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Abstract

Follicle-stimulating hormone (Fsh) modulates vertebrate spermatogenesis by regulating 

somatic cell functions in the testis. We have found previously that zebrafish Fsh 

stimulated the differentiating proliferation of type A undifferentiated spermatogonia 

(Aund) in an androgen-independent manner by regulating the production of growth 

factors and other signaling molecules in both Sertoli (SCs) and Leydig cells (LCs). 

For example, Fsh triggered the release of Igf3 that subsequently activated β-catenin 

signaling to promote the differentiating proliferation of Aund. In the present study, 

we report that Fsh moreover uses the non-canonical Wnt pathway to promote the 

proliferation and accumulation of Aund. Initially, we found that the stimulatory effect 

of Fsh on the proliferation activity of Aund was further strengthened when β-catenin 

signaling was inhibited, resulting in an accumulation of Aund. We then showed that this 

Fsh-induced accumulation of Aund was associated with increased transcript levels of the 

non-canonical Wnt ligand, wnt5a. In situ hybridization of insl3 mRNA, a gene expressed 

in LCs, combined with Wnt5a immunocytochemistry identified LCs as the cellular 

source of Wnt5a in the adult zebrafish testis. Addition of an antagonist of Wnt5a to 

incubations with Fsh decreased both the proliferation activity and the relative section 

area occupied by Aund, while an agonist of Wnt5a increased these same parameters 

for Aund. Taken together, our data suggest that Fsh triggered LCs to release Wnt5a, 

which then promoted the proliferation and accumulation of Aund. Hence, Fsh uses non-

canonical Wnt signaling to ensure the production of Aund, while also triggering β-catenin 

signaling via Igf3 to ensure spermatogonial differentiation.

Introduction

Spermatogenesis is a stem cell-based process that that 
requires communication between germ and somatic cells 
in the testis. When proliferating, the spermatogonial stem 
cells (SSCs) can either produce more SSCs or can produce 
differentiating daughter cells committed to develop 
into spermatozoa (De Rooij 2017). In fish, as in all 
vertebrates, SSCs form part of the population of type Aund 
spermatogonia (Lacerda et al. 2010, Nóbrega et al. 2010, 

Sato et al. 2017). In fish and amphibians, Aund are enveloped 
by Sertoli cells (SCs), thereby forming a spermatogenic 
cyst. These cysts are formed based on the production 
and hence proliferation of SCs, which associate with a 
type Aund spermatogonium to form a new spermatogenic 
cyst. SCs also proliferate while accompanying the 
development of a germ cell clone derived from a given Aund 
spermatogonium in its growing cyst (Schulz et al. 2010).  
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The balance between self-renewal and differentiation 
is determined by the microenvironment the type 
Aund spermatogonium is exposed to in its cyst. For this 
microenvironment, the cyst-forming SCs are important 
contributors that are sensitive to reproductive hormones.

The pituitary hormones luteinizing hormone (LH) and 
follicle-stimulating hormone (Fsh) are major modulators 
of vertebrate spermatogenesis. Upon gonadotropin 
signaling, somatic cells such as SCs, LCs and myoid cells 
produce paracrine factors modulating spermatogonial 
activity (Oatley et al. 2009, Ding et al. 2011, Chen et al. 
2016, de Rooij 2017, Lord & Oatley 2017). In mammals, 
Fsh regulates SC activities to support spermatogenesis 
(Mullaney & Skinner 1992, Ding et al. 2011, Pitetti et al. 
2013), while LH stimulates LC androgen production. 
Different from mammals, fish Fsh modulates the function 
of both SCs and LCs (Ohta et  al. 2007, García-López 
et  al. 2010), so that Fsh can regulate spermatogenesis 
in an androgen-dependent and -independent manner. 
With regard to androgen-independent regulation of 
spermatogenesis, zebrafish Fsh stimulated spermatogonial 
differentiation by modulating the release of inhibitory 
and stimulatory growth factors such as Amh and Igf3, 
respectively, from SCs (Skaar et  al. 2011, Nóbrega et  al. 
2015), and by promoting the production of Insl3 in 
LCs (Assis et  al. 2016, Crespo et  al. 2016). Indeed, the 
androgen dependency of spermatogenesis in fish seems 
less prominent than that in mammals, considering that 
spermatogenesis, but not secondary sex characteristics, 
were normal after preventing the production of 
androgens by mutating the cyp17 gene in medaka (Sato 
et al. 2008). Also, after loss of androgen receptor function, 
spermato- and spermiogenesis were still possible, though 
clearly compromised quantitatively (e.g. Crowder et  al. 
2018). Evidently, androgen-independent mechanisms 
promoting spermatogenesis function efficiently in fish, 
and information is available already on the role of a few 
signaling systems, such as Amh, Igf3 or Insl3 (see above) 
or Gsdf in trout (Sawatari et  al. 2007). Nonetheless, 
other pathways mediating androgen-independent Fsh 
effects remain to be investigated. Notably, a recent study 
reported that close to 200 testicular transcripts responded 
to zebrafish Fsh, including genes belonging to the Wnt 
pathway (Crespo et al. 2016).

The Wnt signaling system is a conserved cell-to-cell 
communication system that consists of several Wnt ligands 
and receptors. This system operates in branches that differ 
in their intracellular signaling pathways. The canonical 
Wnt pathway relies on the availability of β-catenin 
(Salic et  al. 2000), which interacts with transcription 

factors to modulate gene expression. The non-canonical 
Wnt pathway activates different intracellular pathways 
(e.g. calcium-dependent or Jun N-terminal kinases) in a 
β-catenin-independent manner (Van Amerongen 2012). 
In mice, recent studies have shown that the canonical 
pathway is relevant for modulating spermatogenesis. 
Takase & Nusse (2016) reported that the β-catenin-
target gene Axin2 is expressed specifically in Aund 
spermatogonia and β-catenin knockout in Axin2-positive 
spermatogonia reduced the number of differentiating 
type A spermatogonia (Adiff). Similarly, Tokue et al. (2017) 
found that activating the canonical Wnt pathway reduced 
the number of GFRa1-positive cells (a marker for SSCs) 
and that an inhibitor of the canonical Wnt pathway, 
Shisa6, maintains the number of GFRa1-positive cells. On 
the other hand, less is known on the function of the non-
canonical Wnt pathways in spermatogenesis. An in vitro 
study showed that only Adiff spermatogonia responded 
to canonical Wnt signaling, while the SC-derived, non-
canonical ligand WNT5a maintained the number of SSCs 
by reducing their apoptosis (Yeh et al. 2011). In addition, 
Tanaka et al. (2016) showed that LH-dependent androgen 
production downregulated Wnt5a transcript levels in SCs, 
which promoted SSC differentiation. In zebrafish, we 
have shown recently that β-catenin signaling is activated 
in germ cells through the SC-derived Igf3 in response 
to Fsh, thereby stimulating the differentiation of type A 
spermatogonia (Safian et al. 2018). However, information 
on the role, if any, of non-canonical Wnt signaling in 
zebrafish spermatogenesis is missing.

Here, we report that Fsh, via the non-canonical 
Wnt signaling system, triggers LC Wnt5a production, 
leading to an expansion of the population of type Aund 
spermatogonia.

Materials and methods

Animals

Adult WT male zebrafish (AB strain) between 4 and 
12 months of age were used in this study. All experiments 
carried out in this study followed the Dutch National 
regulations for animal care and all experimental protocols 
were approved by the Utrecht University Experimental 
Animal Committee (2013.III.06.045 and NVWA 10800).

Tissue culture

To study if Fsh uses the Wnt signaling system to regulate 
Aund spermatogonial fate in zebrafish, adult testes were 

Downloaded from Bioscientifica.com at 12/18/2018 08:47:29AM
via Utrecht University Library and MULTI-PFIZER

https://doi.org/10.1530/JOE-18-0447
https://joe.bioscientifica.com


https://doi.org/10.1530/JOE-18-0447
https://joe.bioscientifica.com © 2018 Society for Endocrinology

Published by Bioscientifica Ltd.
Printed in Great Britain

353

Research

D Safian et al. Wnt5a enriches zebrafish type A 
spermatogonia

239:3Journal of 
Endocrinology

dissected for tissue culture experiments using a previously 
described system (Leal et  al. 2009), in which one testis 
was incubated under control conditions, the other under 
experimental conditions.

We have reported previously that 100 ng/mL Fsh-
stimulated both self-renewal division of Aund and 
differentiating proliferation toward Adiff spermatogonia 
(Nóbrega et  al. 2015, Safian et  al. 2016), the latter by 
activating β-catenin signaling via Igf3 (Safian et al. 2018). 
To study the potential involvement of Wnt signaling in 
Aund proliferation and accumulation (i.e. self-renewal 
of Aund spermatogonia), zebrafish testes were incubated 
for 5 days in the presence of recombinant zebrafish Fsh 
(100 ng/mL) (García-López et  al. 2010) with or without 
XAV939 (10 µM in dimethyl sulfoxide (0.01%); Sigma-
Aldrich) (Safian et al. 2018), an inhibitor of the β-catenin-
dependent pathway (Huang et  al. 2009, Shimizu et  al. 
2012). In all experiments, incubation media for control 
and experimental groups contained the same final 
concentration of dimethyl sulfoxide.

To further study the role of the Wnt signaling system 
on Fsh-stimulated spermatogonial proliferation, zebrafish 
testes were incubated for 5  days in the presence of Fsh 
(100 ng/mL) with or without IWP-12 (50 µM in dimethyl 
sulfoxide (0.05%); Sigma-Aldrich) (Safian et al. 2018), an 
inhibitor of porcupine, a protein required to release Wnt 
ligands (Chen et  al. 2009, Dodge et  al. 2012) or in the 
presence of Fsh (100 ng/mL) and XAV939 (10 µM), with or 
without 50 µM IWP-12. Testes also were incubated in the 
absence or presence of XAV939 (10 µM; Sigma-Aldrich) 
or IWP-12 (50 µM; Sigma-Aldrich) for 5 days, to test for 
potential effects of these inhibitors alone.

To study changes in transcript levels of Wnt-related 
genes, testes were incubated in basal conditions with Fsh 
(100 ng/mL), recombinant zebrafish luteinizing hormone 
(Lh) (500 ng/mL) or with 11-ketotestosterone (11-KT) 
(200 nM in ethanol (0.01%); Sigma) (García-López et  al. 
2010) for 5 days. Based on results obtained with the above 
experiments, zebrafish testes were incubated for 5  days 
in the presence of Fsh (100 ng/mL) with or without Wnt 
antagonist III, Box5 (WAIIIB5; 100 µM, Merck). WAIIIB5 
is a N-terminally butyloxycarbonyl (Boc) hexapeptide 
derived from the human WNT5a sequence that inhibits 
the effect of WNT5a and shares 100% identity with the 
zebrafish Wnt5a sequence (Jenei et al. 2009). In a parallel 
experiment, testes were incubated under basal conditions 
or in the presence of the Wnt5a agonist Foxy-5 (100 µM, 
Tocris), which is a modified WAIIIB5 (formyl instead of 
Boc in the N-terminal sequence) that mimics the effects of 
Wnt5a (Säfholm et al. 2008, Mehdawi et al. 2016).

The production of biologically active steroids 
was blocked by including trilostane (25 µg/mL in 
dimethyl sulfoxide (0.01%); Chemos), an inhibitor 
of 3β-hydroxysteroid dehydrogenase activity, in all 
experiments with Fsh or Lh, both potent steroidogenic 
hormones in zebrafish (García-López et al. 2010).

At the end of the incubation period, testis tissues of 
the experiments described earlier was snap-frozen in liquid 
nitrogen and stored at −80°C until RNA extraction and 
quantification of transcript levels of selected genes (see 
‘Transcript levels’ section) or was fixed for morphological 
analysis (see ‘Quantification of spermatogonial proliferation 
and of proportions of section surface areas’ section).

Transcript levels

The relative transcript levels of germ cell markers and 
other genes of interest (Table  1) were analyzed by real-
time, qPCR assays.

Total RNA was isolated from the tissue using an 
RNAqueous Micro kit (Ambion), according to the 
manufacturer’s protocol. cDNA synthesis from total RNA 
and quantification of transcript levels were carried out as 
described previously (Bogerd et al. 2001). In brief, 2 µg of total 
RNA were reverse transcribed using 250 U of Superscript II 
RNase reverse transcriptase (Life Technologies). qPCRs were 
performed in SYBR Green assay mix (Applied Biosystems), 
specific qPCR primers (900 nM each) and 5 µL cDNA in a 
total volume of 20 µL. The quantification cycle (Cq) values 
were determined in aViiA7 Real-Time PCR System (Applied 
Biosystems) using default settings. The relative amounts 
of mRNA in the cDNA samples were calculated using the 
arithmetic comparative method (ΔΔCt method Livak & 
Schmittgen 2001)), as described in Bogerd et  al. (2001). 
Transcript levels of the elongation factor 1a (ef1a) were stable 
and therefore, ef1a was used to normalize gene expression. 
All results were expressed as fold changes with respect to 
the control group.

Quantification of spermatogonial proliferation and 
of proportions of section surface areas

To quantify the proliferation activity of type A 
spermatogonia, 100 μg/mL of the proliferation marker 
5-bromo-2′-deoxyuridine (BrdU; Sigma-Aldrich) was 
added to the tissue culture medium during the last 6 h of 
the incubation period. After fixation in methacarn (60% 
(v/v) absolute methanol, 30% chloroform and 10% acetic 
acid), the samples were dehydrated in graded ethanol  
(70, 96 and 100%), embedded in Technovit 7100 (Heraeus 
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Kulzer) and sectioned at a thickness of 4 μm. To determine 
the proliferation activity, one set of sections was used to 
localize BrdU as described previously (Leal et al. 2009). The 
BrdU-labeling index was determined by analyzing 100 
cysts (Adiff spermatogonia) or 100 Aund cells, discriminating 
between BrdU-positive and -negative cysts and cells, 
respectively. Furthermore, for one set of experiments,  
the number of BrdU-positive free SCs (apparently not 
associated with germ cells), SCs contacting BrdU-positive 
or -negative Aund, and SCs contacting BrdU-positive or 
-negative Adiff was determined using ten randomly chosen, 
non-overlapping fields at ×400 magnification.

To quantify the proportion of section area occupied by 
Aund and Adiff spermatogonia, another set of sections was 
stained with toluidine blue and ten randomly chosen, non-
overlapping fields were photographed at ×400 magnification 
with a digital camera. The images were analyzed 
quantitatively based on the number of points counted over 
the germ cell types investigated (Aund and Adiff), using the 
ImageJ freeware (National Institute of Health, Bethesda, 
MD, USA, http://rsbweb.nih.gov/ij) with a 540-point grid, 
i.e. 5400 data points were analyzed per individual.

Wnt5a quantification by Western blot

To study if Fsh stimulates Wnt5a protein production, 
zebrafish testes were incubated under basal conditions or 

in the presence of Fsh (100 ng/mL) for 5  days. After the 
incubation period, tissue was processed for Western blot 
according to Safian et al. (2018). Briefly, total proteins were 
extracted and resolved in 10% SDS-PAGE. Primary Wnt5a 
antibody incubation was carried out overnight at 4°C  
(2 µg/mL; AS-55879, Anaspec). After PBS washes, secondary 
horseradish peroxidase-conjugated goat anti-rabbit  
(0.2 µg/mL; 111-035-003, Jackson ImmunoResearch 
Laboratories Inc.) was incubated for 1 h at room temperature. 
Protein detection was performed using Pierce ECL Plus 
Substrate (Thermo Scientific) according to the manufacturer’s 
instructions. Films were scanned and densitometric analysis 
of the bands was performed with ImageJ freeware. Wnt5a 
analysis was normalized to Coomassie blue staining of total 
protein (Fuentes et al. 2013).

Immunofluorescence on paraffin sections

The cell types responsible for Wnt5a production in adult 
zebrafish testis were identified by immunofluorescence. 
After fixation in phosphate-buffered 4% 
paraformaldehyde at 4°C overnight, testis tissue was 
dehydrated and embedded in paraplast (Sigma-Aldrich). 
Sections of 5 µm thickness were dewaxed and rehydrated, 
according to conventional techniques. After antigen 
retrieval (10 mM sodium citrate, 0.05% Tween 20, pH 
6.0; at 98°C for 10 min) nonspecific antibody binding 

Table 1 Primers used for gene expression studies.

Target genes Primers name Sequence (5′-3′) Gene information

elf1a 2476 (Fw) GCCGTCCCACCGACAAG Reference gene (Morais et al. 2013)
2477 (Rv) CCACACGACCCACAGGTACAG

foxa2 5741 (Fw) GTCAAAATGGAGGGACACGAAC Potential marker for type A undifferentiated spermatogonia 
(Safian et al. 2017)

5743 (Rv) CATGTTGCTGACCGAGGTGTAA
nanos2 4817 (Fw) AAACGGAGAGACTGCGCAGAT Expressed in type Aund spermatogonia (Beer & Draper 2013, 

Bellaiche et al. 2014)
4818 (Rv) CGTCCGTCCCTTGCCTTT

piwil2 2994 (Fw) TGATACCAGCAAGAAGAGCAGATCT Expressed in all germ cell type except type Aund and 
spermatozoa (Houwing et al. 2008)

2995 (Rv) ATTTGGAAGGTCACCCTGGAGTA
dazl 3104 (Fw) AGTGCAGACTTTGCTAACCCTTATGTA Expressed by B spermatogonia and primary spermatocytes 

(Chen et al. 2013)
3105 (Rv) GTCCACTGCTCCAAGTTGCTCT

aldh1a2 4359 (Fw) CGCTGGATGGGCAGATAAGA Enzyme require for retinoic acid synthesis (Pradhan & Olsson 
2015)

4360 (Rv) TCTGGTGAGGGTGAAAAATTCTC
cyp26a1 4383 (Fw) TGGGCTTGCCGTTCATTG Enzyme involved in retinoic acid degradation (Feng et al. 2015)

4384 (Rv) CATGCGCAGAAACTTCCTTCTC
wnt5a 5431 (Fw) TGGAGATCGTGGACGCAAA Non-canonical Wnt ligand (this paper)

5432 (Rv) CACTTCAGGAATCAGCAGAGGATT
wnt11 5439 (Fw) CTGAGCGTCATTTATCCATGCA Non-canonical Wnt ligand (this paper)

5440 (Rv) ACGGAGCTCCCGTTTATCGT

Fw, forward; Rv, reverse.
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was blocked by pre-incubating slides with 5% normal 
goat serum (Sigma-Aldrich) and 1% acetylated bovine 
serum albumin (BSA) (Sigma-Aldrich) for 30 min at 
room temperature. Then, sections were incubated with 
a primary antibody raised in rabbit against zebrafish 
Wnt5a (4 µg/mL; AS-55879, Anaspec) in PBS containing 
1% BSA overnight at 4°C. After PBS washes, sections 
were incubated with secondary goat anti-rabbit Alexa 
fluor 488 (8 µg/mL, A11034, Sigma-Aldrich) containing 
10% normal horse serum (Sigma-Aldrich) for 90 min at 
room temperature. After PBS washes, the sections were 
incubated for 3 min with propidium iodide (1 µg/mL, 
Sigma-Aldrich). Sections were mounted in Vectashield 
(H-1000, Vector) and images were taken using a 
confocal laser scanning microscope (LSM 700, Zeiss). As 
negative control for the anti-Wnt5a staining, 4 µg/mL 
of primary antibody was pre-incubated with 20 µg/mL 
Wnt5a blocking peptide (AS-55879P, Anaspec) (volume 
ratio antibody:blocking peptide of 1:5) for 2 h at room 
temperature in PBS containing 1% BSA.

Testis whole mount in situ hybridization of insl3 and 
immunofluorescent detection of Wnt5a

To further characterize the cell type(s) showing 
immunocytochemical labeling for Wnt5a, zebrafish testis 
was used to localize Wnt5a by immunofluorescence in 
combination with localizing transcripts of the LC-specific 
insl3 gene by fluorescent in situ hybridization. Zebrafish 
insl3 DIG-riboprobes were generated as described previously 
(Good-Ávila et al. 2009). We followed previously described 
methods (Draper 2017) with minor modifications. In 
brief, tissue was treated with proteinase K (20 µg/mL;  
Sigma-Aldrich) for 20 min at 37°C and fixed in 4% 
paraformaldehyde for 20 min. Hybridization with sense 
and antisense DIG riboprobes was performed overnight 
at 70°C. After hybridization, tissue was incubated in PBT 
containing 5% normal goat serum (Sigma-Aldrich) and 1% 
acetylated BSA (Sigma-Aldrich) for 1 h. Then, tissue was 
incubated with rabbit anti-zebrafish Wnt5a antibody (see 
above) and anti-DIG conjugated to alkaline phosphatase 
(1:2000; Roche). After PBT washes, testis was incubated in 
5% normal horse serum (Sigma-Aldrich) for 1 h, followed 
by secondary goat anti-rabbit Alexa fluor 488 (8 µg/mL, 
A11034, Sigma-Aldrich) containing 5% normal horse 
serum (Sigma-Aldrich) overnight at 4°C. After PBT washes, 
in situ hybridization was developed using HNPP/Fast Red 
(Roche) according to the manufacturer’s protocol. Images 
were taken using a confocal laser scanning microscope 
(LSM 700, Zeiss).

Statistical analysis

Statistical analyses were carried out using the GraphPad 
Prism 5 software package. Since our tissue culture system 
compares experiments the two testes of a given fish 
incubated under control versus experimental conditions, 
we applied Student’s t-test for paired observation to 
estimate the statistical significance of fold changes 
between treated and control conditions. These data are 
presented as fold of basal (mean ± standard error of the 
mean (s.e.m.)). We also compared all conditions, so that 
results were also processed statistically using one-way 
ANOVA, followed by Tukey’s post-hoc test.

Results

Fsh-stimulated proliferation and accumulation of 
Aund is further enhanced when blocking the 
β-catenin-dependent pathway

We reported that Fsh stimulated both self-renewal and 
differentiating proliferation of type A spermatogonia in 
zebrafish (Nóbrega et al. 2015, Safian et al. 2016) and that 
Fsh stimulated the release of Igf3 that in turn activated 
β-catenin signaling to promote the differentiation of 
type A spermatogonia (Safian et  al. 2018). To study if 
the Wnt signaling system is involved in Fsh-stimulated 
self-renewal of Aund, zebrafish testes were exposed to Fsh 
with or without XAV939, an inhibitor of the β-catenin-
dependent pathway. For Aund spermatogonia, both the 
proliferation activity and the proportion of section surface 
area increased while these parameters decreased for Adiff 
(Fig. 1A and B and Supplementary Fig. 1A and B, see section 
on supplementary data given at the end of this article). In 
parallel experiments, we quantified the transcript levels 
of selected genes and found increased mRNA levels of 
foxa2 and nanos2, markers for type A spermatogonia (Beer 
& Draper 2013, Bellaiche et al. 2014, Safian et al. 2017), 
and decreased transcript levels of dazl, expressed by B 
spermatogonia and primary spermatocytes (Chen et  al. 
2013) in response to Fsh and XAV939 (Fig.  1C). These 
experiments suggest that blocking β-catenin signaling 
reduced the Fsh-stimulated production of type Adiff 
spermatogonia, while strengthening Fsh effects on the 
proliferation and accumulation of Aund spermatogonia.

Fsh uses a β-catenin-independent Wnt ligand to 
promote Aund proliferation

Considering that the non-canonical ligand WNT5A 
stimulated self-renewal divisions of Aund spermatogonia 
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in mice (Tanaka et  al. 2016, Tokue et  al. 2017) and the 
results described earlier, we examined if non-canonical 
Wnt ligand transcript levels responded to Fsh while 
blocking β-catenin signaling with XAV939. We found that 
wnt5a and wnt11 expression was upregulated (Fig. 2A); the 
transcript levels of three other, non-canonical Wnt ligands 
expressed in the zebrafish testis (wnt4a and b, wnt5b) did 
not change significantly (data not shown). This opened 
the possibility that a β-catenin-independent pathway 
mediated Fsh effects on the proliferation activity of Aund. 
We tested this hypothesis with the following experiments. 
As expected, Fsh stimulated the proliferation of both Aund 
and Adiff spermatogonia (Fig. 2B and C). In the additional 
presence of XAV939, the proliferation of Aund was further 
stimulated, while the proliferation activity of Adiff was 
reduced (Fig. 2B and Supplementary Fig. 1A and compare 
to B). An inhibitor of Wnt ligand release (IWP-12) reduced 
the BrdU-labeling index of Aund, irrespective of the 
presence of XAV939 (Fig. 2B and Supplementary Fig. 1A 

and B compare to C and D), whereas Adiff proliferation did 
not change (Fig. 2C). These experiments suggest that Fsh 
can stimulate the production of certain non-canonical 
Wnt ligands and that the Fsh-triggered effect on the 
proliferation activity of Aund depends on the release of Wnt 
ligands. Neither XAV939 nor IWP-12 alone modulated the 
proliferation of Aund and Adiff (Fig. 2B, C and H), suggesting 
there was little basal Wnt release as well as little basal 
activity of β-catenin-dependent signaling.

Fsh but neither Lh nor androgen modulate Wnt5a 
production in LCs

To test if Fsh stimulates the transcript levels of non-
canonical Wnt ligands also in the absence of XAV939, 
the mRNA levels of wnt5a and wnt11 were analyzed in 
the absence and presence of Fsh (100 ng/mL) for 5 days. 
In addition, the transcripts of wnt5a and wnt11 were also 
analyzed in testes incubated under basal conditions or 
in the presence of the androgen 11  KT (200 nM) or Lh 
(500 ng/mL) for 5 days. Only the mRNA levels of wnt5a 
but not of wnt11 (and neither of wnt4a, wnt4b and wnt5b; 
data not shown) transcript levels increased in response to 
Fsh (Fig. 3A). Since transcript levels of wnt5a were induced 
by Fsh, we also analyzed if Fsh stimulates the production 
of Wn5a protein. Western blot and densitometric analysis 
revealed that 100 ng/mL Fsh increased the protein levels 
of Wnt5a in zebrafish testis after 5  days of incubation 
(Fig. 3B and C).

Cellular localization of Wnt5a production

Immunocytochemical studies localized Wnt5a protein to 
the interstitial compartment of the zebrafish testis (Fig. 3D, 
E, F, G, H and I). To further characterize the source of Wnt5a 
production, we performed a double fluorescent-labeling 
approach combining Wnt5a immunocytochemistry with 
in situ hybridization of the LC marker, insl3 mRNA (Assis 
et al. 2016). This analysis showed that Wnt5a protein and 
insl3 transcript were co-localized in LCs (Supplementary 
Fig. 1F, G, H and I).

Fsh-regulated Wnt5a stimulated Aund self-renewal

The results presented so far suggest that Fsh-stimulated 
Wnt5a release from LC increased the proliferation activity 
of type Aund spermatogonia. Considering that WNT5a 
promoted self-renewal division of mouse SSCs (Tanaka 
et al. 2016), we decided to obtain more direct evidence on 

Figure 1
Inhibiting canonical β-catenin signaling increases Fsh-stimulated 
self-renewal of Aund spermatogonia but compromises the production of 
Adiff spermatogonia. (A) BrdU-labeling indices of type Aund and type Adiff 
spermatogonia in the presence of Fsh alone (100 ng/mL; dotted line; 
control condition) or in combination with 10 µM XAV393, an inhibitor of 
β-catenin signaling (represented by bars; n = 7). (B) Proportion of section 
surface area occupied by cysts containing type Aund and type Adiff 
spermatogonia in the presence of Fsh alone (100 ng/mL; dotted line; 
control condition) or in combination with 10 µM XAV393 (represented by 
bars; n = 7). (C) Gene expression analysis of germ cell markers in adult 
zebrafish testis after 5 days of tissue culture in the presence of Fsh 
(100 ng/mL; dotted line; control condition) or in combination with 10 µM 
XAV393 (represented by bars; n = 7). The quantification cycles (Cq) of the 
reference gene (elf1a) are shown in the insert. Results are presented as 
fold changes with respect to the control group (100 ng/mL Fsh). Asterisks 
indicate significant differences (*P < 0.05; **P < 0.01; ***P < 0.001) 
between groups.
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the biological activity of Wnt5a. We analyzed the effects 
of an antagonist of Wnt5a (WAIIIB5) on Fsh-stimulated 
spermatogenesis. The proliferation activity and proportion 
of section surface area occupied by Aund spermatogonia 
in the presence of Fsh (100 ng/mL) were reduced when 
also WAIIIB5 (100 µM) was present (Fig.  4A and B). 
Furthermore, the transcript levels of piwil2 (expressed by 
all germ cells except Aund and spermatozoa) (Chen et al. 

2013) and dazl increased (Fig.  4C). We also studied the 
effects of the Wnt5a agonist Foxy-5. The proliferation 
activity and proportion of area of Aund increased in 
response to Foxy-5 (100 µM) after 5 days of tissue culture 
while these parameters did not change for Adiff (Fig. 4D 
and E). Moreover, the transcript levels of foxa2 increased 
(Fig. 4F) in the presence of Foxy-5 while those of piwil2 
and dazl decreased (Fig.  4F). Collectively, these results 

Figure 2
Fsh modulates the proliferation activity of type A spermatogonia via non-canonical Wnt ligands. (A) Gene expression analysis in adult zebrafish testis 
after 5 days of tissue culture in the presence of Fsh (100 ng/mL; dotted line; control condition) or in combination with 10 µM XAV393 (represented by 
bars; n = 7). (B) BrdU-labeling indices of type Aund under control (dotted line) or experimental (represented by a bars) conditions after 5 days of 
incubation: Fsh (n = 8); Fsh+XAV (n = 7); Fsh + XAV + IWP-12 (n = 8); Fsh + IWP-12 (n = 8); XAV (n = 5); IWP-12 (n = 6). (C) BrdU-labeling indices of type Adiff 
under control (dotted line) or experimental (represented by a bars) conditions after 5 days of incubation: Fsh (n = 8); Fsh + XAV (n = 7); Fsh + XAV + IWP-12 
(n = 8); Fsh + IWP-12 (n = 8); XAV (n = 5); IWP-12 (n = 6). Results are presented as fold changes with respect to the control group (see ‘Material and methods’ 
section). Asterisks indicate significant differences (*P < 0.05; **P < 0.01) between groups and different letters indicate significant differences (P < 0.05) 
between groups.

Figure 3
Endocrine regulation of Wnt5a protein 
production and cellular localization of Wnt5a. 
(A) Transcript levels of wnt5a and wnt11 in basal 
conditions (dotted line; control condition) or in 
the presence of Fsh (100 ng/mL; n = 8; represented 
by black bars), 11-KT (200 nM; n = 6; represented 
by gray bars) or Lh (500 ng/mL; n = 9; represented 
by white bars) in adult zebrafish testis. The 
quantification cycles (Cq) of the reference gene 
(elf1a) are shown in the insert. Results are 
presented as fold changes with respect to the 
control group (basal). (B) Western blot and (C) 
densitometric analysis of Wnt5a in zebrafish testis 
under basal conditions or in response to Fsh 
(100 ng/mL) after 5 days of incubation (n = 4). 
Asterisks indicate significant differences (*P < 0.05; 
**P < 0.01) between basal or control and 
experimental group. (D, E, F, G, H and I) 
Immunofluorescent detection of Wnt5a in 
paraffin sections of zebrafish testis. White dotted 
lines delimitate the spermatogenic tubules 
compartment. White arrows indicate the 
interstitial compartment. (G, H and I) Wnt5a 
antibody (Ab) preabsorbed with blocking peptide 
(B.P.) in paraffin sections of zebrafish testis.
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suggest that Wnt5a signaling increased the number of Aund 
spermatogonia by stimulating their proliferation while no 
change was observed among Adiff spermatogonia.

Wnt5a antagonist and agonist modulates the 
transcript levels of retinoic acid-related genes

To further study the function of Wnt5a in zebrafish 
testis, the transcript levels of selected genes know to 
be important for spermatogenesis were analyzed in 
response to Fsh (100 ng/mL) and WAIIIB5 (100 µM) or 
in the presence of the Wnt5a agonist, Foxy-5 (100 µM). 
Wnt5a/Foxy-5 seemed to target mainly undifferentiated 
spermatogonia. We therefore selected a number of 
genes known to regulate the differentiation of type Aund 
spermatogonia. However, neither growth factor (amh, 
insl3, igf3) nor growth factor-binding protein (igfbp1a, -3 
and -6a) transcript levels changed significantly in response 
to Fsh (100 ng/mL) and WAIIIB5 (100 µM) or in response 

to the Wnt5a agonist, and neither did the transcript levels 
of two steroidogenesis-related genes (star and cyp17a1; 
data not shown). On the other hand, WAIIIB5 (100 µM) 
decreased the transcript levels of cyp26a1, an enzyme 
involved in retinoic acid degradation (Feng et  al. 2015) 
in a Fsh-stimulated spermatogenesis (Fig. 5). In contrast, 
Foxy-5 (100 µM) increased cyp26a1 mRNA levels (Fig. 5). 
The transcript levels of aldh1a2, an enzyme required for 
retinoic acid synthesis (Pradhan & Olsson 2015), did not 
responsd to either Fsh and WAIIIB5 or Foxy-5 (Fig. 5).

Effects of Fsh on Sertoli cell proliferation

SC proliferation is required for fertility in the adult fish testis 
(De França et al. 2015), either for the production of new 
spermatogenic cysts to accommodate Aund derived from 
self-renewal divisions or for the growth of existing cysts 
to accommodate the growing germ cell clone. Therefore, 
we have also studied the number of BrdU-positive SCs 

Figure 4
Effects of the Wnt5a antagonist (WAIIIB5) and 
the Wnt5a agonist (Foxy-5) on type A 
spermatogonia. (A) BrdU-labeling indices of type 
Aund and type Adiff spermatogonia in the presence 
of Fsh (100 ng/mL; dotted line; control condition) 
or in combination with WAIIIB5 (100 µM; n = 7; 
represented by bars). (B) Proportion of section 
surface area occupied by cysts containing type 
Aund and type Adiff spermatogonia in the presence 
of Fsh (100 ng/mL; dotted line; control condition) 
or in combination with WAIIIB5 (100 µM; n = 7; 
represented by bars). (C) Gene expression analysis 
of selected genes in adult zebrafish testis after 
5 days of tissue culture in the presence of Fsh 
(100 ng/mL; dotted line; control condition) or in 
combination with WAIIIB5 (100 µM; n = 9; 
represented by bars). The quantification cycles 
(Cq) of the reference gene (elf1a) are shown in 
the insert. (D) BrdU-labeling indices of type Aund 
and type Adiff spermatogonia under basal 
conditions (dotted line; control condition) or in 
the presence of Foxy-5 (100 µM; n = 5; represented 
by bars). (E) Proportion of section surface area 
occupied by cysts containing type Aund and type 
Adiff spermatogonia under basal conditions 
(dotted line; control condition) or in the presence 
of Foxy-5 (100 µM; n = 5; represented by bars).  
(F) Gene expression analysis of selected genes in 
adult zebrafish testis after 5 days of tissue culture 
under basal conditions (dotted line; control 
condition) or in the presence of Foxy-5 (100 µM; 
represented by bars; n = 7). The quantification 
cycles (Cq) of the reference gene (elf1a) are 
shown in the insert. Results are presented as fold 
changes with respect to the control group (basal). 
Asterisks indicate significant differences (*P < 0.05; 
**P < 0.01) between control and experimental 
group.
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that were free (i.e. apparently not in contact with germ 
cells) or that contacted Aund or Adiff spermatogonia. This 
was examined under basal conditions, in the presence 
of Fsh (100 ng/mL) alone or in the additional presence 
of XAV939 (10 µM), inhibiting β-catenin-signaling, the 
Wnt5a antagonist WAIIIB (100 µM) or of the Wnt5a 
agonist (Foxy-5, 100 µM). In addition, SC proliferation 
was also studied in the presence of Fsh (100 ng/mL) with 
or without either XAV939 (10 µM), inhibiting β-catenin-
signaling, or the Wnt5a antagonist WAIIIB (100 µM). Fsh 
increased the number of proliferating SCs contacting BrdU-
positive Aund and Adiff (Fig. 6A). In the additional presence 
of the β-catenin-pathway inhibitor, proliferation of free 
SCs increased, but proliferation of SCs contacting BrdU-
positive Aund decreased (Fig.  6B). The BrdU-positive free 
SC and proliferating SCs contacting BrdU-negative Aund 
decreased in response to Fsh (100 ng/mL) and the Wnt5a 
inhibitor WAIIIB (100 µM) while the proliferation of free 
SC increased in the presence of Foxy-5 (Fig. 6C and D).

Discussion

Fsh promotes spermatogenesis by modulating LC (fish-
specific, in context with the presence of the Fshr on LCs) 
and SC (in all vertebrates, in context with the presence 
of the Fshr on SCs) functions. A previous study showed 
that zebrafish Fsh activated, in an androgen-independent 
manner, the differentiating proliferation of type A 

spermatogonia, but did not change the proportion of Aund 
while increasing the one for Adiff spermatogonia (Safian 
et al. 2016). However, it was not known how Fsh acts to 
prevent depletion of type Aund spermatogonia. Here, we 
found that the effects of Fsh on Aund self-renewal and 
differentiating divisions were altered significantly when 
inhibiting β-catenin signaling, viz. the reduced proliferation 
activity and proportion of Adiff spermatogonia while these 
parameters were further increased for Aund spermatogonia. 
These morphometric results were supported by respective 
changes in germ cell marker gene transcript levels that 
suggested increases in type A spermatogonia at the expense 
of more differentiated germ cell types. We conclude that 
blocking β-catenin restricted Fsh effects from activating 
both self-renewal and differentiating divisions of type 
A spermatogonia toward preferentially facilitating the 
proliferation and accumulation of Aund spermatogonia 
in the zebrafish testis. Inhibition of these β-catenin-
dependent pro-differentiation effects of Fsh is probably 
related to a downstream mediator of Fsh, Igf3, which 
activated β-catenin signaling independent of Wnt ligands 
to stimulate the differentiation of type A spermatogonia 
(Safian et al. 2018).

The above results also demonstrate that Fsh does not 
require β-catenin activity to stimulate the proliferation 
activity of Aund spermatogonia. This is in line with findings 
of Yeh et  al. (2011) who reported that murine SSCs did 
not respond to canonical Wnt signaling. However, the 
findings that Fsh stimulated the proliferation activity 
and accumulation of zebrafish Aund (i) depended on Wnt 
ligand release and (ii) that Fsh triggered the production 
of Wnt5a by LCs jointly suggested an involvement of 
non-canonical Wnt signaling in regulating the activity 
of Aund spermatogonia. The relevance of this signaling 
was supported further by experiments with agonists 
and antagonists of Wnt5a. A recent study in mice also 
showed that WNT5A induced an accumulation of type 
Aund spermatogonia (Tanaka et  al. 2016). Intriguingly, 
the regulation of Wnt5a is quite different in these two 
models: Tanaka and colleagues found that LH, but not Fsh, 
downregulated Wnt5a transcript levels in SCs indirectly 
by stimulating LC androgen production. In zebrafish, 
on the other hand, neither Lh nor androgen modulated 
testicular transcript levels of wnt5a while Fsh increased 
LC wnt5a transcript levels and probably also Wnt5a 
release. Regarding receptors potentially responding to 
WNT5a in testis, Yeh et al. (2011) found that in vitro, SSCs 
express the non-canonical signaling frizzled receptors 
(FZD) 3, 5 and 7 and also the alternative receptor Ror2.  
RNA sequencing data from previous experiments showed 

Figure 5
Transcript levels of retinoic acid-related genes in response to Fsh and the 
Wnt5a antagonist (WAIIIB5) or in response to the Wnt5a agonist (Foxy-5) 
after 5 days of incubation. Transcript levels are expressed as fold-change 
compared to control condition represented by a dotted line (100 ng/mL 
Fsh or basal conditions), as induced by Fsh (100 ng/mL) and WAIIIB5 
(100 µM; n = 8; represented by bars) or Foxy-5 (100 µM; n = 7; represented 
by bars). Asterisks indicate significant differences (*P < 0.05) between 
basal and experimental group.
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that zebrafish testis tissue also expresses several non-
canonical Wnt receptors (Crespo et  al. 2016, Morais 
et al. 2017). However, no information is available on the 
question which receptor specifically responds to WNT5a 
in mice or zebrafish testis tissue. Collectively, the data 
from the experiments shown in Figs 3 and 4 indicate that 
the role of Wnt5a in promoting self-renewal divisions 
of undifferentiated spermatogonia is conserved between 
zebrafish and mice, while the endocrine regulation and 
cellular site of expression of this factor differs between the 
two species.

While this Wnt5a function may be conserved in 
vertebrates, no information is available so far on signaling 
mechanisms potentially targeted by Wnt5a. Our initial 
studies do not provide evidence for an involvement of 
Amh, Insl3, Igf3 or androgens. However, retinoic acid 
signaling may be involved. Studies in mice have shown 
that a diet deficient in the retinoic acid precursor vitamin 
A resulted in the accumulation of undifferentiated 
spermatogonia (Van Pelt & de Rooij 1990, Li et al. 2011). 
Interestingly, it was found recently that somatic cells 
protect SSC from exogenous retinoic acid while allowing 
further differentiated cells to respond to retinoic acid  

in mice (Lord et al. 2018). In zebrafish, exposure to a diet 
low in vitamin D and also to an inhibitor of Aldh1a2 
resulted in lower sperm count and fecundity after 3 weeks 
(Pradhan & Olsson 2015). In addition, mutation of 
aldh1a2 delayed the entry into meiosis while disrupting 
the cyp26a1 gene (encoding the enzyme degrading 
retinoic acid), accelerated the entry into meiosis in Nile 
tilapia (Feng et al. 2015). As cyp26a1 expression has been 
localized in LCs in the adult zebrafish testis (Rodríguez-
Marí et al. 2013), it will be interesting to investigate which 
germ cell types respond to RA signaling in zebrafish. It 
therefore seems possible that one of the consequences of 
Wnt5a action in the zebrafish testis is to reduce retinoic 
acid signaling, thereby favoring the accumulation of Aund 
spermatogonia.

In addition to the mechanism described in the present 
study (Fsh-stimulated Wnt5a of LC origin promotes the 
production of undifferentiated spermatogonia), other 
mechanisms have alike effects in zebrafish: Amh inhibits 
the differentiation of Aund, promoting their accumulation, 
(Skaar et al. 2011) and T3 stimulated the generation of new 
cysts by increasing the proliferation of Aund spermatogonia 
and SCs in adult zebrafish testis (Morais et  al. 2013).  

Figure 6
Effect of Fsh in basal conditions or in the presence 
of inhibitors or Foxy-5 on Sertoli cell proliferation 
contacting type A spermatogonia. Number of 
BrdU-positive ‘free’ Sertoli cells, Sertoli cells 
contacting BrdU-negative and BrdU-positive Aund, 
and Sertoli cells contacting BrdU-negative and 
BrdU-positive Adiff in the presence of: (A) 25 µg/mL 
trilostane (dotted line; control condition) or in 
the presence of Fsh (100 ng/mL; n = 8; represented 
by bars), (B) in the presence of Fsh (100 ng/mL; 
dotted line; control condition) or in combination 
with XAV393 (10 µM; n = 7; represented by bars), 
(C) in the presence of Fsh (100 ng/mL, dotted line; 
control condition) or in combination with WAIIIB5 
(100 µM; n = 7; represented by bars) and (D) in 
basal conditions or in the presence of Foxy-5 
(100 µM; n = 5). Results are presented as fold 
changes with respect to the control group. 
Asterisks indicate significant differences (*P < 0.05; 
**P < 0.01) between control and experimental 
group.

Downloaded from Bioscientifica.com at 12/18/2018 08:47:29AM
via Utrecht University Library and MULTI-PFIZER

https://doi.org/10.1530/JOE-18-0447
https://joe.bioscientifica.com


https://doi.org/10.1530/JOE-18-0447
https://joe.bioscientifica.com © 2018 Society for Endocrinology

Published by Bioscientifica Ltd.
Printed in Great Britain

361

Research

D Safian et al. Wnt5a enriches zebrafish type A 
spermatogonia

239:3Journal of 
Endocrinology

It appears that different, independent mechanisms, making 
use of distinct hormones and growth factors, operate to 
ensure that a sufficient number of spermatogenic cysts 
with a single Aund enveloped by SCs are available to form 
the basis of the spermatogenic process.

As mentioned earlier, the generation of new 
spermatogenic cysts and the growth and differentiation of 
existing cysts requires SC proliferation in the postpubertal 
fish testis (Schulz et  al. 2005, De França et  al. 2015). 
Therefore, we have also studied SC proliferation. In line 
with previous results (Safian et al. 2018), Fsh increased the 
proliferation activity of SCs contacting BrdU-positive Aund 
and Adiff in the presence of β-catenin signaling inhibitor, 
indicating a change in the Fsh effects from supporting the 
further development of existing cysts toward facilitating 
the formation of new spermatogenic cyst. Inhibiting and 
stimulating Wnt5a signaling by using a Wnt5a antagonist 
and agonist, respectively, revealed that Fsh-stimulated 
Wnt5a supports the formation of new cyst by increasing 
the proliferation of free SCs, and by supporting the 
proliferation of SCs associated with non-proliferating 
Aund. Taken together, these observations suggest that part 
of the Fsh effect that promotes the expansion of the Aund 
spermatogonial population includes the production of 
additional SCs that can then support newly formed Aund, 
thereby forming new spermatogenic cysts.

In summary, the pituitary hormone Fsh promoted the 
formation of Aund spermatogonia and SCs by stimulating 
LC production of the non-canonical Wnt ligand Wnt5a. 
This Fsh effect takes place in parallel to Fsh-triggered 
Igf3/β-catenin (Safian et al. 2018), Insl3 (Assis et al. 2016) 
and androgen signaling (García-López et al. 2010, Crowder 
et  al. 2018) that all stimulate germ cell differentiation. 
We propose that the capacity of Fsh to induce a balanced 
stimulation of the spermatogenic process involves both 
the production of new spermatogenic cysts containing 
Aund via the non-canonical Wnt pathway and LC-derived 
Wnt5a, while spermatogonial differentiation is triggered 
via Igf3/β-catenin signaling (Safian et  al. 2018) (Fig.  7). 
Additional pro-differentiation routes have been identified 
already as mentioned earlier, and other signaling pathways 
may be involved in promoting the production of Aund.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
JOE-18-0447.
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Figure 7
Schematic representation of the effects of Fsh on 
spermatogenesis by modulating canonical and 
β-catenin signaling. Fsh stimulates the production 
of the β-catenin-independent ligand Wnt5a in 
LCs, which modulates the transcription of genes 
important for spermatogenesis, to stimulate the 
accumulation of type Aund spermatogonia and the 
production of new cysts (left). Fsh also stimulates 
differentiating divisions of spermatogonia by 
increasing Igf3 release from Sertoli cells (Nóbrega 
et al. 2015), which activates β-catenin-dependent 
signaling (Safian et al. 2018). A full color version 
of this figure is available at https://doi.
org/10.1530/JOE-18-0447.
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