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Abstract—Latent Dirichlet Allocation (LDA) has gained much
attention from researchers and is increasingly being applied to
uncover underlying semantic structures from a variety of cor-
pora. However, nearly all researchers use symmetrical Dirichlet
priors, often unaware of the underlying practical implications
that they bear. This research is the first to explore symmetrical
and asymmetrical Dirichlet priors on topic coherence and human
topic ranking when uncovering latent semantic structures from
scientific research articles. More specifically, we examine the
practical effects of several classes of Dirichlet priors on 2000
LDA models created from abstract and full-text research articles.
Our results show that symmetrical or asymmetrical priors on the
document–topic distribution or the topic–word distribution for
full-text data have little effect on topic coherence scores and
human topic ranking. In contrast, asymmetrical priors on the
document–topic distribution for abstract data show a significant
increase in topic coherence scores and improved human topic
ranking compared to a symmetrical prior. Symmetrical or
asymmetrical priors on the topic–word distribution show no real
benefits for both abstract and full-text data.

I. INTRODUCTION

Global research efforts have led to an ever-increasing
amount of scientific output. Combined with the digitalization
of scientific archives, this increase is threatening to overwhelm
today’s scientists trying to keep track of and identify relevant
literature [1]. Consequently, scientists need new tools and
algorithms for browsing these collections in a structured way,
particularly as topics within articles, which are the ideas
contained within articles that can be shared among similar
articles, cannot always be detected through traditional keyword
searches [2]. Probabilistic topic models such as latent Dirichlet
allocation (LDA) [3] and probabilistic latent semantic indexing
(pLSI) [4] are machine-learning algorithms used to automati-
cally uncover underlying semantic structures, such as themes
or topics, in large collections of documents. These underlying
semantic structures can subsequently be used to categorize,
summarize, and annotate large document collections in a
purely unsupervised fashion.

LDA, although the simplest topic model, has received much
attention from machine-learning researchers and has been
adopted and extended in many ways. LDA is a three-level
hierarchical Bayesian model that models documents as discrete
distributions over K latent topics, and every topic is modeled
as a multinomial distribution over the fixed vocabulary. Un-
covering latent thematic structures proceeds through posterior
inference of the latent variables given the observed words.

Apart from its applicability to text, LDA has proven useful to
other types of data, such as image [5], video [6], and audio [7].

As a conjugate prior to the multinomial distribution, LDA
uses a Dirichlet prior to simplify posterior inference. Typically,
these priors and related hyperparameters are set to be symmet-
rical, assuming that a priori all topics have equal probability
to be assigned to a document and all words have an equal
chance to be assigned to a topic. The reasons for choosing
symmetrical priors, compared to asymmetrical priors, are not
explicitly stated and are often implicitly assumed to have
little or no practical effect [8]. However, hyperparameters can
have a significant effect on the achieved accuracy for various
inference techniques, such as Gibbs sampling, variational
Bayes, or collapsed variational Bayes [9]. In fact, inference
methods have relatively similar predictive performance when
the hyperparameters are optimized, thereby explaining away
most differences between them.

Little research has examined the effects of Dirichlet priors
on the quality of generated topics. Among the few, Wallach
et. al. [8] demonstrated that using an asymmetric Dirichlet
prior on the document–topic distribution shows significant
performance gains concerning the likelihood of held-out doc-
uments. However, the likelihood correlates negatively with
human interpretability [10], which is often considered the
gold standard for topic quality. Consequently, researchers have
proposed topic coherence measures [11]–[14], a proxy for
topic quality that shows improved correlation with human
topic ranking data. The underlying idea of topic coherence
is rooted in the distributional hypothesis of linguistics [15]—
namely, words with similar meanings tend to occur in similar
contexts. This paper is the first to explore the practical effects
of several classes of Dirichlet priors on the coherence of
generated topics. More specifically, we study topic coherence
for the combinations of symmetrical and asymmetrical priors
on the document–topic distribution, as well as the topic–word
distribution, when uncovering latent topics with LDA. In addi-
tion, topics are ranked by a domain expert on interpretability,
providing a qualitative analysis of topic quality for different
classes of Dirichlet priors in addition to a quantitative measure.
Such analyses can provide valuable guidance to researchers
utilizing LDA tools such as Mallet and Gensim [16] to
uncover topical structures from scientific articles [17]–[21]
and unknowingly leaving hyperparameters set to default (i.e.
symmetrical).



II. BACKGROUND

A. Latent Dirichlet Allocation

LDA is a generative probabilistic topic model that aims to
uncover latent semantic structures from a set of documents, D.
LDA models documents as discrete distributions over K latent
topics, and every topic is modeled as a discrete distribution
over the fixed vocabulary. As a result, LDA captures the
heterogeneity of ideas prevailing in a document collection
and can be viewed as a mixed membership model [22]. The
underlying latent semantic structure is expressed by topics
β, topic proportions θ, and topic assignments z and includes
hidden variables that LDA posits into the corpus. However,
β, θ, and z are unobserved, and the goal is to determine
them from the observed variables (i.e. the words within the
documents). LDA’s structure allows the observed variables
to interact with structured distributions of a hidden variable
model [23]. Learning the hidden variables can be achieved
by inferring the posterior distribution of the latent variables
given the observed documents. The interaction between latent
and observed variables is manifested in the generative process
behind LDA, the imaginary random process in which we as-
sume the documents come from and are based on probabilistic
sampling rules. The generative process is described as follows:

1) For every topic k = {1, ...,K}
a) draw a distribution over the vocabulary V, βk ∼

Dir(η)

2) For every document d
a) draw a distribution over topics, θd ∼ Dir(α) (i.e.

per-document topic proportion)
b) for each word w within document d

i) draw a topic assignment, zd,n ∼ Mult(θd),
where zd,n ∈ {1, ...,K} (i.e. per-word topic
assignment)

ii) draw a word wd,n ∼ Mult(βzd,n), where
wd,n ∈ {1, ..., V }

Where K is the numbers of topics, V is the vocabulary size,
and α and η are the Dirichlet hyperparameters that affect the
smoothing of topic proportions within documents and words
within topics, respectively. The joint distribution of all the
hidden and observed variables becomes:

p(βK , θD, zD, wD|α, η) =

K∏
k=1

p(βK |η)

D∏
d=1

p(θd|α)

N∏
n=1

p(zd,n|θd)p(wd,n|zd,n, βd,k)

(1)

To learn the distribution of the hidden variables, we invert
the generative process and fit the hidden variables onto the
observed words. The hidden structure is thus described by the
posterior distribution of the latent variables given the observed
words:

⍺ θd zd,n wd,n
N D K

βd,n η

Per-document 
topic proportion

Per-word topic 
assignmentDirichlet parameter

Observed word

Topics

Dirichlet parameter

Fig. 1. LDA represented as a graphical model.

p(βK , θD, zD|wD, α, η) =
p(βK , θD, zD, wD|α, η)

p(wD|α, η)
(2)

p(wD|α, η) =

∫
βK

∫
θD

p(wd|α, η) (3)

However, the posterior is intractable to compute [3] due
to the evidence as expressed in (3). The solution is to
approximate the posterior using inference techniques. Once
inference is complete, the posterior distribution reveals the
latent structure of the documents expressed by topics β, topic
proportions θ, and topic assignments z.

B. Coherence Scores

Measures such as predictive likelihood on held-out data [24]
have been proposed to evaluate the quality of generated
topics. However, such measures correlate negatively with
human interpretability [10], making topics with high predictive
likelihood less coherent from a human perspective. Conse-
quently, researchers have proposed topic coherence measures,
which are a qualitative approach to automatically uncover
the coherence of topics [11]–[14]. Topics are considered to
be coherent if all or most of the words (e.g. a topic’s top-
N words) are related. Topic coherence measures aim to find
measures that correlate highly with human topic evaluation,
such as topic ranking data obtained by, for example, word
and topic intrusion tests [10]. Human topic ranking data
are often considered the gold standard and, consequently, a
measure that correlates well is a good indicator for topic inter-
pretability. A recent study by Röder et. al. [14] systematically
and empirically explored the multitude of topic coherence
measures and their correlation with available human topic
ranking data; new coherence measures obtained by combin-
ing existing elementary elements were also examined. The
researchers’ systematic approach revealed a new unexplored
coherence measure, which they labeled CV , to achieve the
highest correlation with all available human topic ranking data.
This study adopts the CV coherence measure for calculating
topic coherence, with a detailed description of the calculations
behind this measure described below.

The calculation of CV starts with the segmentation of
the topic’s top-N words into pairs of word subsets, Si =
(W ′,W ∗), where W ′ ∈W , W ∗ ∈W , and W consists of the
topic’s top-N most probable words. More formally, a pair S is



defined as S = {(W ′,W ∗)|W ′ = {wi};wi ∈ W ;W ∗ = W}.
For example, if W = {w1, w2, w3}, then one pair might be
Si = (W ′ = w1), (W ∗ = w1, w2, w3). Such segmentation
measures the extent to which the subset W ∗ supports or con-
versely undermines the subset W ′ [25]. The support between
word subsets of a pair Si = (W ′,W ∗) is calculated with
a confirmation measure φ. CV uses an indirect confirmation
measure that considers not only the words within a pair, but
also all words in W . A direct confirmation measure, such
as difference, ratio, and likelihood measure, could place a
low probability on high-support but low-frequency pairs. An
indirect confirmation measure overcomes this by pairing every
subset with W , thereby increasing the semantic support of
supporting pairs. Word subsets are now represented as context
vectors [11], such as ~v(W ′) by pairing them to all words in W ,
as exemplified in (4). The relatedness between context vectors
and words in W is calculated by normalized pointwise mutual
information (NPMI), as shown in (5).

~v(W ′) =

{ ∑
wi∈W ′

NPMI(wi, wj)γ
}
j=1,...,|W |

(4)

NPMI(wi, wj)γ =

 log
P (wi,wj)+ε
P (wi)·P (wj)

− log(P (wi, wj) + ε)

γ

(5)

Given our running example of W = {w1, w2, w3},
we obtain the context vector for w1 as ~w1 =
{NPMI(w1, w1)γ ,NPMI(w1, w2)γ ,NPMI(w1, w3)γ}, with
the constant ε to prevent logarithms of zero, and γ to place
more weight on higher NPMI values.

Probabilities of single words p(wi) or the joint probability
of two words p(wi, wj) can be estimated using a Boolean
document calculation—that is, the number of documents in
which (wi) or (wi, wj) occurs, divided by the total number of
documents. The Boolean document calculation, however, ig-
nores the frequencies and distances of words. CV incorporates
a Boolean sliding window calculation in which a new virtual
document is created for every window of size s when sliding
over the document at a rate of one word token per step. The
probabilities p(wi) and p(wi, wj) are subsequently calculated
from the total number of virtual documents. In contrast to the
Boolean document calculation, the Boolean sliding window
calculation tries to capture the word token proximity to some
degree.

The indirect confirmation measure φSi(~u, ~w) is obtained by
calculating the cosine vector similarity between all context
vectors ~v(W ′) ∈ ~u and ~v(W ∗) ∈ ~w of a pair Si = (W ′,W ∗),
as shown in (6).

φSi
(~u, ~w) =

∑|W |
i=1 ui · wi
‖~u‖2 · ‖~w‖2

(6)

Finally, the arithmetic mean of individual confirmation
measures is used to arrive at an overall topic coherence score.

III. METHODS

A. Dataset

We compare the influence of Dirichlet hyperparameters on
two datasets containing scientific research articles related to
the domain of fisheries. The first dataset, DS1, contains all
full-text research articles published by the journal Canadian
Journal of Fisheries and Aquatic Sciences and the journal
ICES Journal of Marine Science from 1996 to 2016, with
D = 8, 012 documents, vocabulary size of V = 203, 248,
a total of N = 29, 469, 919 words, and on average 3,678
words per document. The second dataset, DS2, contains only
abstract data from the journal Canadian Journal of Fisheries
and Aquatic Sciences, with D = 4, 417, V = 14, 643,
N = 481, 168, and 109 words on average per document.
Both journals are domain-specific (i.e. fisheries) journals, but
employ a wide scope of research directives related to the bi-
ological, ecological, and socio-ecological aspects of fisheries.

The domain of fisheries includes a multitude of knowledge
production approaches, from mono- to transdisciplinary. Biol-
ogists, oceanographers, mathematicians, computer scientists,
anthropologists, sociologists, political scientists, economists,
and researchers from many other disciplines contribute to the
body of knowledge of fisheries, together with non-academic
participants such as decision makers and stakeholders. Within
the domain of fisheries, research into text analytics techniques
has only been applied in a number of cases (e.g. [26]–[28]).

These journals were chosen for several reasons. First, a
fisheries domain expert was available to rank the topics man-
ually. Second, domain-specific journals, in contrast to generic
journals such as Nature, Science, or PLOS ONE, increase
generalizability to other domain-specific journals that are often
the subject of study when uncovering topical structures from
scientific publications, such as research performed within the
field of computational linguistics [29] or neural information
processing systems (NIPS) [20], thereby making our results
applicable to such approaches. Finally, the two journals have
the highest frequency of publication output within the analyzed
period compared to all other fisheries journals.

Words that were part of a standard list of stop words (n =
153), single-occurrence words, and words occurring in ≥ 90%
of the documents (e.g. fish, analysis, research) were removed.
The removal of the top 90% of words serves as an estimate to
prevent frequently occurring words from dominating all topics.
All documents were tokenized and represented as bag-of-word
features. Apart from grouping lowercase and uppercase words,
no normalization method (e.g. stemming or lemmatization)
was applied to reduce inflectional and derivational forms of
words to a common base form. Stemming algorithms can be
overly aggressive and could result in unrecognizable words
that reduce interpretability when labeling the topics. Stemming
might also lead to another problem: It cannot be deduced
whether a stemmed word comes from a verb or a noun [30]. As
human topic ranking was part of our topic quality evaluation,
interpretability was considered to be highly important.



TABLE I
NOTATION OF DIRICHLET CLASSES. α = DOCUMENT-TOPIC

DISTRIBUTION, η = TOPIC-WORD DISTRIBUTION

Abbreviation α η

AA Asymmetric Asymmetric
AS Asymmetric Symmetric
SA Symmetric Asymmetric
SS Symmetric Symmetric

B. Dirichlet Hyperparameters

Hyperparameter α controls the shape of the document–topic
distribution, whereas η controls the shape of the topic–word
distribution. A large α leads to documents containing many
topics, and a large η leads to topics with many words. In
contrast, small values for α and η result in sparse distributions:
documents containing a small number of topics and topics with
a small number of words. In essence, the hyperparameters α
and η have a smoothing effect on the multinomial variables θ
and β, respectively. Four different classes or combinations of
Dirichlet priors are explored, as listed in Table I, in which we
follow a similar notation (i.e. AA, AS, SA, SS) as described
in [8].

Symmetrical priors are often the default setting for LDA
tools such as Mallet and Gensim and assume a priori that each
of the K topics has an equal probability of being assigned
to a document while each word has an equal chance of
being assigned to a topic. For the symmetrical prior α, the
hyperparameter is a vector with the value 1/K, where K is
the number of topics. The symmetrical prior η has a scalar
parameter with the value 1/V , where V is the size of the
vocabulary (full-text data DS1 = 203, 248, and abstract data
DS2 = 14, 643). For the asymmetrical priors, we utilize an
iterative learning process to approximate the hyperparameters
from the data; estimation is required as no exact closed form
solution exists. Estimating hyperparameters can be used to
increase model quality, and their values can reveal specific
properties of the corpus: α for the distinctiveness in underlying
semantic structures and η for the group size of commonly
co-occurring words [31]. Several methods for hyperparameter
estimation exist, such as gradient ascent, fixed point itera-
tion, and Newton-Raphson method. Estimating the Dirichlet
parameter α aims to maximize p(D|α) by maximizing the
log likelihood function of the data D, with log p̄k being the
observed sufficient statistics (the following is analogous to that
of η).

F(α) = log p(D|α) = N logΓ(
∑
k

ak)−N
∑
k

log Γ(ak)

+N
∑
k

(ak − 1) log p̄k

with log p̄k =
1

N
log pi,k

(7)

This study adopts the Newton-Rapson [32] method that pro-
vides a quadratic converging method for parameter estimation.
Given an initial value for α, parameters are iteratively updated
to arrive at an asymmetrical Dirichlet distribution learned from
the data.

C. Creating LDA Models

LDA models were created for four different classes of
priors on α and η, as listed in Table I. For each class of
priors, LDA models were produced by varying the number of
topics parameter K = {1, ..., 50} and repeating the process
five times; one class resulted in 250 LDA models. The same
approach was performed on both datasets: DS1 for abstract
data and DS2 for full-text data. A total of 2000 different LDA
models were created. Given that our datasets focus on fisheries
only, making them homogeneous in nature, a small number of
topics is expected—typically around 10 to 20 given the scope
and aims of the selected journals.

The Python library Gensim [16] was used to create LDA
models. Posterior inference approximation is performed with
online variational Bayes (VB) as proposed by Hoffman et.
al. [33]. Online VB is based on an online stochastic opti-
mization process and produces similar or improved [33] and
faster [34] LDA models compared to its batch variant. The
Newton-Raphson process of iteratively learning asymmetrical
Dirichlet priors can conveniently be incorporated into online
LDA in linear time.

D. Topic Coherence

The coherence of topics was calculated using the CV
coherence measure as described in detail in Section II-B.
The segmentation of the topic’s top-N words and subsequent
calculation of confirmation are calculated for N = 15,
pairing every top 15 word with every other top 15 word and
calculating their semantic support within the corpus. N = 15
was chosen, in contrast to, for example, N = 10 [11], as
no stemming or lemmatization was applied; with N = 10,
several words with the same base form were among the top
10 words (e.g. sample, sampling), so analyzing the top 10
words would effectively mean analyzing fewer than 10 distinct
words. The constant ε for NPMI calculations (see (5)) avoids
logarithms of zero and acts as a smoothing factor. This value
is set to a very small number, 10−12, as proposed by Stevens
et. al. [12]; the coherence measure is highly dependent on
the smoothing constant, and a very small value significantly
reduces the scores for unrelated words compared to, for
example, ε = 1 [35]. The γ constant for NPMI calculations is
set to 1 (see (4)) to place equal weights on all NPMI values.
In contrast to γ = 2 [11], γ = 1 produced a higher correlation
with human topic ranking data [14]. The sliding window s for
the Boolean sliding window calculation is set to 110 [14].

E. Human Topic Ranking

A fisheries domain expert manually ranked the topics by
inspecting the topic’s top 15 most probable words together
with the document titles and a selection of the document
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Fig. 2. A comparison of calculated CV topic coherence for all classes of priors (i.e. AA, AS, SA, SS). Coherence scores represent mean scores from five
runs for K = {1, ..., 50}. DS1 = 8, 012 full text articles and DS2 = 4, 417 abstracts. The comparison of AA to SA, AA to SS, and AS to SS are not
shown as they show a similar trend with the comparison of AS to SA for both datasets.

contents. The domain expert is affiliated with the leading
competence institution for fishery and aquaculture in Norway.
As topic coherence scores are also obtained from the topic’s
top 15 words, the manual ranking of the top 15 words allows
for equal comparison between the two proposed assessments.
The domain expert was asked to provide a label for each
topic that best captures the semantics of the top 15 words.
In addition, the domain expert was asked to rank the top-
ics concerning semantically correct or, conversely, incorrect
words. An incorrect word could be a wrong fisheries domain-
related word that does not match the topic label and, thus, does
not fit with the semantics of the majority of right words. For
example, in cases where most of the topic words resemble the
fish species cod, an incorrect domain-related word might refer
to a different kind of species. Furthermore, incorrect terms
may refer to noise terms (i.e. words that serve a grammatical or
syntactical purpose only). Topics are subsequently ranked by
the number of right terms concerning all of the top 15 words.
High-quality topics have ≥ 90% correct words, medium-
quality topics have ≥ 80% but < 90% correct words, and
low-quality topics have < 80% correct words.

IV. RESULTS

A. Topic Coherence

The coherence scores for the prior classes AA, AS, SA,
and SS obtained from 8,012 full-text research articles (DS1)

and 4,417 abstracts (DS2) are displayed in Fig. 2. The score
represents the mean coherence score from all five runs for each
value of k. A visual inspection of Figs. 2a–2c (full-text data)
shows that similar coherence scores are obtained for AA and
AS (Fig. 2a), with both sharing an asymmetrical prior over α
but a different prior over η. Similar results are obtained when
comparing SA and SS (Fig. 2c), sharing a symmetrical prior
over α and a different prior over η. Thus, varying η, while
maintaining a similar prior over α, shows no real difference
in obtained coherence score. A slightly increased coherence
is obtained for an asymmetrical prior over α (Fig. 2b) for
k > 20. Other combinations explored (e.g. AA–SA, AA–SS,
and AS–SS) show similar results.

Figs. 2d–2f show coherence scores for LDA models ob-
tained from abstract data (DS2). AA–AS (Fig. 2d) show that
different priors over η, while maintaining the same asymmetri-
cal prior over α, result in similar coherence scores. Similarly, a
symmetrical prior over α (Fig. 2f) with different priors over η
shows no real differences in topic coherence. However, a large
difference in coherence is obtained when varying the priors
over α (Fig. 2e), with an asymmetrical α showing improved
coherence over a symmetrical α. For DS2, priors over α, in
contrast to results from DS1, show higher coherence scores for
all values of k. Moreover, varying priors over η for DS1 and
DS2 have a negligible effect on obtained coherence scores.

Table II shows the coherence score values obtained from



TABLE II
COHERENCE SCORE VALUES AND ONE-WAY ANOVA TEST STATISTICS FOR DS1 FOR K = {2, ..., 50}. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

Num. Topics Mean Std. dev. ANOVA Statistics

K X̄AA X̄AS X̄SA X̄SS sAA sAS sSA sSS f p

A
A
−
A
S

A
A
−
S
A

A
A
−
S
S

A
S
−
S
A

A
S
−
S
S

S
A
−
S
S

2 0.580 0.583 0.516 0.571 0.037 0.021 0.055 0.004 3.237 0.0501
3 0.559 0.570 0.564 0.564 0.026 0.020 0.021 0.035 0.108 0.9543
4 0.543 0.547 0.565 0.572 0.014 0.016 0.020 0.020 2.554 0.0918
5 0.552 0.561 0.559 0.578 0.013 0.010 0.025 0.013 1.788 0.1899
6 0.539 0.562 0.556 0.570 0.014 0.011 0.021 0.007 3.298 0.0475∗ ** **
7 0.547 0.563 0.565 0.565 0.010 0.017 0.013 0.018 1.308 0.3063
8 0.555 0.569 0.569 0.565 0.025 0.009 0.012 0.012 0.682 0.5761
9 0.554 0.567 0.569 0.571 0.025 0.019 0.018 0.018 0.571 0.6419
10 0.554 0.560 0.566 0.569 0.011 0.017 0.008 0.018 0.878 0.4732
11 0.562 0.567 0.569 0.571 0.012 0.009 0.022 0.016 0.242 0.8660
12 0.572 0.566 0.567 0.571 0.006 0.005 0.005 0.021 0.270 0.8462
13 0.566 0.571 0.571 0.574 0.014 0.012 0.013 0.005 0.334 0.8006
14 0.565 0.570 0.577 0.573 0.014 0.017 0.007 0.010 0.670 0.5828
15 0.569 0.588 0.581 0.577 0.014 0.016 0.012 0.013 1.309 0.3061
16 0.577 0.579 0.597 0.587 0.011 0.017 0.014 0.011 1.816 0.1848
17 0.585 0.583 0.585 0.593 0.008 0.010 0.008 0.012 0.926 0.4508
18 0.583 0.587 0.581 0.581 0.015 0.009 0.005 0.006 0.359 0.7837
19 0.586 0.576 0.578 0.591 0.010 0.009 0.010 0.014 1.639 0.2200
20 0.587 0.588 0.584 0.591 0.010 0.017 0.008 0.012 0.216 0.8840
21 0.580 0.587 0.586 0.586 0.004 0.012 0.005 0.010 0.659 0.5890
22 0.594 0.581 0.588 0.598 0.010 0.010 0.007 0.020 1.385 0.2834
23 0.589 0.595 0.579 0.583 0.004 0.011 0.012 0.009 2.377 0.1082
24 0.592 0.599 0.581 0.582 0.008 0.019 0.009 0.012 1.730 0.2010
25 0.610 0.595 0.583 0.584 0.009 0.011 0.011 0.007 6.739 0.0038∗∗ ** **
26 0.604 0.599 0.578 0.592 0.008 0.015 0.014 0.013 3.162 0.0534
27 0.596 0.603 0.594 0.588 0.009 0.013 0.008 0.010 1.471 0.2601
28 0.595 0.597 0.586 0.592 0.008 0.008 0.009 0.015 0.812 0.5056
29 0.601 0.601 0.588 0.596 0.008 0.005 0.014 0.017 1.038 0.4024
30 0.605 0.605 0.582 0.595 0.012 0.007 0.007 0.006 6.342 0.0049∗∗ ** **
31 0.606 0.608 0.581 0.596 0.007 0.011 0.004 0.013 7.172 0.0029∗∗ *** **
32 0.597 0.604 0.583 0.588 0.010 0.004 0.005 0.009 6.359 0.0048∗∗ ** *** **
33 0.606 0.607 0.592 0.603 0.006 0.013 0.010 0.017 1.237 0.3290
34 0.606 0.611 0.587 0.584 0.007 0.009 0.009 0.016 5.993 0.0061∗∗ ** ** ** **
35 0.605 0.603 0.594 0.594 0.014 0.010 0.005 0.011 1.269 0.3185
36 0.602 0.596 0.596 0.582 0.007 0.012 0.004 0.006 5.398 0.0093∗∗ **
37 0.604 0.601 0.589 0.596 0.005 0.011 0.010 0.013 1.864 0.1764
38 0.600 0.607 0.586 0.600 0.004 0.004 0.016 0.011 2.937 0.0650
39 0.605 0.608 0.596 0.602 0.004 0.008 0.013 0.006 1.529 0.2453
40 0.612 0.610 0.595 0.596 0.009 0.013 0.009 0.010 3.006 0.0612
41 0.608 0.605 0.587 0.589 0.007 0.008 0.007 0.013 5.712 0.0074∗∗ ** ** **
42 0.605 0.604 0.591 0.596 0.005 0.010 0.015 0.007 1.605 0.2274
43 0.605 0.605 0.585 0.594 0.015 0.010 0.006 0.014 2.664 0.0831
44 0.613 0.614 0.594 0.600 0.009 0.010 0.007 0.011 4.600 0.0167∗ ** **
45 0.611 0.608 0.583 0.595 0.011 0.009 0.009 0.017 4.402 0.0194∗ ** **
46 0.608 0.602 0.589 0.599 0.009 0.009 0.009 0.007 3.502 0.0400∗ **
47 0.606 0.615 0.594 0.598 0.004 0.006 0.011 0.006 6.280 0.0051∗∗ ** ** ** **
48 0.606 0.605 0.588 0.597 0.007 0.007 0.007 0.008 5.384 0.0094∗∗ ** **
49 0.619 0.608 0.590 0.599 0.009 0.008 0.006 0.005 12.376 0.0002∗∗∗ *** ** **
50 0.609 0.611 0.589 0.594 0.006 0.007 0.010 0.010 6.225 0.0053∗∗ ** ** ** **

DS1 for k = {2, ..., 50}, with X̄ representing the mean
coherence over 5 runs, s the standard deviation, and f and
p the one-way ANOVA F-value and p-value, respectively. The
last six columns show the post hoc significance thresholds for
all six comparison of priors.

Table II reveals that significant differences are obtained
starting from k ≥ 25, although this does not hold for every
k ≥ 25. For k < 25, except for k = 6, no significant differ-
ences are obtained for combinations of priors; asymmetrical
or symmetrical priors over α and η have no significant effect
on topic coherence. However, the coherence score values for

k < 25 show slightly higher values (shown in bold) for
a symmetrical prior over α compared to an asymmetrical
prior. In contrast, for k ≥ 25, an asymmetrical prior over
α shows higher coherence values compared to a symmetrical
prior. For all k, where p is significant, SA–SS show no
significance and AA–AS show significance only for k = 6 and
k = 47; indicating the marginal importance of symmetrical or
asymmetrical priors over η.

We omitted a similar table for coherence score values ob-
tained from DS2 as, for all k > 2, the difference is significant
(p < 0.001). These significant differences are caused by using



TABLE III
HUMAN TOPIC RANKING FOR DS2 (ABSTRACT) ON k = 17 LDA MODEL

Class High-quality Medium-quality Low-quality

AA 15/17 (88%) 2/17 (12%) 0/17 (0%)
AS 15/17 (88%) 2/17 (12%) 0/17 (0%)
SA 12/17 (70.5%) 4/17 (23.6%) 1/17 (5.9%)
SS 11/17 (64.7%) 6/17 (35.3%) 0/17 (0%)

an asymmetrical prior over α compared to a symmetrical prior.
Where DS1 shows mixed results between different priors over
α, for DS2, every combination of asymmetrical priors over α
outperforms symmetrical priors over α.

B. Human Topic Ranking

The results of the fisheries domain expert’s human topic
ranking are shown in Table III. Human topic ranking was
performed on DS2 for k = 17 LDA models, which is the k-
value that shows the best coherence score (via elbow method)
and, simultaneously, the k-value with the largest difference
amongst all prior classes (f = 41.06). A similar pattern as
found for topic coherence scores can be identified (Figs. 2d–
2f): AA and AS with an asymmetrical prior over α result in
more high-quality (88%) topics compared to SA and SS with
a symmetrical prior over α (70.5% and 64.7% high-quality
topics). Both AA and AS perform similarly, indicating that
priors over η have no effect on human topic ranking. Further-
more, SA and SS show similar lower human topic ranking,
with three topics differently classified: SS has 77.5% of high-
quality topics compared to 64.7% for SS, but simultaneously
one low-quality topic. A two-dimensional inter-topic distance
map for DS2 with k = 17 is displayed in Fig. 3 for all classes
of priors. This two-dimensional representation is obtained by
computing the distance between topics [36] and applying mul-
tidimensional scaling [37]. It displays the similarity between
topics concerning their probability distribution over words.

We omitted human topic ranking results for DS1 as they
show an equal number of high-quality and medium-quality
topics for all classes of priors and for several arbitrarily
chosen k-values (k < 25). These results are in line with
topic coherence scores that show similar scores for all prior
classes (see Figs. 2a–2c). An inspection of k ≥ 25 LDA
models (the point where significant differences between prior
classes start) shows an increasing number of incorrect terms
for LDA models with a symmetrical prior over α (SA and
SS), compared to models with an asymmetrical prior over α.

V. DISCUSSION AND CONCLUSION

Our results show that an asymmetrical prior over α indi-
cates increased topic coherence and topic ranking compared
to a symmetrical prior. However, this particularly holds for
the DS2 dataset, the collection of 4,417 abstracts, and not
necessarily for the DS1 dataset, the collection of 8,012 full-
text documents. Thus, selecting a different prior on α has
large practical implications for datasets containing a smaller
vocabulary size and being homogenous in nature. Symmetrical

or asymmetrical priors over η show no real benefits regarding
topic coherence and human topic ranking.

The results on DS2 are in line with research performed by
Wallach et. al. [8], which found that an asymmetrical prior
over α shows improved likelihood of held-out data and that
different priors over η show no real differences. However,
our results on DS1, the full-text dataset with significantly
higher vocabulary size and an average number of words per
document, found no difference for combinations of priors over
α and η, making topic coherence and manual topic ranking less
influenced by full-text data.

A symmetrical prior over α assumes that all topics have
an equal probability of being assigned to a document. Such
an assumption ignores that certain topics are more prominent
in a document collection and, consequently, would logically
have a higher probability to be assigned to a document.
Conversely, specific topics are less common and, thus, not
appropriately reflected with a symmetrical prior distribution.
Logically speaking, an asymmetrical prior over α would
capture this intuition and would, therefore, be the preferred
choice. We have empirically shown that this intuition indeed
results in significantly higher topic coherence and a better
topic ranking for DS2 and DS1 for k ≥ 25. For DS1 with
k < 25, the differences are not significant, although human
topic ranking shows slightly better topics for the classes with
an asymmetrical prior over α.

Concerning priors over η, we naturally want topic–word
distributions to be different from each other so as to avoid
conflicts between them. A symmetrical prior over η will reflect
the power-law usage of words (i.e. some words occur in
all topics) while simultaneously resolving ambiguity between
topics with a few distinct word co-occurrences [8]. Therefore,
symmetrical priors over η are the preferred choice. However,
our empirical results indicate no real benefits when varying
priors on η; the symmetrical prior shows slight, but still very
marginal, overall improved coherence and ranking results for
both datasets.

Human topic ranking was based on the presence of incorrect
terms being part of the topic’s 15 most probable words. A
closer look into the reasons why topics are ranked lower
reveals that all topics contain correct domain-related terms,
but are only ranked lower due to the presence of so-called
noise terms (e.g. used, using, two, among, total, higher, within,
great, large, high, significantly). Lower-ranked topics contain
a higher number of such terms and, as such, are classified
as medium- or low-quality topics. Interestingly, none of the
topics have incorrect domain-related terms that could refer
to, for example, the biological, ecological, socio-ecological,
or social aspects of fisheries. Topics uncovered from abstract
data, combined with a symmetrical prior over α, are more
prone to contain such noise terms. For full-text data, all classes
of priors show an equal but low number of noise words.

A growing amount of research is utilizing LDA to uncover
latent semantic structures from scientific research articles as
a mean to discover topical trends and developments within
a particular research area [17]–[21]. These approaches are
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Fig. 3. A two-dimensional inter-topic distance map (via multidimensional scaling) for all classes of priors for DS2 with k = 17. The surface of the node
indicates the overall topic prevalence within the corpus. Color coding is used to indicate human topic ranking classification: white = high-quality, grey =
medium-quality, and black = low-quality.

often characterized by (i) exploring one or several domain-
specific journals, (ii) using abstract data, and (iii) using an
open source tool such as Mallet or Gensim to perform LDA.
Our approach touches upon all three characteristics; thus,
we would recommend an asymmetrical prior over α and a
symmetrical prior over η for optimal topic coherence and topic
ranking.

Fig. 3 shows a visual representation of 17 latent topics for
DS2. We identify several overlapping topics (e.g. otoliths,
population genetics) and several semantically related topics
(e.g. population dynamics and population genetics; lake nu-
trients and lake waters). At the same time, we find several
topics occurring in one of the prior classes that are absent in
other prior classes. For instance, fish diseases and parasites
occurs only in AA (Fig. 3a). One reason might be that
manual topic labeling is limited by the subjectivity inherent
in human interpretation [38]; indeed, an analysis of the topics
by another domain expert could yield contradictory results.

Another reason might be due to the probabilistic nature of
LDA, where differences are merely a result of differences
in sampling. Although such analysis is outside the scope of
this research, it is an interesting directive for future research.
Furthermore, the research performed by Wallach et. al. was
applied on corpora related to patent, newsgroup and news data,
whereas this paper analyzed scientific research articles. Future
research might focus on different types of scientific articles,
more broadly oriented journals, or other unexplored forms of
textual data to gain more insights into the practical effects
Dirichlet priors have on LDA’s latent topics.

ACKNOWLEDGMENT

This research was funded by the project SAF21 - Social
Science Aspects of Fisheries for the 21st Century. SAF21
is a project financed under the EU Horizon 2020 Marie
Skłodowska-Curie (MSC) ITN - ETN program (project
642080).



REFERENCES

[1] P. O. Larsen and M. von Ins, “The rate of growth in scientific publication
and the decline in coverage provided by Science Citation Index,”
Scientometrics, vol. 84, no. 3, pp. 575–603, sep 2010.

[2] A. Srivastava and M. Sahami, Text mining: Classification, clustering,
and applications. CRC Press, 2009.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[4] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’99. New York, New
York, USA: ACM Press, 1999, pp. 50–57.

[5] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman, “Learning object
categories from Google’s image search,” in Tenth IEEE Int. Conf.
Comput. Vis. Vol. 1, 2005, pp. 1816—-1823 Vol. 2.

[6] R. Mehran, A. Oyama, and M. Shah, “Abnormal crowd behavior detec-
tion using social force model,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, no. 1. IEEE, jun 2009, pp. 935–942.

[7] S. Kim, S. Narayanan, and S. Sundaram, “Acoustic topic model for audio
information retrieval,” in IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, 2009, pp. 37–40.

[8] H. M. Wallach, D. Mimno, and A. Mccallum, “Rethinking LDA : Why
Priors Matter,” in Advances in Neural Information Processing Systems
22, vol. 22, no. 2, 2009, pp. 1973–1981.

[9] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh, “On Smoothing
and Inference for Topic Models,” Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, no. Ml, pp. 27–
34, may 2012.

[10] J. Chang, S. Gerrish, C. Wang, and D. M. Blei, “Reading Tea Leaves:
How Humans Interpret Topic Models,” in Advances in Neural Informa-
tion Processing Systems 22, 2009, pp. 288–296.

[11] N. Aletras and M. Stevenson, “Evaluating topic coherence using distri-
butional semantics,” in Proceedings of the 10th International Conference
on Computational Semantics (IWCS 2013). Association for Computa-
tional Linguistics, 2013, pp. 13–22.

[12] K. Stevens, P. Kegelmeyer, D. Andrzejewski, and D. Buttler, “Exploring
Topic Coherence over Many Models and Many Topics,” in Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, no. July.
Association for Computational Linguistics, 2012, pp. 952–961.

[13] D. Newman, J. Lau, K. Grieser, and T. Baldwin, “Automatic evaluation
of topic coherence,” in Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association
for Computational Linguistics, no. June. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2010, pp. 100–108.
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