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ABSTRACT: Using self-consistent field (SCF) calculations,
we systematically quantify the pair interactions between
spherical diblock copolymer micelles following a bottom-up
approach. From the equilibrium properties of self-assembling
micelles at different separation distances, a simple yet
insightful pair interaction can be extracted. The SCF results
match with an analytical model based upon closed expressions
for the free energy change per diblock copolymer in the
micelle. To gain insights into the colloidal stability of dilute
micelle suspensions, the second virial coefficient normalized by
the undistorted micelle volume (B2*) is evaluated. For stable
micelles (B2* ≳ −6), we find a weak dependence of B2* on
solvophilic block length for varying core-forming block properties (core solvation and block length). The micelle suspension
gets unstable (B2* ≲ −6) when the corona-forming block crosses Θ-solvent conditions toward poor solvency. In contrast with
what is expected from models where the soft nature of the micelle is not taken into account, increasing the effective grafting
density of solvophilic tails from the core then leads to colloidal destabilization of the micelle suspension.

■ INTRODUCTION
The association of polymers and surfactants (macromolecules)
into soft colloidal particles provides a playground for
generating a wide range of self-assembled architectures in
selective solvents.1 Substantial attention has been paid to
predetermine the preferred morphology of association
colloids.2 Among the possible micellar shapes, the spherical
one is appealing because of its wide applicability for instance in
coatings,3 in food,4 and as drug delivery system.5−8 In many
applications, control is not only desired over the morphology
of the self-assembled structure but also over the thermody-
namic stability of the micellar suspension. A widely applied
technique to enhance the stability of inorganic colloidal
particles is grafting polymers onto their surface, which leads
to steric stabilization.9,10 For spherical micelles formed by
block copolymers, such steric stabilization is inherent.11

Understanding how micelles interact is key to envisage, and
therefore predict, the stability of a micellar suspension.
Previously presented models for micelle−micelle interactions
account for the core as a hard surface onto which the
solvophilic components are tethered.12−14 Micelles are
however dynamic because the assembled molecules are in
equilibrium with free ones, so the core−corona interface is soft
and dynamic.15−18 For micelles with large coronal domains,
the interaction between micelles mediated by overlap of
coronas has been compared with that of star-like polymers.19,20

It is noted, however, that star-like polymers are not self-
assembled structures,21 and such models hence neglect the

presence of free diblock copolymer in solution. In this paper,
the interaction between diblock copolymer spherical micelles is
quantified, while accounting for their soft polymeric and
associative nature. When computing the micelle−micelle
interaction potential, we allow the aggregation number (the
number of polymers composing the micelle) to equilibrate
with free polymer in the bulk at each intermicelle separation
(r) distance. We account for intermicellar distances r ≥ 2Rh

o,
with Rh

o the hydrodynamic radius of an undistorted micelle.
Hence, we focus on dilute micelle suspensions rather than on
high-density solid phases of micelles19 or possible micelle
morphology transformations above their overlap concentra-
tion.22,23

An effective indicator for the thermodynamic stability of a
colloidal suspension is the second osmotic virial coefficient
B2.

24,25 Experimentally measured B2 values for micelle
suspensions are limited.26−30 The value of B2 can be used to
specify the (colloidal) stability of a suspension. For a collection
of hard spheres, B2* = B2/vc = 4,31 where vc is the volume of the
colloidal particle considered. If repulsive forces beyond the
pure hard core excluded volume interaction are present
between the colloidal particles, B2* > 4. For monocomponent
systems of interacting spheres, the Vliegenthart−Lekkerkerker
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criterium32 identifies the onset of colloidal gas−liquid
coexistence at B2* = B2/vc ≲ −6.33,34
Here, we present a bottom-up approach to study the stability

of a (colloidal) suspension of spherical micelles formed by
diblock copolymers. We calculate the pair interaction
potentials via self-consistent field (SCF) calculations for
block copolymers with different block length and solubility.
Results are compared with an alternative analytical expression
for the interaction potential based upon the thermodynamics
of micelle formation.35 Numerical SCF computations and
analytical results are in good agreement. Furthermore, we
calculate the normalized second virial coefficient, B2* = B2/vc,
where vc is the volume of an isolated micelle, and evaluate its
dependency on block copolymer composition and solvency
parameters of the blocks.

■ RESULTS AND DISCUSSION
First, we evaluate the dependence of the equilibrium micelle
properties on the intermicelle distance. This yields pair
potentials obtained via different methods (explained in the
Methods section), for which case-examples are presented.
Subsequently, we use these pair potentials to compute the
second virial coefficients mediated by the solvophilic block
solubility and chain length. Finally, the effect of the diblock
copolymer composition and monomeric interaction parame-
ters on the colloidal stability is summarized into two
comprehensible, simple plots.
Equilibrium Properties of Micelles with Varying

Intermicelle Distance. We focus first on the changes of
the micellar equilibrium properties at different intermicelle
separation distances (x). These micellar properties were
studied using a lattice with concentration gradients in one
(spherical lattice) or two directions (cylindrical lattice). In
Figure 1, we present the grand potential (Ω) obtained via

Scheutjens−Fleer self-consistent, mean-field (SCF) computa-
tions as a function of the aggregation number gp for different
lattice sizes and types for micelles formed by diblock
copolymers B24A45 in a solvent W. The interaction between
blocks and of blocks with the solvent are specified via Flory−
Huggins interaction parameters, namely χBW = 2 and χAW = 0.4.

The interaction parameter χAB = 1 is used in all our
calculations. The grand-potential curves using one or two
directions for concentration gradients practically overlap if the
lattice dimensions are large enough; in such a case, the dilute
solution limit of individual micelles is reached. There are no
appreciable differences in the maximum free energy required to
form a micelle as micelles get closer (decreasing x). However,
the average equilibrium aggregation number of the micelle
(which satisfies Ω = 0 with ∂Ω/∂gp < 0) decreases when
micelles are formed at small enough distances. For all diblock
sequences BmAn studied here, it was verified that the preferred
self-assembled structure is a spherical micelle. An analysis of
the preferred self-assembled morphology of similar block
sequences has been investigated via SCF computations and
compared with experimental results.36

The corresponding equilibrium concentration profiles are
presented Figure 2. If the number of lattice sites is sufficiently
large, the micelle size and aggregation numbers are
independent of the lattice type considered (spherical or
cylindrical lattice). This can be appreciated by the projection
of the equilibrium sizes from the spherical lattice onto the
cylindrical one (left panel of the top row in Figure 2). All sizes
are expressed in terms of lattice units (l.u., see Methods). Note
that the distance between the centers of the micelles x is set by
the number of lattice sites. For one-gradient SCF computa-
tions, x = 2Nlat (with Nlat the number of concentration shells
considered). For two-gradient computations, x = 2Nlat

r (if the
nearest micelles are in the radial direction) or x = Nlat

y (in case
the nearest micelles are in the longitudinal direction). Further
details are deferred to the Methods section. The hydrodynamic
micelle radius (Rh

o) in the dilute limit (x ≫ 2Rh
o) is Rh

o ≈ 20 l.u.
for the B24A45 block copolymer micelle (details on the
calculation of Rh

o deferred to the Supporting Information).
From the concentration profiles, the hydrodynamic size can be
computed. The solvophobic blocks are concentrated in the
core of the spherical micelle, which is compact and nearly
solvent-free.37 The approximated core size (Rc) is indicated via
the orange dashed vertical lines. The solvophilic blocks are
mainly located in the corona, which is well-solvated. For this
case, the hydrodynamic size (vertical purple dashed lines)
matches with the situation at which the total polymer volume
fraction has roughly decayed to 10%. It is noted that
solvophilic polymer segments are also significantly present at
positions beyond Rh

o, see top panels of Figure 2. We denote the
region where solvophilic segments are clearly present (ϕ ≫
ϕbulk, with ϕbulk the polymer bulk concentration) beyond Rh

o as
the solvophilic tails part. When micelles get close, the
overlapping of these outer tail regions leads to a contraction
of the coronas already at intermicelle distances x > 2Rh

o. This
induces a decrease in the micelle size with respect to the dilute
limit even at x > 2Rh

o (see Figure 3). The interpenetration of
these solvophilic tails is clearly visible in the bottom right
panels of Figure 2, where the density profiles from the two
concentration gradients computations in either the radial or
the longitudinal length is of the order of 2Rh

o.
We use the micelle size in the dilute limit as characteristic

length scale for the pair interaction between micelles. The
variation of the aggregation number as a function of the
normalized intermicelle distance x̃ = x/(2Rh

o) is shown in
Figure 3. Because of the lattice-nature of the approach
followed, it is useful to compare the aggregation number
change (Δg) normalized by the number of nearest neighboring
micelles K when bringing the micelles closer to each other

Figure 1. Grand potential Ω as a function of the aggregation number
gp at two different intermicelle distances r obtained using a spherical
lattice (solid and dashed curves). Open circles correspond to the
grand-potential curve considering a single micelle in a cylindrical
lattice, allowing to study spherical micelles with concentration
gradients in two directions. The micelle considered is composed of
B24A45 diblock copolymers with χBW = 2, χAW = 0.4, and χAB = 1.
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Δ = [ ̃ − ̃ ≫ ]g
K

g x g x
1

( ) ( 1)p p p (1)

As micelles get closer (decreasing x), their sizes decrease
because of the overlap of the solvophilic tails, which leads to
contraction of the coronas. From the results in Figure 3, it
follows that both the characteristic size of the micelle core and
corona as well as the aggregation number decrease upon
bringing micelles closer together. The overall size decreases
already for x ≲ 3.2Rh

o: the outer solvophilic tails start to interact
significantly near x̃ ≈ 1.6. The onset of the decrease of the core
size and aggregation number appear simultaneously near x̃ ≈
1.2. This may be explained by the strong dependence of the
aggregation number on the core and corona-forming block
size:35 for x̃ ≲ 1.2, the core is compressed due to the fact that
diblock copolymers start to dissociate from the micelle.

The decrease of the aggregation number of the micelles as
they get closer (see Figure 3) contrasts with regular scaling
models, where the aggregation number is assumed to remain
constant up to the limit where micelles overlap and increases
beyond overlap of the micelles.38 We note that the models
presented here concern dilute suspensions of micelles, as we do
not study the micellar changes for r < 2Rh

o. Upon approaching
overlap of micelles, a small decrease of the aggregation number
(of the order of what we find here) has been found
experimentally.38 The trend shown in Figure 3 holds when
increasing the solvophilic block length (see the Supporting
Information) but the variation in gp is smaller with increasing n
at fixed x̃ (as micelles become more star-like). It has been
suggested that the increase of gp above overlap of the micelles
is associated with a change of the preferred micellar
morphology far beyond micelle overlap concentration.22,23

Figure 2. Concentration profiles computed using SCF theory in a spherical lattice with concentration gradients in one dimension (left panels) or in
a cylindrical lattice with concentration gradients in two dimensions (right panels) at equilibrium conditions (see Figure 1). Nearest-neighbor
micelle distances x are indicated, as well as the number of lattice sites (Nlat). Vertical lines correspond either to the corresponding hydrodynamic
sizes (orange and purple) or to the mirror (blue, only in the bottom leftmost panel). Orange and purple circles (right panels) correspond to the
sizes on the left, while clouds of purple points correspond to polymer concentrations in between 1 and 10%.

Figure 3. Characteristic size and effective change of aggregation number as a function of the normalized intermicelle distance x̃ = x/2Rh
o for the

same system parameters as in Figure 1.
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The 2D-gradient SCF approach followed here might be able of
capturing such effects, which are out of the scope of the
present study.
Model Comparison and Lattice Geometry Effects. In

this section, the pair potentials obtained via the different
theoretical approaches and using different lattice types are
compared. Again, we consider diblock copolymers B24A45 with
parameters χBW = 2, χAW = 0.4, χAB = 1. The dependence of the
micelle equilibrium with intermicelle distance provide all
required components for calculating the pair interactions (see
Methods), which are presented in Figure 4. We consider purely

SCF lattice computations using one or two concentration
gradients, as well as an analytical approach (see Methods) in
which the only input from the SCF computations is the change
in the aggregation number as a function of the intermicelle
distance (denoted as Hybrid). The different methods produce
very similar results: a strong, short-ranged repulsion takes place
at short intermicelle distances (x̃ ≲ 1.4) which originates from
the excluded volume repulsion of the solvophilic tails,
corresponding to the situation where coronas contract (see
left panel of Figure 3). This repulsive interaction is similar to a
brush-like repulsion between polymer-grafted colloids12,13,39

and star-like polymers.40 For spherical micelles, however, we
find that the “surface” at which the “brushes” (solvophilic tails)
are grafted is soft, and the effective grafting density is dynamic:
both gp and Rh depend on the distance between the micelles.
SCF accounts for the soft and dynamic nature of the micelles.
In Figure 4, the calculated interaction potential from SCF

and the hybrid approach are plotted. The interactions between
two micelles using the different approaches are quite close. It
appeared to be convenient to fit the interaction potential via a
HCY interaction. This allows to systematically quantify the
range of repulsion (qY) between micelles and how the
interaction depends on the diblock copolymer properties.
Further, the HCY model has been proposed as a model
potential for the interaction between block copolymer
micelles.41 The fitting results (details can be found in the

Supporting Information) are presented in Table 1. The fitted
HCY curves can describe the SCF data points quite well, see

Figure 4. Variations are expected in the contact potential values
for the different approaches due to the steepness of the
interactions calculated. The qY values obtained do however not
vary significantly. The small differences can be related to
slightly different Δgp(x) values, see Figure 3. Our bottom-up
approach differs from the ones previously reported in
literature, where the mapping of the micelle−micelle repulsion
into a HCY41 or pure hard sphere42 pair potential was
performed using a top-down approach, via fitting experimen-
tally collected structure factors with theoretical ones.
To gain more insights into the colloidal stability of micelle

suspensions, we also compare the obtained normalized second
virial coefficient B2* = B2/vc, where the effective colloidal
particle volume vc is taken as the hydrodynamic volume of a
micelle in the dilute solution limit

π=v R
4
3

( )c h
o 3

(2)

We summarized the results for the potentials and B2* in
Figure 4 in Table 1. Details on the calculation of B2* from the
pair interaction can be found in the Supporting Information.
The slight decrease of B2* with decreasing the number of
nearest-neighbor micelles K points toward a small over-
estimation of the contact potential values when calculations on
the spherical lattice are conducted, most likely because of the
different core compressions induced. Deviations of the results
depending on the number of concentration gradients using
SCF computations are expected.13,43 However, SCF calcu-
lations in the spherical lattice are sufficiently accurate to
resolve the main characteristics of diblock copolymer micelle−
micelle interactions.

Coronal Solvency Effects. Next, we discuss the effects of
the solvophilic block solvency parameter (χAW) on the
intermicellar interactions of the same block copolymer type
as before (B24A45 with χBW = 2 and varying χAW). This solvency
parameter governs the colloidal stability of the micellar
suspension (as shown in the next section). We consider SCF
computations with concentration gradients in one direction. In
Figure 5, results are shown for the pair interaction for several
χAW values. The black curve corresponds to χAW = 0.4, the
reference situation reported already in the previous section.
For χAW < 0.4, the repulsions get more long-ranged which
increases B2* (see also Table 2). By increasing the solvent
quality for the corona-forming blocks, the tails extend further
from Rh

o. This leads to a longer-ranged repulsion. The opposite
trend is observed for χAW > 0.4. Strikingly, a shallow attraction
between the micelles around x = 1.2 appears for χAW = 0.5. At
the Θ-solvent conditions, the excluded volume between

Figure 4. Interaction potential considering different pure SCF
approaches and the hybrid model (eq 8), where the values of gp are
obtained from SCF. Curves correspond to the hard-core-Yukawa
(HCY) potential fit while symbols are calculated points. Solid, black
curve correspond to the HCY fit of the one concentration gradient
calculations. Dashed, orange curve corresponds to the hybrid method.
Dashed curves hold for the two-gradient computations where micelles
are brought closer to each other in the radial or longitudinal direction.

Table 1. Relative Range of the Interaction qY and
Normalized Second Virial Coefficient B2* of the Example
Pair Potentials Presented in Figure 4a

method K qY B2*

1D SCF 12 0.13 9.9
eq 8 + SCF (hybrid) 12 0.13 9.9
2D SCF radial compression 6 0.12 9.2
2D SCF longitudinal compression 2 0.13 8.9

aDiblock copolymer characteristics: B24A45, χBW = 2, χAW = 0.4, and
χAB = 1.
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corona-forming segments is exactly compensated by the
attraction among them. When the corona blocks start to
overlap, these attractions become increasingly important as
there are less corona−solvent contacts. This explains, we think,
the attractive part of the potential for χAW = 0.5. The repulsion
contribution at Θ-solvent conditions arises from compression
of the core. Upon further increase, χAW the attractive part of
the potential would increase.
In Table 2, we present the obtained range of repulsion

(when possible) as well as the normalized second virial
coefficient for the potentials in Figure 5. With increasing χAW,
the qY values get smaller and B2* decreases. Near χAW ≈ 0.5, the
colloidal stability of the micelle suspension drops strongly. The
pair interactions (hence their fitting parameters) do not
significantly vary with the method (hybrid method or pure
SCF) used in their calculation.
Solvophilic Block Length Effects. In this section, we

address the effect of varying the solvophilic block length, which
leads to an increase of the coronal thickness. The effect of
increasing the coronal thickness is twofold. On the one hand,
because of a soft decay of the coronal domain (concentration
profiles in the Supporting Information), the steric repulsion
gets more long-ranged (reflected in a larger qY value, see Table
3). On the other hand, the aggregation number decreases
whilst increasing the hydrodynamic size because of an
increased overall diblock solvency (see the Supporting

Information for details on the dependence of gp with diblock
properties). Thus, the effective grafting density of solvophilic
tails from the core (see next section) decreases with increasing
n. As observed in the previous section, the strongest
contribution to the steric repulsion between micelles arises,
within our model, from compression of the core. Thus, there is
a balance between the range and the strength of the steric
repulsion because of the coronal decays with increasing the
solvophilic block length, which leads to an overall high B2*
value, which weakly depends on the particular n-value. When
increasing n, the decrease of gp weakens (see the Supporting
Information): the core compression gets more screened upon
increasing the corona thickness.
In Figure 6, examples of pair potentials for various n-values

(B24An with χBW = 2, χAW = 0.4, and χAB = 1; black curve
corresponds to the chosen reference diblock) are plotted. The
shape of the interaction potentials resemble those presented in
Figure 4. As can be appreciated, the HCY potential fits even
better for larger n-values: the interaction between diblock
copolymeric micelles (particularly, with long hydrophilic tails)

Figure 5. Interaction potential between micelles for various solvent
quality parameters of the corona-forming block. Diblock copoylmer
considered is B24A45, χBW = 2, χAB = 1, and varying χAW as indicated.
Curves correspond to the HCY potential fit while symbols are
extracted from SCF data. For χAW = 0.5, the calculated points are
simply joined as a HCY fit is not applicable in this case.

Table 2. Range of Repulsion and Normalized Second Virial
Coefficient for a Collection of Pair Potentials Using the
Spherical Lattice via the SCF Approach and the Hybrid
Approach

χAW qY
SCF‑1D B2*,SCF‑1D qY

HYB B2*,HYB

0.5 n/a 1.0 n/a 1.6
0.475 0.08 7.1 0.08 7.1
0.45 0.11 8.6 0.11 8.6
0.4 0.13 9.9 0.13 9.9
0.3 0.14 11.0 0.14 11.0
0.2 0.16 11.8 0.16 11.9
0.1 0.17 12.3 0.17 12.4

Table 3. HYC-Fitted Range of Interaction, Extrapolated
Contact Potential (from the Data-Points), and Normalized
Second Virial Coefficient for a Collection of Pair Potentials
Obtained from the SCF Approach and Using Eq 8, Where
the Values of gp are Calculated with the SCF Theory for
Micelle Formed of Block B24An

a

n qY
SCF‑1D ϵSCF‑1D B2*,SCF‑1D qY

HYB ϵHYB‑1D B2*,HYB

45 0.128 91.6 9.8 0.128 87.5 9.8
90 0.148 48.5 9.8 0.148 48.6 9.8
135 0.161 33.0 9.8 0.161 34.2 9.9
180 0.165 25.1 9.4 0.164 26.7 9.5
225 0.167 21.8 9.2 0.166 23.8 9.4
270 0.173 18.3 9.2 0.172 20.4 9.4
315 0.177 15.3 9.0 0.176 17.3 9.2
360 0.179 13.2 8.8 0.178 15.2 9.0
405 0.179 12.0 8.6 0.178 13.9 8.8
450 0.180 11.1 8.4 0.178 13.1 8.7

aThe FH interaction parameters are χBW = 2, χAW = 0.4 and χAB = 1.

Figure 6. Interaction potential between micelles for various
solvophilic block lengths n as indicated. The diblock copolymer
considered is B24An, χBW = 2, χAB = 1, and χAW = 0.4. Solid curves
correspond to the HCY potential fit of the SCF data, whilst dashed
curves correspond to fittings of the hybrid approach presented.
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is similar to the outer-soft-core contribution of the interaction
between star-like polymers.19,21 In Table 3, the resulting HCY-
fitted interaction range, contact potential, and normalized
second virial coefficient are listed for various hydrophilic block
lengths n. For the conditions investigated, B2* still remains
approximately constant (though a slight decrease is appre-
ciated when considering very large coronal domains).
On the Colloidal Stability of Spherical Micelles. In this

section, a colloidal stability overview of diblock copolymer
micelle suspensions is presented in terms of the calculated
second virial coefficient. This quantity can be related to the
colloidal stability and can be experimentally measured using
light-scattering techniques. The interaction between polymer
brushes anchored to solid surfaces (steric stabilization)
sensitively depends on the grafting density of polymers.12,44,45

To compare the interactions between colloidal spheres with
anchored polymeric brushes and those between spherical
copolymer micelles, we considered an effective grafting density
of solvophilic blocks at the core−corona interface

π
Γ =

g

R4c
p

c
2

(3)

where Rc is the core size, estimated from the SCF
concentration profiles. The absolute value of Γc for diblock
copolymer micelles depends on the considered system

parameters: the number of lyophobic block segments (m),
the number of lyophilic block segments (n), and their solvency
parameters (χBW and χAW). However, in terms of the colloidal
stability, the solvency and length of the core-forming blocks (m
and χBW) does hardly affect B2* (as shown in the left panel of
Figure 7) for the spherical micelles studied. This is due to a
balance between the range (increasing with n) and the strength
(decreasing with n) of the steric repulsion (details in the
Supporting Information). In fact, a value of B2* ≈ 9 ± 1 is
found independent of {m, n, χBW} for a fixed coronal block
solvency of χAW = 0.4 (see Figure 7). Hence, the grafting
density at the core−corona interface hardly mediates repulsive
micelle−micelle interactions. This is in contrast with the
expectations for the interaction between hard spheres with
anchored brushes. Next, we focus again on the influence of the
interaction between the solvophilic tails as mediated by χAW.
The influence of the corona block solvency (χAW) on B2* is

plotted in Figure 8. For χAW ≤ 0.45, we find B2* > 4 for all
values of n, indicating that micelles with these characteristics
always interact in an overall (highly) repulsive fashion. The
value of χAW does not only affect the grafting density but also
the interaction between the coronal tails. Upon approaching
Θ-solvent conditions (χAW → 0.5), the mutual excluded
volume repulsion decreases. Thus, and contrary to what is
expected from sterically stabilized inorganic colloids,12,44 B2*

Figure 7. Left panel: Normalized second virial coefficient B2* of spherical micelles composed of diblock copolymers B24An with increasing
solvophilic block length n. Right panel: B2* for the same data sets as on the left panel but in terms of the grafting density of solvophilic segments
from the core Γc.

Figure 8. Left panel: Influence of the coronal block solvency (via χAW) on the normalized second virial coefficient B2* of spherical micelles
composed of diblock copolymers B24An for a collection of different solvophilic block lengths n. Right panel: B2* for the same data sets as on the left
but in terms of the grafting density of solvophilic segments at the core−corona interface.
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decreases because of solvophobic effects with increasing the
(diblock properties dependent) grafting density.
The attractive part of the pair interaction may be deep

enough to destabilize the micelle suspension (Figure 5), as
seen in Figure 8 (left panel) for χAW ≳ 0.5. In contrast with
theoretical predictions for polymer-grafted colloids,12,44 this
colloidal destabilization arises (within our model) without
considered direct attractions between micelles. Colloidal
destabilization around Θ-solvent conditions for the corona
arises because of solvophobic effects: the enthalpic gain due to
the solvent expel as micelles get closer is sufficient to
compensate the entropic penalty of compressing the
solvophilic tails.

■ CONCLUSIONS

In this paper, the interaction between dilute (diblock)
copolymer micelles is quantified using numerical SCF
computations and analytical theory. We use the aggregation
number obtained from the SCF computations as an input for
the analytical theory. The intermicelle pair-potentials obtained
via the two methods are in good agreement, also when
considering different lattice topologies. Particularly, the range
of the interaction and the normalized second virial coefficient
are all rather similar: they are not sensitive to the method used
and to how many concentration gradients are considered. In
our approach, we account for the soft and dynamic nature of
these association colloids as the micelles get closer. At each
condition, the equilibrium micellization is re-evaluated: all
polymer blocks in the micelles remain associative and fully
responsive and can conformationally rearrange and equilibrate
at each condition. For coronal domains whose solvency is
better than Θ-solvent conditions, this results in a HCY-like
repulsion for all cases studied. The range of this repulsion
depends on the solvophilic block length, whereas its strength
decreases with increasing solvophilic block chain because of a
decrease of their effective grafting density, which leads to a
weak dependence of the second virial coefficient on solvophilic
block length.
We find that the colloidal stability of a dilute diblock

copolymer micelle suspension is only weakly affected by the
nature of the core (solvophobicity and chain length of the core
blocks). Not surprisingly, colloidal suspensions of diblock
copolymer micelles are always stable (normalized second virial
coefficient B2* > −6) unless the solvophilic blocks are near Θ-
solvent or in poor solvent conditions. For fixed core-forming
block properties but different solvophilic block length, the
normalized second virial coefficients with varying coronal block
solvency follow a similar curve. Furthermore, and contrary to
what is expected from polymer-grafted colloidal particles,
increasing the effective grafting density of solvophilic blocks
from the micelle core decreases the colloidal stability of the
micellar suspension. This is explained because of the interplay
between Γc and the properties of the solvophilic and
solvophobic blocks. The SCF method presented here for
intermicelle interactions can be extended to account for more
components in solution and other block sequences.

■ METHODS

In this section, we summarize the theoretical and numerical
methods used to study the diblock copolymer micelles.
SCF for Micelle−Micelle Interactions. We used the

Scheutjens−Fleer self-consistent lattice theory (SCF)46,47 to

perform numerical calculations. It is based upon Flory−
Huggins mean-field theory,48 but with concentration gradients
following discrete versions of the Edwards equation accounting
for the mean-field polymer propagation.49 The interdepend-
ence of the segment potentials (uk) and the volume fractions
(ϕk) for each component in the system

ϕ ϕ↔u u( ) ( )k k k k

is the core idea of the self-consistent method.50 Provided a
user-defined starting configuration for the components in the
lattice, the free energy of the lattice is minimized in a self-
consistent fashion. The boundary conditions and the lattice
geometry need to be specified. We consider here two different
lattice types, namely, a spherical lattice with concentration
gradients in one direction and a cylindrical lattice with
concentration gradients in two directions. Mirror boundary
conditions are set for all boundaries.51 A spherical lattice is
defined as shells from the center (r = 0) of the lattice up to r =
Nlat. The first lattice layer corresponds to the center of the
spherical micelle. As we focus on conditions where a spherical
micelle is preferred over other self-assembled structures, a
spherical lattice is used in most of our calculations. A
cylindrical lattice is defined by a grid of Nlat

r sites in the radial
coordinate and Nlat

y sites in the longitudinal coordinate, and we
use it here simply to asses the validity of the calculation of the
pair potential using the spherical lattice.
Because of the mirror conditions imposed, a micelle is

formed in the presence of K surrounding ones. The distance
between the centers of two nearest-neighbor micelles x defines
the characteristic length scale involved in the pair potential
calculation. For the spherical lattice, K = 12 and x = 2Nlat. For
the cylindrical one, six cylindrical lattices are present around
the simulated one in the radial direction (Kr = 6) while two
span from the top and bottom of the radial mirror conditions
[one from the upper and one from the lower boundaries of the
lattice, (Ky = 2)]. In this case, the pair-potential calculation
depends on how Nlat

(k) is varied (k = {r, y}). In the cylindrical
lattice, micelles are formed in the center of the radial axis of
symmetry (see Figure 2). This implies that the nearest
neighbors are at distances xr = 2Nlat

r (radial direction) and xy =
Nlat

y (longitudinal direction).
The SCF approach is combined with small system

thermodynamics52 to study the conditions under which the
diblock copolymers form self-assembled morphologies.53 To
find the equilibrium configuration, we compute the grand
potential Ω of the system for a specific diblock copolymer as a
function of the aggregation number gp. This grand potential
relates to the inhomogeneities in the system: in a pure solvent
Ω = 0. As diblock copolymers are added to the solution, Ω
increases because of the contacts present between solution and
solvophobic blocks. The appearance of the first thermodynami-
cally stable micelle is marked by a maximum in Ω. If a micelle
can form Ω decreases with gp, and at a given diblock
concentration the condition Ωg≠0 = 0 is met (with ∂Ω/∂gp <
0). At this condition, the block copolymers in the micelle are in
equilibrium with free block copolymers in the bulk: the
chemical potential of one copolymer in the micelle is equal to
that in the bulk

μ μ μ ϕ= ≡ ≈ k T lnp
bulk

p
micelle

p B p
bulk

(4)

with ϕp
bulk being the bulk polymer segment volume fraction.

Once an equilibrium micelle is found, we characterize its size
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by calculating the hydrodynamic radius54 (see the Supporting
Information). The work required to dissociate all polymers
from the fully grown self-assembled structure (equivalently, the
energy gain of the diblocks upon micellization) at a certain
intermicelle distance x follows as55

ω μ μ= +x g x x g x x( ) ( ) ( ) ( ) ( )p p s s (5)

where gs is the excess number of solvent monomers (provided
by SCF). The chemical potential for the solvent is evaluated at
the micelle equilibrium condition via

μ ϕ≈ k T lns B s
bulk

(6)

with ϕs
bulk the bulk concentration of solvent. Even at small

intermicelle distances x, there is always a high volume fraction
of solvent in the bulk as considered in SCF. Hence, ln ϕs

bulk ≈
0, and w(x) is dominated by the changes in the diblock
copolymer as expected (see the Supporting Information).
These SCF-provided equilibrium quantities enable us to
estimate the pair interaction potential between micelles as

ω ω= [ − = ∞ ]W x
K

x x( )
2

( ) ( )
(7)

Thus, the equilibrium properties computed from SCF
provide a route for calculating the pair potentials considering
a micelle composed of gp polymers surrounded by K other
micelles at a distance x. Our approach does not imply any ad
hoc interaction between the coronas. We extract pair
interactions between the micelles, which originate naturally
from the equilibrium properties of micelles formed at a given x.
For small enough x, the coronas start to overlap (see Figure 2),
affecting the equilibrium micelle formation conditions and
hence the free energy of micelle formation.
Analytical Expression for the Interaction Potential.

An analytical expression for the interaction potential can be
obtained from previously developed theories for block
copolymer micelles. The presence of the K surrounding
micelles exerts an isotropic compression on the central micelle
for values of r smaller than, say, the micelle’s undistorted
(dilute limit) diameter 2Rh

o. The confined micelle is assumed to
be in equilibrium with free copolymer molecules, which
enables to minimize the unfavorable increase of the free energy
upon compression; the aggregation number gp is allowed to
vary with x. The pair interaction potential W(x) can be
expressed as

= [ − = ∞ ]W x
K

f x f x( )
2

( ) ( )mic mic (8)

where fmic(x) is the free energy of a micelle whose center is
separated by a distance x from a neighboring one. Hence,
fmic(x = ∞) is the free energy of an isolated micelle. The free
energy of a micelle can be approximated as the sum of three
contributions: the elastic free energy of the core-forming
blocks, the elastic free energy of the corona-forming blocks,
and the interfacial energy between the core and the solvent at
the core−corona interface. We use an approximate expression

for =f x( ) F x
k Tmic

( )mic

B
by modifying a result from Zhulina and

Borisov35
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Here, l is the size of a monomer, Rc(x) and T(x) represent the
core radius and the corona thickness, respectively, RB is the
radius of the collapsed B block in an unassembled block
copolymer molecule, and γ is the interfacial tension between
the core and the solvent. The value of γ is calculated
approximately from the Helfand−Tagami equation56

γ χ= /6BW (10)

Both Rc(x) and T(x) can be expressed as a function of gp(x)
(see the Supporting Information). Hence, given the χ-
parameters and the block copolymer composition, we only
need gp(x) to calculate W(x). Hence, the results of this
analytical theory are denoted as hybrid because SCF input is
needed (only through gp(x)).

System Parameters. Below, the set of system parameters
are specified. In general, we use the notation BmAn to denote
the diblock whose solvophobic block (B) is composed of m
segments and whose solvophilic block (A) is composed of n
segments. Next, we specify the interaction of the solvophobic
segments χBW, the solvophilic segments χAW, and the
interaction between segments of different nature χAB. The set
of Flory−Huggins interaction parameters is based upon
previous investigations on diblock copolymer systems in
water (Table 4).36

We note that even though multiple systematic variations
have been conducted, we report only the main results that
allowed us to determine how the stability of micelles decreases
with effective grafting density of solvophilic chains from the
core. Further results of the systematic parameter scan
conducted are deferred to the Supporting Information.
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