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Abstract 
Many musical structures, such as musical motifs or patterns, are          
inherently ambiguous and lead to different equally plausible        
interpretations by listeners. Accordingly, annotations of these       
musical structures by different listeners give rise to disagreement         
between different annotators. In Music Information Retrieval (MIR)        
tasks such as automatic musical pattern extraction, however, this         
disagreement poses particular difficulties for evaluation. To provide        
data for further research on the ambiguity of musical patterns, we           
present a new annotated patterns dataset. This collection comprises         
six musical excerpts each annotated by 12 annotators. We observe          
from the data that disagreement amongst annotators is common. We          
therefore propose to perform two treatments on annotations to         
achieve higher pairwise annotator agreement: by using extra rankable         
metadata on the annotations such as relevance/importance scores,        
and by adjusting the time resolution of the annotated patterns’ time           
span. We hypothesise that, by using the top-ranked annotations and          
lowering the time resolution of the annotations, we may obtain more           
pairwise annotator agreement in the dataset. We perform        
computational analyses and provide supporting evidence that       
patterns rated as highly relevant or/and with lower time resolution          
tend to have more agreement amongst the annotators, in contrast to           
those rated with lower relevance and higher time resolution. Our          
analyses could be useful for the development and evaluation of new           
musical pattern discovery algorithms.  

Introduction 
In Music Information Retrieval (MIR), automatic musical       

pattern discovery is an active area of research where         
algorithms are designed, employed on music data, and        
evaluated to extract musical patterns computationally for       
different applications (Collins, 2011). However, ambiguity of       
musical structures poses difficulties on how one should        
evaluate the output of such algorithms: if different equally         
valid interpretations of musical patterns or motifs are        1

possible, what should we take as the ground truth for          
evaluating algorithms?  

Music ambiguity per se is a widely studied topic in music           
perception and cognition research. Not only musical patterns,        
but also other dimensions of music can be ambiguous in their           
interpretation: polyrhythms, for example, can be heard and        
interpreted with beats at different levels; chords of a harmony          
sequence can be interpreted with different functions (Randall,        
1999, Schoenberg, 1983). Furthermore, creators of music       
often employ elements of ambiguity to their compositions,        

1 In this paper we use the terms "patterns" and "motifs" 
interchangeably. 

and listeners often experience uncertainty where multiple       
simultaneous interpretations are possible (Bernstein, 1976).  

In this paper, we put focus on the ambiguity of          
monophonic melodic patterns. While musicologists use the       
term "motif" often intuitively in their analyses of musical         
compositions, there exists no generally agreed upon definition        
of what constitutes a motif or pattern: it can be a short musical             
idea, a salient recurring figure, musical fragment, or        
succession of notes that has special importance in or is          
characteristic of a composition. Related concepts also include        
musical sequence, imitation (Benward, 2014), melody type       
(Hiley, 1993), musical cell (Nattiez, 1990), phrase (Burkhart,        
2005; Sadie, & Tyrrell, 2001), and subject (Scholes, 1970).         
These different notions of what might constitute a musical         
pattern pose challenges for creating annotations as reference        
data for evaluating pattern discovery algorithms. 

One attempt to systematically evaluate pattern discovery       
algorithms is the Music Information Retrieval Evaluation       
eXchange (MIREX) Discovery of Repeated Themes &       
Sections task (Collins, Janssen, Ren & Volk, 2017). This task          
uses a single reference annotation compiled from music        
theoretic analyses. In the task, a pattern is defined as a set of             
time-pitch pairs that occurs at least twice in a piece of music.            
However, in (Ren, Koops, Volk, & Swierstra, 2017) it is          
shown that pattern discovery algorithms do not agree with         
each other on what patterns should be extracted from the          
pieces, and they agree even less with the patterns from the           
reference annotation. This raises the question on the        
suitability of one reference annotation for evaluating pattern        
discovery algorithms. Due to the lack of a clear music          
theoretic notion of what constitutes a pattern, we therefore         
propose to take a data-driven approach towards the        
understanding of the notion of musical patterns, by gathering         
multiple annotations for the same piece and analysing the         
disagreement and agreement between different annotators on       
the discovered patterns. 

Therefore, we present a new musical patterns dataset:        
HEMAN (Human Estimations of Musically Agreeing Notes)       
where multiple perspectives on six musical excerpts are made         
available. We asked 12 subjects to annotate patterns in six          
musical excerpts. HEMAN is a digitised, open source version         
of the dataset introduced in (Nieto, Farbood, 2012). While we          
show that there exists considerable disagreement between       
annotators on what constitutes the patterns of a piece, we          
demonstrate that the disagreement can be reduced by 1)         
considering only the patterns that annotators have rated as         
highly relevant and 2) by lowering the time resolution.  



The two main contributions of this paper are:  
● Releasing digitised pattern annotation data in the       

JAMS (JSON Annotated Music Specification)     
format (Humphrey et al, 2014) and time interval        
format for facilitating future research. 

● Analyses on the HEMAN dataset including two       
methods for alleviating pairwise annotator     
disagreement: use annotations that are rated as highly        
relevant and reduce the time resolution of the        
annotated intervals.  

Experimental setup 
The annotation process for obtaining the dataset was         

conducted at New York University (NYU). Subjects were all         
graduate students at NYU and had an average of 10 years of            
formal musical training (Standard Deviation = 2.3). Detailed        
information on the subject’s music experience background       
can be found in the next section.  

The HEMAN collection comprises 6 music excerpts as        
listed below: 

1. Bach – Cantata BWV 1, Movement 6, Horn:  
2. Bach –Cantata BWV 2, Movement 6, Soprano: 
3. Beethoven –String Quartet, Op. 18, No. 1, Violin I 
4. Haydn –String Quartet, Op. 74, No. 1, Violin I 
5. Mozart –String Quartet, K. 155, Violin I 
6. Mozart –String Quartet, K. 458, Violin I 

Some of these excerpts were chosen because they were         
particularly hard for humans to analyse given the structural         
ambiguity and creative variations of the musical material. For         
example, the Bach chorale had very little rhythmic variation         
or clear grouping cues aside from phrase ending points. The          
other type of excerpts contains many evident and rigid         
repeated patterns. 

Each piece was annotated by the 12 subjects. Unlimited         
time was given to the subjects. We did not reveal the name of             
the pieces on the annotation sheet. The following instructions         
were given to the annotators: 

“Please, analyze the following musical excerpts and mark        
all the musical motives you can find. A musical motive is           
defined as a short musical idea, a salient recurring figure,          
musical fragment, or succession of notes that has some special          
importance in or is characteristic of a composition. It         
shouldn’t be longer than a musical phrase. If you find a           
motive that is similar to another (or multiple versions of a           
motive), choose the one that you think is the most          
representative. Even though all motives are relevant, please        
rate each one of them from 1 to 3:  

● 1 = Not as relevant  
● 2 = Relevant  
● 3 = Highly relevant  

You can listen to the music excerpts as many times as you            
like. You can find them here.      
http://urinieto.com/NYU/Research/MotivesExperiment/” 

We deliberately offered several possible interpretations as       
to what defines a “musical motif” and allow the subjects to           
both analyse the pieces and use their musical intuitions on          
what constitutes a musical motif in the process. We did not           

ask them to laboriously label all occurrences of the same          
pattern for us. In this way, we obtain at least the prototypes of             
musical patterns the subjects perceived in the piece.  

The HEMAN Dataset 
In this section, we present the content of the dataset, how           

we digitised it, and some difficulties we encountered and         
decisions we made during the digitising process.  

The musical background of the subjects 

     In Table 1, we report the results of the musical background 
questionnaire of our subjects.  

Table 1. Musical background of annotators. The header Inst         
and Inst2 denote the main and the secondary instrument the          
participant plays, followed by how many years of experience.         
The headers Theory and Overall denote the self-rated musical         
theory background level and the self-rated musical background        
level. A professional background has a score of 5 and no           
background has a score of 1. The header Abs stands for absolute            
pitch/perfect pitch, with 0 stands for self-identified as no perfect          
pitch, 1 otherwise.  

Inst Year Inst2 Yea
r 

Theory Overall Abs 

Piano 10 Violin 4 3 3 0 

Oboe 5 Piano 1 2 3 0 

Piano 5 None 0 3 3 0 

Piano 12 None 0 5 5 1 

Piano 14 Trumpet 8 4 4 0 

Guitar 13 Bass 0 5 5 0 

Piano 13 Violin 4 4 4 0 

None 0 None 0 0 0 0 

Guitar 8 Piano 4 5 5 0 

Guitar 10 Kazoo 4 5 5 0 

Violin 8 Guitar 2 3 3 0 

As we can see, we have annotators with different levels of            
musical background. Most of them are trained with western         
musical instruments. In the following subsections, we detail        
how the making of the dataset started with paper-based         
annotation, how we calculate the time intervals from the         
photos and convert the musical patterns to a numerical format,          
and finally how we convert the numerical format to the JAMS           
format. 

Digitising paper-based annotations 
Figure 1 shows an example of a raw annotation. From this           

notation, we first calculate the time intervals [start time, end          



time] of the pattern annotations. We take the unit of a crochet            
as one in this time interval format. For example, the first           
annotated pattern in the time interval format is [0,2], and the           
second pattern is [8,10].  

There are advantages and disadvantages with using a        
paper-based setting. On the one hand, this could preserve the          
most natural mindset on perceiving patterns in music; on the          
other hand, this poses some risks for the correct interpretation          
of the markings. For example, in Figure 1, it is not           
immediately apparent whether to include the last quiver in bar          
3 into the musical pattern. The same situation applies to the           
crochet in bar 14 in the patterns. The rule we followed here is             
to take the midpoint of the gap between the two notes in            
questions, and depending on which side the annotation        
start/end with respect to the midpoint, we take        
include/exclude the note in the patterns. For example, in both          
bar 3 and bar 14, we include the quiver and the crochet.            
Furthermore, we noticed that some annotators forgot to mark         
the relevance even though their time interval annotations look         
reasonable. In this case, we give all patterns a relevance score           
of 1.  

As mentioned in the last section, since the annotators were          
not forbidden to mark the occurrences in addition to the          
prototype patterns, we do find such occurrences in the photo.          
We take those occurrences into account as long as a relevance           
score is given.  

Finally, although transcribing from the photo format to the         
time interval format is relatively time consuming and prone to          
human errors, we do not know of any matured technology          
which could be used to automatically convert between the two          
formats. Optical recognition techniques are promising, but       
could give low accuracies with the imprecise markings. 

In the future, it would be ideal to have a digital system            
which could be as natural a process for the annotators as paper            
and pen. For a large scale online experiment, it would only be            
viable with developing such an annotation system.  

 

Figure 1.  Example of the raw data of annotation  

Visualising the time interval data 

After converting to the time interval format, we can          
visualise the data taking the same approach as in (Ren et al            
2017) as shown in Figure 2. In this visualisation, we abstract           
away the actual notes, just preserving the temporal markings         
in the excerpts. We can see that the disagreement amongst the           
annotators is prevalent. 

 

Figure 2. Time intervals in the six musical excerpts from 7           
different annotators. Red bars indicate that there exist a pattern,          
and the absence of red bars indicates the absence of patterns.           
The blue horizontal lines separate different pieces. The x-axis         
represents time in the unit of a crochet. The y-axis represents           
different annotators. Due to limited space, the time intervals of          
only seven annotators are shown here. We can see different          
degrees of agreement and disagreement amongst the annotators.  

Time intervals to numerical format  

After obtaining the time interval data, we took the symbolic           
music data from a python toolbox, music21. By segmenting         
the music21 data using the time intervals, the numerical         
format of a (onset, duration, pitch) triplet was created. Each          
pattern is thus represented by a succession of triplets and its           
associated relevance score. We further organise each       
individual pattern into a “Excerpt -> Annotator -> Relevance         
-> Pattern” hierarchy in a python dictionary.  

Numeric format to JAMS 
From the hierarchical structure of the numerical symbolic        

musical patterns, we further convert the data to the JAMS          
format. JAMS provides a simple, structured, and sustainable        
approach to representing rich information in a       
human-readable, language agnostic format. This format fits       
our purpose well because it supports multiple types of         
annotations, multiple annotations for a given task, and rich         
file level and annotation level metadata. The dictionary format         
is then converted to the JAMS format using the JAMS python           
library and a HEMAN parser script, which can be accessed at           
the official repository of JAMS:     
https://github.com/marl/jams-data/blob/master/parsers/heman
_parser.py. The time-interval representation, the numeric      
format, and the JAMS files of the dataset can all be accessed            
online: https://github.com/irisyupingren/HEMANanalysis.  

 

https://github.com/irisyupingren/HEMANanalysis


Method 
In this section, based on intuition and observation on the          

dataset and findings about relevance values in the context of          
segmentation (Bruderer, Mckinney & Kohlrausch, 2009), we       
investigate our hypothesise that, by taking the most relevant         
patterns, and lowering the time resolution, we obtain more         
pairwise annotator agreement in the dataset.  

To conduct our computational analysis and verify our        
hypothesis, we take the time interval representation of the         
annotations. We do not need to consider the actual notes when           
analysing pairwise annotator agreement because the only       
disagreement possible is the starting and/or ending time given         
a specific piece.  

To measure pairwise agreement, we take each individual        
annotator as the reference and use the standard precision,         
recall, and F1 score as measurements of agreement (Goutte &          
Gaussier 2005). A formal definition is given below:  
 

Precision = # matched annotations
# annotations of   the referenced annotator  

Recall = # matched annotations
# annotations of  the current annotator  

F1 = P recision + Recall
P recision × Recall × 2  

  
The notion of matched annotations is defined on different          

levels of time resolution: {Annotation1=[begin1, end1],      
Annotation2=[begin2, end2]} {Matched annotations}, if  ∈     
|begin1- begin2| + |end1 - end2| Threshold. The essence of      ≤     
lowering the time resolution of the annotations is taking a          
larger tolerance on identifying whether two annotations are        
agreeing (matched) or disagreeing (not matched). In this way,         
we can see how much disagreement there is on different          
scales of time resolution.  

We use precision, recall, and F1 score instead of the kappa            
agreement measures like in (Balke et al, 2016) because this          
approach simplifies the calculation and avoids taking the        
average across the musical piece.  

In addition to numerical methods, we examine the         
annotations analytically and categorically. In Figure 3, we        
show an example of disagreement amongst three annotators        
on the same piece. 

We categorise the possible types of disagreement as follows          
(Annotation1 = [a1,b1], Annotation2 = [a2,b2], symmetrical       
cases with switched order of the annotators are omitted): 

● On the individual pattern level 
○ When there is a match 

■ a1 < a2, b2 > b1 
■ a1 = a2, b2 > b1 

○ When there is no match 
● On the piece level 

○ The number of annotations 
○ Whether there are overlaps of patterns  
○ Occurrences 

■ Exhaustive occurrences  
● with variation 
● without variation 

■ Non-exhaustive occurrences 
● Arbitrary 
● Only Prototypes 

 

Figure 3. Examples of disagreement. Different colours indicate        
different annotators. The relevance values are marked with        
respect to each pattern.  

Results 
In this section, we show the numerical values of precision,          

recall, F1 score, and analysis of the annotations. Our initial          
exploration shows supporting evidence for our hypothesis that        
by using the top-ranked annotations and lowering the time         
resolution of the annotations, we may obtain more pairwise         
annotator agreement in the dataset. We first discuss effects of          
the relevance score and the time resolution threshold        
separately, and then see their effects together.  

Figure 4. Precision, recall and F1 score across pieces. Different          
rows denote different pieces and different annotators. Different        
columns denote different metrics and relevance scores. Within        
each subfigure, we show the results of annotators on one      2 2  1 × 1    
metric {Precision, Recall, F1}. Yellow side of spectrum  ∈        
denotes high agreement.  

Relevance 
In the left subfigure of Figure 4, we show the          

measurement of agreement using precision, recall and F1        
score computed using all annotations; in the right subfigure,         
we show the precision, recall and F1 score computed using          
the annotations which are rated as the most relevant.  

When considering all annotations, we see a grouping        
phenomenon where subclusters amongst annotators with high       



agreement are formed. By considering the high relevance        
annotations, the grouping phenomenon is reduced and we can         
see an overall increase of agreement by comparing the results          
in Figure 4.  
 
Time resolution thresholding 

For showing the effects of the time resolution thresholding         
step, we only show the average across the six excerpts instead           
of looking at the excerpts individually. The averaged results         
already show a clear sign of increased agreement with a lower           
time resolution.  

By comparing row by row, we observe in Figure 5 that,           
with a lower time resolution, that is, a more relaxed threshold,           
the precision, recall and F1 scores increase. The relaxation of          
the threshold is effectively loosening the notion of “matched         
annotations”, as mentioned in the last section. For example, if          
Annotation1 = [a1,b1], Annotation2 = [a1, b1 + 2𝜺], with          
threshold = 𝜺, the two annotations are not matched; with          
threshold = 2𝜺, the two annotations are matched. With         
different degrees of loosening, we can examine the pairwise         
agreement amongst annotators on different scales of time        
resolution. 

In the case where all annotators have the same          
annotations, taking different time resolution values does not        
have an effect on the precision, recall and F1 score. In the            
case of the different annotations, the metrics will reach a          
stable value as the threshold increases. In our case, we see an            
increasing trend in the metrics as the threshold increases.         
Therefore, more pairwise annotator agreement is reached on        
lower time resolutions.  

 
Relevance ranking and time resolution thresholding      
combined 

In Figure 5, we show the combined effects of relevance          
ranking and time resolution thresholding. As expected, the        
agreement increases with the effects from both steps. We         
therefore conclude that, by using extra rankable metadata on         
the annotations such as relevance/importance scores, and by        
adjusting the time resolution of the annotated patterns’ time         
span, we achieve a higher degree of pairwise annotator         
agreement in the HEMAN dataset.  

 

Figure 5. The effects of threshold change and relevance value.          
The precision, recall and F1 score across pieces are averaged.          
The threshold values are given as multiples of quarter note          
length. Other specifications are the same as Figure 4: Different          
rows denote different pieces and different annotators. Different        
columns denote results denote different metrics and relevance        

scores. Within each subfigure, we show the results of        2 2  1 × 1
annotators on one metric {Precision, Recall, F1}. ∈   

 

Conclusion 
Based on our data, we draw the tentative conclusion that          

motifs or patterns rated as highly relevant are more         
trustworthy than those rated with lower relevance values. In         
addition, by lowering the time resolution of annotations, we         
gain more agreement amongst the annotators. Therefore, if we         
choose the patterns of high relevance and threshold the         
annotations, we could establish an evaluation measure with        
small irreducible errors for automatically extracted patterns. 

In the future, we would like to extend the work by           
collecting more data from a larger number of subjects using a           
web interface and verify our current conclusions with more         
data and further similarity analysis. We could also design         
other related experiments where we would provide candidate        
patterns and ask the subjects to choose. Another exploration         
could be to ask the subjects to annotate and rank the patterns            
in complete musical pieces rather than excerpts. Finally, for         
algorithms, we will put the dataset into use for computational          
pattern extraction evaluation tasks, and see if the current         
state-of-the-art algorithms can reproduce human annotations      
with high agreements. The agreement values could also be         
used as training data for novel computational pattern        
extraction models, such that the models could give a         
confidence value when predicting the presence of patterns.  
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