
Recognizing Hyperelliptic Graphs
in Polynomial Time

Jelco M. Bodewes1, Hans L. Bodlaender1,3?,
Gunther Cornelissen2, and Marieke van der Wegen1,2??

1 Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

2 Mathematical Institute, Utrecht University,
P.O. Box 80.010, 3508 TA Utrecht, The Netherlands

3 Department of Mathematics and Computer Science, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. Based on analogies between algebraic curves and graphs,
Baker and Norine introduced divisorial gonality, a graph parameter for
multigraphs related to treewidth, multigraph algorithms and number
theory. We consider so-called hyperelliptic graphs (multigraphs of gonal-
ity 2) and provide a safe and complete set of reduction rules for such
multigraphs, showing that we can recognize hyperelliptic graphs in time
O(n logn+m), where n is the number of vertices and m the number of
edges of the multigraph. A corollary is that we can decide with the same
runtime whether a two-edge-connected graph G admits an involution σ
such that the quotient G/〈σ〉 is a tree.

1 Introduction

Motivation In this paper, we consider a graph theoretic problem that finds its
origin in algebraic geometry, and can be formulated in terms of a specific type
of graph search, namely monotone chip firing. The case with two chips is of
special interest in the application, and we show that we can decide this case in
O(n log n+m) time on a multigraph with n vertices and m edges.

In algebraic geometry, a special role is played by so-called hyperelliptic curves;
these are smooth projective algebraic curves possessing an involution, i.e. an
automorphism of order two, for which the quotient is the projective line. Such
curves can be described by an affine equation y2 = f(x), for some one-variable
polynomial f(x) without repeated roots. They are widely studied and used, for
example in the study of moduli spaces of abelian surfaces, invariants of binary
quadratic forms, diophantine problems (finding integer or rational solutions to
such equations), and in so-called “hyperelliptic curve cryptography” (see, e.g.,
[15] and [28]).

? This author was partially supported by the NETWORKS project, funded by the
Netherlands Organisation for Scientific Research.

?? Corresponding author. M.vanderWegen@uu.nl

Recognizing hyperelliptic curves is an important, decidable problem in algo-
rithmic algebraic geometry; an algorithm has been implemented when the curve
is given by some set of polynomial equations, e.g., in the computer algebra pack-
age Magma [13]. No exact runtime analysis is available, but, the method being
dependent on Gröbner basis computations, worst-case performance is expected
to be more than exponential in the input size.

In recent work of Baker and Norine [5], the notion of a “hyperelliptic graph”
was introduced, based on an analogy between algebraic curves and multigraphs.
We show that the recognition problem for hyperelliptic graphs can be solved in
quasilinear time. This can be applied to the recognition of certain hyperelliptic
curves, since if an algebraic curve has a non-hyperelliptic stable reduction graph,
the curve itself cannot be hyperelliptic (see [4, 3.5]).

Divisorial gonality Hyperelliptic graphs are graphs with divisorial gonality at
most two. The notion of divisorial gonality has several equivalent definitions;
intuitively, we use a chip firing game: we have a graph and some initial config-
uration that assigns a non-negative number of “chips” to each vertex. We can
fire a subset of vertices by moving a chip along each outgoing edge of the subset,
if every vertex has sufficiently many chips. We say that an initial configuration
reaches a vertex if a sequence of firings results in that vertex having at least one
chip. The divisorial gonality of a graph is the minimum number of chips needed
for an initial configuration to reach each vertex of the graph. It actually suffices
to consider a ‘monotone’ variant of the chip firing procedure, in which the se-
quence of subsets that are fired to reach a vertex is increasing; this is similar to
several other graph search games, where the optimal number of searchers does
not increase when we require the search to be monotone, see e.g., [7,25].

Known results The termination of similar Mancala-style games was discussed
by Björner, Lovász and Shor [8]. In the guise of “abelian sandpile model”, they
play an important role in the study of self-organized criticality in statistical
physics [3,19]. The chip firing game introduced by Baker and Norine is relevant
for classical combinatorial problems about graphs, relating to spanning trees
[14], the uniqueness of graph involutions [5], and potential theory on electrical
network graphs [6]. A polynomial bound on the minimal number of required
firings to terminate the Björner, Lovász and Shor-game was given by Tardos
[30].

We study the divisorial gonality of graphs from the point of view of com-
putational complexity. The analogous problem of computing the gonality of an
algebraic curve is decidable [29].

The divisorial gonality of a graph G is related to treewidth, tw(G), by an
inequality [21]

dgon(G) ≥ tw(G). (1)

Since treewidth is insensitive to the presence of multiple edges while divisorial
gonality is not, the parameters are different; actually, they are not “tied” in the

2

sense of Norin [27]: there exists G with tw(G) = 2 but dgon(G) arbitrarily high
[24]. We know that treewidth is FPT, and that computing divisorial gonality is
NP-hard and in XP [22], [20, Section 5].

Our results Our main result is the following.

Theorem A (=Theorem 1). There is an algorithm that decides whether a
graph G is hyperelliptic in O(n log n+m) time.

To obtain our algorithm, we provide a safe and complete set of reduction rules.
Similar to recognition algorithms for graphs of treewidth 2 or 3 (see [1]), in our
algorithm the rules are applied to the graph until no further rule application is
possible; we decide positively if and only if this results in the empty graph. One
novelty is that some of the rules introduce constraints on pairs of vertices, which
we model by colored edges. To deal with the fact that some of the rules are not
local, we use a data structure that allows us to find an efficient way of applying
these rules, leading to the stated running time. Omitted proofs and details can
be found in [9], in which we also consider other variants of gonality.

The computational complexity of the problem “Does a graph admit a non-
trivial automorphism” (solvable in quasi-polynomial time [2]) is very sensitive
to alterations of the question. For example, deciding whether a graph has a fixed
point free automorphism of order two is NP-complete (see Lubiw [26]). Our main
result implies the following result as corollary.

Corollary A (=Corollary 1). There is an algorithm that, given a two-edge-
connected graph G, decides in O(n log n+m) time whether G admits an involu-
tion σ such that the quotient G/〈σ〉 is a tree.

2 Preliminaries

2.1 Definitions

Whenever we write “graph” we refer to a multigraph G = (V,E), where V is
the set of vertices and E is a multiset of edges.

There is a number of different definitions of divisorial gonality. The one we use
is shown to be equivalent to the chip firing procedure without the ‘monotonicity’
property by [20]. The definition given here allows us to prove correctness of the
reduction rules in our algorithm, and avoids more heavy algebraic terminology.

A divisor D in a graph G = (V,E) is a mapping D : V → Z (a divisor
represents a distribution of chips, see Section 1). We call a divisor D effective
(notation D ≥ 0) if D(v) ≥ 0 for all v ∈ V . The degree, deg(D), of a divisor D
equals

∑
v∈V D(v).

Given an effective divisor D and a set of vertices W ⊆ V , we call W valid for
D, if for each v ∈W , D(v) ≥ |E(v, V \W)| (i.e., v has at least as many chips as
it has neighbors in V \W). If W is valid for D, we can fire W starting from D,
this yields another divisor: for v ∈W , D(v) is decreased by the number of edges
from v to V \W , and for x ∈ V \W , D(x) is increased by the number of edges

3

from W to x. Intuitively, firing W means moving a chip along all edges from W
to V \W . Note that the divisor obtained by firing is effective as well.

We call two effective divisors D and D′ equivalent, in notation D ∼ D′, if
there is a sequence of subsets A1 ⊆ A2 ⊆ . . . ⊆ Ak−1 ⊂ Ak = V , such that for
all i the set Ai can be fired when A1, . . . , Ai−1 are fired starting from D, and the
divisor obtained by firing A1, . . . , Ak is D′. This defines an equivalence relation
on the set of effective divisors [20, Chapter 3]. For two equivalent effective divisors
D and D′, we call the difference of functions D′ − D the transformation from
D to D′, and the sequence A1 ⊆ A2 ⊆ . . . ⊆ Ak−1 ⊂ Ak = V the level set
decomposition of this transformation. This level set decomposition is unique [20,
Remark 3.8].

We say that an effective divisor D reaches a vertex v, if there exists a D′

such that D ∼ D′ and D′(v) ≥ 1. The divisorial gonality, dgon(G), of a graph G
is the minimum degree of an effective divisor D that reaches each vertex of G.

Example 1. Let T be a tree. Then T has divisorial gonality 1. Let v be a vertex
of T and consider the divisor D with D(v) = 1 and D(x) = 0 for all x 6= v. This
divisor has degree 1 and reaches each vertex of T : Let w be a vertex of T . Let
vu be the first edge on the unique path from v to w. Let Av be the component
that contains v of the cut induced by vu. Firing Av yields the divisor D(u) = 1
and D(x) = 0 for all x 6= u, thus we moved a chip from v to u. Repeating this
process yields a divisor with a chip on w.

Example 2. Let G be a cycle, then G has divisorial gonality 2. First note that
every set of vertices of G induces a cut of size at least 2. Hence for all degree
1 divisors, there are no valid sets. Hence a degree 1 divisor does not reach
every vertex. To see that there is a divisor with 2 chips that reaches every
vertex, number the vertices v1, v2, . . . , vn and consider the divisor D with a
chip on v1 and a chip on vn. To reach a vertex vk with k ≤ n

2 , fire the set
{vi | 1 ≤ i ≤ j} ∪ {vi | n− j + 1 ≤ i ≤ n} for j = 1, 2, . . . , i− 1. Analogous for a
vertex vk with n

2 ≤ k ≤ n.

Example 3. Consider the graph G in Figure 1. This graph has treewidth 1 and
divisorial gonality 3. A divisor that reaches all vertices either has a chip on u
and 2 more chips to reach both v and w, or has at least 3 chips to move along
the three edges from v to u. See also [16, Table 3].

u v w

Fig. 1. Graph with divisorial gonality 3 and treewidth 1 (see Example 3).

4

Example 4. Consider the graph G in Figure 2. This graph has treewidth 2 and
divisorial gonality 3. A divisor that reaches all vertices needs two chips to traverse
the left cycle and 2 chips to traverse the right cycle. But we cannot move two
chips from u to v, so these two chips on the left side cannot be the same as the
two on the right side. Hence we need at least three chips.

u v

Fig. 2. Graph with divisorial gonality 3 and treewidth 2 (see Example 4).

2.2 Constraints

General Constraints In the process of applying reduction rules to a graph, we
will need to keep track of certain restrictions otherwise lost by removal of vertices
and edges. We will maintain these restrictions in the form of a set of pairs of
vertices, called constraints, and then extend the notion of divisorial gonality to
graphs with constraints.

Definition 1. Given a graph G = (V,E), a constraint on G is an unordered
pair of vertices v, w ∈ V , usually denoted as (v, w), where v and w can be the
same vertex.

Constraints are, like edges, pairs of vertices, so we can consider them as an
extra set of edges. We will use C to represent this set.

Checking whether a graph has gonality two or lower is the same as checking
whether there exists a divisor on our graph with degree two that reaches all
vertices. Our constraints place restrictions on what divisors we consider, as well
as what sets we are allowed to fire.

Definition 2. Given a set of constraints C, and two equivalent effective divisors
D and D′. We call D and D′ C-equivalent (in notation D ∼C D

′), if for every
set Ai of the level set decomposition of D′ −D and every constraint (u, v) ∈ C,
either u, v ∈ Ai or u, v /∈ Ai.

Note that this defines a finer equivalence relation. Now we can extend the defini-
tion of reach using C-equivalence: a divisor D reaches a vertex v, if there exists
a D′ such that D ∼C D

′ and D′(v) ≥ 1.

Definition 3. Given a set of constraints C. A divisor D satisfies C if for every
constraint (u, v) ∈ C there is a divisor D′ ∼C D such that D′(u) ≥ 1 and
D′(v) ≥ 1 if u 6= v and D′(u) ≥ 2 if u = v.

5

Definition 4. Given a graph G = (V,E) with constraints C, we call a divisor D
suitable if it is effective, has degree 2, reaches all vertices using the C-equivalence
relation and satisfies all constraints in C.

Definition 5. We will say that a graph with constraints has divisorial gonality 2
or lower if it admits a suitable divisor. Note that for a graph with no constraints
this is equivalent to the usual definition of divisorial gonality 2 or lower. We will
denote the class of graphs with constraints that have divisorial gonality two or
lower as G2.

Constraints & Cycles It will be useful to determine when constraints are non-
conflicting locally:

Definition 6. Let C be a cycle in a graph G with constraints C. Let CC ⊆ C be
the subset of the constraints that contain a vertex in C. We call the constraints
CC compatible if the following hold.

(i) If (v, w) ∈ CC then both v ∈ C and w ∈ C.
(ii) For each (v, w) ∈ CC and (v′, w′) ∈ CC , the divisor given by assigning a chip

to v and w must be equivalent to the one given by assigning a chip to v′ and
w′ on the subgraph consisting of C.

2.3 Reduction Rules, Safeness and Completeness

A reduction rule is a rule that can be applied to a graph to produce a smaller
graph. Our final goal with the set of reduction rules is to show that it can be used
to characterize the graphs in a certain class, that of the graphs with divisorial
gonality two, by reduction to the empty graph. For this we need to make sure
that membership of the class is invariant under our reduction rules.

Definition 7. Let U be a rule and S be a set of reduction rules. Let A be a
class of graphs. We call U safe for A if for all graphs G and H such that H can
be produced by applying rule U to G it follows that H ∈ A ⇐⇒ G ∈ A. We call
S safe for A if every rule in S is safe for A.

Apart from our rule sets being safe, we also need to know that, if a graph is
in our class, it is always possible to reduce it to the empty graph.

Definition 8. Let S be a set of reduction rules and A be a class of graphs. We
call S complete for A if for any graph G ∈ A it holds that G can be reduced to
the empty graph by applying some finite sequence of rules from S.

For any rule set that is both complete and safe for A the rule set is suitable
for characterizing A: a graph G can be reduced to the empty graph if and only
if G is in A. Additionally it is not possible to make a wrong choice early on that
would prevent the graph from being reduced to the empty graph: if G ∈ A and
G can be reduced to H, then H can be reduced to the empty graph.

These properties ensure that we can use the set of reduction rules to create
an algorithm for recognition of the graph class.

6

3 Reduction Rules for Divisorial Gonality

We will now show that there exists a set of reduction rules that is safe and
complete for the class of graphs with divisorial gonality at most two. We will
assume that our graph is loopless and connected. Loops can simply be removed
from the graph since they never impact the divisorial gonality and a disconnected
graph has divisorial gonality two or lower exactly when it consists of two trees,
which can easily be checked in linear time. All reduction rules below maintain
connectedness.

The Reduction Rules

We are given a connected loopless graph G = (V,E) and a yet empty set of
constraints C. The following rules are illustrated in Figure 3, where a constraint
is represented by a red dashed edge.

We start by covering the two possible end states of our reduction:

Rule E1. Given a graph consisting of exactly one vertex, remove that vertex.

Rule E2. Given a graph consisting of exactly two vertices, u and v, connected
to each other by a single edge, and C = {(u, v)}, remove both vertices.

Next are the reduction rules to get rid of vertices with degree one. These
rules are split by what constraint applies to the vertex:

Rule T1. Let v be a leaf, such that v has no constraints in C. Remove v.

Rule T2. Let v be a leaf, such that its only constraint in C is (v, v). Let u be its
neighbor. Remove v and add the constraint (u, u) if it does not exist yet.

Rule T3. Let v1 be a leaf, such that its only constraint in C is (v1, v2), where
v2 is another leaf, whose only constraint is also (v1, v2). Let u1 be the neighbor
of v1 and u2 be the neighbor of v2 (these can be the same vertex). Then remove
v1 and v2 and add the constraint (u1, u2) if it does not exist yet.

Finally we have a set of reduction rules that apply to cycles containing at
most 2 vertices with degree greater than two. The rules themselves are split by
the number of vertices with degree greater than two.

Rule C1. Let C be a cycle of vertices with degree two. If the set of constraints
CC on C is compatible, then replace C by a new single vertex.

Rule C2. Let C be a cycle with one vertex v with degree greater than two. If the
set of constraints CC on C plus the constraint (v, v) is compatible, then remove
all vertices except v in C and add the constraint (v, v) if it does not exist yet.

7

Rule E1 Rule E2

Rule T1 Rule T2

Rule T3

Rule C1 Rule C2

Rule C3

Fig. 3. The reduction rules for divisorial gonality

Rule C3. Let C be a cycle with two vertices v and u of degree greater than two.
If there exists a path from v to u that does not share any edges with C and the
set of constraints CC on C plus the constraint (v, u) is compatible, then remove
all vertices of C except v and u, remove all edges in C and add the constraint
(v, u) if it does not exist yet.

We denote by R the set consisting of all the above reduction rules: E1, E2,
T1, T2, T3, C1, C2 and C3.

In the rest of this paragraph we will present safeness proofs for some of the
rules and the more interesting parts of the proof of completeness. Details are
found in [9, Section 4] .

Proposition 1 (Safeness). The set of rules R is safe for G2.

Proof. We need to proof that all rules are safe, we will show this for rules T3

and C3 below, for the other rules, see [9, Lemma 4.6, 4.7, 4.9, 4.10].
Claim 1: Rule T3 is safe. Let v1 and v2 be the vertices with degree one, such
that their only constraint is (v1, v2) and let u1 and u2 be their (possibly equal)
neighbors. We first assume that H ∈ G2, then there is a suitable divisor on H

8

with one chip on u1 and another chip on u2. Consider this divisor on G. Then
by firing V (G) \ {v1, v2} we can move a chip to v1 and v2. For every vertex
v ∈ V (G) \ {v1, v2} there is a sequence A0, A1, . . . , Ak ⊆ V (H) such that firing
this sequence yields a divisor D′ with a chip on v. Now add vi to every set Aj

that contains ui. Firing these sets on G starting from D results in D′ on G,
so D reaches v. Moreover, every set we fired contains either both v1 and v2, or
neither. We conclude that D is also suitable on G.

Assume that G ∈ G2, then the divisor on G with one chip on v1 and v2 is
suitable. By firing {v1, v2} we can create a divisor with a chip on u1 and u2 (or
two on u1 if u1 = u2). It follows that this divisor is suitable when considered on
H.
Claim 2: Rule C3 is safe. Let C be our cycle and v, w the two vertices with
degree greater than two in C. We first assume that H ∈ G2. From this it follows
that the divisor on H with a chip on v and a chip on w is suitable. We know that
in G all constraints on C plus (v, w) are compatible. From this we see that if we
consider the divisor on G it will be able to satisfy all constraints on C. It is also
clear that from v and w we can move chips along either of the two arcs between
v and w in C. Therefore the divisor is also suitable on G and thus G ∈ G2.

Let us now assume that instead G ∈ G2. Clearly there exists a suitable divisor
D on G that has a chip on v. We will show that there is a suitable divisor that
has a chip on both v and w: Assume that D(w) = 0, then there should be a
suitable divisor D′ with D′(w) = 1 and D ∼C D′. This implies there is a level
set decomposition A0, . . . , Ak of the transformation from D to D′.

Let Ai be the first subset that contains w and Di the divisor before firing Ai.
Note that we have Di(a) ≥ |E(a, V (G) \ Ai)| for all a ∈ Ai, since all firing sets
are valid. Since deg(Di) = 2 it follows that

∑
a∈Ai

|E(a, V (G) \ Ai)| ≤ 2. This
is the same as the cut induced by Ai having size two or lower. The minimum
cut between v and w is at least three, since they are both part of C and there
exists an additional path outside of C between them. Therefore it follows that
Ai can only induce a cut of size two or lower if w ∈ Ai. But this implies that
Di(w) ≥ 1, since a vertex can not receive a chip after entering the firing set. We
conclude that Di(v) = 1 and Di(w) = 1.

Also by the fact that the minimum cut between v and w is at least three it
follows that a subset firing can only be valid if the subset contains either both v
and w or neither (since otherwise the subset would have at least three outgoing
edges). It follows we can satisfy the set of constraints including (v, w).

Therefore the divisor Di gives us a suitable divisor when considered on H.
We conclude that H ∈ G2. ut

By the previous proposition we now have that membership in G2 is invariant
under the reduction rules in R. For the reduction rules to be useful however we
will also need to confirm that any graph can be reduced to the empty graph by
a finite sequence of rule applications.

Proposition 2 (Completeness). The set of rules R is complete for G2.

Proof. Let G ∈ G2 be a non-empty graph.

9

Claim 1: A rule in R can be applied to G. Assume instead that no rule in R can
be applied to G.

Claim 2: G contains no vertices of degree 1 [9, Lemma 4.14]. It follows that all
vertices of G have degree at least 2. Consider the minor H of G created by
contracting each path of only degree 2 vertices to an edge. Then any edge in
H was either created by contraction of a path of any number of vertices with
degree 2 in G or it already was an edge in G.

If H contains a loop, there is a path of degree 2 vertices in G going from a
degree 3 or greater vertex to itself (since G contains no loops), so this path plus
the vertex it is attached to forms a cycle with exactly one vertex of degree 3 or
greater. Since we cannot apply Rule C2 to G, it follows that the constraints CC

are not compatible. This contradicts the following claim:

Claim 3: For every cycle C in G, the constraints CC are compatible [9, Lemma
4.15]. Hence H contains no loops.

Now we find a subgraph H ′ of H with no multiple edges. If H contains no
multiple edges, simply let H ′ = H. Otherwise let v and w be two vertices such
that there are at least two edges between v and w. Suppose that v and w are
still connected to each other after removing two edges e1, e2 between them. The
removed edges each represent a single edge or a path of degree 2 vertices in G.
Thus v, w plus these paths form a cycle C in G with exactly two vertices of
degree 3 or greater, where there is also a path between v and w that does not
share any edges with C. By Claim 3 we have that the constraints on this cycle
are compatible and so we are able to apply Rule C3 to C. Since we cannot apply
any rules to G, it follows that G must be disconnected after removing e1 and
e2. So any multiple edge in H consists of a double edge, whose removal splits
the graph in two connected components. Let H ′ be the connected component
of minimal size over all possible removals of a double edge in H. Note that H ′

cannot contain any double edge, since this would imply a smaller connected
component.

We now have a minor H ′ of G, which is a simple graph since it has no loops
or multiple edges. Also, each vertex of H ′ has degree at least 3 with at most one
exception, namely the vertex that was incident to the two parallel edges that
were removed to obtain H ′. Since a graph with treewidth at most two has at
least two vertices of degree at most two, it follows that tw(H ′) ≥ 3 [12, Lemma
4]. Since treewidth is closed under taking minors we get tw(G) ≥ 3. But then by
Equation 1 it follows that dgon(G) ≥ 3, creating a contradiction, since G ∈ G2.
We conclude that our assumption must be wrong and there must be a rule in R
that can be applied to G.

Assume that G ∈ G2. By Claim 1 and Proposition 1 we can keep applying
rules from R to G as long as G has not been turned into the empty graph yet.
Observe that each rule removes at least one vertex or at least two edges, while
never adding more vertices or edges. Since G is finite, rules from R can only be
applied a finite number of times. When no more rules can be applied, it follows
that the graph has been reduced to the empty graph. Therefore R is complete.

ut

10

4 Main Algorithm

In this section, we discuss how the reduction rules of Sections 3 lead to an efficient
algorithm that recognize graphs with divisorial gonality 2 or lower.

Theorem 1 (= Theorem A). There is an algorithm that, given a graph G,
decides whether dgon(G) ≤ 2 in O(m+ n log n) time.

Proof. We introduce a new rule that shortcuts repeated applications of Rule
C3.:

Rule M . Let u, v be vertices, such that |E(u, v)| ≥ 3. Remove 2
⌊
|E(u,v)|−1

2

⌋
edges between u and v and add a constraint (u, v).

All applications of this rule can be done in O(m) at the start of the algorithm,
after which we know that no pair of vertices has more than two edges between
them.

Since treewidth is a lower bound on divisorial gonality (Equation 1), it follows
that if tw(G) > 2, the algorithm can terminate. Checking whether treewidth is at
most 2 can be done in linear time. Hereafter, we assume our graph has treewidth
at most 2.

The remainder of the algorithm is of the following form: repeatedly try to
apply a safe rule, until none is possible. If no rule is applicable, we can directly
decide, as safeness and completeness of our set of rules implies that dgon(G) ≤ 2,
if and only if the resulting graph is empty. We now discuss how this can be done
in O(n log n) time.

As graphs of treewidth k and n vertices have at most kn edges, the underlying
simple graph has at most 2n edges. There are at most 2 edges between a pair of
vertices and no loops, so at most 4n edges in total. Note that each rule application
decreases the sum of the number of vertices and the number of edges by at least
one, so O(n) rules can be applied before we reach the empty graph.

For most rules, standard data structures allow to find applicable rules in
amortized constant time. For Rules C2. and C3. we employ a technique used
in [10]: we use a formulation in monadic second order logic (MSOL), and a
data structure, based upon a tree decomposition of G of logarithmic depth and
constant width allows to perform queries and updates in O(log n) time each.
(See also [23,18].)

The main idea is as follows: by [11, Lemma 2.2], we can build in O(n) time a
tree decomposition ofG of width 8, such that the tree T in the tree decomposition
is binary and has O(log n) depth. We augment the graph by labels that express
for vertices and edges whether they are contracted, deleted, or carry a constraint.
For each of the Rules C2. and C3., we can express the property that these can be
applied to the graph obtained after a number of rule applications as a sentence in
MSOL on the original graphG augmented with the labeling relations Contracted,
Deleted and Carry-a-Constraint. The sentences have free variables that allow
to find where in the graph the modification can take place. A modification of
Courcelle’s algorithm [17] gives that each query and each graph update can be

11

done in time linear in the depth of the tree decomposition, i.e., O(log n) time.
More details are given in [9, Section 7].

As the time per application of a safe rule is bounded by O(log n), and we
execute O(n) rule applications, the total time is bounded by O(n log n). ut

Corollary 1 (= Corollary A). There is an algorithm that, given a two-edge-
connected graph G, decides whether or not G admits an automorphism σ of order
two such that the quotient G/〈σ〉 is a tree, in O(n log n+m) time.

Proof. This follows from Theorem 1, since Baker and Norine [5, Thm. 5.12] have
shown that a two-edge-connected graph G is hyperelliptic precisely if G admits
an automorphism as stated in the theorem. ut

5 Conclusion

In this text, we have focused on divisorial gonality, defined by analogy with
the theory of divisors on algebraic curves and described in terms of chip-firing
games. We gave a quasilinear detection algorithm for dgon ≤ 2. Different flavours
of gonality exist, based on analogies with the theory of coverings of algebraic
curves; or “stable” versions (in which the graph can be refined), based on ideas
from the theory of tropical curves (see [16]). In [9], we give quasilinear time
detection algorithms for these variants being two, too.

Finally, we mention some interesting open questions on (divisorial) gonality
from the point of view of algorithmic complexity: (a) Can hyperelliptic graphs be
recognized in linear time? (b) Which problems become fixed parameter tractable
with gonality as parameter? (c) Is there an analogue of Courcelle’s theorem for
bounded gonality? (d) Is divisorial gonality fixed parameter tractable?

References

1. Stefan Arnborg and Andrzej Proskurowski. Characterization and recognition of
partial 3-trees. SIAM J. Algebraic Discrete Methods, 7(2):305–314, 1986.

2. László Babai. Graph isomorphism in quasipolynomial time. Preprint arXiv:
1512.03547v2, 2016.

3. Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality. Phys. Rev.
A, 38(1):364, 1988.

4. Matthew Baker. Specialization of linear systems from curves to graphs. Algebra
Number Theory, 2(6):613–653, 2008. With an appendix by Brian Conrad.

5. Matthew Baker and Serguei Norine. Harmonic morphisms and hyperelliptic graphs.
Int. Math. Res. Not. IMRN, 15:2914–2955, 2009.

6. Matthew Baker and Farbod Shokrieh. Chip-firing games, potential theory on
graphs, and spanning trees. J. Combin. Theory Ser. A, 120(1):164–182, 2013.

7. Daniel Bienstock and Paul Seymour. Monotonicity in graph searching. J. Algo-
rithms, 12:239–245, 1991.

8. Anders Björner, László Lovász, and Peter W. Shor. Chip-firing games on graphs.
European J. Combin., 12(4):283–291, 1991.

12

9. Jelco M. Bodewes, Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der
Wegen. Recognizing hyperelliptic graphs in polynomial time. Preprint arXiv:
1706.05670, 2017.

10. Hans L. Bodlaender, P̊al Grøn̊as Drange, Markus S. Dregi, Fedor V. Fomin, Daniel
Lokshtanov, and Micha l Pilipczuk. A ckn 5-approximation algorithm for treewidth.
SIAM J. Comput., 45(2):317–378, 2016.

11. Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal
speedup for bounded treewidth. SIAM J. Comput., 27(6):1725–1746, 1998.

12. Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations II. Lower
bounds. Information and Computation, 209(7):1103–1119, 2011.

13. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

14. Melody Chan, Darren Glass, Matthew Macauley, David Perkinson, Caryn Werner,
and Qiaoyu Yang. Sandpiles, spanning trees, and plane duality. SIAM J. Discrete
Math., 29(1):461–471, 2015.

15. Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren. Handbook of Elliptic and Hyperelliptic Curve
Cryptography, Second Edition. Chapman & Hall/CRC, 2nd edition, 2012.

16. Gunther Cornelissen, Fumiharu Kato, and Janne Kool. A combinatorial Li-Yau
inequality and rational points on curves. Math. Ann., 361(1-2):211–258, 2015.

17. Bruno Courcelle. The monadic second-order logic of graphs. I: Recognizable sets
of finite graphs. Inform. and Comput., 85(1):12–75, 1990.

18. Bruno Courcelle and Rémi Vanicat. Query efficient implementation of graphs of
bounded clique-width. Discrete Appl. Math., 131(1):129 – 150, 2003.

19. Deepak Dhar. Self-organized critical state of sandpile automaton models. Phys.
Rev. Let., 64(14):1613, 1990.

20. Josse van Dobben de Bruyn. Reduced divisors and gonality in finite graphs. Bach-
elor thesis, Leiden University, 2012. URL: https://www.universiteitleiden.nl/
binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf.

21. Josse van Dobben de Bruyn and Dion Gijswijt. Treewidth is a lower bound on
graph gonality. Preprint arXiv:1407.7055, 2014.

22. Dion Gijswijt. Computing divisorial gonality is hard. Preprint arXiv:1504.06713,
2015.

23. Torben Hagerup. Dynamic algorithms for graphs of bounded treewidth. Algorith-
mica, 27(3):292–315, 2000.

24. Kevin Hendrey. Sparse graphs of high gonality. Preprint arXiv:1606.06412, 2016.
25. Andrea S. LaPaugh. Recontamination does not help to search a graph. J. ACM,

40(2):224–245, April 1993.
26. Anna Lubiw. Some NP-complete problems similar to graph isomorphism. SIAM

J. Comput., 10(1):11–21, 1981.
27. Sergey Norin. New tools and results in graph minor structure theory. In Surveys

in combinatorics 2015, volume 424 of London Math. Soc. Lecture Note Ser., pages
221–260. Cambridge Univ. Press, 2015.

28. Bjorn Poonen. Computing rational points on curves. In Number theory for the
millennium, III (Urbana, IL, 2000), pages 149–172. A K Peters, Natick, MA, 2002.

29. Josef Schicho, Frank-Olaf Schreyer, and Martin Weimann. Computational aspects
of gonal maps and radical parametrization of curves. Appl. Algebra Engrg. Comm.
Comput., 24(5):313–341, 2013.

30. Gábor Tardos. Polynomial bound for a chip firing game on graphs. SIAM J.
Discrete Math., 1(3):397–398, 1988.

13

https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf

	Recognizing Hyperelliptic Graphs in Polynomial Time

