity. Explicit expressions for tD may be obtained from the projection of the initial distribution on
the most slowly decaying eigenfunction of the diffusion equation (3) with escape at x = L. Most notable is that tD in
essence is independent of the precise form of the initial distribution, as long as this remains localized within a region
of width L0 around the origin, where the value of the potential remains less than a few kBT above that in the origin.

The average first arrival time for a very large number of independent random walkers, all starting at or near the
bottom, does not scale as the inverse of the number of walkers N , as one might expect on the basis of Poisson
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statistics, but rather as 1/ log N . This may have important consequences in large metastable systems, in which the
first nucleation of a stable droplet has an immediate large effect on the whole system.

It is an interesting question how accurately such systems may be described by a simple model of noninteracting
random walks in one dimension. A priori it is not clear that the nucleating droplets are characterized sufficiently by
a single parameter giving their size, ignoring all details about their shapes. Interactions between droplets may play a
role, especially when their density becomes larger. And, especially in the presence of conservation laws there may be
memory effects that make a simple random walk picture inadequate. Presently these questions are under investigation
both numerically and analytically and we expect to report on them soon [10].
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