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Abstract We present a 2-D numerical modeling approach for simulating a wide slip spectrum in
a viscoelastoplastic continuum. The key new model component is an invariant reformulation of the classical
rate- and state-dependent friction equations, which is designed for earthquake simulations along
spontaneously evolving faults. Here we describe the methodology and demonstrate that it is accurate
and stable in a setup consisting of a mature strike-slip fault zone. We show that the nucleation and
propagation of an earthquake are well resolved, as supported by a good agreement with various analytical
approximations, including those of the nucleation and cohesive zone lengths. Results generally converge
with respect to grid size, time step, and other numerical parameters. The convergence rate with respect
to grid size depends on the internodal averaging scheme, is influenced by wave reflections, and
deteriorates for inclined faults. The simulated slip spectrum, ranging from stable sliding at the loading rate
to periodic aseismic slip to periodic seismic slip as a function of nucleation size, is in general agreement
with the literature. In this simple setup, dynamic pressure does not play a significant role. By analyzing the
role of viscous deformation, we identify and confirm by our simulations a theoretical viscosity threshold
below which earthquakes cannot nucleate. This threshold is shown to depend on the reference strength of
rate- and state-dependent friction and the loading strain rate, which is in agreement with previous work
on the brittle-ductile transition.

1. Introduction

Earthquakes pose a great societal and economic hazard as they cause severe damage in increasingly popu-
lated areas. This has been demonstrated by recent large earthquakes in different tectonic settings, such as
the 2011 Tohoku earthquake (subduction zone), the 2016 Nepal earthquake (collision zone), the 1999 Izmit
earthquake (strike-slip fault), and the 2016–2017 Central Italian earthquakes (normal fault). A crucial part of
the seismic hazard assessment is to identify the conditions under which such destructive earthquakes occur.
Shortly after the acceptance of plate tectonics, it has been proposed that these earthquake prone conditions
are related to a region’s tectonic characteristics. However, the popular hypotheses relating slab age and sub-
duction velocity to maximum magnitude were proven to be flawed when the 2004 M9.2 Sumatra (Stein &
Okal, 2007) and 2011 M9.0 Tohoku (Kagan & Jackson, 2013) earthquakes occurred in areas forecasted to be
very unlikely to host those. Reanalysis of these parameters in global databases have revealed generally weak
correlations with seismic observations (i.e., R∼0–0.5, Heuret et al., 2011). These correlations are clouded due
to at least two main limitations of the available record of observations. First each fault setting is unique in its
set of tectonic characteristics. Hence, the observed seismicity is the result of the combined effect of various
parameters, whose isolated role remains hidden. Second, we only have decent observational records, while
each fault zone is currently at a different stage within its earthquake cycle. Consequently, we need to merge
the inherently different snapshots from different fault zones together.

To overcome these two limitations, modeling is a key additional tool, since it can cover a long enough time
period with many earthquake cycles and it can investigate the role of a single parameter at a time (e.g., Lapusta
et al., 2000; Wang, 2007; van Dinther, Gerya, Dalguer, Mai, et al., 2013). Furthermore, models can provide
quantitative insights into the physical processes that are active along the unreachable, deeply buried parts
of a fault. It can test a hypothesis based on observations or theoretical considerations and provide testable
predictions for future research. To better understand the relationship between tectonic characteristics and
the seismogenic potential in realistic settings, an earthquake cycle model should account for a sufficiently
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complex fault system embedded in a three-dimensional, viscoelastoplastic medium, which is able to represent
the heterogeneity of a strike-slip fault or subduction zone. To obtain insights into the feedback between load-
ing conditions, fault zone characteristics and earthquake activity, it is essential to produce a self-consistent
model. In such a model, a fault system and local conditions evolve as a response to tectonic loading and
characteristics. In turn, the dynamically evolving fault system and local conditions influence the earthquake
potential and slip mode. For this purpose, the model should resolve all relevant physical processes, whose
time scales range from million years (geodynamic time scale) to milliseconds (coseismic time scale; e.g., Wang,
2007; van Dinther, Gerya, Dalguer, Mai, et al., 2013). Furthermore, it should incorporate a fault constitutive
model that is in agreement with laboratory experiments and that allows for different slip modes. With such
an ideal model one could address some fundamental questions. What is the role of earthquakes and their
properties for the long-term evolution of a tectonic setting? How important are large-scale tectonic charac-
teristics, which evolve over million years, for earthquakes and their properties. However, a modeling approach
that incorporates all these challenging ingredients does not exist yet, despite solid attempts (Lapusta et al.,
2000; Sobolev & Muldashev, 2017; van Dinther, Gerya, Dalguer, Corbi, et al., 2013; van Dinther, Gerya, Dalguer,
Mai, et al., 2013).

The overall goal of this paper is to bring two modeling approaches closer to profit from their strengths and to
overcome their limitations in the process toward developing such a cross-scale, multiphysical model. These
two approaches are (i) classical earthquake cycle simulations using rate- and state-dependent friction (RSF)
along prescribed fault(s) (e.g., Lapusta et al., 2000) and (ii) the recently developed seismo-thermo-mechanical
(STM) approach (van Dinther, Gerya, Dalguer, Corbi, et al., 2013; van Dinther, Gerya, Dalguer, Mai, et al., 2013)
based on geodynamic modeling in tectonically realistic settings (Gerya & Yuen, 2007). In the following, we
review both approaches, formulate the main objectives, and provide the outline of this study.

1.1. Earthquake Cycle Simulations With RSF
Numerical modeling of earthquakes has contributed in the last decades to our understanding about impor-
tant processes leading to and resulting from an earthquake (Lapusta & Barbot, 2012). These processes, which
are often summarized to the term earthquake cycle, include the following: interseismic loading, the nucle-
ation of an earthquake, dynamic rupture propagation, and postseismic deformation. In classical simulations
of earthquake cycles (e.g., Ben-Zion & Rice, 1997; Lapusta & Liu, 2009; Lapusta et al., 2000; Liu & Rice, 2007;
Rice, 1993), a fault is treated as a predefined, discrete (i.e., infinitely thin) plane embedded in a homogeneous
elastic medium. Slip along that fault is typically assumed to be governed by the RSF formulation (Dieterich,
1978, 1979; Ruina, 1983). This friction formulation is based on “slide-hold slide” and “velocity stepping” rock
experiments, initially conducted by Dieterich (1972, 1978) and confirmed in subsequent studies (see review by
1998). In this formulation, friction 𝜇 relates shear stress 𝜏s to normal stress 𝜎n and depends on the magnitude
of slip rate V and the state 𝜃 as

𝜏s = 𝜇 𝜎n =
[
𝜇0 + a ln

(
V
V0

)
+ b ln

(
𝜃V0

L

)]
𝜎n, (1)

where L is the characteristic slip distance and 𝜇0 is the reference friction coefficient defined at an arbitrary

steady state slip rate V0. The term a ln
(

V
V0

)
is called the instantaneous “viscosity-like” direct effect (Rice &

Ruina, 1983), because it represents the immediate response of 𝜇, and hence 𝜏s, to a change in V , which is pro-

portional to a. The term b ln
(
𝜃V0

L

)
is referred to as the evolution effect as it is described by the evolving state

variable 𝜃. Different evolution laws have been proposed to parameterize the change of 𝜃 as a function of time
(Bhattacharya et al., 2015): the aging law (Ruina, 1983), which is based on the observation of time-dependent
healing at stationary contact (Dieterich, 1972), the slip law and the Nagata law (Nagata et al., 2012). Earth-
quake cycle simulations commonly apply the aging (or slowness) law (e.g., Lapusta et al., 2000; Liu & Rice,
2007) defined as

d𝜃
dt

= 1 − V 𝜃
L
. (2)

At constant slip velocity, state evolves toward a steady state 𝜃ss =
L
V

(e.g., Rice & Ruina, 1983). The correspond-
ing steady state friction coefficient is defined as

𝜇ss = 𝜇0 + (a − b) ln

(
V
V0

)
. (3)

Friction is rate-weakening if a − b < 0, and rate-strengthening if a − b> 0.

HERRENDÖRFER ET AL. 5019



Journal of Geophysical Research: Solid Earth 10.1029/2017JB015225

Despite its long history, RSF is still empirical and lacks a general physical explanation. Nevertheless, some
physical interpretations of the terms in equation (1) have been made in the past. The state variable has been
related to the age of the asperities along a sliding surface (Dieterich, 1981; Dieterich & Kilgore, 1994) and to
porosity (Sleep, 1995). L was shown to correlate with the roughness of the frictional surface and the parti-
cle size of the gouge along that surface (Dieterich, 1979, 1981). The direct effect has been interpreted as an
Arrhenius type thermally activated rate process of forward and backward disclocation jumps at asperity con-
tacts (e.g., Chester, 1994). This interpretation has led to the regularized version of RSF (Lapusta et al., 2000;
Rice et al., 2001):

𝜏s = a 𝜎n arcsinh

⎡⎢⎢⎢⎣
V

2V0
exp

⎛⎜⎜⎜⎝
𝜇0 + b ln

(
𝜃V0

L

)
a

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (4)

The regularized version overcomes the deficiency that the original version is ill-posed at V = 0 and can lead to
negative friction for V ≪ V0. The difference between the standard and regularized versions becomes negligi-
ble for V approaching V0. Furthermore, recent studies have made progress in deriving a microphysical model
that would ultimately allow to scale laboratory results to nature (e.g., Chen & Spiers, 2016).

One limitation of RSF is that it is based on experiments conducted at slip rates much lower than seismic
rates. The logarithmic weakening of RSF with slip velocity is weaker than the weakening observed in high
slip rate experiments, such additional weakening mechanism have been explored in earthquake cycle simu-
lations (see review by Lapusta & Barbot, 2012). Nevertheless, results from earthquake cycle simulations with
RSF equation (4) agree with observations in terms of slip rate, stress drop, amount of slip, rupture speed,
and accelerating postseismic slip after an earthquake (see review by Lapusta & Barbot, 2012). Not only earth-
quake slip but also different parts of the slip spectrum including slow slip transients observed in nature
(Peng & Gomberg, 2010) may be explained using the rate-and-state fault model, as confirmed by laboratory
experiments (Leeman et al., 2016) and numerical simulations (Liu & Rice, 2007).

Past studies have identified length and time scales, which are crucial to numerically resolve the earthquake
cycle in space and time. The first length scale is the minimum size of a slipping patch required for the tran-
sition from stable sliding to instable slip along a rate-weakening fault, which is called the nucleation length
(Ampuero & Rubin, 2008; Dieterich, 1992; Kaneko et al., 2008; Lapusta, 2003; Rice, 1993; Rice & Ruina, 1983;
Rice et al., 2001; Rubin & Ampuero, 2005; Ruina, 1983). The second length scale, which is smaller than the first
one, is the cohesive zone size at the dynamically propagating rupture front, along which the stress linearly
drops with slip from its maximum to dynamic value (Cocco & Bizzarri, 2002; Cocco et al., 2004; Day et al., 2005;
Lapusta & Liu, 2009). Resolving these length scales with a fine enough spatial resolution allows to reach a
continuum limit as opposed to inherently discrete systems (e.g., Ben-Zion & Rice, 1993, 1997; Lapusta & Liu,
2009; Lapusta et al., 2000; Rice, 1993). In a typical earthquake cycle, the slip velocities change from less than
10−9 m/s in the interseismic period, and 10−8 –10−3 m/s during the accelerating nucleation and decelerating
postseismic phases, to 10−2 –100 m/s during the dynamic rupture propagation. Lapusta et al. (2000) showed
that this range of slip rate is resolvable in time due to the existence of the direct effect of RSF. To capture and
resolve this more than 9 orders of magnitude range in slip velocities in time, they derived an adaptive time
step, which is inversely proportional to the slip rate and is a function constitutive parameters.

1.2. Seismo-Thermo-Mechanical Modeling Approach
The benefits of the classical earthquake cycle modeling approach lie in its simplicity, accuracy, and compu-
tational speed. However, the assumption of a predefined fault plane embedded in an elastic homogeneous
medium makes it impossible to investigate the interaction between earthquakes with tectonic loading and
the long-term evolution of fault networks in a rheologically complex plate boundary environment. Several key
aspects with respect to faults and their surrounding medium are not taken into account, including, amongst
others, the structure of wide fault zones with a damage zone, evolving fault properties and geometry, and a
heterogeneous off-fault viscoelastoplastic medium. Recent studies have tackled some of these limitations by
including material heterogeneities in the off-fault medium (Erickson & Dunham, 2014; Kaneko et al., 2011), vis-
cous deformation (Lambert & Barbot, 2016), off-fault plasticity (Erickson et al., 2017), and evolving fault zone
structures using a damage rheology model (Lyakhovsky & Ben-Zion, 2009; Lyakhovsky et al., 2016). However,
none of these studies include loading of a fault system (e.g., slab pull forces in subduction zones) in a realistic
tectonic environment, which has evolved over million years.
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To address some of these key aspects, the “seismo-thermo-mechanical” (STM) modeling approach has been
recently developed to combine the advantages of long-term geodynamic modeling and short-term earth-
quake cycle simulations (van Dinther, Gerya, Dalguer, Mai, et al., 2013). This approach is based on continuum
mechanics (Gerya, 2010; Gerya & Yuen, 2003, 2007) and allows for the simulation of viscoelastoplastic defor-
mation in response to and interaction with evolving tectonic forces, temperatures, and (pore fluid) pressures.
The deformation spectrum includes, amongst others, elastic bending of the lithosphere, the spontaneous
generation and evolution of fault systems, and linear and nonlinear viscous deformation of the mantle and
lower crust. Furthermore, other long-term processes can be accounted for such as erosion, sedimentation,
melting, and phase transitions (e.g., serpentinization and eclogitization). van Dinther, Gerya, Dalguer, Corbi,
et al. (2013) extended this geodynamic approach by implementing inertia and a strongly rate-dependent fric-
tion formulation to simulate slip transients along spontaneous rupture paths. This STM approach has first been
applied to reproduce earthquake cycles in an analogue experiment (Corbi et al., 2013; van Dinther, Gerya,
Dalguer, Corbi, et al., 2013). The same setup was used to investigate the role of the seismogenic zone width
and loading velocity in subduction zones (Corbi et al., 2017; Herrendörfer et al., 2015). van Dinther, Gerya,
Dalguer, Corbi, et al. (2013) demonstrated in a realistic subduction zone setting that the STM approach can
simulate a spontaneous brittle-ductile transition along the megathrust and discussed the weakness of faults
due to pore fluids with respect to the long-term subduction process and the short-term seismicity. In addi-
tion, van Dinther et al. (2014) simulated seismicity on splay and outer-rise normal faults and its interaction
with megathrust seismicity. More recently, both Gutenberg-Richter and characteristic earthquake statistics
have been simulated in a continental-collision setting (Dal Zilio et al., 2018).

A distinct limitation of the STM modeling approach so far is that the coseismic duration (years), slip velocity
(10−8 m/s), and rupture velocity (10−5 m/s) of these slip transients are many orders of magnitude too slow in
comparison to earthquakes in nature. This resulted mainly from the absence of an adaptive time stepping and
the lack of appropriate time and length scales within the rate-dependent friction formulation.

1.3. Objectives and Outline
The core of the paper is the presentation of new implementations in the STM approach, which allows us to
overcome this limitation and to simulate realistic earthquake cycles in a continuum. The goal of this paper
is to explore the merits and limitations of our new approach by testing its numerical accuracy and stabil-
ity. To facilitate rigorous testing, we choose an idealized model setup of mature strike-slip fault zone, for
which we reduced the model complexity with respect to van Dinther, Gerya, Dalguer, Corbi, et al. (2013) by
excluding the evolution of temperature and other features of STM. In section 2, we begin with describing the
physical model of our continuum mechanics framework, including the newly implemented compressibility
for simulating pressure waves. This is followed by the presentation of the key improvement in our STM-RSF
approach—that is the development and implementation of an invariant reformulation of the classical RSF
equations. We discuss the key strength of this invariant formulation to simulate spontaneously evolving faults
and rupture paths in a continuum, while keeping the ability to resolve earthquakes under consideration of
the length and time scales inherent to RSF. Then, after providing an overview of the numerical implementa-
tion, we focus our discussion on (i) the numerical representation of a fault zone in our continuum approach,
(ii) the internodal interpolation of stress and viscosity, (iii) the adaptive time step, and (iv) and the improved
treatment of plasticity using grid-based iterations. Section 3 describes the reference model setup and con-
tains a thorough analysis of all stages of a simulated earthquake cycle, including the initial loading phase,
nucleation process, dynamic rupture propagation, seismic wave propagation, postseismic relaxation, and
interseismic healing. Section 3 is concluded with a description of the evolution of the adaptive time step and
other numerical parameters. Section 4 investigates the numerical stability of our calculations by conducting
a convergence study with respect to several numerical parameters (e.g., grid size and time step) and proce-
dures (e.g., internodal interpolation). In section 5, we demonstrate the capability of our approach to simulate
a wide slip spectrum by analyzing the role of the nucleation size similar to Liu and Rice (2007). Furthermore,
we analyze the role of dynamic pressure and compressibility. In section 6, we demonstrate the applicability of
the STM-RSF approach to study the impact of viscous deformation on the earthquake cycle. The main results
are discussed and summarized in sections 7 and 8, respectively.

2. Methodology

This section presents our STM-RSF modeling approach. It starts with the description of the governing
equations in continuum mechanics including the conservation equations for mass and momentum and the
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viscoelastoplastic constitutive relationship. Then we discuss the necessity for and the ingredients of an invari-
ant reformulation of RSF. This is followed by an overview of the numerical implementation of the physical
model with reference to details given in the supporting information. Particularly, we describe the numerical
representation of the fault zone, the adaptive computational time step, and the flow of calculations.

2.1. Physical and Mathematical Model
2.1.1. Continuum Mechanics Approach
For the simulation of geodynamic processes, we consider the geological medium as continuous, which means
that any variations of a property on the microscopical scale can be effectively represented by one value on
the macroscopical scale. The continuity equation (5) requires that mass is conserved in all points as

𝜌
𝜕vi

𝜕xi
= −D𝜌

Dt
, (5)

where 𝜌 is density, D
Dt

denotes the material time derivative, i and j are coordinate indices, xi and xj are spa-
tial coordinates, and vi is velocity. For the conservation of momentum in the gravity field and under the
plain-strain assumption, we solve the momentum equation (6), which is given as

𝜕𝜏ij

𝜕xj
− 𝜕P
𝜕xi

= 𝜌
Dvi

Dt
− 𝜌gi, (6)

where gi is gravity. 𝜏ij is the deviatoric stress tensor defined as

𝜏ij = 𝜎ij + 𝛿ijP, (7)

where 𝜎ij is the Cauchy stress tensor and 𝛿ij is the Kronecker delta. Pressure P is defined as the mean stress

P = −
𝜎kk

3
, (8)

where k is a coordinate index including x, y, and z. The negative sign indicates that pressure is positive under
compression whereas normal stress is positive under extension. We assume a compressible material with the
bulk modulus K defined as 1

K
= 1

𝜌

D𝜌
DP

, such that

D𝜌
Dt

= 𝜌

K
DP
Dt

(9)

To solve equations (5)–(6), we define a constitutive relationship, which relates stresses to velocities via strain
rates. Strain rates 𝜀̇ = d𝜀

dt
are defined under the assumption of infinitesimal strain 𝜀 during a time step

as follows:

𝜀̇ij =
1
2

(
𝜕vi

𝜕xj
+
𝜕vj

𝜕xi

)
(10)

A Maxwell viscoelastic body is set in series with a plastic-frictional slider. Hence, strain rate is decomposed in
its elastic, viscous, and plastic components as

𝜀̇′ij = 𝜀̇′ij(elastic) + 𝜀̇
′
ij(viscous) + 𝜀̇

′
ij(plastic) (11)

where 𝜀̇′ij = 𝜀̇ij − 𝛿ij
𝜀̇kk

3
is the deviatoric strain rate tensor. The relationship between total stresses and elastic

strains follows Hooke’s law under the assumption of an isotropic material and symmetry of the Cauchy stress
and infinitesimal strain tensors:

𝜎ij =
(

K − 2G
3

)
𝛿ij𝜀kk(elastic) + 2G𝜀ij(elastic) (12)

where G is the shear modulus. The relationship between deviatoric stresses and elastic strain rates is obtained
by inserting (12) into (7) (and using the definition of P in (8)), using 𝜀′ij(elastic) = 𝜀ij(elastic) − 𝛿ij

𝜀kk(elastic)
3

and taking
the time derivative:

𝜀̇′ij(elastic) =
1

2G

∇
D𝜏ij

Dt
(13)

where
∇
D
Dt

denotes the corotational time derivative.
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The viscous component of the strain rate is represented by

𝜀̇′ij(viscous) =
1

2𝜂
𝜏ij (14)

where 𝜂 is the effective ductile viscosity. For plastic deformation, we define the yield function F:

F = 𝜏II − 𝜎yield, 𝜎yield = 𝜇 P + C (15)

where 𝜏II =
√
𝜏xx

2 + 𝜏xy
2 is the square root of the second invariant of the deviatoric stress tensor. 𝜎yield is

the pressure-dependent yield strength defined following Drucker and Prager (1952), 𝜇 is friction, and C is
cohesion. Plastic strain rates 𝜀̇′(plastic) > 0 if F = 0. Classically, 𝜀̇′(plastic) = 0 for F < 0. As we explain in Section 2.1.2,
F = 0 and some plastic deformation always occur in case of rate-and state-dependent friction. We apply a
nonassociated plastic flow law (e.g., Vermeer, 1998) by defining the plastic potential G, which is different from
the yield function F:

G = 𝜏II − sin(𝜓) P − cos(𝜓)C. (16)

In a nonassociative plastic flow, the plastic strain increment occurs perpendicular to the plastic potential G.
The dilation angle 𝜓 is assumed to be zero, which means that the volume does not change during plastic
yielding. Thus, deviatoric plastic strain is defined as

𝜀̇′ij(plastic) = 𝜒
𝜕G
𝜕𝜏ij

= 𝜒
𝜏ij

2𝜏II
, (17)

where𝜒 is the unknown plastic multiplier to be solved for to fulfill the constitutive relationship (equation (11))
and the yield condition (equation (15)) in agreement with the continuity (5) and momentum equation (6). The
square root of the second invariant of deviatoric plastic strain rate is defined as

𝜀̇′II(plastic) =
√(

𝜀̇′xy(plastic)

)2
+
(
𝜀̇′xx(plastic)

)2
=
𝜒

2
. (18)

2.1.2. Invariant Reformulation of RSF
There are key differences between the concepts that underly the RSF equation (equation (4)) used in classical
seismic cycle simulations and the yield function used in our continuum approach (equation (15)). The first
difference concerns the definition of deformation for slip on the one hand and for plastic strain on the other
hand. In classical seismic cycle simulations, discontinuous brittle deformation occurs in form of slip along a
predefined fault plane (i.e., within an infinitely thin deformation zone). Slip or slip velocity is a vector quantity
and therefore occurs in a certain direction, which is constrained by the predefined fault plane. The magnitude
of slip velocity enters into the RSF equations. In contrast, in continuum mechanics, plastic deformation is
treated as strain, which is a volumetric deformation and represented by a tensor. Plastic deformation can occur
everywhere and spontaneously localize into a shear zone or fault zone of finite thickness. The location and
orientation of faulting can change through time and is thus an outcome of the simulation. In our formulation,
plastic strain rates are used and the magnitude of plastic strain rated is given by the second plastic strain rate
invariant. The difference in the concepts of slip and strain requires that the slip rate magnitude in the classical
RSF formulation is related to the second plastic strain rate invariant in the continuum mechanics description.
Here we scale the magnitude of the slip rate to the second invariant of plastic strain rate by following the same
approach as Chester (1994), Sleep (1997), and Noda and Shimamoto (2012). They used the thickness of the
fault zone D as a scaling factor to obtain the scalar plastic slip rate Vp:

Vp = 2𝜀̇′II(p) D (19)

In our general approach with no predefined faults, we assume that slip rates are nonzero everywhere. Note
that this is different in the approach by Barbot and Fialko (2010) who relate slip rates to inelastic strain rates
only on predefined fault surfaces. The numerical interpretation of D is discussed in section 2.2.1.

Second, the fault strength is evaluated differently. Normal stress 𝜎n and shear stress in RSF 𝜏s are related to
the orientation of a predefined fault. In contrast, in the continuum approach it is common to use quantities
that are invariant of the coordinate system and are able to adapt to spontaneous fault evolution. The yielding
condition, such as equation (15), is defined as a function of the mean stress (P) and second stress invariant
(𝜏II). We therefore propose to use mean stress and second stress invariant instead of normal and shear stress.
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For some fault orientations and loading conditions, the mean stress and second stress invariant might be
different to the shear and normal stress along the evolved fault zones. However, they are equal in the restricted
setting of laboratory experiments, on which the classical RSF formulation is based. Thus, to our knowledge,
there is no experimental evidence to favor the one over the other.

In addition, in continuum mechanics, material has a certain cohesion following the observation of residual
strength at zero pressure. In RSF, in contrast, the fault is treated as broken material with zero residual strength
and hence zero cohesion. Here we follow this general line of reasoning that fault material has zero cohesion.
Alternatively, Marone et al. (1992) discussed the option that cohesion can be included as a part of the state
variable.

The third key difference lies in the question when plastic deformation or slip becomes active. In equation (15),
the yield strength is usually treated as a threshold value of stress. Plastic deformation begins only if the sec-
ond invariant of the deviatoric stress tensor is equal to the yield strength, and it stops as soon as the stress
falls below the strength. Thus, plastic slip rate changes discontinuously around the yield strength. In con-
trast, a key assumption underlying the RSF equation (1) is that some slip always occurs if shear stress is larger
than zero. This difference between these concepts was already noted by Nakatani (2001). He interprets the

term 𝜎n

[
𝜇0 + b ln

(
𝜃V0

L

)]
in equation (1) as an interface strength. This interface strength is similar to a thresh-

old value in the sense that slip rates become noticeable only when stress approaches it. Following Nakatani
(2001), RSF can be regarded as a smooth version of the classical yield strength. The smoothness of the rate-
and state-dependent yield strength is proportional to a. Consequently, if a tends to zero, the RSF framework
approaches the classical notion of yield strength.

By taken all these differences between RSF and the usual definition of the yield strength into account, we
arrive at the invariant regularized formulation of RSF after replacing (i) V by Vp, (ii) 𝜎n by P, and (iii) 𝜏s by 𝜏II:

𝜏II = 𝜎yield = a P arcsinh

⎡⎢⎢⎢⎣
Vp

2V0
exp

⎛⎜⎜⎜⎝
𝜇0 + b ln

(
𝜃V0

L

)
a

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ , (20)

with the aging evolution law

d𝜃
dt

= 1 −
Vp 𝜃

L
. (21)

Equation (20) is the yielding condition we apply, which implies that 𝜏II = 𝜎yield, and hence, the yielding
condition (15) is always fulfilled (F = 0), such that some plastic deformation always occurs. We refer to
𝜎RSF

yield = P
[
𝜇0 + b ln

(
𝜃V0

L

)]
as the RSF interface yield strength, following Nakatani (2001).

2.2. Numerical Implementation
2.2.1. Overview
For the numerical implementation of the governing equation, we use a modified version of the code I2ELVIS
(Gerya & Yuen, 2007; van Dinther, Gerya, Dalguer, Corbi, et al., 2013). The governing mechanical equations are
discretized in time with the first-order Euler-backward discretization scheme (Text S1). After time discretiza-
tion and rewriting of equation (10), the constitutive relationship becomes

𝜏ij = 2𝜂vpZ𝜀̇′ij + 𝜏
0
ij ⋅ (1 − Z), Z = GΔt

GΔt + 𝜂vp
(22)

𝜂vp is the so called viscoplastic viscosity defined as

𝜂vp = 𝜂
𝜏II

𝜂𝜒 + 𝜏II
= 𝜂

𝜏II

2𝜂𝜀̇II(plastic) + 𝜏II
(23)

The 2-D numerical grid is fully staggered, which means that pressure, velocities, and stresses are defined in
different geometric points (Figure 1, see Text S2 for a detailed discussion of the grid structure). This staggered
grid is a natural choice to discretize the equations for mass and momentum in space with stress-conservative
finite differenes (Gerya, 2010, see Text S2 for discretization formulas and boundary conditions). The system
of equations is solved for velocities and pressure in an implicit way to computer accuracy using the direct
inversion method based on the Pardiso solver (Schenk & Gärtner, 2004, 2006). The flow of calculations to solve
the equations for the conservation of mass and momentum coupled to RSF is described in section 2.2.5.
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Figure 1. Numerical fault zone representation. Staggered grid along the fault zone, while the brown area denotes
the fault zone thickness. 𝜏xy , Vp , and 𝜃 are defined in the basic nodal points. Pressure P and 𝜏xx are defined in center
nodal points. Viscoplastic viscosity is defined in basic and center nodal points.

As in many numerical codes used in the geodynamical community, the Eulerian spatial discretization is com-
bined with a Lagrangian marker-in-cell advection scheme (Figure 2 and Text S3). The usage of markers is
important in case of large deformation compared to the grid to avoid the need of remeshing (Gerya, 2010).
Although such large deformation does not occur in the present study, it is a key aspect of the STM model-
ing approach and in general in the geodynamic modeling community (e.g., Gerya & Yuen, 2003, 2007; Moresi
et al., 2003). Markers are initially randomly distributed within the regular Eulerian grid. One parameter that
influences the initial marker distribution is Rn, which is the amount of pseudo random numbers that is used
to determine the random part of the marker location (see equation (S27)). The markers are assigned to rock
properties (e.g., density, viscosity, shear modulus, and RSF properties). Furthermore, markers store devia-
toric stresses, pressure, velocities, and state for evaluating the respective time derivates (Text S1). We have
optimized the advection scheme to minimize the interpolation error between markers and nodes for the con-
dition of small deformation. The updated advection scheme consists of the five steps shown in Figure 2 and
described in detail in Text S3.
2.2.2. Numerical Fault Zone Representation
In classical continuum models without internal length scale, plastic deformation localizes to within 1–2 grid
cells, and hence, the thickness of a fault zone depends on the grid size (e.g., de Borst & Sluys, 1991; Lavier et al.,
2000). In this paper we therefore consider a localized zone as a mature fault zone with a thickness D equal to
the grid size Δx and equation (19) becomes

Vp = 2𝜀̇′II(plastic)Δx. (24)

This definition of slip rate is similar to van Dinther, Gerya, Dalguer, Corbi, et al. (2013), who, however, used the
viscoplastic strain rate. We want to point out that this relationship between slip rate and plastic strain rate
may need a physics-based redefinition if deformation is distributed within more than a grid cell during the
localization process toward a mature fault zone. We address this issue in more detail in a future study, where
evolving faults will be studied.

The discretization of the mature fault zone using a staggered grid (Figure 1a) is very similar to the stress glut
model, which assumes an inelastic zone with a thickness of Δx (Andrews, 1999; Dalguer & Day, 2006).
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Figure 2. Flow chart for the iterative solution algorithm of the momentum and continuity equations. Steps at each time
step are shown in the gray box. Marker treatment steps are shown in purple boxes. Picard iteration steps are located
in the brown box. Modifications of the time step and the control over the convergence during the iterations are located
in the green box.

2.2.3. Internodal Interpolation of Viscosity and Stress
To conduct iterations for solving the nonlinear problem in an accurate manner (see next subsection), plastic-
ity is evaluated in basic nodal points in contrast to the previous STM approach, where plasticity was treated
on markers (e.g., Gerya & Yuen, 2007; van Dinther, Gerya, Dalguer, Corbi, et al., 2013). Plasticity is only treated
in the basic nodal points to ensure that the number of unknowns is equal to the number of equations. To cal-
culate the square root of the second deviatoric stress invariant 𝜏II and yield strength 𝜎yield in the basic nodal
points, it is necessary to interpolate normal stress and dynamic pressure from center to basic points of a grid.
For both quantities, we use arithmetic averaging (Text S4). The goal of the plasticity evaluation based on
the invariant formulation of RSF is to accurately calculate the viscoplastic viscosity in each basic nodal point.
A stress conservative discretization of the momentum equations using the staggered grid requires that the
viscoplastic viscosity is defined at both nodal and center points (Gerya, 2010, Figure 1). Thus, interpolation
of the viscoplastic viscosity from basic to center points is necessary. In the geodynamic literature concerned
about solving Stokes-like equations, the issue of interpolating viscosity has been addressed in a few studies
(e.g., Deubelbeiss & Kaus, 2008; Duretz et al., 2011; Moresi et al., 1996; Thielmann et al., 2014). In the presence
of sharp gradients in (viscoplastic) viscosity, it is not straightforward what interpolation method should be
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used to achieve an accurate solution, as it also depends on the problem under consideration and where the
viscosity contrast passes the numerical grid (Deubelbeiss & Kaus, 2008). Deubelbeiss and Kaus (2008) ana-
lyzed the accuracy for harmonic, arithmetic, and geometric averaging. They found that harmonic averaging
between nodes yields the most accurate finite-difference results.

We deal with a similar problem, because a fault in our approach represents a layer in which the viscoplastic
viscosity is many orders of magnitude lower than in the surroundings. Therefore, we evaluate the dependence
of our results on the interpolation method by testing harmonic and arithmetic averaging (Text S4). For most
parts of the paper we use harmonic averaging based on the suggestions of Deubelbeiss and Kaus (2008) and
our experiences in simulations with evolving faults that are not parallel to the grid. In section 4, we investigate
the difference between harmonic and arithmetic averaging of the viscoplastic viscosity for the convergence
with respect to grid size and other numerical parameters introduced in the following sections.
2.2.4. Adaptive Time Step
We require that the time step length is the minimum of the time steps needed to resolve the state weakening
(w) and healing (h), to limit displacement per grid cell (d) and the viscoelastoplastic relaxation time scale
(vep) as

Δt = 𝜁 min
Nx ,Ny

nx=1,ny=1

[
min

[
Δtw,Δth,Δtd,Δtvep

]]
(25)

with 𝜁 is the time step factor, whose size is investigated in section 4. This time step is taken to be the minimum
over the entire model domain. To capture the weakening of the state variable, we use the adaptive time step
developed by Lapusta et al. (2000), which is inversely proportional to the slip rate:

Δtw = Δ𝜃max
L

Vp
(26)

The coefficient Δ𝜃max is determined following Lapusta et al. (2000) and Lapusta and Liu (2009) as a function
of a, b, L, P, G, and the grid size Δx and is not allowed to be larger than 0.2.

𝜉 = 1
4

[ kL
aP

− b − a
a

]2

− kL
aP

(27)

if 𝜉 > 0:

Δ𝜃max = min

[
aP

kL − (b − a)P
, 0.2

]
(28)

if 𝜉 < 0:

Δ𝜃max = min

[
1 − (b − a)P

kL
, 0.2

]
(29)

with

k = 2
𝜋

G∗

Δx
(30)

being the stiffness of the system under the assumption of a cellular basis of slip (i.e., slip is the same throughout
a single cell ; Lapusta et al., 2000) with G∗ = G

1−𝜈
. Δ𝜃max is not allowed to be larger than 0.2 following Lapusta

and Liu (2009). In addition, we require a constraint on the time step during the healing phase. In principle, the
state increase is linear with time for very low slip velocities such that the time step could be arbitrarily large.
However, we justify in section 3.4 that for the initial loading phase it is important to limit the time step as

Δth = 0.2 𝜃. (31)

The fraction is chosen according to Δ𝜃max for the state weakening time step. We further require that the
displacement per time step is limited to a fraction of the grid size Δx as

Δtd = Δdmaxmin

[||||Δx
vx

|||| , |||||Δx
vy

|||||
]
, (32)

where Δdmax = 10−3 in this study. If the state does not influence friction (i.e., if b = 0), the adaptive time
step developed by Lapusta et al. (2000) is not sufficient. Here we aim to capture the increasing slip rate
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in case of a purely rate-dependent friction by resolving the viscoelastoplastic relaxation time scale
𝜂vp

G
by the

fraction fmax:

Δtvep = fmax

𝜂vep

G
. (33)

with fmax = 0.2 in this study. This viscoelastoplastic relaxation time scale combines the viscoelastic relaxation
time scale 𝜂

G
and the elastoplastic time scale 𝜏II

G𝜒
= 𝜏II

2G𝜀̇′
II(plastic)

. Therefore, this also provides a constraint on the

time step length if viscous deformation dominates such that the relaxation time is sufficiently well resolved.

Finally, we note that we do not apply a minimum time step cutoff. This is in contrast to Lapusta et al. (2000)
and Lapusta and Liu (2009), in which the time step is only adapted until it reaches 1

3
Δx
cs

, where cs is the shear
wave speed. We justify this decision in section 4.1.
2.2.5. Solution Cycle
To solve for the conservation of mass and momentum, we use the iterative solution cycle highlighted in green
in Figure 2. The treatment of plasticity on the nodes is the prerequisite for conducting iterations with the goal
to minimize the error in the yield strength function F.

We use predictor-corrector Picard iterations. Before entering into the iteration cycle, an initial time step length
Δt∗ is determined using equation (25) based on the solution from the previous time step. At the beginning
of each iteration, an estimate of the plastic multiplier (after applying scaling equation (24) transferred to slip
rate) is used to determine the viscoplastic viscosity by evaluating the RSF equations (see Text S4 for details on
this and the subsequent steps of the iteration cycle). Then, the viscoplastic viscosity is interpolated from basic
to center points using either the arithmetic or harmonic average. After the solution is obtained, pressure and
stresses are interpolated from center to basic points using the arithmetic average. RSF equations are evaluated
in the basic points to obtain a new estimate of the plastic multiplier. This is used for the next iteration and so
forth. The error in the yield strength function is defined in each basic point as

ΔF =
(
𝜎yield − 𝜏II

P

)2

. (34)

This is summed up for all basic nodes and divided by the number of basic nodes to obtain a global error
ΔF∗ (see equation (S48) for the exact definition of ΔF). Iterations continue until ΔF∗<= ΔFmin. Dividing the
difference between the yield strength and square root of second deviatoric stress invariant by pressure pro-
vides an error in friction. Consequently, this definition leads to the same accuracy in the determination of
friction in models with different pressure. During the iterations we ensure that the requirement for the adap-
tive time step length is also fulfilled at the end of the time step. For this purpose, we calculate at the end of
each iteration the time step length Δt∗∗ resulting from the solution of the equations. If Δt∗∗ > 1.1Δt∗, itera-
tions are restarted from the initial conditions with the time step length Δt∗ = 0.9Δt∗. Furthermore, we check
if and how fast the solution converges. If ΔF of the current iteration becomes larger than the one from the
previous iteration, iterations are restarted from the initial conditions with a new time step Δt∗ = 0.5Δt∗. The
same time step correction applies in case of slow convergence such that the number of iterations exceeds
50. The values for the time step correction and the limit in the number of iterations are empirically deter-
mined and lead to convergence in all simulations presented in this study, also if the time step factor 𝜁 is
not appropriate.

3. Reference Model

This section presents an example of an earthquake cycle simulated with the presented STM-RSF methodology.
We begin with the description of the model setup of a mature strik-slip fault zone. This is followed by an
overview of the results. Then a detailed analysis of the earthquake cycle and seismic wave propagation is
conducted. To validate the implementation of compressibility and the invariant reformulation of RSF, we check
the accuracy of our calculations, where analytical approximations and theoretical estimates are available.

3.1. Model Setup
Here we describe the 2-D reference model setup, which consists of a dextral strike-slip plate boundary zone
(Figure 3). It is designed to enable comparison to both classical earthquake cycle simulations and theoretical
estimates of the nucleation and cohesive zone lengths. Both classical simulation and theoretical estimates are
mostly based on the assumption of an infinitely thin fault in a purely elastic medium with constant normal
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Figure 3. Reference 2-D model setup of a dextral strike-slip fault zone. (a) The fault (top view) is defined as a
central zone with a thickness of Δx. In that zone, the initial state is distinctly lower than in the host rock (see inlet,
numerical grid is indicated). The fault is loaded by applying Dirichlet boundary conditions for horizontal velocity vx
(vx = ±2.0 ⋅ 10−9 m/s = ±6.3 cm/year) at the top and bottom boundary. Neumann boundary conditions for vx act at the
sides (magenta dashed line). Vertical velocity vy is set to zero at all boundaries. (b) Profile of (a) and (b) along the fault
zone and the homogeneous host rock.

stress and zero cohesion. Therefore, (i) the fault is essentially predefined as an initially weak thin layer; (ii) the

off-fault medium is elastic with negligible contributions from viscous and plastic deformation; (iii) the value

for pressure in the RSF equation is fixed at the initial background pressure PB and gravity is set to zero to avoid

vertical pressure gradients; and (iv) cohesion is set to zero. Parameters for the reference model setup are given

in Table 1.

Table 1
Parameters of the Reference Model

Parameter Symbol Value

Shear modulus G 30 GPa

Bulk modulus K 50 GPa

Poisson ratio 𝜈 0.25

Density 𝜌 2,700 kg/m3

Shear wave speed cs 3.3 km/s

Effective viscosity 𝜂 5 ⋅ 1026 Pa s

Seismogenic zone width Ws 76 km

Initial mean stress PB 5 MPa

Gravity g 0 m/s2

Reference friction 𝜇0 0.2

Reference slip velocity V0 4 ⋅ 10−9 m/s

Characteristic slip distance L 0.01 m

RSF direct effect a 0.011

RSF evolution effect b

in VS region 0.001

in VW region 0.017

Initial state 𝜃i

Host rock L
V0

exp(40) s

Fault zone L
V0

exp(−1) s

Grid size Δx = Δy 250 m

Time step factor 𝜁 1.0

Error norm ΔFmax 2 ⋅ 10−6

Number of marker per grid cell Nm 16

Amount of random numbers for initial marker distribution Rn 100
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The initial condition is a mature fault, which is defined as a horizontal weak layer with a thickness of Δx
in the middle of a strong homogeneous host rock with dimensions of Hx =150 km and Hy =150 km (Figure 3a).
The difference in strength is realized by a distinctly lower initial state in the layer than in the host rock. In the
weak layer, a steady state rate-weakening zone (i.e., a−b < 0) with a length W = 76 km lies in the center (from
X = 32 to X = 108 km) and rate-strengthening zones (i.e., a − b> 0) at the sides (Figure 3b). These zones are
separated by 4-km wide transition zones. The host rock has the same RSF properties as the rate-weakening
zone. Due to the high initial state, plastic deformation is ineffective in the host rock with slip velocities lower
than < 10−30 m/s. The high initial state can be considered to be equivalent to high cohesion. Viscous defor-
mation is essentially absent because the viscoelastic relaxation time is on the order of million of years due to
the high viscosity of 5⋅1026 Pa s and thus much longer than the hundred of years long recurrence times con-
sidered in this study. The values for G and K and RSF parameters a, b, and L are within the range adopted in
classical earthquake cycle simulations. The relatively low initial background pressure PB of 5 MPa represents
the potential influence of fluids.

The plate boundary zone is loaded by applying velocity boundary conditions vB
x = −2 ⋅ 10−9 m/s and

vT
x = 2 ⋅ 10−9 m/s at the top and bottom of the model domain, respectively. This imposes a loading strain rate

in case of full locking.

𝜀̇L =
vB

x − vT
x

2Hy
. (35)

In case of stable sliding of fault, the loading conditions lead to a slip rate of Vl = 4.00 ⋅10−9 m/s (12.6 cm/year)
along the fault. The reference slip velocity V0 is set equal to this slip rate such that stress becomes equal to the
reference strength 𝜏0 = 𝜇0PB when the steady state slip velocity is equal to V0.

3.2. Initial Loading
The imposed boundary conditions increase stress linearly with time in the rate-strengthening zone at the
beginning of the simulation (Figure 4a). The square root of the second deviatoric stress invariant follows the
equation for viscoelastic deformation under constant loading strain rate 𝜀̇L, which can be further simplified
to the equation for purely elastic deformation owing to the high viscosity:

𝜏L(t) =
(
𝜏L(0) − 2𝜀̇L𝜂

)
exp

(
−G
𝜂

t

)
+ 2𝜀̇L𝜂 ≈ 2G𝜀̇Lt + 𝜏L(0). (36)

A key property of RSF is that the fault always slips (Figure 4b), and the square root of the second deviatoric
stress invariant is always equal to the yield strength (Figure 4a). The elastic loading of the fault causes an
exponential increase in slip rate with time in the rate-strengthening zone. This is due to the viscosity-like direct
effect of RSF, for which a stress increase is directly transferred into an increase in slip rate. As the square root
of the second deviatoric stress invariant approaches the static strength 𝜏0, slip velocity reaches a noticeable
level while approaching the loading rate Vl . At these rates, plastic deformation slows the elastic stress build
up down (Figures 4a and 4b).

3.3. Earthquake Cycle
After this initial loading phase, earthquake cycles are generated in form of periodically recurring seismic slip
events (Figures 4b and 4c). Slip propagates from the rate-strengthening zones into the central rate-weakening
region (Figure 4c). An earthquake nucleates (section 3.3.1) and accelerates during the rupture propagation
(section 3.3.2) to a maximum slip velocity of ∼ 0.83 m/s during the first earthquake (Figure 4b). This is larger
than the seismic threshold of Vthres = 0.012 m/s, which is defined by Rubin and Ampuero (2005) as

Vthres =
2 a Pcs

G
. (37)

During the dynamic rupture propagation, seismic waves are generated (section 3.3.3). Once the rupture
reaches the rate-strengthening regions, slip is decelerated (section 3.3.4) and the rate-weakening fault heals
(section 3.3.5). In the initial sequence of the first three earthquakes, rupture properties vary slightly, after
which they become more similar, particularly in terms of the hypocenter location (Figure 4c). This initial sta-
bilization period is typical for earthquake cycle simulations and usually excluded in the analysis of the results.
Slip reaches a maximum of ∼1.6 m in the center of the rate-weakening zone. The release of this amount of
slip agrees with the slip deficit that is accumulated at the loading rate Vl during the interseismic period with
a duration of ∼12.7 years. In the following, we analyze the earthquake cycle for the third event in detail.
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Figure 4. Overview of the results in the reference model. (a) Interseismic loading prior to the first event in the
rate-strengthening region at X = 25 km. The square root of the second deviatoric stress invariant follows the elastic
loading stress 𝜏L ≈ 2G𝜀̇Lt and is equal to the yield strength 𝜎yield. Before it reaches the interface strength, the square
root of the second deviatoric stress invariant deviates from 𝜏L . (b) Slip velocity as a function of time. Vmax is the
maximum slip velocity measured along the fault, VRS is the slip velocity at X = 25 km, Vl is the loading slip velocity and
equal to the reference slip velocity V0. The treshold slip velocity Vthres (equation (37)) is used to identify seismic rates.
(c) Slip contours, plotted at regular times, whose interval depends on Vmax as indicated in the legend.

3.3.1. Nucleation
At the beginning of the earthquake cycle, the rate-strengthening zones slip at steady state rate close to the
loading rate (Figures 5a and 5b). This continuous slip produces stress concentrations at the two transitions to
the locked rate-weakening zone. These stress concentrations build nucleation fronts, which slowly propagate
due to the stable sliding parts of the fault toward the center. This causes an increase in stress and acceleration
of slip toward the loading rate in an increasingly larger portion of the rate-weakening zone (Figures 5a and 5b).
When the stably slipping patch in the right part reaches a critical size, which is called the nucleation length,
it becomes unstable and the rupture nucleates. In the following, we describe the nucleation process in more
detail by dividing it into four stages (A–D). In stage A, stress is increased while the leftward propagating nucle-
ation front approaches (Figure 5c). Slip velocity increases with stress, but it remains at a negligible level so that
state can increase with time and almost no slip accumulates (Figures 5c and 5d). At the transition between
stages A and B, state begins to decrease and slip to accumulate while stress reaches its maximum (Figures 5d
and 5e). During stage B, state decreases in interaction with an increasing slip velocity toward the reference
slip velocity V0 (Figure 5d). At the same time, stress drops to its static reference value 𝜏0 = 𝜇0PB = 1 MPa
(Figure 6a). We interpret the length along which this stress drop occurs (Figure 6a) as a quasi-static cohe-
sive zone length, because the rupture speed at this stage goes to zero. The length is around 4.25–4.5 km
along both nucleation fronts, while they propagate toward the center (Figures 6a and 6b). This length can be
compared to the theoretical estimate of the quasi-static cohesive zone size defined at zero rupture speed vr

(the rupture is barely moving according to Day et al., 2005), which has been derived for linear slip weakening
friction (Palmer & Rice, 1973) and was adapted to RSF (Lapusta & Liu, 2009) as

Λ0 = 9𝜋
32

GL
bP(1 − 𝜈)

Λ = Λ0∕f (vr), (38)

where Λ is the dynamic cohesive zone length, which decreases as some function f of rupture speed during
the dynamic rupture propagation (Day et al., 2005).Λ0 equals to 4.16 km for the parameter set in the reference
model, which agrees very well with our simulated quasi-static cohesive zone length during the nucleation
process.
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Figure 5. Nucleation process. Spatiotemporal evolution of (a) slip rate Vp and (b) the square root of the second
deviatoric stress invariant 𝜎II and state 𝜃 (contour lines at three levels with respect to the reference state 𝜃0; b) during
the postseismic deformation after the second event (P) and for the interseismic phase (I) including the nucleation
process of the third event (stages A–D) in the reference model. Time zero is defined as the time when slip rate becomes
larger than the threshold value Vthres. Magenta line in (a) shows the time at which the maximum slip velocity in the
rate-strengthening zones drop below the loading rate Vl = 4.00 ⋅ 10−9 m/s. Differently colored circles represent
the begin of stages A–D of the nucleation process in two locations along the rate-weakening zone of the fault. Phase
diagrams in these two locations for (c) square root of the second deviatoric stress invariant 𝜏II versus slip rate Vp ,
(d) square root of the second deviatoric stress invariant 𝜏II versus slip, (e) state 𝜃 versus square root of the second
deviatoric stress invariant 𝜏II (e) and state 𝜃 versus slip rate Vp (f ). Reference values for slip velocity, square root of the
second deviatoric stress invariant, and state are shown.

During stage C, after the nucleation front has passed, square root of the second deviatoric stress invariant and
state are close to, but still larger than, their reference values 𝜏0 and 𝜃0, respectively (Figures 5c–5f ). Before
the slipping area behind the rupture front reaches the size of the nucleation length, slip is accumulated in a
stable way (Figure 5d), while square root of the second deviatoric stress invariant and state decrease and slip
rate increase toward their reference values (stage C is hardly visible in the phase diagram of square root of the
second deviatoric stress invariant, slip velocity, and state, Figures 5c–5f ).

The transitions between the nucleation stages A–C are shifted in time (or slip) and/or in phase space
(Figures 5c–5f ) as the nucleation front propagates and the area of stable slip becomes larger (Figures 5a
and 5b): For those points further to center, (i) slip velocity is lower and state increases to higher values at the
beginning of stage A; (ii) the peak stress at the end of stage A is higher at larger slip velocities and higher
state; (iii) state, stress, and slip velocity are closer to their reference values at the end of stage B; and (iv) the
time interval of the stable sliding and, hence, the amount of stable slip are reduced during stage C. Conse-
quently, the quasi-static stress drop becomes larger, the fault slips faster, and the propagation speed of the
nucleation front increases. Also, the time that is necessary to reduce the state from 10𝜃0 to 𝜃0 becomes shorter
(Figure 5b). At some point, the beginning and end of stage C coalesce into the same point in time (Figure 5a)
and phase space (Figure 5c). This means that stable sliding behind the rupture front is not possible anymore.
This is transferred from the nucleation front to the rest of the so far stably sliding patch behind the nucle-
ation front. This is the onset of instability during stage D, which is driven by the feedback between decreasing
state and increasing slip velocities (Figure 5). Due to the slightly asymmetric model setup, the nucleation front
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Figure 6. Quasi-static cohesive zone, and nucleation zone. (a) Quasi-static cohesive zone along the leftward propagating
nucleation front when the peak of the square root of the second deviatoric stress invariant is located at X = 76.5 km.
The length of this zone is defined as the distance between the local maximum and minimum stress as indicated.
(b) Measured quasi-static cohesive zone length as a function of X for both nucleation fronts starting from approximately
1.7 years before slip velocity reaches the coseismic threshold Vthres. Λ0 is the theoretical estimate of this length
(Lapusta & Liu, 2009). (c) Time derivative of the square root of the second deviatoric stress invariant. S denotes the
distance between the peaks. (d) Evolution of the interpeak distance S (c) during the last part of the nucleation process,
during which S first decreases until it reaches the minimum. This minimum can be compared against the theoretical
nucleation size h∗ (Rubin & Ampuero, 2005), as discussed in the main text.

from the right side propagates faster than the one from the left side (Figures 5a and 5b). Therefore, the right
stable sliding patch becomes unstable first and, hence, the region where the earthquake nucleates.

The evolving instability is characterized by a stress drop in the central portion of this nucleation region,
whereby the surroundings are dynamically loaded (Figures 5a and 5b). In other words, the stress rate profile
in the nucleation area consists of a minimum in between two peaks. The distance S between the stress rate
peaks shrinks with time toward Smin = 22.25 km. Two dynamic rupture fronts are created in this process, which
rapidly propagate outward during the subsequent dynamic rupture propagation such that S increases after
reaching Smin (Figure 6d). This shrinking of the rapidly accelerating slip zone during nucleation of an earth-
quake has been noted before in RSF simulations by Dieterich (1992) and Rubin and Ampuero (2005). Rubin
and Ampuero (2005) took the minimum Smin as a measure to determine the nucleation length. They derived
a theoretical estimate of the nucleation size h∗ on the basis of energy balance for a quasi-statically expanding
crack, which fits their simulations for 0.5> a∕b> 1:

h∗ = 2
𝜋

GbL
(b − a)2P(1 − 𝜈)

(39)

Using the parameters in our simulation (a∕b ∼ 0.65), h∗ = 24.1 km, which is close to the simulated Smin.
For earthquakes 4–6, nucleation occurs in the center of the rate-weakening zone (Figure 4c). Since it is trig-
gered by the two inward propagating nucleation fronts at the same time in these cases, the nucleation size is
approximately half as big.

3.3.2. Dynamic Rupture Propagation
After the nucleation size is reached, the third event in the reference model begins to propagate dynamically
(Figures 7a and 7b). It propagates bilaterally with a longer propagation distance to the left due to the hypocen-
ter location being closer to the right rate-strengthening zone. At the rupture front within the cohesive zone,
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Figure 7. Dynamic rupture propagation. Spatiotemporal evolution of slip rate Vp (a) and the square root of the second
deviatoric stress invariant 𝜎II (b) during the third earthquake in the simulation example. Time zero is defined as the time
when maximum slip rate reaches the coseismic threshold. I–VI indicate the stages discussed in detail in the main text.
Gray dashed lines indicate the transition zone from the central rate-weakening to the outer rate-strengthening zones
(Figure 3 b). Phase diagrams of (a) the square root of the second deviatoric stress invariant 𝜏II versus slip rate Vp ,
(b) square root of the second deviatoric stress invariant 𝜏II versus slip, (c) state 𝜃 versus square root of the second
deviatoric stress invariant 𝜏II and (d) state 𝜃 versus slip rate Vp in fault location X = 50 km from the end of the second
event until the end of the third event. I–VI along the black solid line indicate stages during dynamic rupture
propagation (Figures 7 and 7b). Green dashed lines represent analytical expressions of parts of the seismic cycle as
discussed in the main text: The direct effect (c) and linear slip weakening (d).

the square root of the second deviatoric stress invariant drops from the maximum to the dynamic level
(Figure 8a), which is often described as the breakdown process.

To illustrate the breakdown process at the rupture front in our simulations, we describe it in detail for location
X = 50 km (Figures 7c–7f ). Similarly to Bizzarri and Cocco (2003), we subdivide this process into four distinct
stages (I–IV). In stage I, during which the rupture front approaches (Figures 7a and 7b), the square root of the
second deviatoric stress invariant increases due to dynamic elastic loading from stress drops along parts of
the fault that already slip at seismic slip rates (Figures 7a–7c). While state decreases only very slightly from its
steady state value 𝜃∗ss, slip velocity increases exponentially with the square root of the second deviatoric stress
invariant (Figure 7c). This simulated rate-strengthening process is due to the “viscosity-like” direct effect of RSF,
because an increase in stress results directly in an increase in slip rate. It agrees with equation (1) expressed
as V = f (𝜏II) (green dashed line in Figure 7c)

Vp = V0 exp

⎛⎜⎜⎜⎝
𝜏II

aP
+

−
(
𝜇0 + b ln

(
𝜃∗ssV0

L

))
a

⎞⎟⎟⎟⎠ , (40)

where the second term in the exponent consists of only constants assuming that 𝜃 remains at 𝜃∗ss.

Stage II is characterized by the onset of noticeable slip (Figure 7d) and decreasing state (Figure 7e), which
leads to a deviation from the direct effect (Figure 7c). At the end of this stage, the square root of the second
deviatoric stress invariant reaches its peak value. In the weakening stage III during the passage of the rupture

HERRENDÖRFER ET AL. 5034



Journal of Geophysical Research: Solid Earth 10.1029/2017JB015225

Figure 8. Dynamic cohesive zone size, stress profile, and rupture speed for the leftward propagating rupture front.
(a) Zoom into the stress profile at the time when the rupture front arrives at X = 50 km. Crosses indicate basic nodal
points, indicating a sufficient resolution of the minimum cohesive zone length using a grid size of 250 m. (b) Cohesive
zone length as a function of the rupture path. Λ0 is the quasi-static cohesive zone length. Note that the cohesive
zone length is larger than Λ0 close to the nucleation region but quickly decreases below Λ0. (c) Profile of the square
root of the second deviatoric stress invariant at the beginning and end of the rupture propagation. The minimum
of the square root of the second deviatoric stress invariant agrees with the steady state strength calculated using
the maximum slip velocity reached in each point. (d) Speed of the rupture front. For the calculation of the rupture
speed, we define in each point along the rupture propagation the arrival time of the rupture front when slip rate
becomes larger than Vthres. Shear and Rayleigh wave speeds are shown for comparison.

front, state drops by many orders of magnitude (Figure 7e) and the square root of the second deviatoric stress
invariant decreases from the peak to the dynamic value linearly with slip d (Figure 7d). This simulated linear slip
weakening process follows the corresponding approximation given by Lapusta and Liu (2009; green dashed
line in Figure 7d) as

𝜏II(t − t0) = b P
L
𝛿(t) + 𝛿(t0). (41)

As in Bizzarri and Cocco (2003), the peak slip velocity occurs in between the peak and dynamic stress levels
(Figure 7e). More precisely, it occurs very close to the end of slip weakening process when the slip weaken-
ing rates are reduced toward the dynamic stress level. In stage IV, slip continues at the dynamic stress level
(Figure 7d). The fault restrengthens with decreasing slip rate and increasing state (Figure 7f ).

The cohesive zone length shrinks from Λ0 to 2 km during rupture propagation (Figure 8c), while rupture
speed increases from less than 1 to 2.5 km/s (Figure 8d). Variations of the rupture speed as well as the
final rupture speed can be related to variable prestress conditions (Figure 8b). The final rupture speed
is ∼0.81 times the Rayleigh and ∼0.75 times the shear wave speed. As soon as the rupture reaches the
rate-strengthening zones, it gets decelerated with rupture speed and slip rate dropping down. Since the rup-
ture gained more energy on its longer propagation path to the left, it is able to propagate a longer distance
into the rate-strengthening zone.

3.3.3. Seismic Waves
Variations in rupture speed during the dynamic rupture propagation cause the generation of shear and pres-
sure waves. Their radiation pattern is in agreement with a dextral strike-slip event (Figures 9a and 9b). Shear
waves produce maximum velocity changes perpendicular and parallel to the fault, while those of pressure
waves occur at an angle of around 45∘ to the fault. The measured propagation speeds of these shear and
pressure waves agree with theoretical estimates (Figure S8). Different waveforms can be identified (Figure 8d),
which are described in relation to the dynamic rupture propagation in Text S5. Those waveforms, which prop-
agate along the fault, increase slip rate and the square root of the second deviatoric stress invariant in front

HERRENDÖRFER ET AL. 5035



Journal of Geophysical Research: Solid Earth 10.1029/2017JB015225

Figure 9. Seismic waves. Snapshots of the time derivates of (a) horizontal and (b) vertical velocity during the third event
of the simulation example. Letters denote different waveforms, which are described in Text S5. Time series of time
derivatives of (c) horizontal and (d) vertical velocities at two locations as indicated with the correspondingly colored
crosses in (a) and (b).

of the rupture (Figures 7a and 7b). Figures 9c and 9d show the arrival of these waveforms at two stations off the
fault. Toward the end of the rupture, the generated waves reach the boundary, at which they are reflected back
toward the center due to the absence of absorbing boundary conditions (Figures 7a and 7b). They reach the
rate-weakening zone again and lead to variations in stress (Figure 7b). These wave reflections are noticeable
at the end of the station recordings (indicated by R in Figures 9c and 9d).
3.3.4. Postseismic Relaxation
The propagation of a into the rate-strengthening region leads to an increase in slip rate and the square root of
the second deviatoric stress invariant (Figures 5a and 5b). During the postseismic period, the elevated stress
and slip velocity decrease over time. This postseismic relaxation process at fault location X = 25 km follows
the analytical approximation derived by Perfettini and Ampuero (2008; Figure 10a):

Va(t − t0) =
Va(t0)e

t
tr

1 + Va(t0)
Vl

(
e

t
tr − 1

) , tr =
(a − b)P

KVl
, K = 2

𝜋

G∗

Ws
(42)

with Ws = 32 km is the length of the left rate-strengthening zone. Time t0 is taken after slip rate reaches
its maximum value. Note that we take Vl , which Perfettini and Ampuero (2008) define as the loading slip
velocity, to be the minimum slip velocity to which Vp relaxes at the end of the postseismic phase (Vl =
1.54 ⋅ 10−9 m/s = 4.9 cm/year).
3.3.5. Interseismic Healing
In the rate-weakening zone, slip rate drops down to less than one thousands of the loading rate after the
earthquake (Figure 5 a). At these very low slip velocities, the state increases linearly with time (Figure 10b).
This simulated linear healing follows the approximation of the aging state evolution equation (2), which is
integrated assuming negligible slip rates (Figure 10b):

𝜃 = t (43)

Deviations from the linear trend arise due to the arrival of the nucleation front at the end of stage B.

3.4. Time Step Length and Picard Iterations
The adaptive time step used in this study is mainly based on the work by Lapusta et al. (2000). Additionally,
we introduced further constraints on the time step length, whose role during the simulation of earthquake
cycles is investigated in the following.

During the initial loading phase described in section 3.2, the adaptive time step increases with time to a
maximum of ∼4 years, which is controlled by the healing time step Δth (Figure 11a). The weakening time
step Δtw and viscoelastoplastic time step Δtvep are several orders of magnitude higher and reduce with time
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Figure 10. Postseismic relaxation and interseismic healing. (a) Comparison between postseismic relaxation in the
rate-strengthening zone (at X = 25 km) following the second rupture with analytical expression for postseismic
relaxation given in Perfettini and Ampuero (2008). Note that the beginning of the postseismic process is interfered
by those seismic waves, which are generated by the second event and reflected from the model boundaries.
(b) Comparison of simulated (following the second rupture) and analytical healing at fault location X = 50 km during
the interseismic period.

and increasing slip rates until they become smaller than the healing time step. Around that time the con-
tributions from healing and weakening of the state become equal and the number of Picard iterations
and time step corrections increase (Figures 11c and 11d). The introduction of the healing time step and
the displacement time step (if the initial loading phase is longer) ensure to capture the time after which
the time step length decreases. Test runs without the healing time step results in jumping over that time,
which considerably increases the number of Picard iterations and time step corrections during the initial
loading phase.

During earthquake cycles, the time step length varies from ∼3 days during the interseismic period to ∼0.6 ms
during the coseismic period (Figures 11a and 11b). The adapting time step is mainly determined by the healing

Figure 11. Overview of numerical parameters. (a) Adapted computational time step length Δt, displacement time step
Δtd , relaxation time step Δtvep, weakening Δtw and healing time step Δth . (b) Zoom in (a) during the third event.
(c) Number of Picard iterations Nit and time step corrections NΔtc

during Picard iterations. (d) Error ΔF in determining
the yield function F at the last global iteration is reduced below the error limit ΔFmin.
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Table 2
Numerical Input Parameters for Convergence Analysis

Parameter values

Convergence w.r.t. Δx (m) 𝜁 ΔFmin ⋅ 106 Nm Rn

1. Grid sizea 187.5, 250, 500, 1,000 1 2 16 100

2. Time step factor 500 0.25, 0.5, 1, 2 2 16 100

3. Error limit 500 1 0.5, 1, 2 16 100

4. Number of markers 500 1 2 16, 64, 256 100

per grid cell

5. Randomness of initial 500 1 2 16 100, 200, 400

marker distribution

aApproximate computational run times (on Swiss National Supercomputing Centre cluster Mönch, with 14 open MP threads) from the beginning until the end of
the first simulated earthquake: ∼400 hr at Δx = 187.5 m, ∼120 hr at Δx = 250 m, ∼10 hr at Δx = 500 m, and ∼1.5 hr at Δx = 1,000 m. Note that with increasing
spatial resolution, the computational time step requirement becomes finer (equations (28)–(30)). A grid resolution of 125 m leads to unfeasible computational
times.

time step Δtw (Figure 11b). The larger viscoelastoplastic time step Δtvep closely follows Δtw , which indicates
a potential similarity of these two time step requirements. A few Picard iterations are sufficient to converge
below the error limit ΔFmin (Figures 11c and 11d). During the coseismic period, more iterations and more time
step corrections are necessary than during the interseismic period.

4. Convergence Analysis

We investigate the numerical stability of our STM-RSF approach by analyzing the convergence of the results
with respect to the following numerical input parameters, which we have identified as the most important
for our method: grid size Δx, time step factor 𝜁 (equation (25)), error limit of the Picard iterations ΔFmin

(equation (34)), amount of markers Nm per grid cell, and degree of randomness Rn in the initial marker dis-
tribution (Table 2). To evaluate convergence with respect to each parameter, we use the rupture arrival time
(see Table 3 for exact definition) as a primary parameter for comparison, because it is a very sensitive param-
eter for numerical precision (Day et al., 2005). Other coseismic and interseismic parameters are analyzed in
Text S5. For Δx, we adapt the thickness of the zone with a low initial state to Δx to ensure that the deforma-
tion is localized within one grid size along the entire fault, including the rate-strengthening zones. To assess
the role of the internodal interpolation of viscoplastic viscosity (section 2.2.3), we conducted the convergence
analysis for arithmetic and harmonic averaging.

4.1. First Earthquake
The grid size is expected to have a large impact on the results, because it needs to be small enough to resolve
the cohesive zone length during the entire rupture simulation (Day et al., 2005). Figure 12a shows the influ-
ence of the grid size and the internodal interpolation of viscoplastic viscosity on the time evolution of slip
rate at X = 50 km during the passage of the rupture front of the first earthquake. The difference in shape and
timing of the slip rate function becomes smaller with decreasing grid size. Oscillations behind the rupture
front distinctly decrease with increasing spatial resolution. This indicates that these oscillations have a numer-
ical rather than a physical origin. These oscillations have also been observed in classical earthquake cycle
simulations and attributed to insufficient spatial resolution of the cohesive zone (Lapusta & Liu, 2009). The
convergence with respect to grid size is faster for arithmetic than for harmonic interpolation. This difference
in convergence rate is shown for the rupture arrival time, which for harmonic interpolation decreases linearly

Table 3
Definition of Output Parameters

Symbol Short description Definition

Ta Rupture arrival time Time after nucleation at which the rupture front arrives at X = 50 km

Xh Hypocenter location The central point in the nucleation region defined by Smin

d Average slip Average slip inside the rate-weakening zone during an earthquake

Ti Interseismic duration Time interval between two earthquakes for max[V] < Vthres
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Figure 12. Influence of grid size. Influence of Δx on the solution of the first earthquake in the simulation example:
(a) Time evolution of slip velocity Vp in X = 50 km, profiles of (b) slip and (c) the square root of the second deviatoric
stress invariant when Vmax becomes smaller than 0.05 m/s at the end of the first earthquake. For each grid size, results
are shown for arithmetic (Δxa) and harmonic (Δxh) internodal interpolation of the viscoplastic viscosity.

with grid size and for arithmetic interpolation asymptotically approaches around 20 s (Figure 13a). The differ-
ence between results from models with harmonic and arithmetic averaging becomes smaller with decreasing
grid size, indicating that, at fine grid size, choice of internodal interpolation becomes less important. A similar
convergence with respect to grid size is obtained in terms of interseismic duration, while nucleation length,
cohesive zone length, and hypocenter location of the first earthquake are essentially not affected by the grid
size or intergrid interpolation (Text S5).

The impact of the time step factor 𝜁 and the error limit for the Picard iterations ΔF on the rupture properties
of the first earthquake is small (less than 1%) compared to the role of Δx and the interpolation of the plastic
multiplier (Figures 13b and 13c). A smaller time step factor than 1 leads to larger computational costs due to
the larger amount of time steps. Larger time step factors than 1 leads to a higher number of Picard iterations
and time step corrections. The time step is corrected to ensure convergence with Picard iterations below the
error limit. Hence, a similar, but computationally more expensive solution is obtained. Similarly, defining a
minimum time step as in Lapusta and Liu (2009) leads to a higher number of Picard iterations and time step
length corrections per time step during the phase of the highest slip rates. This indicates that defining a min-
imum time step, which is higher than the one required by equation (25), causes problems in the accurate
determination of the yield strength in that phase.

A 16 times higher number of markers per grid cell leads to essentially the same solution as in the reference
model in terms of the arrival time (Figure 13d) and other rupture properties (Text S5). Also, different initial
marker distributions, which are determined by Rn, do not affect the numerical results (Figure 13e).

At the end of the first earthquake (i.e., Vmax has dropped below 0.05 m/s), the profiles of slip and the square root
of the second deviatoric stress invariant along the fault show the same characteristic pattern for different grid
sizes, the two internodal interpolation schemes (Figure 12b) and for different time step factors (Figure S14).
The smooth and overlapping profiles of the square root of the second deviatoric stress invariant at the end of
the rupture (Figure 12c) are modified by reflected waves (Figures S14 and 15). This modification shows a high
sensitivity to grid size, time step factor, and internodal interpolation. Consequently, the stress profiles in the
following interseismic period are affected (Figures S14 and 15), which is taken into account in the convergence
analysis for the subsequent earthquakes.

Figure 13. Convergence of rupture arrival time with respect to several numerical parameters. (a and b) grid size Δx,
(c and d) time step adaptivity factor 𝜁 , (e and f) error limit ΔF, (g and h) amount of markers Nm, and the marker
distribution parameter Rn for the rupture arrival time Ta at X = 50 km for the first earthquake in the simulation example.
Results are shown for arithmetic and harmonic averaging of the viscoplastic viscosity.
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Figure 14. Convergence of earthquake cycle results with respect to investigated numerical parameters. Role of
(a–c) grid size Δx, (d–f ) time step adaptivity factor Λ, (g–i) error limit ΔF, (j–l) amount of markers Nm, and randomness
of the initial distribution Rn for hypocenter location (left), average slip (middle) and interseismic duration (right) for the
first five earthquakes. Subscripts a and h denote models run with arithmetic and harmonic averaging of the viscoplastic
viscosity.
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Figure 15. Influence of grid size in a model with a fault, which crosses the numerical grid at an angle. (a) Model setup
with velocity boundary conditions as indicated. The fault is defined as a zone with lower initial state than in the
surroundings, similarly to the reference model (Figure 3), however, at an angle of 5.71∘ . Inlet zooms into a small portion
of the fault. (b) Time series of maximum slip velocity in the models with Δx = 250, 500, and 1,000 m. Average and
standard deviation of peak velocity (c) and interseismic duration (d), calculated from the third to sixth earthquake in
each model.

4.2. Sequence of Earthquakes
To evaluate the impact of the numerical parameters on the earthquake cycle results, we compare the first
five earthquakes in terms of hypocenter location, average slip and interseismic duration (Table 3). The over-
all sequence of quasi-periodic earthquakes is not affected by the grid size, time step factor, and internodal
interpolation of viscoplastic viscosity (Figures 14a–14f ). However, some variations due to changes in these
numerical parameters are noticeable starting from the second earthquake, especially in terms of the hypocen-
ter location. These variations can be explained by the modifications of the square root of the second deviatoric
stress invariant inside the seismogenic zone from reflected waves after each earthquake. These stress mod-
ifications show the highest sensitivity to grid size, time step factor, and internodal interpolation after the
first earthquake (Figures S14 and S15). It is expected that the initial stress condition affects the hypocenter
location, particularly in our nearly symmetrical model setup.

In addition, the error limit for the Picard iterations, the amount of markers, and the randomness of the initial
marker distribution do not play any significant role for the sequence of earthquakes (Figures 14g–14o).

4.3. Grid Convergence Along an Oblique Fault
So far, results are analyzed along a straight, horizontal fault, which is optimally located with respect to the
regular numerical grid. In the targeted simulations of our numerical approach, faults may cross the numerical
grid at a certain angle. Therefore, we tested the convergence with respect to grid size in a model setup, in
which the fault zone with a thickness of one grid size crosses the grid at a small angle (Figure 15 a). Numerical
oscillations in slip velocity decrease with increasing spatial resolution (Figure 15b). Furthermore, we calculated
the average and standard deviation of the earthquake peak slip velocities and of the interseismic duration
(Figures 15c and 15d). The increase of spatial resolution leads to a decrease of the standard deviation, while
the average values stabilize, indicating that a convergent solution is approached. The numerical oscillations
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Figure 16. Slip spectrum as a function of nucleation size. (a) Slip spectrum is expressed as slip velocity, as a function of W∕h∗, L, and P∕L, respectively.
Four different regimes are identified: Decaying oscillations toward stable sliding (I), periodic aseismic slip transients (II), periodic (III), and aperiodic seismic slip
(IV). Regime IV is characterized by a more complex slip pattern. Since reflected waves from the model boundaries influence this pattern, regime IV is shaded.
Panels b–e, which show the maximum slip velocity in the model, provide examples for the different regimes in the slip spectrum: Decaying oscillations (b),
period aseismic slip transients (c), period seismic slip (d), and aperiodic seismic slip (e).

at a given spatial resolution are higher than in the respective models with a horizontal fault. This indicates
that the numerical solution deteriorates by increasing the fault angle and that, at a given fault angle, a higher
spatial resolution is necessary to reach a convergent solution.

5. Slip Response Spectrum

The goal of this section is to test the capability of our STM-RSF approach to resolve different regimes of the
slip spectrum from stable sliding, aseismic slip transients to seismic slip. Furthermore, we investigate the role
of compressibility and dynamic pressure.

5.1. Role of the Nucleation Size
Based on the reference model, we conduct a parameter study motivated by the work of Liu and Rice (2007).
By using classical earthquake cycle simulations, they found that for a given a − b distribution, the transition
between regimes in the slip spectrum depends on the ratio between the width W of the rate-weakening
zone and the nucleation size h∗. Rubin (2008) found similar transitions but concluded that the ratios, at which
the transitions occur, depend on the value of a − b. We keep the width of the rate-weakening zone fixed
and change h∗ by varying L and PB. For each of four values of L between 10−4 and 10−1 m, we systematically
increase PB and thereby W∕h∗ and PB∕L (Figure 16a). Note that we keep all other physical model parameters
fixed. Therefore, for a given W∕h∗ (and hence PB∕L), theoretical estimates of h∗ and Λ0 are constant. Simula-
tions were done with a grid size of 500 m for W∕h∗ < 4 and 250 m for W∕h∗ > 4; other numerical parameters
are the same as in the reference setup.

The simulated slip spectrum consists of four regimes (Figure 16a): decaying oscillations toward stable sliding
(I), periodic aseismic slip transients (II), periodic (III), and aperiodic seismic slip (IV). In regime I (W∕h∗ < 0.65),
the amplitude of slip transients decays with time until the fault steadily slips at the loading slip velocity Vl

(Figure 16b). The number of oscillations until stable sliding increases with higher W∕h∗. In regimes II and III,
events recur in a periodic manner after an initial loading and stabilizing period. The slip velocity of these
events in each model increases as a function of PB∕L from aseismic in regime II (Figure 16 c) to seismic rates in
regime III (Figure 16d). In regime II (0.65< W∕h∗ < 1.0), slip velocity increases with PB and is independent of
L. In contrast, in regime III (1.0>W∕h∗ > 6.0), higher slip velocities are reached for larger L at constant W∕h∗.
Therefore, slip velocity increases both with PB and L (Figure S9a). For W∕h∗ = 3.16, profiles of 𝜏II along the
fault at the end of the nucleation process of the first event nearly overlap after dividing them by PB (Figure
S9c). Consequently, simulated h∗ and Λ are the same in these models as predicted by the corresponding
theoretical estimates. A similar overlap is obtained for the snapshots during dynamic rupture propagation and
slip weakening of 𝜏II (Figure S9d and S9e). Regime IV is characterized by an aperiodic earthquake pattern with
variable recurrence times and maximum slip velocities (Figure 16e). The complexity arises as events, which
rupture only parts or the full rate-weakening zone, occur in between full size ruptures. Partial rupture occurs
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Figure 17. Dynamic pressure and compressibility. Comparison between reference solution (K = 50 GPa, constant
PB = 5 MPa in rate- and state-dependent friction, RSF, equation), an approximately incompressible solution
(red, K = 500 TPa, PB =7.5 MPa constant in RSF equation) and a solution using a dynamically evolving pressure in RSF
equations (green, K = 50 GPa, PB = 5 MPa, true P is used in RSF equation). (a) Snapshot of the square root of the second
deviatoric stress invariant at the end of the nucleation process. (b) Snapshot of the square root of the second deviatoric
stress invariant when the rupture front has reached X = 50 km. (c) Slip weakening of the square root of the second
deviatoric stress invariant in X = 50 km during the passage of the rupture front. Effective stress is normalized by the
initial background pressure PB . (d) Evolution of slip velocity in X = 50 km, divided by

√
PBL.

due to the interaction with reflected waves from the boundaries, which act as stopping waves. Therefore, this
regime is rather numerical (i.e., influenced by nonabsorbing boundary conditions) in contrast to the other
physical regimes.

5.2. Dynamic Pressure in RSF
For simplicity and to compare our results to classical earthquake cycle simulations, we kept thus far the value
of P in the invariant RSF formulation (equation (20)) constant at the initial background pressure PB. We rerun
the reference model (Δx = 500 m) by using the dynamic value P in the RSF equations. We observe only minor
changes in rupture properties (<1.0%) with respect to the reference solution for the first event (Figure 17)
and the sequence of first events (not shown). P varies outside the fault zone during the rupture passage, but
it remains at the initial background pressure PB within the fault zone. The reason is that large plastic defor-
mation rates along the fault effectively create a weak layer that is surrounded by the strong host rock. The
pressure stays constant, because the weak layer cannot accommodate any significant dynamic pressure gra-
dients. Consequently, the obtained solution is almost identical to the case when P = PB in RSF equations.
While this result indicates that it is sufficient to treat P as a constant along mature fault zones, dynamic pres-
sure becomes important for the long-term fault evolution in terms of fault orientation and self-consisting fault
strength (e.g., Meyer et al., 2017).

5.3. Incompressible Medium
To understand the difference with respect to incompressible models commonly used in geodynamic simula-
tions (e.g., Gerya, 2010), we run the reference model (with Δx = 500 m) with a nearly incompressible medium
(K = 500 TPa, 𝜈 ≈ 0.5). In this incompressible medium, only shear waves occur because p waves cannot
exist. To compare models with the same theoretical nucleation and cohesive zone lengths, we change PB to
7.5 MPa. Correcting for the different PB leads to similar profiles of the square root of the second deviatoric stress
invariant during nucleation and dynamic rupture propagation and to similar slip weakening of the square
root of the second deviatoric stress invariant and time series of slip velocity (Figures 17a–17d). Consequently,
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Figure 18. Influence of viscous deformation on the earthquake cycle. (a) Interseismic duration Ti scaled by the threshold relaxation time scale 𝜂thres∕G versus
viscosity scaled by the threshold viscosity 𝜂thres =

𝜇0PB
2𝜀̇L

. Results are shown for simulations conducted with the same W∕h∗, but different PB, L and 𝜀̇l as indicated
in the legend. (b) Impact of viscosity in the reference model. Solid lines are simulated curves, colored dashed lines show for each model the analytical viscoelastic
stress evolution for constant loading strain rate 𝜀̇l (equation (36)). Time axis is scaled by the difference between the asymptotic viscoelastic stress 𝜏d = 2𝜂𝜀̇l and
the reference RSF strength 𝜏0, divided by 2𝜂. Negative or zero values imply that 𝜏d is smaller than or equal to 𝜏0, respectively, which corresponds to 𝜂 being
smaller than or equal to the threshold viscosity 𝜂thres, respectively.

simulated values for the nucleation length, cohesive zone lengths, and slip weakening distance of the first
event are the same as in the compressible case to within one grid cell. It appears that the normalized stress at
and ahead of the rupture front is larger than in the compressible case (Figure 17b). This could reflect the rigid-
ity of the incompressible medium, which is unable to redistribute stresses by volumetric elastic deformation.
Similarly, the rupture arrives earlier at the reference location in the incompressible case (Figure 17d).

6. Role of Viscous Deformation

One advantage of our approach is the ability to include various viscous deformation mechanisms in the simu-
lation of earthquake cycles. In the models analyzed thus far, viscous deformation is essentially inactive due to
the extremely high effective viscosity of 5⋅1026 Pa s. In nature, especially in deep and warm portions of subduc-
tion zones, faults could be surrounded by or penetrate material with distinctly lower viscosity (1018 –1019 Pa s),
as suggested in simulations (e.g., van Dinther, Gerya, Dalguer, Mai, et al., 2013) and from observations after
larger earthquakes (e.g., Freed et al., 2017). To test the influence of viscous deformation on the earthquake
cycle, we run simulations (Δx = 500 m) with lower effective viscosities in the entire model. Note that vis-
cosity is constant and linear during these simulations, which for simplicity ignores any nonlinear effects of
temperature and strain rate on the viscous rheology typically adopted in geodynamic models. We further-
more note that in the simulations with a low viscosity, the adaptive time step is controlled by Δtvep to resolve
the viscoelastic Maxwell relaxation time scale.

For a wide range of high viscosities, viscous deformation is essentially ineffective (Figures 18a and 18b). This
represents the brittle regime. Lowering viscosity reveals the existence of a viscosity threshold 𝜂thres, below
which only viscous deformation occurs in the ductile regime (Figure 18b). In the transition between brittle and
ductile deformation, in which the viscosity decreases the threshold, interseismic duration increases sharply
as 𝜂

𝜂−𝜂thres
with decreasing viscosity (Figure 18a). Furthermore, the hypocenter location of the earthquake is

shifted to the center and the amount of seismic slip decreases. At low viscosities, for which the hypocenter is
located at the center of the rate-weakening zone, the nucleation length increases with decreasing viscosities
until it reaches the size of the rate-weakening zone so that no earthquakes nucleate.

The role of viscous deformation can be understood by considering its influence on the interseismic load-
ing and subsequent nucleation process. Lowering viscosity reduces the Maxwell relaxation time scale 𝜂∕G
toward the interseismic duration of the earthquake cycle (Figure 18b). Furthermore, it reduces the strain rate
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dependent ductile strength (𝜏d = 2𝜂𝜀̇l) to which stress approaches after several Maxwell times. As we
showed in sections 3.2 and 3.3.1, interseismic loading increases the stress toward 𝜏0 = 𝜇0PB first in the
rate-strengthening and then in the rate-weakening zone, which induces stable slip. The growing patch of
stable slip in the rate-weakening zone becomes unstable when its length reaches the nucleation size. This
process is prevented if 𝜏l is smaller than 𝜏0 (Figure 18b). Following this notion, a transition is to be expected if
𝜏l = 𝜏0, which leads us to the definition of the viscosity threshold as

𝜂thres =
𝜏0

2𝜀̇l
=
𝜇0PB

2𝜀̇l
. (44)

The corresponding threshold Maxwell relaxation time is 𝜂thres∕G. Equation (44) predicts that the viscosity
threshold is a function of PB, loading strain rate 𝜀̇l and 𝜇0. We test this prediction by investigating the role of
viscosity in models with different PB (at constant W∕h∗) and different loading strain rate (Figure 18a). We find
that the simulated thresholds agree with the theoretical prediction. Curves of interseismic duration as a func-
tion of viscosity overlap if we normalize viscosity by 𝜂thres and interseismic duration by the threshold Maxwell
relaxation time (Figure 18a). Note that 𝜀̇l , and, hence, the viscosity threshold depend on the size of the model
domain in the present simulations, since the distance of the fault to the top and bottom boundary influences
the loading rate.

This shows that the application of RSF in a viscoelastic medium agrees with the existing basic understanding
of the brittle-ductile transition zone in that viscous deformation becomes dominant as soon as the strain
rate dependent ductile strength is smaller than the pressure-dependent brittle strength. We show that in
case of RSF, this brittle strength is defined by the reference strength, because this is the stress level at which
earthquakes nucleate. Decreasing the loading strain rate decreases the ductile strength and increases the
interseismic duration toward the Maxwell relaxation time scale. This implies that slowly loaded faults are more
prone to be affected by viscous deformation as their long interseismic loading phase might interfere with the
Maxwell characteristic time of the surrounding medium.

7. Discussion

We have presented the distinctly improved STM-RSF approach for modeling a wide slip spectrum in a
continuum. In the following we discuss the invariant reformulation of RSF and the results concerning its
numerical accuracy and stability, including arising issues related to wave reflections and the internodal inter-
polation scheme. Finally, we provide an outlook to the full potential of the STM-RSF approach to address
current limitations.

7.1. Invariant RSF
The key new model component of our STM-RSF approach is the implementation of an invariant reformulation
of RSF in a continuum-mechanics framework. By replacing physical quantities related to the fault’s orientation
by invariants of these properties, we obtain a formulation of RSF that is applicable in a continuum.

From a geodynamic modeling point of view it may appear strange that RSF assumes permanent yielding.
We show that this is always the case in our simulations, even during the elastic loading phase. Following
the viewpoint of Nakatani (2001), the classical geodynamic and RSF friction concepts can be reconciled if

we consider the term 𝜎n

[
𝜇0 + b ln

(
𝜃V0

L

)]
as the interface strength, at which noticeable plastic deformation

appears. The smooth property of RSF in vicinity of this interface strength due to the “viscosity-like” direct
effect facilitates resolution of the onset of noticeable plastic deformation. Resolving this onset is a problem
for the commonly applied nonsmooth static yield functions in geodynamic simulations, which assume that
no plastic deformation occurs if the square root of the second deviatoric stress invariant is lower than a con-
stant, pressure-dependent material strength. The same problem occurred for rate-dependent friction in the
previous STM approach (van Dinther, Gerya, Dalguer, Mai, et al., 2013), such that implementing RSF has lead
to a large improvement with respect to that.

From the classical earthquake cycle modeling point of view it may appear strange that we apply RSF in the
entire medium as it is usually applied only along planar, infinitely thin fault planes in an otherwise elastic
continuum. Here we showed in an extreme case that RSF is applicable in the entire medium, while it only
becomes active in regions of low state.
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Our approach enables to take the role of the dynamic pressure into account. Most simulations in this study,
though, have been conducted with a constant value for pressure in the RSF equations as in classical earth-
quake cycle simulations. We have found that the dynamic pressure plays only a minor role in the investigated
simple setup of a mature straight fault zone. The dynamic pressure field is expected to become more
important for the long-term fault evolution in terms of fault orientation and self-consistent fault strength
(e.g., Meyer et al., 2017).

7.2. Numerical Accuracy and Stability
In the analysis of one earthquake cycle in the mature strike-slip fault setup, we demonstrated a good agree-
ment of our results with a number of analytical approximations. The initial interseismic stress increase due to
the imposed shear motion at the model boundaries agrees with a purely elastic stress built up. Toward the
end of the subsequent nucleation process, a cohesive zone starts to be created, whose length agrees with the
quasi-static cohesive zone length Λ0 (Day et al., 2005; Lapusta & Liu, 2009). The length of the slip area, along
which the instability evolves, is close to the nucleation length given in Rubin and Ampuero (2005) for the
suited a∕b range. During rupture propagation, the evolution of the cohesive zone length follows the changes
in rupture velocity, as predicted by equation (38). In stage I, during which the rupture front approaches, stress
follows closely the direct effect. The stress decrease in stage III agrees with the slip weakening approxima-
tion given in Lapusta and Liu (2009). Furthermore, during the postseismic phase, the relaxation process in
the rate-strengthening region and the interseismic healing in the interseismic agree with analytical curves.
This very good agreement with analytical approximations shows that our new approach resolves all stages of
an earthquake cycle from slow interseismic loading, to the nucleation, to dynamic rupture propagation, and
postseismic deformation. As no analytical solution for the whole earthquake cycle exists, it may be desirable
in the future to conduct a benchmark comparison study between STM-RSF and classical earthquake cycle
simulations in a similar way to what has been done in the dynamic rupture modeling community (Harris et al.,
2009). However, it would be necessary to extend our method to 3-D in order to compare the models in a
vertical strike-slip models using an anti-plane formulation.

We also showed that the simulated slip spectrum is in good agreement with findings of Liu and Rice (2007)
and Rubin (2008). Our results confirm their findings that for a fixed a− b distribution, the transitions between
decaying oscillations, period aseismic, and period seismic slip depend on the ratio between the length W
of the rate-weakening zone and the nucleation length h∗. Differences between our and other studies in this
ratio at the transitions and maximum slip velocity within the slip regimes are likely due to the different model
setups (e.g., a-b distribution, loading and boundary conditions) and the different definition of the nucleation
size. Similar reasons might approach apply for the fact that we did not find a complex periodic behavior for
W∕h∗ close to unity as in Liu and Rice (2007) and Rubin (2008) or periodic doubling of slow and fast ruptures
as in Veedu and Barbot (2016).

For the first time with our approach, we are able to simulate seismic slip rates, at which shear waves, and,
following the implementation of compressibility, pressure waves are generated. We do not implement any
damping through a radiation term typically applied in quasi-dynamic simulations (Rice, 1993), such that we
solve for the full dynamics of the rupture propagation process. This is important as the application of the
quasi-dynamic approach leads to quantitative differences in rupture speed and slip velocity in comparison to
the full dynamic approach in case of the standard RSF (Thomas et al., 2014). However, related to this progress
is a limitation, because we do not have yet implemented absorbing boundaries in our approach such that
these waves are reflected back to the fault. Interaction of these reflected waves with the fault shows the need
to implement absorbing boundary conditions. In the reference model, they slightly modify the stress distri-
bution along the fault at the beginning of the postseismic period such that the hypocenter locations of the
subsequent events are affected. In models with smaller nucleation sizes, a numerical regime of slip spectrum
arises, because reflected waves stop the rupture such that partial ruptures appear. Implementing absorbing
boundary conditions should eliminate these problems.

We have tested the numerical stability by assessing the convergence of our results with respect to several
numerical parameters. We showed that results are virtually independent of the number of and initial distri-
bution of markers, which we use to track rock properties to avoid numerical diffusion in large deformation
experiments. This is a clear improvement with respect to our previous STM approach, which showed a dis-
tinct sensitivity to the initial marker distribution for the rupture time of the first event and the subsequent
sequence of events (van Dinther, Gerya, Dalguer, Mai, et al., 2013). The improvements are mainly the results
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of introducing the grid-based calculation of the yield strength and the new marker-based advection scheme
for stresses, pressure, and velocities. This marker-based advection scheme is optimized for small deformation
but potentially requires further investigation in case of large deformation experiments.

Results converge with respect to grid size and the time step factor in case of the first event. For subsequent
events, results converge as well, but variations are introduced due to the different resolution of the waves
reflected from the boundaries. The amplitude of numerical oscillations in the slip rate function due to insuf-
ficient resolution of the grid size decreases with increasing spatial resolution. In addition, a key indicator
for numerical precision—the rupture arrival time—converges with decreasing grid size. We showed that
the interpolation of the viscoplastic viscosity—either harmonic or arithmetic averaging—introduces some
changes in the results, although the general pattern of events remains unaffected. These differences between
interpolation schemes become smaller with decreasing grid size. Arithmetic averaging shows a faster con-
vergence with grid size than harmonic averaging. Day et al. (2005) suggested to resolve the cohesive zone
during dynamic rupture propagation with at least 3 grid points in boundary integral method and with at least
5 points in finite difference methods that use split nodes to discretize a fault continuity. The smallest cohe-
sive zone length in the reference model 2 km in the reference model (Figure 8), which is 8 times larger than
grid size at which a convergent solution is obtained for arithmetic averaging. The difference in convergence
rate might be related to the different effective thickness of the fault zone. Whereas the fault zone thickness
is one Δx in case of harmonic averaging, it is less than Δx or even a plane in case of arithmetic averaging.
The slower convergence for an inelastic zone of one grid size is comparable to the grid convergence for finite
fault zones using the stress glut method (Andrews, 1999). This stress glut method showed a slower conver-
gence than using the finite-difference method with split nodes in dynamic rupture simulations (Dalguer &
Day, 2006). Despite the better convergence of dynamic rupture properties in case of arithmetic averaging,
we suggest to use harmonic averaging. In addition to the convergence analysis in the reference model setup,
we analyzed the convergence with respect to grid size in case of a purely rate-strengthening fault in Text
S5. It shows that harmonic averaging leads to a convergent solution, whereas a slight divergence is noted
for arithmetic averaging. Also, preliminary tests show that arithmetic averaging produces problems in con-
vergence with Picard iterations if we consider a fault that evolves spontaneously. Alternatively, it might be
necessary to reconsider the way plastic slip is calculated on the staggered grid nodes to avoid the need to
interpolate viscosities.

7.3. Limitations and Outlook
The reference model setup has mainly been designed for testing purposes. This model setup, which resem-
bles the ones used in 2-D classical earthquake cycle simulations, has the following disadvantages. First, the
loading of the fault is dependent on the size of the domain. The smaller it is, the faster the loading and the
shorter the recurrence time. The model size therefore also influences the loading strain rate dependent vis-
cosity threshold, below which viscous deformation dominates. This model size dependency, typical in such
model setups (Hajaroalsvadi & Elbanna, 2017), highlights the need to simulate realistic tectonic loading in
a crustal-scale environment. Second, the analysis in this setup is limited to an essentially predefined fault
plane without complexity in the off-fault medium. Third, viscosity is linear and independent of tempera-
ture and strain rate. These limitations can be overcome if the full potential of the STM-RSF is explored in a
large-scale model setup with temperature-dependent viscosity similar to the one adopted in van Dinther,
Gerya, Dalguer, Corbi, et al. (2013). One part of this potential—the ability to simulate the spontaneous gen-
eration and propagation of faults—will be explored in future. It is then possible to study earthquakes in
relation to the long-term history of a fault. In these models, in which faults cross the numerical grid, it is
necessary to improve the accuracy of this method. To resolve the fault zone thickness, it will be essen-
tial to prevent localization either by diffusion through a physical mechanism or by numerical regularization
(e.g., nonlocal plasticity).

The current numerical code requires optimization to increase computational efficiency to simulate earth-
quake cycles in 2D with more realistic, and hence, smaller nucleation zone lengths in a lithospheric scale setup
and to extend this approach to the third dimension to facilitate comparison to nature (Lapusta & Liu, 2009).
Potential improvements of our approach to enhance computational speed are (i) Message Passing Interface
(MPI) parallelization, (ii) combined explicit-implicit time descritization, as demonstrated in Kaneko et al. (2011)
to reduce the number of time steps solved with the expensive implicit method, and (iii) an adaptive staggered
grid (Gerya, 2010; Gerya et al., 2013) to resolve only the finest length scale with the highest resolution.
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8. Conclusions

We have significantly improved the self-consistent STM numerical modeling approach (van Dinther, Gerya,
Dalguer, Corbi, et al., 2013; van Dinther, Gerya, Dalguer, Mai, et al., 2013) to simulate earthquake cycles in a
viscoelastoplastic compressible continuum. This paper shows that our continuum mechanics-based method-
ology, originally designed for lithospheric-scale geodynamic problems (Gerya & Yuen, 2007), resolves all
stages of an earthquake cycle with realistic rupture properties. This includes seismic slip rates and rupture
speeds at which shear and pressure waves are generated. The key ingredient of our STM-RSF modeling
approach is the implementation of an invariant reformulation of the rate- and state-dependent friction
equations, which provides the possibility to apply RSF to simulate earthquakes along spontaneously evolv-
ing faults. Other methodological improvements with respect to the previous STM approach are grid-based
Picard iterations to minimize the error in the yield function and an optimized advection scheme for small dis-
placements. Furthermore, we modified the adaptive time step usually applied in classical earthquake cycle
simulation (Lapusta & Liu, 2009; Lapusta et al., 2000). While the original scheme is crucial during earthquake
cycles in an essentially elastic medium, we included additional constraints to resolve the initial loading phase,
state-independent friction, and the Maxwell time scale in viscoelastic simulations. Furthermore, we do not
adopt a minimum time step cutoff, because it reduces the convergence rate during Picard iterations.

To enable the comparison to analytical approximations and theoretical estimates, we have chosen a simple
setup of a mature, essentially predefined strike-slip fault zone embedded in predominantly elastic medium. In
the analysis of an earthquake cycle, we found a good fit between our results with analytical approximations,
including postseismic relaxation in the rate-strengthening zone, interseismic fault healing, and the linear slip
weakening process of stress at the rupture front. That, and the good agreement between the simulated and
theoretical estimates of nucleation and cohesive zone lengths, demonstrates that our calculations are suffi-
ciently accurate along a fault, which is aligned with the numerical grid. Convergence with respect to important
numerical parameters, including grid size and time step, shows that our method is stable. Interpolation of
viscoplastic viscosity between staggered grid points leads to variations of the results, but the periodic and
characteristic earthquake cycle is not affected and variations become smaller for higher spatial resolution. We
suggest to use harmonic interpolation of viscoplastic viscosity, which is based on the stability of the results
presented here and applications in more complicated setups. One not yet resolved issue is that the generated
seismic waves are reflected back from the model boundaries. Furthermore, resolving the fault zone thickness
will be necessary to accurately resolve earthquakes also along faults in an oblique angle to the numerical grid.

Finally, we demonstrated that the approach is applicable to study the role of viscous deformation in the earth-
quake cycle. We identified and theoretically confirmed the existence of a viscosity threshold below which
earthquakes cannot nucleate. The threshold is shown to depend on the reference strength of RSF (= 𝜇0P) and
the loading strain rate, which is in agreement with previous work on the brittle-ductile transition.
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