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1 | INTRODUC TION
Human cognition is incredibly variable. Naturally, mathematical 
cognition is no exception. Why is it that mathematics is fun and 
easy for some children, whereas for others it is a constant struggle, 
which can follow them even up to adulthood? Our understanding 
of the cognitive factors underlying the development of mathemat-
ics achievement is gradually progressing. In recent decades, mathe-
matical cognition research has been championing the role of various 

cognitive factors; domain- general, that is, abilities that are important 
for all school subjects (Baddeley & Repovs, 2006; Colom, Escorial, 
Shih, & Privado, 2007; Cragg & Gilmore, 2014; Geary, 2011a; 
Passolunghi, Mammarella, & Altoe, 2008), as well as domain- specific 
cognitive factors, that is, abilities that are important particularly 
for mathematics achievement (De Smedt, Noël, Gilmore, & Ansari, 
2013; De Smedt, Verschaffel, & Ghesquière, 2009; Feigenson, 
Libertus, & Halberda, 2013; Gilmore, McCarthy, & Spelke, 2010; 
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Abstract
Research has identified various domain- general and domain- specific cognitive abili-
ties as predictors of children’s individual differences in mathematics achievement. 
However, research into the predictors of children’s individual growth rates, namely 
between- person differences in within- person change in mathematics achievement is 
scarce. We assessed 334 children’s domain- general and mathematics- specific early 
cognitive abilities and their general mathematics achievement longitudinally across 
four time- points within the first and second grades of primary school. As expected, a 
constellation of multiple cognitive abilities contributed to the children’s starting level 
of mathematical success. Specifically, latent growth modeling revealed that WM abil-
ities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and com-
parison skills explained individual differences in the children’s initial status on a 
curriculum- based general mathematics achievement test. Surprisingly, however, only 
one out of all the assessed cognitive abilities was a unique predictor of the children’s 
individual growth rates in mathematics achievement: their performance in the sym-
bolic approximate addition task. In this task, children were asked to estimate the sum 
of two large numbers and decide if this estimated sum was smaller or larger com-
pared to a third number. Our findings demonstrate the importance of multiple 
domain- general and mathematics- specific cognitive skills for identifying children at 
risk of struggling with mathematics and highlight the significance of early approxi-
mate arithmetic skills for the development of one’s mathematical success. We argue 
the need for more research focus on explaining children’s individual growth rates in 
mathematics achievement.
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Holloway & Ansari, 2009; Lyons, Price, Vaessen, Blomert, & Ansari, 
2014; Mazzocco, Feigenson, & Halberda, 2011; Xenidou- Dervou, 
Molenaar, Ansari, van der Schoot, & van Lieshout, 2017). In the 
present study, we addressed the question of which early cogni-
tive factors—domain- general and/or mathematics specific—form 
the foundation that fosters the development of early mathematics 
achievement. We report a longitudinal study where we explored 
which cognitive factors uniquely contribute to the development of 
children’s mathematics achievement and how. Particularly, we aimed 
to address the following questions: (1) Which cognitive factors in-
fluence the initial status of the development of a child’s general 
mathematics achievement?, and (2) Which ones predict children’s 
intra- individual change, namely their growth rate, in mathematics up 
until the end of grade 2?

1.1 | Early predictors of inter- individual differences 
in mathematics

A well- known theoretical framework in mathematical cognition re-
search assumes that the human brain is equipped with the so- called 
“Approximate Number System” (ANS; Dehaene, 1997; Gallistel & 
Gelman, 1992), an evolutionary ancient, ontogenetic and phylo-
genetic mechanism for estimating and manipulating quantities. It 
assumes that our innate approximate number sense guides the pro-
cess of learning numerical symbols and mathematics development 
(Piazza, 2010; but see also Leibovich & Ansari, 2016; Reynvoet & 
Sasanguie, 2016). This theory is supported by studies with prever-
bal babies (Coubart, Izard, Spelke, Marie, & Streri, 2014; Izard, Sann, 
Spelke, & Streri, 2009; Xu & Spelke, 2000) and even animals being 
capable of discriminating quantities (Agrillo, Piffer, & Bisazza, 2011; 
Cantlon, 2012; Flombaum, Junge, & Hauser, 2005). In children, the 
ANS is typically assessed with tasks where they are asked to com-
pare the magnitudes of nonsymbolic numerosities (e.g., dot arrays). 
Two well- known measures are the nonsymbolic approximate com-
parison and the nonsymbolic approximate arithmetic task (Barth, 
Beckmann, & Spelke, 2008; Gilmore, Attridge, De Smedt, & Inglis, 
2014; Gilmore, McCarthy, & Spelke, 2007; Hyde, Khanum, & Spelke, 
2014; McNeil, Fuhs, Keultjes, & Gibson, 2011; Park & Brannon, 
2013; Xenidou- Dervou, van Lieshout, & van der Schoot, 2014). 
Performance in these tasks is characterized by the so- called ratio 
effect: accuracy drops as the ratio of the quantities to be compared 
approaches 1.

It has been hypothesized that nonsymbolic magnitude process-
ing skills are a key cognitive factor in the development of math-
ematics achievement as some studies have found an association 
between nonsymbolic processing skills and children’s mathemat-
ics achievement (e.g., Gilmore et al., 2010; Halberda, Mazzocco, 
& Feigenson, 2008; Libertus, Feigenson, & Halberda, 2011). 
However, many other studies have not found such a relationship, 
and findings regarding nonsymbolic processing skills are mixed (for 
reviews see De Smedt et al., 2013; Reynvoet & Sasanguie, 2016). 
On the other hand, symbolic processing skills—that is, where the 
non- symbolic stimuli are replaced by their corresponding Arabic 

symbols—have been consistently demonstrated to robustly pre-
dict mathematics achievement (for reviews see De Smedt et al., 
2013; Reynvoet & Sasanguie, 2016). Thus, we hypothesized that 
symbolic magnitude processing skills—symbolic approximate 
comparison and symbolic approximate addition—would be im-
portant predictors for the development of children’s mathematics 
achievement.

But one may wonder: From what age can children actually per-
form approximate arithmetic with symbolic stimuli, that is, Arabic 
digits? On the basis of Piagetian and neo- Piagetian theories, chil-
dren would not be expected to conduct computational estimations 
before reaching 8 years of age (Case & Sowder, 1990). However, 
Gilmore et al.’s (2007) seminal study demonstrated that children as 
young as kindergarteners not only perform above chance level in 
nonsymbolic magnitude comparison and arithmetic tasks, but also 
in the corresponding symbolic approximate tasks. Performance in 
these approximate symbolic tasks seemed to also be ratio- based. 
Given the fact that simple addition, in the form of “a + b = c”, where 
an exact response is required, is a laborious process which can 
takes years to master (Case & Sowder, 1990; Hamann & Ashcraft, 
1985), Gilmore et al.’s (2007) findings were striking. Essentially, 
what they showed is that symbolic approximate arithmetic—in the 
form of “a + b” vs. “c”, “Which is larger?”—even with large numbers 
such as “58”, is possible as early as the kindergarten stage (see 
Figure 1B for an example). This ability is also known in the litera-
ture as “computational estimation” (Case & Sowder, 1990; Dowker, 
2003).

There is now strong evidence that children’s early ability to com-
pare the magnitude of numbers (symbolic comparison) is a robust 
predictor of their mathematics achievement (for a review see De 
Smedt et al., 2013). But the predictive role of children’s early sym-
bolic approximate arithmetic skills is unclear. Since Gilmore et al.’s 

Research Highlights

• A constellation of domain-general and mathematics-
specific cognitive abilities contributed to children’s 
starting level of mathematical success in the middle of 
grade 1.

• Specifically, IQ, WM capacities, counting skills and both 
nonsymbolic and symbolic approximate comparison ex-
plained unique variance in children’s initial status in 
mathematics achievement.

• However, symbolic approximate addition not only pre-
dicted initial status; it was also the only predictor of chil-
dren’s individual growth rates in mathematics 
achievement

• Future research needs to place more focus on the pre-
dictors of children’s individual growth, that is, their in-
tra-individual change in general mathematics 
achievement
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(2007) study, few have addressed the role of this early ability and 
how it relates to the development of mathematics achievement. 
What we do know, however, is that by the time children start for-
mal schooling, most of them have also developed counting skills, 
which form the basis for starting to understand simple exact addi-
tion and subtraction (see Geary, 2011b), and are predictive of their 
mathematics development (Desoete, Stock, Schepens, Baeyens, 
& Roeyers, 2009; LeFevre et al., 2006; Passolunghi, Vercelloni, & 
Schadee, 2007).

The aforementioned abilities are all domain-specific predictors of 
mathematics, namely—as the term implies—they are particularly im-
portant for the school subject of mathematics. But certain cognitive 
abilities are important for all school subjects, not just mathematics. 
These are known as domain-general cognitive predictors. IQ—fluid 
intelligence, in particular—refers to the ability of using mental oper-
ations such as identifying relations, drawing inferences, transform-
ing information, to solve novel problems (Primi, Ferrão, & Almeida, 
2010), and is thus predictive of mathematics achievement (Alloway 
& Alloway, 2010). Working Memory (WM: Baddeley & Hitch, 1974), 
on the other hand, is an attention- driven multicomponent cognitive 
construct. This construct refers to a system that stores and pro-
cesses elements in an online manner when performing cognitive 
tasks (Baddeley, 2003; Repovs & Baddeley, 2006). Three of its com-
ponents are particularly relevant for mathematics achievement: (1) 
the Visuospatial Sketchpad (VSSP), where a limited number of visual 
and spatial elements are stored for a short amount of time, (2) the 
Phonological Loop (PL), which instead stores, also for a short period, 
phonological elements, and (3) the Central Executive (CE), which 
monitors, controls and regulates the workings of the other two com-
ponents, and is activated when visual, spatial or phonological ele-
ments need to be manipulated. Since solving mathematical problems 

requires processing both verbal and visuospatial information, which 
often require multi- step solution procedures, it is no surprise that 
WM plays a fundamental role in mental arithmetic and mathemat-
ics achievement in general (for reviews see Cragg & Gilmore, 2014; 
DeStefano & LeFevre, 2004) and has been shown to be a strong lon-
gitudinal predictor of various mathematical skills (De Smedt et al., 
2009; Gathercole, Tiffany, Briscoe, & Thorn, 2005; Hornung, Schiltz, 
Brunner, & Martin, 2014; Passolunghi et al., 2007) independently of 
IQ (Alloway & Alloway, 2010). Given that mathematics is a complex 
skill, it is also no surprise that IQ and Working Memory (WM) capac-
ities have both been established by now as primary domain- general 
cognitive predictors of mathematics achievement, already early on 
in development.

1.2 | From inter- individual differences to  
intra- individual change

Most studies addressing individual differences in mathematics 
achievement so far have focused on the cognitive predictors of 
children’s inter- individual differences, namely why some children 
perform better or worse than others, by examining which variables 
predict average mathematics achievement at a concurrent or future 
time- point. From the aforementioned literature, it is evident that a 
complex interplay amongst both mathematics- specific and domain- 
general capacities contributes to variation in children’s mathematics 
achievement. However, little focus has been placed on the predictors 
of children’s intra- individual change, namely what predicts children’s 
individual growth rates in mathematics achievement, not just their 
average mathematics achievement at a specific time- point. Latent 
growth modelling, which was used in the present study, is a statisti-
cal method that permits the estimation of inter- individual variability 

F IGURE  1 Nonsymbolic (a) and 
symbolic (b) approximate addition 
example trials (from Xenidou- Dervou, 
Gilmore et al., 2015)
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in intra- individual rates of change over time (see Curran, Obeidat, & 
Losardo, 2010; Grimm, Ram, & Hamagami, 2011). It takes into ac-
count the fact that no one is really “average”; performance changes 
over time, but not necessarily in the same way or at the same rate 
for all children. Some may grow fast, while others may demonstrate 
slower or little developmental change; growth trajectories vary on 
the basis of many different characteristics, which vary from person 
to person. In the present study, our aim was to identify which cogni-
tive characteristics explain differences in children’s individual devel-
opmental change in mathematical achievement.

Studies on the topic of predictors of growth in mathematics are 
scarce. Jordan, Kaplan, Ramineni, and Locuniak’s (2009) longitudinal 
study demonstrated that early number competencies and counting 
skills in kindergarten, as well as their growth from kindergarten to 
first grade predicted third grade mathematics achievement varia-
tion. Similarly, Toll, Van Viersen, Kroesbergen, and Van Luit (2015) 
followed kindergarteners for two and a half years and found that in-
dividual growth in nonsymbolic and symbolic comparison skills pre-
dicted future maths achievement at the end of grade 1. These results 
indicate that improved performance in early mathematics- specific 
abilities across time has a positive influence on their future mathe-
matics achievement. But again, in these studies the dependent vari-
able was children’s average mathematics achievement at a specific 
time- point. Thus, the question remains: Which cognitive factors 
(domain- specific or domain- general) predict individual growth in 
mathematics achievement?

In a three- year- long study Dulaney, Vasilyeva, and O’Dwyer 
(2015) assessed 4.5- year- olds’ verbal intelligence, short- term mem-
ory and attention and explored whether these abilities predicted 
children’s growth in mathematics achievement from grade 1 to grade 
3. Their results demonstrated that these domain- general cognitive 
abilities only predicted children’s early differences in mathematics 
but not growth. Fuchs et al. (2010)’s longitudinal study, on the other 
hand, included a larger range of domain- general predictors as well 
as two mathematics- specific predictors assessed at the beginning 
of grade 1. In this case, different types of mathematics achievement 
abilities—procedural calculations and word problems—were as-
sessed, but only twice: in the fall and spring of grade 1. Using latent 
change scores in a multiple regression approach, Fuchs et al. (2010) 
showed that different constellations of domain- general and numer-
ical cognition skills predicted change within grade 1 in different 
types of mathematics. Unfortunately, however, their mathematics- 
specific predictors were quite limited and primarily focused on sym-
bolic skills (transcoding and symbolic number line estimation). Lastly, 
Geary (2011a) addressed the question of predicting children’s math-
ematics growth by conducting a comprehensive five- year longitudi-
nal study. He assessed children’s arithmetic skills from kindergarten 
through to grade 5 and administered to them a large test battery as-
sessing mathematics- specific and domain- general abilities at the end 
of grade 1. Using multilevel modeling, this study showed that both 
mathematics- specific as well as domain- general abilities predicted 
inter- individual differences in initial level and growth rates from 
grade 1 to grade 5. Specifically, whereas a variety of domain- general 

and domain- specific abilities predicted children’s starting point in 
kindergarten (intercept predictors), only the Central Executive mea-
sure of WM, symbolic number line processing, and addition strate-
gies were unique predictors of children’s growth in arithmetic.

The aforementioned studies comprised the first step in identi-
fying predictors of children’s growth in mathematics. The present 
study takes this type of research a step further. We assessed chil-
dren before the start of their formal schooling on a wide variety 
of domain- general and mathematics- specific measures, including 
for the first time the relatively recently acknowledged cognitive 
factors of magnitude processing and approximate arithmetic (non-
symbolic and symbolic), which—as described earlier—are assumed 
to be fundamental for the development of mathematics achieve-
ment. Furthermore, we used a more comprehensive dependent 
measure for assessing general mathematics achievement, that is, the 
Cito tests (Janssen, Scheltens, & Kraemer, 2005; Janssen, Verhelst, 
Engelen, & Scheltens, 2010). In mathematical cognition research, 
one notices that, often, arithmetic measures, namely tasks including 
only computations such as addition, subtraction, etc., are treated as 
measures of mathematics achievement. In other words, arithmetic 
is sometimes viewed as a synonym of mathematics achievement. 
However, general mathematics achievement assessment in school 
includes much more besides just arithmetic, for example, solving 
mathematical problems in verbal and pictorial contexts. The Cito 
tests are national curriculum- based mathematics tests which school 
staff in the Netherlands use to monitor children’s progress. They 
influence plans and decisions made for children who lag behind to 
receive extra support. At the end of primary school, Cito tests are 
used to identify which children should attend higher-  or lower- level 
variants in the Dutch secondary educational system. Thus, perfor-
mance on these tests plays a paramount role in Dutch children’s ac-
ademic development.

1.3 | The present study

We conducted a three- year- long longitudinal study beginning 
when the children were in kindergarten (around 5 years of age). 
We assessed their performance on an IQ measure, various domain- 
general and mathematics- specific WM measures covering all com-
ponents of WM (Baddeley & Repovs, 2006), their counting skills, 
and their nonsymbolic and symbolic magnitude comparison and 
arithmetic abilities. In previous studies, we focused on explaining 
these children’s inter- individual differences in kindergarten math-
ematics achievement (Xenidou- Dervou, De Smedt, van der Schoot, 
& van Lieshout, 2013) and their general mathematics achievement 
at the end of grade 2 (Xenidou- Dervou et al., 2017). But, as de-
scribed earlier, in the Netherlands—from the middle of grade 1 
onwards—children are assessed by school staff on a curriculum- 
based standardized test, known as the Cito mathematics tests. 
Thus, we had children’s Cito scores from the middle of grade 1, end 
of grade 1, middle of grade 2 and end of grade 2. We, therefore, 
repurposed these kindergarteners’ data on the various cognitive 
abilities to address the question: Which of the domain- specific and 
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domain- general cognitive factors, assessed before the middle of 
grade 1, predict children’s initial status and individual mathematics 
achievement growth rates from mid- grade 1 up to the end of grade 
2? Given the strong and consistent predictive role that IQ, WM 
and symbolic magnitude processing appear to play in mathemati-
cal cognition and its development, we expected that these abilities 
would predict both children’s initial status and their growth rates in 
general maths achievement.

2  | METHOD

2.1 | Participants

This study is part of a larger longitudinal collaborative project titled 
“The MathChild project”. In this larger project, we assessed vari-
ous cognitive abilities of 444 kindergarteners from 25 mainstream 
schools in the Netherlands, whom we followed up until grade 2. In 
the present study, we included all the children who completed all the 
tests of interest, including the Cito mathematics tests up to the end 
of grade 2. Our current sample included 334 kindergarteners, Mage 
= 5.59 (SD = .35), 148 girls. Dropouts were primarily due to family 
relocations or repetition of a grade. The children were approximately 
8 years old when they were assessed by the school staff on the last 
Cito test used in this study. All participants spoke Dutch and 96.4% 
held Dutch nationality. They were sampled from middle-  to high- SES 
environments: 33.8% of the children’s mothers and 26.3% of their 
fathers had received middle- level applied education (in the Dutch 
Educational system: MBO), whereas 42.2% of their mothers and 
45.8% of their fathers had acquired higher levels of education (in the 
Dutch Educational system: HBO and higher levels).

2.2 | Procedure

Children were tested individually in quiet rooms within their 
schools by trained experimenters on all tasks except for the IQ 
and mathematics achievement test. The IQ test was administered 
in group settings in their last kindergarten year (see measurement 
timeline in Appendix A). The mathematics achievement tests (Cito) 
were administered by school staff at the middle and end of grade 
1 and middle and end of grade 2 (four time- points). The rest of the 
data comprise a subset of tasks administered to the children by 
the experimenters as part of the collaborative project. These data 
were acquired across two testing sessions lasting approximately 
30 minutes each at the end of the kindergarten year or the begin-
ning of grade 1 (see Appendix A). All of our experimenters used 
the same elaborate protocol for the administration of the tasks 
at each measurement time- point. Parts of the kindergarten data, 
that is, the data on the IQ, Word and Digit Recall tasks, have been 
reported in previous articles (Xenidou- Dervou et al., 2013, 2017), 
as well as the Cito ability scores (Friso- van den Bos et al., 2015; 
Xenidou- Dervou et al., 2017). In those articles, we addressed 
other research questions and made use of different statistical 
analyses.

2.3 | Tasks

Apart from the paper and pencil IQ test, and the mathematics 
achievement tests, all other tests were computerized, presented 
with E- prime 1.2 (Psychological Software Tools, Pittsburgh, PA, 
USA) on HP Probook 6550b laptops.

2.3.1 | ΙQ

Raven’s Coloured Progressive Matrices (Raven, Raven, & Court, 
1998) were used to assess children’s nonverbal fluid intelligence. 
This test is suitable for children aged 5 through 11 years old. It en-
tails visual patterns of increasing difficulty. In each pattern, a piece is 
missing and the child is asked to identify this missing piece from a set 
of six pieces to complete the pattern’s design. The outcome measure 
entailed the raw accuracy scores.

2.3.2 | Working Memory (WM)

We used a set of six tasks translated and adapted from the 
Automated WM Assessment battery (AWMA; Alloway, 2007; 
Alloway, Gathercole, Willis, & Adams, 2004) to assess children’s 
capacity on all three components of WM, that is, the Visuospatial 
Sketchpad (VSSP), the Phonological Loop (PL), and their interaction 
with the Central Executive (CE). Since we were interested in examin-
ing all aspects of WM, we included both mathematics- related WM 
tasks, that is, tasks that included digits, as well as tasks entailing ele-
ments not directly related to mathematics such as words. For each 
task, instructions were read aloud to the child by the trained experi-
menters and each task started with a short practice session.

Visuospatial Sketchpad (VSSP)
The Cross Matrix assessed children’s VSSP capacity. This task was 
identical to the Dot Matrix of the AWMA, only the dots were now 
replaced with crosses to avoid any overlap with our nonsymbolic 
tasks, which included dots. A trial included a 4 × 4 matrix where a 
cross appeared and disappeared. Participants were awarded one 
point when recalling correctly the location where the cross had ap-
peared in the matrix. After four correct trials, the child automatically 
advanced to the next level of difficulty. With each increasing level 
of difficulty, one extra cross would appear (levels ranged from 1 up 
to 5 crosses). From the second level onwards, the child had to recall 
correctly both the location and the order of the locations where the 
crosses had appeared in the matrix. After three incorrect responses 
within one level of difficulty the task terminated automatically. The 
sum of correct responses comprised the outcome measure.

Phonological Loop (PL)
The PL component of WM was assessed with two tasks. In the 
Word Recall Forward children heard a series of highly frequent, 
unrelated Dutch one- syllable words, which they had to recall in 
the presented order. A response was registered as correct if the 
child recalled the words correctly and in the correct order. The 
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task started with one word and could go up to the level of five 
words. The Digit Recall Forward task was similar, the only differ-
ence being that now children heard and recalled digits (1–9) in-
stead of words. Task progression rules were similar to those of the 
VSSP task. The sums of correct responses comprised the outcome 
measures.

Central Executive (CE)
The CE component of WM was assessed with three tasks, which 
differed on the basis of the type of the to be maintained and ma-
nipulated information (phonological not mathematics- specific, pho-
nological mathematics- specific, or visuospatial) that needed to be 
processed in one’s CE. The Word Recall Backwards task was simi-
lar to the aforementioned Word Recall Forward task, only this time 
children had to recall the presented series of words in the reversed 
order. This task started with a series of two words and could go up 
to the level of seven words. Similarly, the Digit Recall Backwards task 
comprised digits instead of words. Lastly, the Odd One Out task as-
sessed children’s capacity to manipulate visuospatial information, 
that is, the interaction of the CE with the VSSP. In this task, the child 
saw three shapes inside three boxes presented one next to each 
other and had to identify the odd- one- out shape by pointing out the 
correct box on the screen. After the odd- one- out shapes had been 
identified, their locations had to be recalled in the same order as 
presented. The task entailed five levels of difficulty, with each level 
including an extra shape. Progression rules were similar to the Cross 
Matrix task.

2.3.3 | Counting

We used the four counting subscales from the A version (20 items) 
of the Early Numeracy Test- Revised (ENT- R; Van Luit & Van de Rijt, 
2009). This test is suitable for children aged 4–7 years old. The four 
scales assess children’s counting skills and their ability to apply this 
knowledge. Specifically, the scales address the following skills: (1) 
Using number words, namely counting forwards and backwards up 
to maximally 20; (2) Structured counting, namely counting when 
pointing at objects; (3) Resultative counting, namely counting with-
out pointing; (4) General understanding of numbers and using the 
counting system in everyday life. A correct response was recorded 
with one point.

2.3.4 | Magnitude processing

Nonsymbolic approximate addition
This task was an adapted version of the nonsymbolic approximate 
addition task used by Barth and colleagues (Barth et al., 2006; Barth, 
La Mont, Lipton, & Spelke, 2005) and Xenidou- Dervou et al. (2014). 
The task entailed 6 practice and 24 test trials. In each trial, a cartoon 
image of a girl on the top left side of the screen (Sarah) and an image 
of a boy on the top right side of the screen (Peter) appeared and the 
following sequential steps took place (Figure 1A): (1) a set of blue 
dots appeared on the top left side of the screen next to Sarah and 

dropped down; (2) these were then covered by a grey box; (3) next, 
another set of blue dots dropped down into the box; (4) at this stage 
both sets of blue dots were hidden behind the box; (5) then, a set of 
red dots appeared next to Peter on the right side of the screen and 
dropped down. The child was asked to answer as correctly and as 
fast as possible the question “Who got more dots, Sarah or Peter?” 
Essentially the child had to estimate the sum of the two blue dot 
sets and compare that with the red set. The large amount of dots 
and the fast interchange of events made it impossible for the chil-
dren to count or add the dots. They responded by pressing the blue 
or red response box situated in front of them. Each animated event 
lasted 1300 ms and between them there was an interval of 1200 ms. 
Numerosities ranged from 6 up to 70. The child could respond from 
the moment the red dots appeared on the screen and had a maxi-
mum of 7000 ms to register their response. There were three ratio 
differences between the sum of the blue sets of dots and the red set 
of dots: 4:7, 4:6, 4:5 (easy, middle and difficult ratio, respectively) 
and eight trials for each ratio. In half of the trials the sum of the blue 
dots set was larger than the red set of dots, whereas the reverse 
occurred for the other half of the trials. Trial order was randomized 
and between each trial there was an interval of 300 ms. To control 
for children’s responses being reliant on the physical features of the 
dots in half of the trials, dot size, total dot surface area, total dot con-
tour length and density correlated positively with numerosity and 
array size correlated negatively with numerosity. In the other half of 
the trials these relations were reversed (Barth et al., 2006; Gilmore 
et al., 2010; Xenidou- Dervou et al., 2014). Dot sets were designed 
with MATLAB 7.5 R2007 b. The resulting outcome measure was the 
total number of correct responses (0–24).

Symbolic approximate addition
This task was identical to its nonsymbolic counterpart only this time 
the dot- sets were replaced with their respective Arabic numerals 
(Figure 1B). A complete list of all the trials included in these tasks 
can be found in Xenidou- Dervou et al., 2013).

Nonsymbolic approximate comparison
This task was similar to the nonsymbolic approximate addition task 
with the key difference that this time the child saw only one set of 
blue dots (the sum of the previously mentioned two blue sets). This 
time the child had to compare the magnitude of the single blue set of 
dots with the comparison red set.

Symbolic approximate comparison
The symbolic approximate comparison task was similar to its non-
symbolic counterpart with the difference that the dots were now 
replaced with the respective Arabic numerals. A complete list of all 
the trials included in these tasks can be found in Xenidou- Dervou 
et al. (2013).

Symbolic exact addition
This was an adapted version of Jenks, De Moor, and van Lieshout’s 
(2009) arithmetic ability addition task. In this task, children were 
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asked to respond as correctly and as fast as possible to a series 
of addition problems, which asked for an exact response in the 
form	of	a	+	b	=	c,	where	a	≠	b	and	a,	b	>	1.	There	was	one	prac-
tice trial and 10 trials with simple (c < 10) and 5 items with harder 
addition problems (10 < c < 16). Each problem remained visible 
on the screen until the child provided a verbal response to the 
experimenter, who at that instance would press the space bar to 
stop the trial and recorded the child’s answer (Xenidou- Dervou 
et al., 2013).

2.3.5 | General mathematics achievement

Children’s general mathematics achievement was assessed with the 
Cito ability scores (see Janssen et al., 2010). The national Cito math-
ematics tests are administered by school staff twice every academic 
year to all children starting from the middle of grade 1 onwards. 
They are administered in each academic year in January and June to 
monitor children’s academic progress in mathematics. We acquired 
children’s scores at four time- points: middle of grade 1, end of grade 
1, middle of grade 2, and end of grade 2. The tests entail grade- 
appropriate mathematics problems that increase in difficulty over 
the grades. They include primarily word problems, which cover a 
wide range of mathematics topics, such as measurement (weight, 
time, length), proportions, numbers and number relations, arithme-
tic (addition, subtraction, multiplication, division) and complex ap-
plications such as more than one operation per problem. Raw test 
scores are converted to normed ability scores provided by the pub-
lisher, which typically increase across the primary school years.

3  | RESULTS

Table 1 depicts descriptive statistics on the predictor variables. 
To examine children’s average developmental trajectory of math-
ematics achievement, we conducted a repeated measures ANOVA 
with Time (four time- points) as the within- subjects factor. Since 
the assumption of sphericity was violated, degrees of freedom 
were corrected using Greenhouse- Geisser estimates. As expected, 
there was a main effect of Time, F(2.87, 1002.12) = 752.66, p < 
.001, ηp

2 = .68. As seen in Figure 2, children’s general mathemat-
ics achievement appears to show a linear increase across the four 
time- points. Tests of polynomials indicated that there was indeed 
a significant linear effect, F(1, 349) = 1952.08, p < .001, ηp

2 = .85, 
and a smaller significant cubic effect, F(1, 349) = 13.22, p < .001, 
ηp

2 = .37; the quadratic component was not significant.

3.1 | Latent growth modeling

First, we built an unconditional growth model, that is, without pre-
dictors, which would identify an appropriate growth curve that 
would accurately and parsimoniously depict development on the 
individuals’ level. We initially built a linear growth curve model. This 
model included an intercept (initial status) and a slope (growth) latent 

factor. The initial status factor is a constant for any individual across 
time; therefore, the factor loadings were fixed to 1. The growth la-
tent factor encapsulates the developmental slope of an individual’s 
mathematics achievement, namely, the slope of the line indicated by 
the four measurement time- points. We initially hypothesized a linear 
growth across time and thus fixed the factor loadings accordingly 
assuming that growth in mathematical achievement was assessed 
over approximately equally spaced four different occasions. Thus, 
the first factor loading (mathematics achievement assessed in the 
middle of grade 1) was fixed to 0 to represent initial status and the 
other three time- points had fixed factor loadings 1, 2 and 3, respec-
tively. The unconditional linear growth model demonstrated good fit 
based on the CFI (.981), TLI (.977) and SRMR (.037) fit indices, but 
its RMSEA value (.093) was not within the acceptable range (< 0.08). 
Inspecting Figure 2 and the repeated measures results regarding 
the polynomial, one notices that children’s average growth was not 
perfectly linear, particularly after the end of grade 1. Consequently, 
we ran a non- linear latent growth model where the growth factor 
loadings for middle of grade 2 (mathematics3) and end of grade 2 

TABLE  1 Descriptive statistics (means and SDs) on the predictor 
variables

Predictors M (SDs)

IQ 21.83 (4.86)

Word Recall Forward 14.13 (2.41)

Word Recall Backwards 5.18 (1.78)

Digit Recall Forward 14.28 (2.30)

Digit Recall Backwards 4.69 (1.61)

Cross Matrix 13.12 (2.91)

Odd One Out 11.31 (2.60)

Counting skills 15.87 (2.33)

Nonsymbolic Approx. Comparison 17.39 (2.97)

Nonsymbolic Approx. Addition 16.44 (2.45)

Symbolic Approx. Comparison 18.94 (3.55)

Symbolic Approx. Addition 16.32 (3.33)

F IGURE  2 Average mathematics achievement development 
across the four time- points
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(mathematics4) were freely estimated (see Figure 3). This approach 
is often referred to as latent basis growth modeling and it is one of the 
preferred methods in child development to model non- linear growth 
(Grimm et al., 2011). This model demonstrated an acceptable fit to 
the data—Table 2 depicts the unconditional model’s fit statistics and 
the corresponding fit criteria (Hu & Bentler, 2009; Schermelleh- Engel 
& Moosbrugger, 2003). Unstandardized model results indicated that 
the estimated factor loadings for Mathematics3 and Mathematics4 
were 1.735 (SD = 0.09; p	≤	 .001)	and	2.834	 (SD = 0.16; p	≤	 .001),	
respectively. Apparently, the source of the misfit of the previous 
linear unconditional model’s RMSEA value were the factor loadings 
of the third and fourth time- point, but as evidenced from the best- 
fitting non- linear latent growth model, the estimated factor load-
ings of Mathematics3 and Mathematics4 did not differ much from 
linearity	(1.735	≈	2	and	2.834	≈	3).	Nevertheless,	we	sustained	the	

best- fitting non- linear basis latent growth model (Table 2, Figure 3). 
As expected, there was a negative correlation between the initial 
status and the growth factor, r	=	−.28,	p = .004, which suggests that 
the lower a child’s intercept was, the steeper his or her mathematics 
achievement growth was over time.

Having identified the best- fitting unconditional model, we sub-
sequently ran the conditional model by including the predictors1 
(Figure 4). This model demonstrated a very good fit to the data 
(Table 2). As expected, also in this model, initial status correlated 
negatively with the slope factor, r	=	−.46,	p < .001. Table 3 depicts 
the standardized regression coefficients of the various domain- 
general and domain- specific skills predicting children’s initial sta-
tus and individual developmental growth in general mathematics 
achievement. With respect to the initial status, results showed 
that, as expected, children’s IQ and their capacity on all three 

F IGURE  3 Graphical representation of 
the best fitting unconditional LGM 
Note: Mathematicsi = mathematics 
achievement at one of the four time- 
points

TABLE  2 Fit statistics on the unconditional and conditional (i.e., with predictors) latent growth models (LGMs) and the corresponding fit 
criteria

Fit indices

Models χ2 df χ2/df CFI TLI RMSEA SRMR

Unconditional 7.769* 3 2.59 0.994 0.988 0.067 0.026

Conditional 41.79* 27 1.55 0.991 0.982 0.040 0.014

Fit criteria

Acceptable fit ≤	5.0 ≥	0.90 ≥	0.90 < 0.08 ≤	0.10

Good fit 0	≤	χ2/df	≤	2 ≥	0.95 ≥	0.95 < 0.05 0	≤	SRMR	≤	0.05

Note. χ2 = chi- square value; df =degrees of freedom; χ2/df = chi- square by degrees of freedom ratio; CFI = Comparative Fit Index; TLI = Tucker- Lewis 
Index; RMSEA = Root Mean Square Error of Approximation; SRMR = Standardized Root Mean Square Residual.
*p	≤	.05
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components of WM, that is, the VSSP (Cross Matrix), the PL (Digit 
Recall Forward), and the CE (Word Recall Backwards) were sig-
nificant predictors. Also, as expected, children’s counting skills as 
well as their nonsymbolic and symbolic magnitude comparison and 
arithmetic skills were unique significant predictors of children’s 
initial status. However, only one ability was identified as a signif-
icant predictor of children’s mathematics achievement growth (i.e., 
of the growth factor in Figure 4); that was symbolic approximate 
addition (Table 3). None of the other hypothesized predictors ex-
plained variance in the growth latent factor. The conditional model 
explained 52% (SE = 0.05, p < .001) of the variance in the initial 
status factor but only 11% (SE = 0.05, p = .038) of the variance in 
the growth factor.

One may argue that the reason why the symbolic approximate 
addition measure significantly predicted mathematics growth was 
because it entailed an “arithmetic” component, that is, the addi-
tion component, and of course the dependent measure as a general 
mathematics achievement test (i.e., the Cito) also contains several 
arithmetic problems with Arabic numerals. Notice that the sym-
bolic approximate addition measure had the form of “a+b” vs. “c”, 
“Which was larger”? Children were, thus, only asked to give an ap-
proximate response, namely, make an estimation—the child did not 
need to mentally compute the calculation, that is, provide an exact 

numerical response. However, arithmetic problems administered 
with the Cito ask for the exact solution, that is, have the form of: “a 
+ b = ?”. Nevertheless, to be certain that our symbolic approximate 
addition task was not acting as a type of autoregressor, we added to 
the conditional model an additional predictor, which was certainly 
such a type of autoregressor for arithmetic: children’s performance 
on the symbolic exact addition task. Naturally, results showed that 
performance on the exact addition task was a significant predictor 
of children’s growth2 (β	=	−.25,	SE = 0.10, p = .009) but, more im-
portantly, symbolic approximate addition remained the only other 
unique predictor of children’s growth, β = .30, SE = 0.10, p = .003, 
even after controlling for symbolic exact addition. Thus, the addition 
component of the symbolic approximate addition task does not ac-
count on its own for its significant predictive positive relation with 
growth in mathematical achievement.

4  | DISCUSSION

The present study examined which cognitive factors predict the de-
velopment of children’s general mathematics achievement at four 
developmental time- points across grades 1 and 2 (middle of grade 
1, end of grade 1, middle of grade 2, end of grade 2). Before or at 

F IGURE  4 The conditional model (i.e., predictors included) 
Note: CM = Cross Matrix; OOO = Odd One Out; WRF = Word Recall Forward; WRB = Word Recall Backwards; DRF = Digit Recall Forward; 
DRB = Digit Recall Backwards; NS = Nonsymbolic; S = Symbolic; Comp = Comparison; Estimation = Approximate Addition; Mathematics = 
General Mathematics Achievement
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the start of formal schooling, we assessed the children on various 
domain- general and mathematics- specific skills. Latent growth 
modeling analyses demonstrated that multiple domain- general and 
domain- specific abilities were significant unique longitudinal pre-
dictors of children’s initial status, that is, the level of their general 
mathematics achievement in the middle of grade 1. Specifically, 
as expected, we found that the children’s WM capacities, their IQ 
score and their counting skills were all unique predictors of the chil-
dren’s starting point in mathematics achievement. In addition, their 
performance on both the nonsymbolic and the symbolic magnitude 
processing measures also explained unique variance—beyond all 
domain- general capacities. However, only one of these skills—sym-
bolic approximate addition—was a unique predictor of the children’s 
individual developmental growth in mathematics achievement from 
grade 1 to grade 2. Despite the wide range of early predictors that 
were assessed in this study, a large percentage of the variance in 
children’s individual mathematics developmental growth remained 
unexplained. So far, research has focused on the predictors of chil-
dren’s inter- individual differences in mathematics achievement. 
However, every child’s developmental trajectory is different. The 
present findings highlight the importance of further addressing de-
velopmental predictors also on the intra- individual change level. To 
our knowledge, this is the first study to examine the unique contri-
bution of this wide variety of domain- general and domain- specific 
cognitive factors to children’s individual developmental growth in 

general mathematics achievement. Below we discuss our findings in 
more detail, as well as the implications for cognitive and educational 
psychology research.

In Figure 4, the initial status latent factor represents the chil-
dren’s initial status in mathematics achievement. To understand this 
better, imagine a racetrack; the point at which each runner starts 
the race is somewhat analogous to the concept of the initial status 
factor. So, the LGM analyses could tell us which of the assessed cog-
nitive factors influenced how far ahead or behind a child’s starting 
point is in the “race” for mathematics achievement. In this respect, 
our findings replicated and extended past findings (Dulaney et al., 
2015; Fuchs et al., 2010; Geary, 2011a). Specifically, comparing our 
results to those of Geary (2011a), which is the study most compara-
ble to ours, we also found that IQ, the VSSP (assessed with the Cross 
Matrix) and the CE component of WM (Word Recall Backwards), 
as well as counting abilities (ENT- R) were unique predictors of chil-
dren’s initial status in mathematics achievement (Table 3). Beyond 
Geary’s (2011a) findings,3 we found that the Phonological Loop, a 
component of WM (assessed with the Digit Recall Forward), was 
also a significant predictor of children’s initial status. But, perfor-
mance on the Odd One Out, Word Recall Forward and Digit Recall 
Backwards did not explain unique variance in the initial status latent 
factor (Table 3). However, this is not surprising given that each WM 
component was measured with two tasks, and because the model 
accounted for their covariance, only one representative of each 
component of WM rose as a significant predictor. Intuitively, one 
may expect that the WM tasks that entailed numbers (digit recall 
tasks) would be better predictors than their domain- general coun-
terparts (word recall tasks), but that was not the case for the CE 
component predictors. This is probably due to our dependent mea-
sure (Cito tests), which includes many mathematical word problems.

The more innovative aspect of our study concerned the role of 
children’s performance on the magnitude processing measures (non-
symbolic and symbolic approximate comparison and approximate 
addition tasks) on mathematics achievement, having accounted for 
domain- general capacities (IQ and WM). Interestingly, nonsymbolic 
approximate comparison was a significant predictor of children’s ini-
tial status in mathematics achievement, beyond all domain- general 
capacities, as well as symbolic number processing skills. This find-
ing appears to support the assumption that nonsymbolic processing 
skills, that is, the ANS, may be an important cognitive foundational 
underpinning for the development of mathematics achievement 
(Feigenson, Dehaene, & Spelke, 2004; Piazza, 2010). So far, findings 
regarding the relationship between nonsymbolic skills and mathe-
matics achievement have been mixed; some seem to find this rela-
tionship and others do not (for reviews see De Smedt et al., 2013; 
Feigenson et al., 2013; for a meta- analysis see Schneider et al., 
2017). This inconsistency may lie in methodological issues, such 
as the type of tasks used and the age of the participants (Xenidou- 
Dervou et al., 2017). An alternative explanation, however, could be 
that this relationship between the nonsymbolic task and children’s 
initial status in mathematics achievement may be an artefact of the 
inhibitory control demands that this type of task entails (Clayton & 

TABLE  3 Standardized regression coefficient results for each 
predictor in the conditional model (Figure 4)

Predictors

Latent factors

Initial status Growth

β SE β SE

Domain- general

IQ .15** 0.05 −.02 0.10

Cross Matrix .12* 0.05 −.06 0.10

Odd One Out .09 0.05 −.01 0.10

Word Recall Forward .02 0.06 −.11 0.12

Word Recall 
Backwards

.12* 0.06 −.07 0.10

Digit Recall Forward .13* 0.06 .10 0.12

Digit Recall Backwards .02 0.05 .06 0.09

Domain- specific

Nonsymbolic Approx. 
Comp.

.12* 0.05 −.05 0.10

Nonsymbolic Approx. 
Add.

.07 0.05 −.04 0.10

Symbolic Approx. 
Comp.

.13* 0.05 .08 0.09

Symbolic Approx. Add. .10* 0.05  .26** 0.10

Counting skills .23*** 0.05 −.15 0.09

Note. Bold figures indicate significant predictors. ***p	≤	.001;	**p	≤	.01;	
*p	≤	.05.



     |  11 of 14XENIDOU- DERVOU Et al.

Gilmore, 2015; Gilmore et al., 2013). In the present study, although 
we assessed and controlled for the children’s CE WM capacities, 
which in childhood correlate highly with inhibition (e.g., Van der Ven, 
Kroesbergen, Boom, & Leseman, 2012), we did not assess and con-
trol for their inhibition skills per se. Future studies should address 
this limitation. Nevertheless, our results also verified past findings 
rendering symbolic magnitude processing skills as consistent and 
robust predictors of children’s general mathematics achievement 
(for a review see De Smedt et al., 2013; Schneider et al., 2017). 
Both symbolic approximate comparison and symbolic approximate 
addition were unique predictors of the initial status latent factor 
of mathematics achievement (Table 3). In sum, our results demon-
strated that all these championed cognitive underpinnings of mathe-
matics achievement—domain- general and mathematics- specific—are 
unique predictors of children’s starting point in early mathematics 
achievement, even after accounting for their covariance.

The most interesting part of the present study, however, re-
garded identifying the predictors of children’s individual growth 
rate (i.e., their intra- individual change) in mathematics achievement 
across grades 1 and 2. As mentioned earlier, it is of primary impor-
tance given how each child develops in his or her own way—some 
faster, others slower. We sought to answer the question: Which cog-
nitive mechanisms predict a child’s particular growth rate in mathe-
matics? Surprisingly, despite the wide range of predictors included 
in this study, only one cognitive factor uniquely predicted growth: 
symbolic approximate arithmetic. This is an ability that we use in our 
daily lives, for example, when quickly estimating how much we will 
pay at the counter. It often works as a type of monitoring mecha-
nism, for example, if we have bought two books, which cost €23.99 
each, and the cashier asks for €67.98, then we know something has 
gone wrong. As mentioned earlier, this is an ability, which appears 
very early in development, around 5 years of age (Gilmore et al., 
2007), well before children are actually able to do exact arithmetic 
with large numbers in the form of “a + b = c” (Case & Sowder, 1990). 
The fact that symbolic approximate arithmetic—otherwise known as 
computational estimation—was the only predictor of growth signi-
fies that research must identify its cognitive underpinnings and in-
vest effort in investigating the effect of fostering or enhancing its 
development.

Until quite recently most research in this field focused primarily 
on understanding children’s computational estimation skills from 10 
years of age and above (Dowker, 2003; Ganor- Stern, 2016; LeFevre, 
Greenham, & Waheed, 1993; Lemaire, Lecacheur, & Farioli, 2000). 
Actually, there are large individual differences even in adults’ com-
putational estimation explained by the large variability in the types 
of strategies that they employ (Dowker, 2003). Estimation strate-
gies become more sophisticated with development, for example, 
Ganor- Stern (2016) suggests that at 10 years of age the most com-
mon strategy employed is the “sense of magnitude”, that is, an in-
tuitive sense of magnitude without any calculation, whereas adults 
use the “approximate calculation strategy”, that is, rounding either 
one or two operands, calculating the result, and comparing that to 
the reference number. But, at 10 years of age estimation has already 

been partially established. The present study’s findings suggest that 
future research should address the emergence of symbolic approx-
imate arithmetic already at 5 years of age, which at the moment we 
know little about. What we do know is that symbolic approximate 
arithmetic appears to be underlined by different cognitive mecha-
nisms compared to symbolic exact arithmetic (Xenidou- Dervou, van 
der Schoot, & van Lieshout, 2015)—they are correlated but distinct 
cognitive abilities (see Dowker, 2003). Actually, at the young age of 
5 years, symbolic approximate arithmetic predicts children’s exact 
arithmetic (Xenidou- Dervou et al., 2013), and it correlates with WM 
abilities and children’s performance on nonsymbolic processing 
tasks (Xenidou- Dervou et al., 2013; Xenidou- Dervou et al., 2014). 
But why is it that symbolic approximate arithmetic is the only predic-
tor of children’s growth in mathematics achievement, even beyond 
WM capacities and exact arithmetic? Perhaps what makes it special 
is that it is a type of monitoring mechanism tailored for arithmetic—a 
sense of magnitude, telling oneself whether their answer is within an 
acceptable range or not. Children at this age may have insufficient 
knowledge to provide an exact answer for such problems, but they 
have some sense of number magnitudes (at least up to 10) and basic 
arithmetic principles, which may be the guide of their estimation 
performance. Dowker (1997) suggests that several skills underlie 
computation estimation performance at 5 years of age. Future re-
search should specify the mechanisms that cultivate the emergence 
of symbolic approximate arithmetic skills and foster its development.

It should be noted that it is possible of course that our findings are 
affected by our sample’s characteristics, especially the cultural back-
ground. We know from past publications that symbolic approximate 
arithmetic—the only significant predictor of growth in the present 
study—is affected by language, that is, the way numbers are named 
in a given language (Xenidou- Dervou, Gilmore, van der Schoot, & 
van Lieshout, 2015). The way two- digit numbers are named in Dutch 
(first the unit and then the decade, known as the inversion property) 
imposes extra WM load on children (Xenidou- Dervou, Gilmore et al., 
2015). These cognitive demands may drive part of the strength of 
symbolic approximation as a predictor. Furthermore, differences in 
educational systems (in some countries like in the UK for example, 
formal education starts earlier) and home numeracy may affect re-
sults. Therefore, cross- cultural studies are rendered necessary to 
identify the predictors of children’s growth independent of cultural 
background.

Geary (2011a), the most comparable study to our present study, 
had found that CE, number line processing, addition retrieval and 
addition decomposition were significant predictors of growth in 
arithmetic from grade 1 up to grade 5, but had not investigated the 
contribution of the ANS, symbolic magnitude and approximate addi-
tion processing skills. Geary’s (2011a) outcome variable only tapped 
into arithmetic abilities, whereas our general mathematics achieve-
ment test included many different problems, including also problems 
with number lines. Therefore, we avoided including predictors that 
are measuring skills which are already included in the outcome vari-
able—that is, Cito tests (e.g., exact addition or number line skills). But, 
on the basis of Geary’s findings we expected that WM would be a 
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significant predictor of growth in general mathematics achievement. 
Unexpectedly, this was not the case—none of our WM variables pre-
dicted individual growth in general mathematics achievement. One 
possible explanation is based on past findings, which show that re-
liance on WM capacities increases with age (Friso- van den Bos, Van 
der Ven, Kroesbergen, & Van Luit, 2013). Geary’s study addressed 
growth up to grade 5, whereas our study only examined growth 
up to grade 2. Perhaps the WM demands of the Cito tests until the 
end of grade 2 were not yet high enough to deem WM a significant 
predictor of growth. Alternatively, perhaps symbolic approximate 
arithmetic, which on its own encompasses WM demands (Xenidou- 
Dervou, Gilmore et al., 2015; Xenidou- Dervou, van der Schoot et al., 
2015), depicts indirectly the effects of WM on growth in general 
mathematics achievement. It would be interesting for future re-
search to follow children’s growth up to the end of primary school to 
identify the cognitive factors that contribute to their growth across 
the entire developmental stage of primary school years.

A striking finding of this study is the fact that, despite the 
wide range of early cognitive factors that we assessed, and even 
though our latent growth model explained sufficient variance 
(52%) in the initial status factor (i.e., mathematics achievement in 
middle of grade 1), it only explained 11% of the variance in chil-
dren’s individual mathematics growth rates. The cognitive factors 
that we assessed are the ones that are most championed within 
the field of mathematical cognition for setting the foundations of 
children’s mathematics achievement. Given the well- documented 
shortcomings of mathematics education in Western societies (e.g., 
Ker, 2016), it is imperative that we identify the underpinnings of 
children’s individual growth rates in mathematics achievement. In 
the “race” analogy used earlier, we must strive to identify the fac-
tors that make one run faster or slower than others. Based on our 
findings, symbolic approximate addition is one of those influen-
tial factors, but undoubtedly it is not sufficient on its own. Future 
research should also examine the contribution of non- cognitive 
factors in predicting mathematics achievement growth, such as 
socioeconomic status, home numeracy, mathematics anxiety, lan-
guage and other student, teacher or schooling- related factors (e.g., 
Galindo & Sonnenschein, 2015; Göbel, Moeller, Pixner, Kaufmann, 
& Nuerk, 2014; Ker, 2016; Ramirez, Gunderson, Levine, & Beilock, 
2013). So far, the present study’s results suggest that a constel-
lation of multiple domain- general and domain- specific cognitive 
abilities should be used as screening tools to identify children at 
risk for difficulties in mathematics. In particular, symbolic approx-
imate addition can also be an indicator for a child’s growth rate in 
mathematics. Also, future studies should examine if training chil-
dren’s symbolic approximate addition skills—in the form of “a+b 
vs. c”; “Which is larger?”—could improve a child’s growth rate in 
mathematics achievement.

ACKNOWLEDG EMENTS

The authors would like to thank all children, parents, teachers and 
schools that participated in this research. We would also like to 

thank Cor Stoof and Jarik den Hartog for their help in developing 
the approximate tasks, and Dylan Molenaar for his advice on the 
LGM analyses. This work was funded by the NWO (National Dutch 
Organization for Scientific Research) under Grant number PROO 
411 07 111.

ENDNOTE S
1 See Appendix B for the correlations between the predictors. Covariances 

amongst the predictors were accounted for in our conditional model as 
depicted in Figure 4.

2 Note that, as expected, exact addition significantly predicted also 
the initial status latent factor, β = .38, SE = 0.05, p < .001. This ex-
plains the negative regression coefficient with the growth factor, 
i.e., the better children were in arithmetic to start with, the less 
space they had to grow (a pattern which would be expected by an 
autoregressor).

3 Note that in Geary’s (2011a) final model IQ and the Phonological Loop 
measures were not included as predictors.
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