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Abstract

We study the Lyapunov exponents for a moving, charged particle in a two-dimensional

Lorentz gas with randomly placed, non-overlapping hard disk scatterers placed in a

thermostatted electric field, ~E. The low density values of the Lyapunov exponents

have been calculated with the use of an extended Lorentz-Boltzmann equation. In this

paper we develop a method to extend these results to higher density, using the BBGKY

hierarchy equations and extending them to include the additional variables needed for

calculation of Lyapunov exponents. We then consider the effects of correlated collision

sequences, due to the so-called ring events, on the Lyapunov exponents. For small

1

http://arXiv.org/abs/cond-mat/0002132v1


values of the applied electric field, the ring terms lead to non-analytic, field dependent,

contributions to both the positive and negative Lyapunov exponents which are of the

form ε̃2 ln ε̃, where ε̃ is a dimensionless parameter proportional to the strength of the

applied field. We show that these non-analytic terms can be understood as result-

ing from the change in the collision frequency from its equilibrium value, due to the

presence of the thermostatted field, and that the collision frequency also contains such

non-analytic terms.

KEYWORDS : Lyapunov exponents; Lorentz gas; Extended Lorentz-Boltzmann

equation; BBGKY hierarchy equations; Long time tail effect.

1 Introduction

The Lorentz gas has proved to be a useful model for studying the relations between dynamical

systems theory and non-equilibrium properties of many body systems. This model consists of

a set of scatterers that are fixed in space together with moving particles that collide with the

scatterers. Here we consider the version of the model in two dimensions where the scatterers

are fixed hard disks, placed at random in the plane without overlapping. Each of the moving

particles is a point particle with a mass and a charge, and is subjected to an external, uniform

electric field as well as a Gaussian thermostat which is designed to keep the kinetic energy of

the moving particle at a constant value. The particles make elastic, specular collisions with

the scatterers, but do not interact with each other. The interest in the Lorentz gas model
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stems from the fact that its chaotic properties can be analyzed in some detail, at least if

the scatterers form a sufficiently dilute, quenched gas, so that the average distance between

scatterers is large compared to their radii. The interest in a thermostatted electric field

arises from the fact that at small fields a transport coefficient, the electrical conductivity of

the particles, is proportional to the sum of the Lyapunov exponents describing the chaotic

motion of the moving particle [1]. The Lyapunov exponents are to be calculated for the

case where the charged particle is described by a non-equilibrium steady state phase-space

distribution function which is reached from some typical initial distribution function after

a sufficiently long period of time. In this state, the distribution function for an ensemble

of moving particles (all interacting with the scatterers and the field, but not with each

other) is independent of time and its average over the distribution of scatterers is spatially

homogeneous. It is known from computer simulations [2, 3] and theoretical discussions [4, 5]

that in the stationary state the trajectories of the moving particles in phase space lie on a

fractal attractor of lower dimension than the dimension of the constant energy surface, which

is three dimensional for the constant energy Lorentz gas in two dimensions. There can be

at most two non-zero Lyapunov exponents for this model since the Lyapunov exponent in

the direction of the phase-space trajectory is zero. Also, the relation between the Lyapunov

exponents and the electrical conductivity requires that the sum of the non-zero exponents

should be negative due to the positivity of electrical conductivity [4].

The case of the dilute, random Lorentz gas has already been studied in detail. Van

Beijeren and coworkers [6, 7] have calculated the Lyapunov spectrum for an equilibrium

Lorentz gas in two and three dimensions using various kinetic theory methods including
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Boltzmann equation techniques. These methods were also applied to the dilute, random

Lorentz gas in a thermostatted electric field with results for the Lyapunov exponents that

are in excellent agreement with computer simulations [8, 9]. Moreover, the results for the

field-dependent case were in accord with the relation between the electrical conductivity and

the Lyapunov exponents for the moving particle.

The purpose of this paper is to extend the results obtained for the Lyapunov exponents

for dilute Lorentz gases to higher densities. Our central themes will be: (a) to describe a

general method, based upon the BBGKY hierarchy equations, for accomplishing this task,

and (b) to examine the effects on the Lyapunov exponents of long range in time correlations

between the moving particle and the scatterers produced by correlated collision sequences

where the particle collides with a given scatterer more than once and the time interval

between such re-collisions is on the order of several mean free times, with an arbitrary

number of intermediate collisions with other scatterers. These correlated collision sequences

are of particular interest in kinetic and transport theory because they are responsible for the

“long-time-tail” effects in the Green-Kubo time correlation functions, which lead to various

divergences in the transport coefficients for two and three dimensional gases, where all of the

particles move [10]. In the case of a Lorentz gas in d dimensions, the Green-Kubo velocity

correlation functions decay with time, t, as t−(d/2+1) [11] and the diffusion coefficient is finite

in both two and three dimensions. Here we describe the effects of these type of correlations on

the Lyapunov exponents for the two-dimensional Lorentz gas, in equilibrium, where we find

no effect, and in a thermostatted electric field, where we find a small, logarithmic dependence

of the Lyapunov exponents upon the applied field. This logarithmic effect is an indicator for
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similar effects to be expected when one calculates Lyapunov exponents associated with more

general transport in two-dimensional gases, whereas in three dimensional systems one would

expect corresponding non-analytic terms proportional to ǫ̃ 5/2. In the case of the Lorentz

gas, at least, the logarithmic terms can easily be associated with the logarithmic terms that

appear in the field dependent collision frequency, and a very simple argument can be used

to establish this relation between logarithmic terms in the Lyapunov exponents and in the

collision frequency.

In Section 2 of this article we describe the general theory of Lyapunov exponents of a two-

dimensional thermostatted electric field-driven Lorentz gas and quote the results within the

scope of the Boltzmann equation. In Section 3, we generalize the theory to incorporate the

effect of correlated collision sequences. In Section 4, we outline the calculation of the effects

of the correlated collision sequences on the non-zero Lyapunov exponents using the BBGKY

equations discussed in Section 3 and obtain the non-analytic field-dependent term in the

Lyapunov exponents, originating from the correlated collision sequences, along with other

analytic field-dependent terms. In Section 5, we present some simple arguments explaining

the field-dependence of the collision frequency and show that this is the sole origin of the non-

analytic, field-dependent terms in the Lyapunov exponents. Notice that the arguments given

in Section 5 are independent of and much simpler to follow than the formalism developed in

Sections 3 and 4. We conclude in Section 6 with a discussion of the results obtained here, and

with a consideration of open questions. Methods for determination of the field-dependence

of the collision frequency are outlined in the Appendix.
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2 Lyapunov exponents of field driven Lorentz gases in

two dimensions

2.1 General theory

The random Lorentz gas consists of point particles of mass m and charge q moving in a

random array of fixed scatterers. In two dimensions, each scatterer is a hard disk of radius

a. The disks do not overlap with each other and are distributed with number density n,

such that at low density na2 < 1. The point particles are acted upon by a uniform, constant

electric field ~E in the x̂ direction, but there is no interaction between any two point particles.

There is also a Gaussian thermostat in the system to keep the speed of each particle constant

at v by means of a dynamical friction during flights between collisions with the scatterers.

The collisions between a point particle and the scatterers are instantaneous, specular and

elastic. During a flight, the equations of motion of a point particle are

~̇r = ~v =
~p

m
, ~̇p = m~̇v = q ~E − α~p (1)

= (v cos    ,v sin     )

a = (v cos    , v sin    )

φ
φ

θv θ

v+ θ+ θ+σ

Fig. 1 : Collision between a point particle and a scatterer.
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and at a collision with a scatterer, the post-collisional position and velocity, ~r+ and ~v+, are

related to the pre-collisional position and velocity, ~r− and ~v−, by

~r+ = ~r− , ~v+ = ~v− − 2 (~v− · σ̂) σ̂ , (2)

where σ̂ is the unit vector from the center of the scatterer to the point of collision (see Fig.

1). The fact that each particle has a constant speed v determines the value of α :

α =
q ~E · ~p

p2
⇒ ~̇p = q ~E − q ~E · ~p

p2
~p . (3)

Equivalently, in polar coordinates, the velocity direction with respect to the field, defined

through v̂ · x̂ = cos θ, changes between collisions as

θ̇ = − ε sin θ , (4)

where ε =
q| ~E|
mv

and we define the dimensionless electric field parameter ε̃ =
εl

v
, where

l = (2na)− 1 is the mean free path length for the particle in the dilute Lorentz gas. To

denote the electric field, we will normally use ε, though from time to time we will use ε̃, too.

Treating this two-dimensional Lorentz gas as a dynamical system, we define the Lyapunov

exponents in the usual way: a point particle in its phase space (~r, ~v) = ~X starts at time

t0 at a phase space location ~X(t0). Under time evolution, ~X(t) follows a trajectory in

this phase space which we call the “reference trajectory”. We consider an infinitesimally

displaced trajectory which starts at the same time t0, but at ~X
′(t0) = ~X(t0) + δ~X(t0).

Under time evolution, ~X
′(t) follows another trajectory, always staying infinitesimally close

to the reference trajectory. This trajectory we call the “adjacent trajectory”. Typically the

two trajectories will separate in time due to the convex nature of the collisions. Thus, we
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can define the positive Lyapunov exponent as

λ+ = lim
T→∞

lim
|δ~X(t0)|→0

1

T
ln

|δ~X(t0 + T )|
|δ~X(t0)|

. (5)

for a typical trajectory of the system.

We assume that, for small fields, this Lorentz gas system is hyperbolic. Since the two-

dimensional Lorentz gas can have at most two nonzero Lyapunov exponents, we denote

the negative Lyapunov exponent by λ−. Without any loss of generality, we can choose to

measure the separation of the reference and adjacent trajectories equivalently in ~r-space,

thereby reducing the definition of the positive Lyapunov exponent to

λ+ = lim
T→∞

lim
|δ~r(t0)|→0

1

T
ln

|δ~r(t0 + T )|
|δ~r(t0)|

. (6)

In order to calculate the right hand side of Eq. (6), we introduce another dynamical quantity,

the radius of curvature ρ, characterizing the spatial separation of the two trajectories (see

Fig. 2) :

S(t)

Adjacent trajectory

Reference trajectory

C

A

B

P

δθ(t)

δ

Fig. 2 : ρ(t) =
δS(t)

δθ(t)
= |AP | .

In Fig. 2, a particle on the reference trajectory would be at point A at time t. At the

same time, a particle on the adjacent trajectory would be at B. A local perpendicular on the

reference trajectory at A intersects the adjacent trajectory at C. The backward extensions

of instantaneous velocity directions on the reference and adjacent trajectories at A and C,
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respectively, intersect each other at point P. We denote the length of the line segment AC

by δS(t) and ∠APC by δθ(t). The radius of curvature associated with the particle on the

reference trajectory at time t is then given by

ρ(t) =
δS(t)

δθ(t)
= |AP | . (7)

Having defined ρ(t), one can make a simple geometric argument to show that

δṠ(t) = v δθ(t) =
v δS(t)

ρ(t)
, (8)

so as to obtain a version of Sinai’s formula [12],

λ = lim
T→∞

v

T

∫ t0 + T

t0

dt

ρ(t)
. (9)

During a flight, the equation of motion for ρ is given by [8]

ρ̇ = v + ρε cos θ +
ρ2ε2 sin2 θ

v
. (10)

At a collision with a scatterer, the post-collisional velocity angle θ+ and radius of curvature

ρ+ are related to the pre-collisional velocity angle θ− and radius of curvature ρ− by [13, 14] :

θ+ = θ− − π + 2φ ,
1

ρ+
=

1

ρ−
+

2

a cos φ
+

ε

v
tan φ (sin θ− + sin θ+) , (11)

where φ is the collision angle, i.e, cosφ = |v̂− · σ̂| = |v̂+ · σ̂| (see Fig. 1).

Now we assume that, for sufficiently weak electric field, the field-driven Lorentz gas in

two dimensions is ergodic, and that we can replace the long time average in Eq. (6) by a non-

equilibrium steady state (NESS) average, including an average over all allowed configurations

of scatterers, to obtain

λ =

〈

v

ρ

〉

NESS

. (12)
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The electric field is considered weak if the work done by the electric field on the point particle

over a flight of one mean free path is much smaller than the particle’s kinetic energy, i.e,

q| ~E| l
mv2

=
εl

v
= ε̃ << 1.

We note for future reference, that the sum of the two nonzero Lyapunov exponents is

related to the average of the friction coefficient α, by [1, 15, 16]

λ+ + λ− = −
〈

α
〉

NESS
= −

〈

q ~E · ~v
mv2

〉

NESS

= −
~J · ~E

mv2
= − σE2

mv2
. (13)

Here the electric current ~J = 〈q~v〉NESS is, for small fields, assumed to satisfy Ohm’s law,

~J = σ ~E, and σ is the electrical conductivity.

2.2 Results obtained using the Lorentz-Boltzmann equation

To the lowest order in density, one can assume that the collisions suffered by the point

particle are uncorrelated, and use an extended Lorentz-Boltzmann equation (ELBE) for

the distribution function of the moving particle, f1(~r, ~v, ρ, t) in (~r, ~v, ρ)-space [8] needed for

the evaluation of the averages appearing in Eqs. (12) and (13). To calculate the positive

Lyapunov exponent, one needs to consider the forward-time ELBE while to calculate the

negative Lyapunov exponent one needs the time reversed ELBE. To the leading order in

density, the Lyapunov exponents are then given by [8] :

λ
(B)

+ = λ0 − 11

48

l

v
ε2 + O(ε4) and λ

(B)

− = −λ0 − 7

48

l

v
ε2 + O(ε4) . (14)

The superscript, B, indicates that these are results obtained from the Lorentz-Boltzmann

equation. Here λ0 is the positive Lyapunov exponent for a field-free Lorentz gas (see for
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example [17]) given by

λ0 = 2nav [ 1 − C − ln(2na2) ], (15)

where C is Euler’s constant, C = 0.5772.... From Eqs. (13) and (14), using Einstein’s relation

between diffusion constant and conductivity, one gets the correct diffusion coefficient within

the Boltzmann regime, D(B) =
3

8
lv.

To derive the results in Eq. (14), one uses Eq. (11) with ε = 0. The ε-dependent term in

Eq. (11) can be explicitly shown to be of higher order in the density than the terms present in

Eq. (14) [18]. In the following sections we will investigate the effect of sequences of correlated

collisions between the point particle and the scatterers on the Lyapunov exponents. However,

the ε-dependent term in Eq. (11) will again be neglected since we will present the effect of

these correlated collision sequences in leading order in the density of scatterers only. Thus,

instead of Eq. (11), we will use

1

ρ+
=

1

ρ−
+

2

a cos φ
. (16)

3 The extension of the ELBE to higher density

3.1 Binary collision operators in (~r, ~v, ρ)-space and

the BBGKY hierarchy equations

The Boltzmann theory for the Lyapunov exponents assumes that the scatterers form a dilute,

but quenched system and that the collisions of the point particles with the scatterers are

uncorrelated. To incorporate the effects of correlated collisions on the Lyapunov exponents,

11



we will use a method based on the BBGKY hierarchy equations, familiar from the kinetic

theory of moderately dense gases [10]. Since the moving particles do not interact with each

other, it is sufficient to consider the distribution functions for just one of them, together

with a number of scatterers. One starts from a fundamental equation for an (N + 1)-body

distribution function, fN+1 = fN+1(~r, ~v, ρ; ~R1, ~R2, ., ., ~RN ; t), which is the probability density

function in the entire extended phase space Γ spanned by the variables ~r, ~v, ρ, ~R1, ~R2, ., ., ~RN ,

describing our system of N scatterers and one moving particle. We require that fN+1 satisfies

the normalization condition

∫

d~r d~v dρ d~R1 d~R2 . .d ~RN fN+1(~r, ~v, ρ; ~R1, ~R2, ., ., ~RN ; t) = 1 . (17)

This (N +1)-body distribution function satisfies a Liouville-like equation determined by the

collisions of the moving particles with the scatterers and by the motion of the particles in the

thermostatted electric field, between collisions. Since the time evolution of ~r and ~v in this

field is not Hamiltonian, we must use the Liouville equation in the form of a conservation

law, rather than the usual form for Hamiltonian systems, to obtain

∂fN + 1

∂t
+ ~∇~r · (~̇r fN +1) + ~∇~v · (~̇v fN + 1) +

∂

∂ρ
(ρ̇fN +1) =

N
∑

i = 1

T̃−, i fN + 1 . (18)

Here the operators T̃−, i are binary collision operators which describe the effects on the

distribution function due to an instantaneous, elastic collision between the moving particle

and the scatterer labeled by the index i. The explicit form of the binary collision operators

may be easily obtained by a slight modification of the methods used by Ernst et al. [19], in

order to include the radius of curvature as an additional variable. One finds that the action
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of this operator on any function f(~r, ~v, ρ; ~R1, ~R2, ., ., ~Rj; t) is

T̃−, i f = a

∫

~v·σ̂i > 0

dσ̂i |~v · σ̂i|
{

∫ ∞

0

dρ′ δ

(

ρ − ρ′ a cos φi

a cos φi + 2ρ′

)

δ(aσ̂i − (~r − ~Ri)) ×

× bσi, ρ′ − δ(aσ̂i + (~r − ~Ri))

}

f , (19)

where σ̂i is the unit vector from the center of the scatterer fixed at ~Ri to the point of collision.

The action of the operator bσi, ρ′ on the function f(~r, ~v, ρ; ~R1, ~R2, ., ., ~Rj; t) is defined by

bσi, ρ′ f(~r, ~v, ρ; ~R1, ~R2, ., ., ~Rj; t) = f(~r, ~v − 2 (~v · σ̂i) σ̂i, ρ′; ~R1, ~R2, ., ., ~Rj; t) ; (20)

that is, bσiρ′ is a substitution operator that replaces ρ by ρ′ and the velocity ~v by its restituting

value, i.e, the value it should have before collision so as to lead to the value ~v after collision.

It is often useful to express the binary collision operators as as sum of two terms such that

T̃−, i = T̃
(+)
−, i − T̃

(−)
−, i , (21)

where

T̃
(+)
−, i = a

∫

~v·σ̂i > 0

dσ̂i |~v · σ̂i|
∫ ∞

0

dρ′ δ

(

ρ − ρ′ a cos φi

a cos φi + 2ρ′

)

δ(aσ̂i − (~r − ~Ri)) bσi, ρ′ (22)

and

T̃
(−)
−, i = a

∫

~v·σ̂i > 0

dσ̂i |~v · σ̂i| δ(aσ̂i + (~r − ~Ri)) . (23)

One sees that T̃
(+)
−, i f and T̃

(−)
−, i f respectively describe the rate of “gain” and the rate of “loss”

of f due to a collision of the point particle with the scatterer fixed at ~Ri.

The BBGKY hierarchy equations are then obtained from Eq. (18) by integrating over

scatterer coordinates, as a set of equations for the reduced distributions fj for the moving
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particle and (j − 1) scatterers, defined by

fj(~r, ~v, ρ; ~R1, ~R2, ., ., ~Rj−1; t)

=
N !

(N − j + 1)!

∫

d~Rj..d ~RN fN + 1(~r, ~v, ρ; ~R1, ~R2, ., ., ~RN ; t) . (24)

One then easily obtains the BBGKY hierarchy equations (1 ≤ j ≤ N)

∂fj

∂t
+ ~∇~r · (~̇r fj) + ~∇~v · (~̇v fj) +

∂

∂ρ
(ρ̇fj) −

j − 1
∑

k =1

T̃−, k fj =

∫

d~Rj T̃−, j fj +1 . (25)

3.2 Cluster expansions and truncation of the hierarchy equations

The usual procedure for truncating the hierarchy equations in order to obtain the Boltzmann

equation and its extension to higher densities is to make cluster expansions of the distribution

functions, f2, f3 . . . in terms of a set of correlation functions, g2, g3 . . . as follows:

f2(~r, ~v, ρ; ~R1; t) = nf1(~r, ~v, ρ; t) + g2(~r, ~v, ρ; ~R1; t), (26)

f3(~r, ~v, ρ; ~R1, ~R2; t) = n2f1(~r, ~v, ρ; t) + ng2(~r, ~v, ρ; ~R1; t) + ng2(~r, ~v, ρ; ~R2; t)

+ g3(~r, ~v, ρ; ~R1, ~R2; t) , (27)

and so on. Hereafter, to save writing, we denote g2(~r, ~v, ρ; ~R1; t) as g2, ~R1
, g2(~r, ~v, ρ; ~R2; t)

as g2, ~R2
, f3(~r, ~v, ρ; ~R1, ~R2; t) as f3 and g3(~r, ~v, ρ; ~R1, ~R2; t) as g3. The first terms in each of

these expansions represent the totally uncorrelated situation, where there are independent

probabilities of finding the moving particle and the scatterers at the designated coordinates.

The next terms involving the pair correlation functions g2, ~Ri
in Eqs. (26) and (27) take into

account possible dynamical and excluded volume correlations between the point particle and

the scatterer at ~Ri. If one replaces f2 by nf1 in the first BBGKY hierarchy equation, Eq. (25)
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with j = 1, reduces to the ELBE. To find the corrections to the ELBE for higher densities,

one must keep the g2 term in Eq. (26) and use the second hierarchy equation to determine g2.

However, in order to solve the second equation, we have to say something about g3. A careful

examination of the second and higher equations shows that g3 contains, of course, the effects

of three-body correlations, i.e, correlated collisions involving the point particle, a scatterer

fixed at ~R1 and another scatterer fixed at ~R2, as well as excluded volume corrections due to

the non-overlapping property of the scatterers. Here we will be primarily interested in the

effects of the so called “ring” collisions on the Lyapunov exponents. These collision sequences

are composed of one collision of the moving particle with a given scatterer, followed by an

arbitrary number of collisions with a succession of different scatterers, and completed by a

final re-collision of the moving particle with the first scatterer in the sequence, as illustrated

in Fig 3.
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Fig. 3 : Sequential collisions with scatterers at ~R2, ~R3, ., . adding up to the ring diagram.

The ring diagrams, taken individually, are the most divergent terms that appear in the

expansion of dynamical properties of the Lorentz gas as a power series in the density of

scatterers. They lead to the logarithmic terms in the density expansion of the diffusion

coefficient of the moving particle [20], and to the algebraic long time tails in the velocity

time correlation function of the moving particle [11]. While many other dynamical events
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and excluded volume effects contribute to the Lyapunov exponents, and must be included

for a full treatment, we concentrate here on the effects of these most divergent collision

sequences, since in other contexts, they are responsible for the most dramatic higher density

corrections to the Boltzmann equation results.

Thus we drop g3 in Eq. (27) and obtain a somewhat simplified cluster expansion of f3,

given by

f3 = n2f1 + ng2, ~R1
+ ng2, ~R2

(28)

Using Eqs. (26) and (28) and the first two of the BBGKY hierarchy equations, we obtain a

closed set of two equations involving two unknowns, f1 and g2, ~R1
given by

~∇~v · (~̇v f1) +
∂

∂ρ
(ρ̇ f1) =

∫

d~R1 T̃−, 1 [ nf1 + g2, ~R1
] (29)

and

~∇~r · (~̇r g2, ~R1
) + ~∇~v · (~̇v g2, ~R1

) +
∂

∂ρ
(ρ̇ g2, ~R1

) − n

∫

d~R2 T̃−, 2 g2, ~R1
= n T̃−, 1 f1 . (30)

In the derivation of Eq. (30) from the second hierarchy equation not only have we dropped

g3 as discussed above, we also dropped a term of the form T̃−, 1 g2, ~R1
. This term provides

“repeated ring” corrections to the ring contributions to g2, ~R1
. These are of the same order

as terms neglected by dropping g3 [21, 18], and should be neglected for consistency. We also

dropped the time derivatives in the equations, so we are now looking for the distribution

and correlation functions appropriate for the NESS.

In Section 4, we will solve Eqs. (29) and (30) in order to calculate the ring contributions

to the positive Lyapunov exponent. Before doing so, it is useful to write down the usual
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form of the ring equations in (~r, ~v)-space, which can be obtained by integrating Eqs. (29)

and (30) over all values of the radius of curvature, 0 ≤ ρ < ∞. We define the usual

single-particle distribution function by, F1 =
∫

ρ>0
dρ f1 and the pair-correlation function

G2, ~R1
=

∫

ρ>0
dρ g2, ~R1

. By imposing the boundary conditions that both f1 and g2, ~R1
go to

zero as ρ → 0 and as ρ → ∞, we obtain

~∇~v · (~̇v F1) =

∫

d~R1 T−, 1 [ nF1 + G2, ~R1
] (31)

and

~∇~r · (~̇r G2, ~R1
) + ~∇~v · (~̇v G2, ~R1

) − n

∫

d~R2 T−, 2 G2, ~R1
= n T−, 1 F1 . (32)

The actions of T−, 1 or T−, 2 on F1 and G2, ~R1
can be obtained by appropriately integrating

T̃−, 1 f1, T̃−, 1 g2, ~R1
or T̃−, 2 g2, ~R1

over ρ from 0 to ∞ using the definitions in Eqs. (19) and

(20). T−, 1 and T−, 2 are the analogs in (~r, ~v) space of T̃−, 1 and T̃−, 2 (see Eqs. (19) and

(20)), i.e.,

T−,i = a

∫

~v·σ̂i > 0

dσ̂i |~v · σ̂i|
{

δ (aσ̂i − (~r − ~Ri)) bσi
− δ(aσ̂i + (~r − ~Ri))

}

. (33)

In future applications however, we will drop the aσ̂i terms from the arguments of both

δ (aσ̂i ± (~r − ~Ri)) in T̃−, i and T−, i operators since they lead to corrections similar to

excluded volume terms, neglected already.

4 Effects of long range time correlation on λ+ and λ−

We now concentrate on the solution of the BBGKY equations for the distribution functions

that determine the Lyapunov exponents. The solutions of Eqs. (29) and (30) are to be
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obtained as expansions in two small variables, na2 and ε̃. The density expansion will give

the corrections to the previously obtained Boltzmann regime results from the ELBE, and

the ε̃ expansion will provide the field dependence of these corrections. We therefore write

the density expansions of f1 and g2 (hereafter we drop the subscript ~R1 from g2, ~R1
) as

f1 = f (B)

1 + f (R)

1 + . . . and g2 = g(R)

2 + . . . , (34)

where the superscript B indicates the lowest density result for f1 as given by the ELBE, and

the superscript R denotes the ring contribution. At the order in density of interest here, the

quantities indicated explicitly in the above equations satisfy

~∇~v · (~̇v f (B)

1 ) +
∂

∂ρ
(ρ̇ f (B)

1 ) = n

∫

d~R1 T̃−, 1 f (B)

1 , (35)

~∇~v · (~̇v f
(R)

1 ) +
∂

∂ρ
(ρ̇ f

(R)

1 ) =

∫

d~R1 T̃−, 1 [ nf
(R)

1 + g
(R)

2 ] (36)

and

~∇~r · (~̇r g
(R)

2 ) + ~∇~v · (~̇v g
(R)

2 ) +
∂

∂ρ
(ρ̇ g

(R)

2 ) − n

∫

d~R2 T̃−, 2 g
(R)

2 = n T̃−, 1 f
(B)

1 . (37)

Our aim here is to solve Eqs. (36) and (37) using the results of the ELBE for f
(B)

1 . We

suppose further that each of these functions possesses an expansion in powers of ε as

f
(B, R)

1 = f
(B, R)

1, 0 + ε f
(B,R)

1, 1 + ε2 f
(B, R)

1, 2 + . . . (38)

and

g(R)

2 = g(R)

2, 0 + ε g(R)

2,1 + ε2 g(R)

2, 2 + . . . (39)

The functions f
(B)

1, i have been previously obtained as the ε solutions of the ELBE. Since we

will be dealing with g2 only in the context of of the ring term, we drop the superscript R

from now on.
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As mentioned above, we will neglect the term aσ̂ within the arguments of the δ-functions

appearing in each of the binary collision operators T̃− and T−, so as to take the moving

particle to be located at the same point as the center of the appropriate scatterer at collision.

The terms neglected by this approximation lead to higher density corrections to the terms

we will obtain below. Secondly, an inspection of the radius of curvature delta function in

the expression for the “gain” part of the binary collision operator, Eq. (22), shows that

this term is only non-vanishing when ρ ≤ a

2
, and that the dominant contribution to the ρ′

integration comes from the region ρ′ ∼ l. Naturally,
ρ′ a cos φi

a cos φi + 2ρ′
∼ a cos φi

2
(1 + O(n))

in the argument of the delta function. In the Boltzmann level approximation this O(n)

term may therefore be neglected and it can be shown not to contribute to the leading field-

dependent ring term effects on the Lyapunov exponents. Therefore, we will neglect it in

what follows. Under this approximation, the gain part of the binary collision operator [8]

acts on an arbitrary function h(~r, ~v, ρ) as

T̃
(+)
−, i h(~r, ~v, ρ) ≈ δ(~r − ~Ri) Θ

(a

2
− ρ

)

I(ρ) [ H(~r, ~v+) + H(~r, ~v−) ] ≡ δ(~r − ~Ri) Γ(ρ, H) .(40)

Here

~v± = ~v − 2 (~v · σ̂i,±) σ̂i,± , (41)

and σ̂i,± is defined by the condition that the scattering angle φ = ± cos−1

(

2ρ

a

)

. Also

H(~r, ~v) =

∫ ∞

0

dρ′ h(~r, ~v, ρ′) (42)

and

I(ρ) =
4vρ

a

√

1 −
(

2ρ
a

)2
. (43)
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Finally, we express the velocity vector ~v in terms of the angle θ that it makes with the

direction of the electric field so as to obtain the following set of equations for the terms in

the ε-expansion of g2

[

~v · ~∇~r + v
∂

∂ρ
+ 2nav

]

g2, 0 = − 2nav δ(~r − ~R1) f
(B)

1, 0 + n δ(~r − ~R1) Γ(ρ, F
(B)

1,0 ) , (44)

[

~v · ~∇~r + v
∂

∂ρ
+ 2nav

]

g2, 1 = − ∂

∂ρ

(

ρ cos θ g2, 0

)

+
∂

∂θ

(

sin θ g2, 0

)

− 2nav δ(~r − ~R1) f (B)

1, 1 + n δ(~r − ~R1) Γ(ρ, F (B)

1,1 ) , (45)

and

[

~v · ~∇~r + v
∂

∂ρ
+ 2nav

]

g2, 2 = − ∂

∂ρ

(

ρ cos θ g2, 1 +
ρ2 sin2 θ

v
g2, 0

)

+
∂

∂θ

(

sin θg2, 1

)

− 2nav δ(~r − ~R1) f
(B)

1, 2 + n δ(~r − ~R1) Γ(ρ, F
(B)

1,2 ) . (46)

We notice that the equations thus obtained are linear inhomogeneous differential equations

of the form L g2, j = bj (j = 0, 1, 2), where L =
[

~v · ~∇~r + v
∂

∂ρ
+ 2nav

]

is a linear differential

operator and bj for j = 0, 1, 2 are the inhomogeneous terms on the r.h.s. of Eqs. (44), (45)

and(46) respectively.

We will need to solve Eqs. (44-46), in conjunction with the equations for G2, 0, G2, 1 and

G2, 2 obtained by directly integrating Eqs. (44-46) over ρ from 0 to ∞. The equations for

the corresponding G2, i are then

[

~v · ~∇~r − n

∫

~dR2 T−, 2

]

G2, 0 = n T−, 1 F
(B)

1, 0 , (47)

[

~v · ~∇~r − n

∫

~dR2 T−, 2

]

G2, 1 =
∂

∂θ

(

sin θ G2, 0

)

+ n T−, 1 F
(B)

1, 1 (48)
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and

[

~v · ~∇~r − n

∫

~dR2 T−, 2

]

G2, 2 =
∂

∂θ

(

sin θ G2, 1

)

+ n T−, 1 F
(B)

1, 2 . (49)

The equations for G2, 0, G2, 1 and G2, 2 are also linear differential equations of the form

L
′
G2, j = Bj, where L

′
=

[

~v · ~∇~r − n
∫

~dR2 T−, 2

]

and Bj for j = 0, 1, 2 are the inhomoge-

neous terms on the r.h.s. of Eqs. (47), (48) and (49) respectively.

To solve these equations, we take Fourier transforms of g2 and of G2 in the variables ~r and

in the velocity angle, θ. That is, we define g̃2(~k) =
1√
V

∫

V

~dr g2 e− i~k · (~r − ~R1) and calculate

g̃2, 0(~k), g̃2, 1(~k) and g̃2, 2(~k) in the ~k-basis, using periodic boundary conditions. Similarly, we

define the m-th angular mode of g̃2(~k) as g̃
(m)
2 (~k) =

1√
2π

∫

dθ e− imθ g̃2(~k). We also define

G̃
(m)
2 (~k) in an analogous way. Thus, corresponding to Eqs. (44-46) and Eqs. (47-49), we

have two sets of three equations to be solved, one involving g̃2, 0(~k), g̃2, 1(~k) and g̃2, 2(~k), and

the other involving G̃2, 0(~k), G̃2, 1(~k) and G̃2, 2(~k), in (~k, m) basis. In this basis, the operators

L~k =
[

i~k ·~v + v
∂

∂ρ
+ 2nav

]

and L
′

~k
=

[

i~k ·~v − n
∫

~dR2 T−, 2

]

are both infinite dimensional

matrices in m-space and both of them have non-zero off-diagonal elements due to the term

i~k · ~v generated from the operator ~v · ~∇~r . However, it is easily seen that these off-diagonal

elements are proportional to δm, m+1 and δm, m−1 and they are easily treated.

A further simplification can be made by noticing that the schematic forms of the solutions

are g̃2, j(~k) = [L~k]
−1 bj(~k) and G̃2, j(~k) = [L

′

~k
]−1 Bj(~k) and hence the dominant parts of g̃2, j(~k)

and G̃2, j(~k) will come, loosely speaking, from the eigenfunctions of L~k and L
′

~k
having the

smallest eigenvalues. The lowest eigenvalues of L
′

~k
are ∝ k2 due to the contributions from

the hydrodynamic modes [11]. Thus, to capture the dominant part of the solutions we

should solve the equations in the range k = |~k| << l−1, the inverse mean free path and use
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perturbation expansions in the small parameter kl. We will not, in our analysis, follow the

mode expansion technique, as it is simpler to calculate G2 directly. However, one can use

mode expansions and one finds that the results of both the methods agree.

4.1 Solution for G2

To solve for G2 first we need to know the solutions of the Lorentz-Boltzmann equation for

F
(B)

1, 0, F
(B)

1, 1 and F
(B)

1, 2. These are given by [8]

F
(B)

1, 0 =
1

2π
, F

(B)

1, 1 =
3

16πnav
cos θ and F

(B)

1, 2 =
45

512π(nav)2
cos 2θ . (50)

We note that in m-space, defined above, the m-th diagonal element of the infinite matrix

L
′

~k
is

4m2

(4m2 − 1)

v

l
while the off-diagonal elements are ikv δm,m±1. Thus an expansion in

k̃ = kl can be easily obtained by considering successively larger parts of the matrix L
′

~k
in the

index m, starting with 3×3, 5×5 matrices and so on, chosen in such a way that the element

of L
′

~k
corresponding to m = 0 appears as the center element of these matrices. As we want

to make our results correct up to O(k̃0), we need to increase the size of these matrices till the

expressions of G̃2, j(~k) obtained from G̃2, j(~k) = [L
′

~k
]−1 Bj(~k) (for j = 0, 1, 2) converges up to

O(k̃0). Also, as we want to obtain the expression of λ+ and λ− in the leading field-dependent

order, which is ε2; we need the solutions of all the m-modes of G̃2, 0(~k), G̃2, 1(~k) and G̃2, 2(~k)

that are necessary to obtain all the terms of f
(R)

1 that are ∝ ε2 and contribute to this leading

field-dependent order of λ+ and λ−. In more explicit form, this means that we definitely

need the solutions of G̃
(m = 0)
2, 0 (~k), G̃

(m =0)
2, 1 (~k), G̃

(m =±1)
2, 1 (~k), G̃

(m =±2)
2, 1 (~k) and G̃

(m =0)
2, 2 (~k) up to

O(k̃0). However, once we present these solutions, from the structure and properties of them,

it will turn out that we will also need the expressions of G̃
(m= 0)
2, 2j (~k) in the leading order of k̃
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for j = 2, 3, . ., to consistently obtain all the terms, that are ∝ ε2.

At the ε0 or equilibrium order, we find

G̃
(m)
2, 0 (~k) = 0 ∀m . (51)

Proceeding to order ε, we find that G̃
(m)
2, 1 (~k)’s obey

iv

2

[

(kx + iky) G̃
(m+1)
2, 1 (~k) + (kx − iky) G̃

(m−1)
2, 1 (~k)

]

+
8navm2

4m2 − 1
G̃

(m)
2, 1 (~k)

= − 1

2
√

2πV

(

δm, 1 + δm,−1

)

,(52)

where it turns out that we need a 5 × 5 matrix block corresponding to m = −2, −1, 0, 1,

and 2 to get the solutions of G̃
(m)
2, 1 (~k) up to O(k0) that are relevant for us, yielding

G̃
(m= 0)
2, 1 (~k) =

ikx

vk2
√

2πV
,

G̃
(m=1)
2, 1 (~k) = − 3iky(kx − iky)

16navk2
√

2πV
, G̃

(m=−1)
2, 1 (~k) =

3iky(kx + iky)

16navk2
√

2πV

G̃
(m= 2)
2, 1 (~k) = − 45ky(kx − iky)

2

1024(na)2vk2
√

2πV
and G̃

(m=−2)
2, 1 (~k) =

45ky(kx + iky)
2

1024(na)2vk2
√

2πV
. (53)

Notice that we have also calculated G̃
(m=− 2)
2, 1 (~k) and G̃

(m= 2)
2, 1 (~k), even though they are O(k),

because they affect the O(k0) solution for G̃
(m= 0)
2, 2 (~k).

For order ε2, the relevant G̃
(m)
2, 2 (~k)’s are then calculated using Eq. (53) and considering a

5 × 5 matrix block of L
′

~k
. There we need only the solution for G̃

(m= 0)
2, 2 (~k) :

G̃
(m= 0)
2, 2 (~k) =

k2
x

v2k4
√

2πV
+

45 (2k2
x − 5k2

y)

1024(nav)2k2
√

2πV
. (54)

Examining the properties of the solutions, Eqs. (53-54) and observing from Eqs. (47-49) the

way the solution of G2, j affects the solution of G2, (j + 1), one sees that the leading power of k
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in the expression of G̃
(m= 0)
2, 2j (~k) for (j = 1, 2, 3....) is k− 2j . However, in the expression of G2,

G̃
(m= 0)
2, 2j (~k) appears with a factor of ε2j. When G2 is finally calculated, after a summation

of the appropriate ~k-values1, the contribution of the sum of all the effects coming from the

O(k− 2j) terms of the G̃
(m= 0)
2, 2j (~k)’s is seen to be in the same order of density of scatterers as

the O(k0) term on the r.h.s. of Eq. (54). In fact, it also turns out that the O(k− 2j) terms of

the G̃
(m= 0)
2, 2j (~k)’s are the only ones among the G̃

(m)
2, j (~k)’s that contribute to f

(R)

1 in the order

of ε2. This implies that along with the solutions, Eqs. (51), (53) and (54), we also need to

include the O(k− 2j) term of G̃
(m= 0)
2, 2j (~k) to be consistent. If one just considers this O(k− 2j)

term in G̃
(m= 0)
2, 2j (~k), then it is easy to see that they satisfy a recurrence relation for j ≥ 1 :

G̃
(m= 0)
2, 2 (j + 1)(

~k) = − k2
x

v2k4
G̃

(m= 0)
2, 2j (~k) , (55)

i.e,

G̃
(m= 0)
2, 2j (~k) =

(−1) j − 1

√
2πV

(

k2
x

v2k4

)j

. (56)

The solutions, Eqs. (51), (53), (54) and (56), are then used to determine the integration

constants that arise when we solve the differential Eqs. (44-46). It is important to note that

the first term on the right hand side of Eq. (54) is inversely proportional to k2. This is the

origin of the logarithmic terms we find below.

4.2 Solution for g2

Here we apply the same procedure to solve for the g̃2(~k)’s from the equations L~k g̃2(~k) = bj(~k)

for j = 0, 1, 2. This time, the elements of L~k are differential operators in the variable ρ and

1To see how the ~k-integration is performed, see the last paragraph of Section 4.2
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the corresponding constants of integrations are determined using the solutions of G̃
(m)
2 (~k)’s

while maintaining that g̃
(m)
2 (~k)’s go to zero as ρ → 0 and as ρ → ∞. We also note that

for our purpose, solutions of the g̃2(~k)’s are only needed for ρ >
a

2
as the solution of the

g̃2(~k)’s for ρ <
a

2
gives rise to higher order density corrections than under consideration here.

These solutions can also be obtained by the mode expansion technique discussed above in

the paragraph preceding Section 4.1. However, as it is fairly straightforward to solve the

differential Eqs. (44-46) for ρ >
a

2
, we directly write down the necessary solutions up to

O(k0).

We obtain, for ρ >
a

2
,

g̃
(m)
2, 0 (~k) =

2na√
2πV

(1 − 2naρ) e− 2naρ ,

g̃
(m=−1)
2, 1 (~k) =

1

v
√

2πV

[

− kx(kx + iky)

8k2
+

kx(kx + iky)

2k2
2naρ +

2naρ

8

+
(2naρ)2

2
− (2naρ)3

4

]

e− 2naρ ,

g̃
(m=0)
2, 1 (~k) =

ikx

vk2
√

2πV
2na e− 2naρ ,

g̃
(m= 1)
2, 1 (~k) =

1

v
√

2πV

[

− kx(kx − iky)

8k2
+

kx(kx − iky)

2k2
2naρ +

2naρ

8

+
(2naρ)2

2
− (2naρ)3

4

]

e− 2naρ ,

g̃
(m=0)
2, 2 (~k) =

k2
x

v2k4
√

2πV
2na e− 2naρ

+
1

2v2
√

2πV

[

45

128na
−

315k2
y

256nak2
+

k2
x

4k2
ρ − 11

8
2naρ2

− 13

8

k2
x

k2
2naρ2 +

19

24
(2na)2ρ3 +

k2
x

2k2
(2na)2ρ3

+
13

24
(2na)3ρ4 − 1

8
(2na)4ρ5

]

e−2naρ (57)
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and for the O(k− 2j) terms in G̃
(m= 0)
2, 2j (~k) we have

g̃
(m= 0)
2, 2j (~k) =

(−1) j − 1

√
2πV

(

k2
x

v2k4

)j

2na e− 2naρ . (58)

We point out that all of the terms in each of the square brackets, in each of the above three

equations, are of the same order in the density. This can be seen easily by noting that ρ

is typically of order (2na)−1, so that (2naρ) is typically independent of the density. The

solutions, Eqs. (51), (53), (54), (56), (57) and (58) now can be assembled to calculate G2

and g2 in (~r, ~v) and (~r, ~v, ρ) space respectively and feed the results into the r.h.s. of Eqs.

(31) and (36) to obtain f (R)

1 . This involves a summation of different m and ~k-values. In the

infinite volume limit the ~k-sum can be converted to an integration over ~k. The sum over m

is straightforward, but we have to remember that the integration over ~k has to be carried

out in a range k ≤ k0 ∼ l−1. Secondly, since we have expanded the distribution functions in

powers of ε and then subsequently in powers of k, the lower limit of k for the ~k-integration

cannot be taken to be zero. To determine this lower limit of k for the k-integration, we

observe that the expansion in ε cannot be carried out for those values of k where k <
ε

2v
, so

that the value
ε

2v
forms a natural lower cut-off for the Fourier transform. Our solutions of

G2 and g2 therefore do not hold for k <
ε

2v
and to do a satisfactory perturbation theory in

the range k <
ε

2v
, one needs to consider both the ε and ~k-dependent terms together. After

doing so, one finds that such a perturbation theory does not affect our results at the present

density order [18].

Before performing the integration over ~k, we notice that in two dimensions, the numerator

of the ~k-integral is proportional to k dk. This means that any part of the solutions of

g̃2(~k) or G̃2(~k) having a leading power of k of order 2 or higher in the denominator gives
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rise to a singularity at k → 0 for the ~k-integral. First, the highest leading power of k

in the denominators of Eqs. (51), (53), (54) and (57) is k2, occurring in G̃
(m =0)
2, 2 (~k) and

g̃
(m = 0)
2, 2 (~k) respectively. These terms proportional to k− 2 give rise to a logarithmic electric

field dependence once the ~k-integration is performed for
ε

2v
≤ k ≤ k0. The rest of the terms

in these solutions supply only analytic field dependences that can be expressed as power series

in ε. Secondly, even though the solutions given in Eqs. (56) and (58) have higher powers of

k than k2 in the denominators, they also come with subsequently higher powers of ε in their

numerators. Thus, when the ~k-integration is performed, they contribute terms proportional

to ε2 or higher, to g2 or G2. Consequently, in addition to analytic field dependent terms, in

our present approximation we have only one non-analytic field dependent term appearing in

g2 or G2 and that is proportional to ε̃2 ln ε̃. No doubt there exist further non-analytic terms

in higher orders in ε̃, but their calculation would require a careful consideration of various

terms we have neglected here, such as the repeated ring contributions.

4.3 Solution for f (R)

1 and the calculation of λ(R)

+

Once the solutions, Eqs. (51), (53), (54), (56), (57) and (58) are inserted in Eqs. (31) and

(37) and the ~k-integration is performed in the range
ε

2v
< k < k0, we get, by the method

described in (40-43), the following equations to be solved to obtain f
(R)

1 and F
(R)

1 respectively
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:

− ε
∂

∂θ
(sin θ f

(R)

1 ) +
∂

∂ρ

{(

v + ρε cos θ +
ρ2ε2 sin2 θ

v

)

f
(R)

1

}

+ 2navf
(R)

1

= Θ
(a

2
− ρ

) 4vρ

a

√

1 −
(

2ρ
a

)2
×

×
∫ π

2

− π
2

dφ cos φ bσ

[

ε2

8π2v2

{

ln
2vk0

ε

}

− k2
0

8π2

{

3

16nav
ε cos θ +

135

2048(nav)2
ε2

}

+
A ε2

16π3v2

]

− 2av

[

ε2

8π2v2

{

ln
2vk0

ε

}

2na e−2naρ

+
k2

0

8π2
e−2naρ

{

2na (1 − 2naρ) − ε

v

[

(2naρ)3

2
− (2naρ)2 − 3

4
2naρ +

1

8

]

cos θ

− ε2

4nav2

[

(2naρ)5

8
− 13

24
(2naρ)4 − 25

24
(2naρ)3 +

35

16
(2naρ)2 − 2naρ

8
+

135

256

]}

+
1

16π3v2
A ε2 2na e− 2naρ

]

+ . . . . (59)

and

− ε
∂

∂θ
(sin θ F

(R)

1 ) − nav

∫ π
2

− π
2

dφ cos φ (bσ − 1) F
(R)

1

=

∫ π
2

− π
2

dφ cos φ (bσ − 1)

[

aε2

8π2v
ln

(

2vk0

ε

)

− avk2
0

8π2

{

3

16nav
ε cos θ +

135

2048(nav)2
ε2

}

+
a

16π3v
A ε2 + . . . .

]

=
ak2

0

16π2na
ε cos θ + . . . . , (60)

where bσ has been defined in Eq. (33). The A-dependent terms in Eqs. (59) and (60)

originate from Eqs. (58) and (56) respectively after the ~k-integration is carried out. Here A

is the integral2

A =

∫ 2π

0

dφ cos2 φ ln

[

1 +
1

4
cos2 φ

]

= 0.53536 . . . . (61)

2We thank the referee for pointing out an error in a previous calculation of this integral.
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The dominant effect of the ring term on the single particle distribution function, i.e, f
(R)

1 ,

can now be determined from Eqs. (59) and (60). It is also of some interest to give a crude

estimate of the terms that we have neglected. One knows from other studies in the kinetic

theory of gases [10, 22] that excluded volume corrections to Boltzmann equation results are

the numerically most important corrections, until the density of the system becomes high

enough that the mean free path of a particle is less than the size of the particle itself. These

excluded volume corrections are provided by the Enskog theory, and this theory can be

applied to the Lorentz gas, as well [20]. In our case, the Enskog corrections can be included

by replacing the density parameter n by n (1 − πna2)− 1 ≈ n (1 + πna2) in the Boltzmann

equation. The Enskog correction affects both λ0 and the ε-dependent terms in the expressions

for λ± in Eq. (14). Along with the Enskog correction there are other correction terms that

affect both λ0 and the field-dependent terms λ± [18, 23] at the same density order as the

Enskog correction. Also, the terms that have been dropped to obtain Eq. (16) from Eq.

(11), contribute to λ± at the same density order as the Enskog correction. However, since

the principal objective of this paper is to investigate the non-analytic contribution of the

ring term to the Lyapunov exponents, we will ignore the Enskog and related corrections from

our consideration. Thus, using Eqs. (59) and (60), one can express the full solutions of f1

and F1 as sums of a solution in the Boltzmann regime, a correction due to the ring term and

a correction due to the Enskog term, plus all of the other terms we have neglected, as

f1 = f
(B)

1 + f
(R)

1 + . . . . (62)

F1 = F
(B)

1 + F
(R)

1 + . . . . (63)
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Consequently, for the positive Lyapunov exponent λ+ we have,

λ+ = λ
(B)

+ + λ
(R)

+ + . . . . (64)

The solution of F
(R)

1 is quite straightforward,

F
(R)

1 =
3ak2

0

128π2(na)2v
ε cos θ + . . . . (65)

However, to solve for f
(R)

1 we find that in addition to the analytic field-dependent terms

which can be expressed as a power series in ε, there is a non-analytic field-dependent term

in f
(R)

1 proportional to ε̃2 ln ε̃. Thus, with

f
(R)

1 = f
(R)

1, analytic + f
(R)

1, non-analytic , (66)

we have

f
(R)

1, analytic = −ak2
0

4π2

[

2naρ − (2naρ)2

2
− ε cos θ

2nav

{

(2naρ)4

4
− (2naρ)3 +

(2naρ)2

8
+

2naρ

8

}

+
ε2

4(nav)2

{

− (2naρ)6

32
+

11

48
(2naρ)5 − (2naρ)4

96
− 79

96
(2naρ)3

+
3

32
(2naρ)2 − 135

512
(2naρ) +

135

512

}]

e−2naρ

+
aε2

(2π)3v2
A (1 − 2naρ) e−2naρ + . . . . for ρ >

a

2

=

[

aA

(2π)3v2
− 135ak2

0

512 (4πnav)2

]{

1 −
√

1 −
(2ρ

a

)2
}

ε2 + . . . . for ρ <
a

2
(67)

and

f
(R)

1, non-analytic =
aε2

4π2v2

{

ln
2vk0

ε

}

(1 − 2naρ) e−2naρ for ρ >
a

2

=
aε2

4π2v2

{

ln
2vk0

ε

}[

1 −
√

1 −
(2ρ

a

)2
]

for ρ <
a

2
. (68)

Notice that the ring contribution to the distribution function in Eqs. (67) and (68) satisfies

the boundary conditions that f
(R)

1 → 0 as ρ → 0 and ρ → ∞. Equations (67) and (68) also
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satisfy continuity at ρ =
a

2
at the leading density order. The distribution functions, Eqs.

(65), (67) and (68), are all the ones that we need to calculate λ
(R)

+ . Consequently,

λ
(R)

+ = λ
(R)

+, analytic + λ
(R)

+, non-analytic (69)

and using the the definition of Lyapunov exponents in Eq. (12), we have

λ(R)

+, analytic =

∫ 2π

0

dθ

∫ ∞

a
2

dρ
f

(R)

1, analytic

ρ

= − ak2
0v

4π
− ak2

0l
2ε2

2πv

{

13

96
− 135

512

(

ln 2na2 + C
)

}

− 0.53536
aε2

(2π)2v

(

ln 2na2 + C
)

+ . . . . (70)

and

λ
(R)

+, non-analytic =

∫ 2π

0

dθ

∫ ∞

a
2

dρ
f

(R)

1, non-analytic

ρ

= − aε2

2πv

{

ln
2k0v

ε

}

(

ln 2na2 + C
)

, (71)

where l is the mean free path and C is Euler’s constant, C = 0.5772 . . . .

4.4 Calculation of λ(R)

−

To calculate the corresponding effect of the ring term on λ−, we make use of the relation

Eq. (13). It is easy to calculate the effect of the ring term on
〈

α
〉

NESS
using F (R)

1 already

determined in the previous section. Thus, using

λ+ + λ− = −
〈

α
〉

NESS
, (72)

and a complete analogy to Eqs. (62-64), we can calculate three terms of
〈

α
〉

NESS
:

〈

α
〉

NESS
=

〈

α
〉(B)

NESS
+

〈

α
〉(R)

NESS
+ . . . . , (73)
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with

〈

α
〉(R)

NESS
=

3ak2
0l

2ε2

32πv
+ . . . . (74)

Following Eqs. (62-64), we now express λ− as λ− = λ
(B)

− + λ
(R)

− + . . . . , satisfying

λ(R)

+ + λ(R)

− = −
〈

α
〉(R)

NESS
. This leads us to

λ
(R)

−, analytic =
ak2

0v

4π
− ak2

0l
2ε2

2πv

{

5

96
+

135

512
( ln 2na2 + C

)

}

+ 0.53536
aε2

(2π)2v
( ln 2na2 + C

)

+ . . . . , (75)

and

λ
(R)

−, non-analytic =
aε2

2πv

{

ln
2k0v

ε

}

( ln 2na2 + C
)

. (76)

where l is the mean free path and C is Euler’s constant, C = 0.5772 . . . .

5 The field-dependent collision frequency and its

effects on the Lyapunov exponents

As stated before, our second main purpose was the derivation of the leading non-analyticity in

the field dependence of the Lyapunov exponents. In analogy with the transport coefficients,

we expected these non-analyticities to result from the long time behavior of the ring terms,

which we found confirmed in the preceding section. Some further thought reveals we can

estimate the non-analytic field dependence in a simple way.

In the presence of a thermostatted field there are two types of contributions to the positive

Lyapunov exponent of the two-dimensional Lorentz gas:
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1) contributions from the bending of the trajectories by the fields and

2) contributions from the divergence of trajectory pairs at collisions.

The first type of contributions are of order ε̃2 in the Boltzmann approximation. We

expect that the coefficient of this term will pick up higher density corrections and there

will be additional terms of higher orders in ε̃. But we have not found any indications for

corrections of lower order than ε̃2 resulting from the field-bending contributions.

The collisional contributions can be generally expressed as an average of the form

ν 〈 ln
|δ~v′|
|δ~v| 〉c, with δ~v′ and δ~v the velocity differences between the adjacent trajectories just

after and just before a collision, respectively, ν the average collision frequency, and the an-

gular brackets, 〈 〉c, indicating an average over collisions. At low densities even correlated

collisions happen at large distances, i.e. in the order of a mean free path length apart from

each other. Therefore their distribution of collision angles and hence their contribution to the

average 〈 〉c, to the leading order in density remains the same as for uncorrelated collisions.

We should then expect that at low densities the main effect of the correlated collisions on

the Lyapunov exponents should be due to a change of the collision frequency ν as a result

of correlated collisions taking place in the presence of the field. If the latter changes from ν0

to ν0 + δν, then Eq. (15) predicts a change of the positive Lyapunov exponent of magnitude

δλ+ = − δν

{

ln
aν0

v
+ C

}

. (77)

To obtain this result we have used the fact that the equilibrium, low density Lyapunov

exponent, Eq. 15) can be written in the form

λ0 = ν0

{

1 − C − ln
aν0

v

}

, (78)
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where ν0 = 2nav. In order to understand why and how the thermostatted field changes

the collision frequency we first recall that in equilibrium the collision frequency can be

obtained simply by using the uniformity of the equilibrium distribution for the point particle

in available phase space, with the result that ν =
2nav

1 − πna2
. One just has to consider the

probability that the light particle during an infinitesimal time d t will hit one of the scatterers.

On the other hand, at a time t after a given initial time, the probability for a collision may be

considered to be a sum of three contributions: the collision frequency obtained by assuming

that all collisions are uncorrelated and independent of each other, plus the probability for

a recollision with a scatterer with which it has collided before, minus the reduction of the

collision probability due to any collected knowledge of where no scatterers are present. In

equilibrium the last two contributions have to cancel, as we demonstrate in the Appendix.

In the presence of a field, however, this cancellation does not occur. This can easily be

understood in a qualitative way following the argument that the cancellation in equilibrium

occurs because the probability for return to the boundary of a scatterer is exactly the same

as that for return to the boundary of a region where a scatterer could be, but in fact is not

present (a virtual scatterer). In the presence of a field, the average velocity of the point

particle before collision with a real scatterer will be in the direction of the field, and after

the collision the average velocity will be anti-parallel to the field. The field will then tend to

turn the particle around and have it move back in the direction of the scatterer. This effect

enhances the probability of a recollision in comparison to that for an isotropic distribution

around the scatterer. In a “virtual collision”, in which the velocity does not change, the

particle, on average, ends up downstream (i.e. in the direction of the applied field) from the
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virtual scatterer and its recollision probability is decreased compared to that for an isotropic

distribution.

In the Appendix, a quantitative calculation is given based on the following two assump-

tions:

1) After the real or virtual collision the spatial distribution of the point particle becomes

centered around a point at a distance of a diffusion length from the scatterer and

2) for long times this distribution can be found by solving the diffusion equation. The

resulting expression for δν is

δν =
aε2

2πv
ln

ν0

ε
. (79)

A more formal, but equivalent, way to obtain this result is by extending the method

described by Latz, van Beijeren and Dorfman [26] for the low density distribution of time of

free flights of the moving particle to include the contribution from ring events, so as to apply

to a system in a thermostatted electric field. The main idea is to solve a kinetic equation for

f(~r, ~v, t, τ), the distribution of particles at a phase point (~r, ~v) at time t such that their last

collision took place at a time τ earlier, i.e., at time t − τ . It is then easy to argue that the

distribution of free flight times is simply the derivative of this (“last collision”) distribution

with respect to t − τ . We can then obtain a NESS average of the time of free flight and

thereby calculate the field dependent collision frequency ν(ε) = ν0 + δν. Since we want to

show that the origin of the non-analytic field dependence of both λ+ and λ− is rooted in

the non-analytic field dependence of collision frequency δν, let us keep only the non-analytic

field-dependent term as the leading term of the expansion of δν in the density of scatterers
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and in the electric field strength and write

δν = β ε2 ln

{

2k0v

ε

}

+ · · · , (80)

where the quantity β has to be determined from the NESS average of τ , using the effect

of the ring term on the NESS distribution function f(~r, ~v, τ) with k0 of the order of
1

ν0v
.

To obtain this distribution function, we follow exactly the same procedure as outlined in

Sections 4 and 5, but this time, with the variable τ instead of ρ. Notice that, this time,

even though the equations for corresponding f1 and g2’s are different, due to the difference

in the dynamical equations for ρ̇ and τ̇ during free flights and at collisions, the equations

involving F1 and G2’s remain the same. The source of the non-analytic field-dependent term

will surface again exactly from the O(k−2) term in Eq. (54). As far as this non-analytic

field-dependent term is concerned, at the lowest order of density, the variables ρ and τ are

identical up to a multiplicative factor v. Both grow linearly with time in between collisions

and are set back to (for ρ, almost) zero at each collision with a scatterer. One then recovers

the corresponding non-analytic part of the NESS distribution function [27], analogous to Eq.

(68),

f
(R)

1, non-analytic
(~v, τ) =

aε2

4π2v

{

ln
2vk0

ε

}

(1 − 2navτ) e−2navτ for τ > 0 , (81)

from which β can be obtained to be

β =
a

2πv
, (82)

after which, one easily recovers the result of Eq. (79).
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6 Discussion

While much of this paper is quite technical, there are two main points that we would like

to emphasize: (1) We have developed a method which allows an extension of the calculation

of the Lyapunov exponents for a two-dimensional Lorentz gas to higher densities than is

possible by means of the ELBE. (2) The logarithmic terms obtained here, while small, are

indicators of similar logarithmic terms which are certain to appear when these calculations

are extended to general two-dimensional gases, where all of the particles move.

The first point allows one to contemplate a general kinetic theory for the calculation of

of sums, at least, of all positive, or of all negative Lyapunov exponents. Such an approach

was also indicated by Dorfman, Latz, and van Beijeren [24], for the KS-entropy of a dilute

gas in equilibrium, but the theory there has not yet been developed beyond the Boltzmann

equation. The relevance of the second point can be seen if one realizes that the linear

Navier-Stokes transport coefficients of a two-dimensional gas diverge because of long time

tail effects, of the type discussed here [10]. In the general gas case therefore the logarithmic

terms in the positive and negative Lyapunov exponents will not cancel as they do here,

because the transport coefficients themselves should diverge as ln ε̃ as ε approaches zero.

Thus the logarithmic terms obtained here should be seen as precursors of the more important

logarithmic terms that will appear in the theory of two-dimensional gases.

It is worth noting that the ε̃2 ln ε̃ term results from a long range correlation in time

between the moving particle and the scatterers that is present in both the pair correlation

functions, G2, and g2, either of which is proportional to the square of the electric field

strength and the inverse square of the wave number, at small wave numbers and fields. This
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dependence is not present in the Lorentz gas in equilibrium, of course, but similar collision

frequency arguments to those given here suggest that non-analytic terms may be present

in the ring contributions to the positive Lyapunov exponent for trajectories on the fractal

repeller for an open Lorentz gas. In this case the inverse system size, L−1, plays the role

of
ε

2v
, the lower limit of k for the integration over ~k and one would expect to find terms of

order L−2 ln L in the ring term for this case. This point is currently under investigation.

Finally we mention that neither the non-analytic terms found here, nor the excluded

volume corrections included in the Enskog terms are able to account for the field dependence

of the Lyapunov exponents as observed in the computer simulations by Dellago and Posch

[8]. This is not unexpected since we have not been systematic in computing the density

dependence of the coefficient of ε2, nor have we considered higher order terms in ε beyond

order ε2 ln ε. All of the neglected terms are likely to be numerically more important than

the ones we have kept. There is also no indication in the simulation data for the Lyapunov

exponents of a clear presence of the interesting logarithmic term in the applied field. Such

logarithmic terms are typically difficult to detect in simulation data, without a careful hunt

for them[20]. However, it may be easier to check, by means of computer simulation, the

existence of the ε̃2 ln ε̃ term in the collision frequency than in the Lyapunov exponents. In

any case, we would like to emphasize that computer simulation studies of thermostatted

systems provide very useful ways to check a number of phenomena predicted by the kinetic

theory of moderately dense gases.
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Appendix

Derivation of the field-dependent collision frequency

To derive the field dependence of the collision frequency we first approximate the probability

of a recollision at time t as

P rec(t) =
ν

2

∫ 2π

0

d θ

∫ ∞

0

dτ

∫

~v·σ̂>0

dσ̂ |~v · σ̂|R(τ, θ, σ) bσ̂ F (B)(θ) . (A1)

Here F (B)(θ) describes the Boltzmann distribution for the velocity in the NESS. The function

R(τ, θ, σ) describes the probability density for return to the circumference of a given scatterer

in a time τ just after colliding with this scatterer with scattering vector σ̂ and post-collisional

velocity described by θ (see Fig. 4). We have ignored a possible dependence of the collision

frequency ν on v̂, which would only play a role at higher orders in the density.
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Fig. 4 : A recollision taking place after a real (solid line) or corresponding virtual (dashed

line) collision, followed by a post-collisional excursion maintaining on average the direction

of velocity over a persistence length lp.

Similarly the reduction of the collision frequency at time t due to virtual recollisions can

be estimated as

P nc(t) = − ν

2

∫ 2π

0

dθ

∫ ∞

0

dτ

∫

~v·σ̂>0

dσ̂ |~v · σ̂|R(τ, θ, σ) F (B)(θ) . (A2)

In equilibrium F (B)(θ) is independent of θ, so one sees immediately that both terms

cancel, as they should. In the presence of a thermostatted field we need the explicit form of

F
(B)

1 (θ) up to the first field-dependent order, given in Eq. (50) as

F (B)

1 (θ) =
1

2π

[

1 +
3ε

8nav
cos θ

]

. (A3)

The function R(τ, θ, σ) for large enough τ may be approximated by the product of 2av

(velocity times cross section) and the probability density for finding the point particle at the
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position of the scatterer. For weak fields the latter may be approximated by the solution

of a diffusion equation with a drift velocity ux̂ in the +x-direction and an initial density

localized at the position lpθ̂ with respect to the center of the scatterer. Here lp is the

persistence length, that is, the average distance traveled by a point particle in an equilibrium

system in the direction of its initial velocity and θ̂ is the unit vector in the direction of the

velocity right after the initial collision at t− τ . The persistence length may be expressed as

lp =

∫ ∞

0

dt 〈v̂ · ~v(t)〉. Multiplying this by the constant speed v one finds with the aid of the

Green-Kubo expression for the diffusion that lp =
2D

v
in two dimensions. This assumption

for the long time distribution may be understood by imagining that the first few free flights

after the initial collision of the particle move it over a distance in the order of a mean free

path in the direction of its initial postcollisional velocity before it starts to diffuse by virtue

of further collisions with scatterers. Thus for large τ the distribution of the light particle

will be centered around the point lpθ̂ with respect to the center of the scatterer, and the

final point, on the surface of the scatterer, may be approximated to be at the center of the

scatterer as well, because of low density. These arguments lead to the explicit form for the

recollision probability given by

R(τ, θ, σ) = 2av
e−

[ lpθ̂ + uτx̂ ]2

4Dτ

4πDτ
. (A4)

Finally we need the explicit form u =
3εv

8ν0
for the drift velocity to leading order in the

density, and the identity that

1

2

∫

~v·σ̂>0

dσ̂ |~v · σ̂| bσ̂ cos θ = − v

3
cos θ . (A5)
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Then, after expanding

e−
2lpuτθ̂·x̂

4Dτ = 1 − lpu

2D
cos θ + . . . , (A6)

we can now do all the calculations needed to obtain the leading non-analytic term in the

field expansion of the collision frequency. We find that

δν = avν

∫ 2π

0

dθ

∫ ∞

0

dτ
e−

[ l2p + (uτ)2]

4Dτ

4πDτ

[

1 − lpu

2D
cos θ

]
∫

~v·σ̂>0

dσ̂ |~v · σ̂| (bσ̂ − 1)
3ε cos θ

16πnav
.(A7)

After performing the integrations, we recover Eq. (79). Notice that the logarithm of ε̃ results

from the cut-off on the τ integration provided by the drift term in the exponential.
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