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Abstract We consider the question of when delay systems, which are intrinsically infinite
dimensional, can be represented by finite dimensional systems. Specifically, we give condi-
tions for when all the information about the solutions of the delay system can be obtained
from the solutions of a finite system of ordinary differential equations. For linear autonomous
systems and linear systems with time-dependent input we give necessary and sufficient con-
ditions and in the nonlinear case we give sufficient conditions. Most of our results for linear
renewal and delay differential equations are known in different guises. The novelty lies in
the approach which is tailored for applications to models of physiologically structured pop-
ulations. Our results on linear systems with input and nonlinear systems are new.
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1 Introduction

A large class of both epidemic and physiologically structured population models with a finite
number of states at birth can be cast in the form of a coupled system of nonlinear renewal
equations and differential delay equations (see [4,9,15,20,21]):

b(t) = F1(Xt , Yt )bt , (1.1)

X (t) = F2(Xt , Yt )bt , (1.2)
d

dt
Y (t) = G (Y (t), F3(Xt , Yt )bt ) . (1.3)

The subscript t of a function refers to the history of the function up to time t , formally,

ft (θ) = f (t + θ), θ ≤ 0.

In the system (1.1)–(1.3), b(t) is a vector, the j th component of which is the rate at which
individuals are born at time t into the state at birth labeled by the number j . The components
of the vectors X (t) and Y (t) are the environmental interaction variables. Together they form
a vector E(t) = (X (t) Y (t))T which we call the environmental condition at time t . The
difference between X and Y is not conceptual, but in the description of the dynamics as
embodied in (1.2) and (1.3), respectively: X is determined directly by feedback while Y is
determined by feedback via a differential equation. Often the components of Y represent
resources consumed at the same time scale as the population dynamical events, while Eq.
(1.2) is obtained as a quasi-steady-state approximation after a time scale separation.

Equation (1.1) describes how individuals born in the past have survived to and give birth
at the current time t . Similarly, Eq. (1.2) describes the contribution to the current X (t) by
individuals born in the past (before time t) and Eq. (1.3) describes how the rate of change
of Y (t), for instance due to consumption of resources, depends on the current value of
Y (t) and the current population composition as captured by F3(Xt , Yt )bt . Note that, as the
notation indicates, the action on bt is linear on the right hand sides of all the equations. The
interpretation of this is that, if the history of the environmental interaction variables is known,
the individuals are independent of one anotherwith regard to survival and reproduction aswell
as contribution to the environment. An individual’s survival probability, reproductive success,
satiation, etc. depend on the environment it has experienced throughout its life. Therefore
the linear operators Fi , i = 1, 2, 3, have to depend on the history of the environmental
interaction variables.

TheEqs. (1.1)–(1.3) should hold for t > 0 and they should be supplemented by appropriate
initial conditions prescribing the history, that is, the values of the unknowns for t ≤ 0.

If E(t) is independent of time t , the environmental condition is constant and Eq. (1.1)
becomes a linear renewal equation

b(t) =
∫ ∞

0
K (a)b(t − a)da. (1.4)

If k is the number of possible states at birth, then b is a function taking on values in R
k and

the kernel K is a k × k-matrix valued function. The element Ki j (a) is the rate at which an
individual of age a who was born with state j gives birth to individuals with state i . Readers
interested primarily in population dynamics may wish to read the rather short Sect. 5 before
they embark on the rest of the paper.

Although basic questions like analysing steady states [11] and determining their local
stability properties [7] have been settled for the infinite dimensional dynamical system gen-
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erated by (1.1)–(1.3), many important questions remain. For instance, in what manner does
the population state evolve with time and possibly reach a steady state? What is the structure
of the ω-limit sets? Does there exist a global attractor? Because of the infinite dimensionality
of the problem these questions are hard to answer in general. In contrast, there is a highly
developed qualitative theory for systems of ordinary differential equations, that allows treat-
ing such questions. There are also highly efficient packages for solving systems of ODEs
numerically, whereas corresponding methods for general structured population models are
still rare (but see [3,5,6]).

Because of the arguments mentioned above, it is important to find necessary and sufficient
conditions for solutions of the system (1.1)–(1.3) to be representable in terms of solutions of
a system of ordinary differential equations. This is the main purpose of the present paper.

The representation in terms of ordinary differential equations of solutions of delay equa-
tions in general, and structured population models in particular, has a long pedigree. In their
pioneering paper, Gurtin and MacCamy [19] observed that if in the age-structured model

∂

∂t
n(t, a) + ∂

∂a
n(t, a) = −μ(a, X (t))n(t, a), a > 0, t > 0, (1.5)

n(t, 0) =
∫ ∞

0
β(a, X (t))n(t, a)da, t > 0, (1.6)

X (t) =
∫ ∞

0
n(t, a)da, (1.7)

n(0, a) = φ(a), a > 0, (1.8)

the death rate μ and the fecundity β are of the form

μ(a, X) = μ0(X), (1.9)

β(a, X) = αβ0(X)e−αa, (1.10)

then solving the system (1.5)–(1.8) reduces to solving the ODE system

dz1
dt

= (αβ0(z2) − α − μ0(z2)) z1, (1.11)

dz2
dt

= β0(z2)z1 − μ0(z2)z2, (1.12)

where

z1(t) = α

∫ ∞

0
e−αan(t, a)da, (1.13)

z2(t) = X (t). (1.14)

Once the system (1.11)–(1.12) has been solved with initial conditions

z1(0) = α

∫ ∞

0
e−αaφ(a)da, (1.15)

z2(0) =
∫ ∞

0
φ(a)da, (1.16)

the solution to the original problem is obtained from the formula

n(t, a) =
{
b(t − a)e− ∫ t

t−a μ0(X (s))ds, if t > a,

φ(a − t)e− ∫ t
0 μ0(X (s))ds, if t < a,

(1.17)
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where
b(t) := n(t, 0) = β0(z2(t))z1(t). (1.18)

The result above can easily be generalized. The system (1.5)–(1.8) reduces to a system of
ordinary differential equations if μ is independent of age and β is of the form

β(a, X) = α

p∑
k=0

βk(X)
1

k! (αa)ke−αa . (1.19)

For details, we refer to [22].
The above result is related to a well-known fact in the theory of functional differential

equations. The scalar equation

dx(t)

dt
= f

(
x(t),

∫ t

−∞
K (t − s)x(s)ds

)
(1.20)

with distributed delay is equivalent to a system

dx(t)

dt
= f

(
x(t), z p(t)

)
,

dz1(t)

dt
= α (x(t) − z1(t)) ,

dzk(t)

dt
= α (zk−1(t) − zk(t)) , k = 2, 3, . . . , p (1.21)

of ordinary differential equations whenever the scalar kernel K equals the gamma density

gα,k(a) := α

k! (αa)ke−αa . (1.22)

This fact has been employed in the context of biological delay systemsbyMacDonald [26,27],
who also seems to have coined the term ‘linear chain trick’. Notice the linear chain structure
x → z1 → z2 → · · · → z p in (1.21). The system can be interpreted as a compartmental
population model in which individuals in the last compartment (z p) give birth to individuals
in the x compartment and maturation consists of recruitment to a compartment from the
immediately preceding one.

The example above gives sufficient conditions for when the Gurtin–MacCamy model has
a finite dimensional state representation, or, as we shall say, is ODE-reducible. In this paper
we give sufficient and necessary conditions for ODE-reducibility for a much larger class of
physiologically structured population models. Earlier work in this direction includes [8] and
[28]. In a companion paper [10] we give necessary and sufficient conditions for ODE-re-
ducibility in terms of how the basic modelling ingredients, viz. the individual reproduction,
death, and growth rates, depend on the individual state and the environmental condition.

Often, as in the example above, the finite dimensional state representation of a structured
population model can be made to preserve positivity so that the accompanying ODE-system
can be interpreted as a population model in its own right. However, this is not always the
case as it may also happen that the equivalent finite dimensional system cannot be made to
preserve positivity. An example of this will be given in Sect. 3.1, Example 3.2. In this paper
we will not consider the problem of when exactly the reduced system is actually interpretable
as a populationmodel. However, population dynamical interpretationwill serve asmotivation
for formulating results concerning the finite dimensional systems, in particular in Sect. 5.

In queueing theory the same idea of choosing (1.22) was introduced by Erlang and is
commonly called the method of stages. A customer has to pass through several stages each
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having an exponentially distributed service time. The stages are served one at a time and the
service is completed when all stages have been served. For details we refer to ([1]; Section
III.6).

Vogel [31] (see also [16]) studied the question of when the solution x of a scalar nonlinear
and non-autonomous Volterra integro-differential equation satisfies a system of ordinary
differential equations. His result applied to the linear equation

x(t) =
∫ t

−∞
K (t, τ )x(τ )dτ (1.23)

is that x satisfies a system of ordinary differential equations if and only if the kernel K
satisfies a linear ordinary differential equation

∂nK

∂tn
+ an−1(t)

∂n−1K

∂tn−1 + · · · + a1(t)
∂K

∂t
+ a0(t)K = 0 (1.24)

for some time dependent functions a0, a1, . . . , an−1.

We shall start by considering the linear renewal equation (1.4) in Sects. 2 and 3 and
continue by studying linear integro-differential equations in Sect. 4. In Sect. 5 we show how
the ODE system can be given an interpretation as a population model in its own right. We
also characterize the basic reproduction number and the Malthusian parameter of the finite
dimensional system and show that they coincide, as they should, with the corresponding
quantities of the original model. In Sect. 6 we consider the question of minimality of the
dimension of the finite dimensional state representation. In Sect. 7 we extend our previous
results to linear renewal equations with input, which are one of the main building blocks
of structured population models. In Sect. 8 we use the results of Sect. 7 to study nonlinear
problems by closing the feedback loop, that is, by feeding the output back as input to the
renewal equation. In Sect. 9 we consider examples of nonlinear age-structured population
models and epidemic models.

2 Linear Renewal Equations

In this paper we denote the space of all p × q-matrices, that is, matrices with p rows and q
columns, by Rp×q .

Consider the linear delay equation (renewal equation)

x(t) =
∫ ∞

0
K (τ )x(t − τ)dτ t > 0, (2.1)

with initial condition
x(t) = ϕ(t), t ≤ 0. (2.2)

or, equivalently,

x(t) =
∫ 0

−∞
K (t − τ)ϕ(τ)dτ +

∫ t

0
K (t − τ)x(τ )dτ, (2.3)

where K is a given locally integrable R
k×k-valued kernel and the unknown x and the ini-

tial history ϕ take on values in R
k . Of course, one has to assume that

∫ ∞
0 K (τ )ϕ(−τ)dτ

converges.
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The resolvent kernel R : R+ → R
k×k of K is, by definition, the solution of the two

equations

R(t) = K (t) +
∫ t

0
K (t − τ)R(τ )dτ, (2.4)

R(t) = K (t) +
∫ t

0
R(t − τ)K (τ )dτ, (2.5)

or,
R = K + K ∗ R = K + R ∗ K , (2.6)

where we have used the notation

(F ∗ G) (t) =
∫ t

0
F(t − τ)G(τ )dτ. (2.7)

It is an easy exercise in algebra to show that whenever (A,+, ∗) is a ring and K ∈ A is given,
then the resolvent kernel is unique whenever it exists. For details, see [18, Section 9.3].

The importance of the resolvent kernel stems from the fact that the unique solution of
(2.3) is given by

x(t) =
∫ 0

−∞
K (t − τ)ϕ(τ)dτ +

∫ t

0
R(t − s)

∫ 0

−∞
K (s − τ)ϕ(τ)dτds. (2.8)

Roughly speaking, the renewal equation (2.3) isODE-reducible if its solution x canbe fully
recovered from the solution of a system of linear ordinary differential equations. The purpose
of this section is to make this statement mathematically precise and to derive sufficient and
necessary conditions for the Eq. (2.3) to be ODE-reducible.

Because the resolvent kernel R contains all the information to construct the solution x , it
is natural to formulate the conditions of finite dimensional state representation in terms of
the resolvent kernel.

Definition 2.1 The renewal equation (2.3) has a state representation of finite dimension
n ∈ N (or, for short, is ODE-reducible) if there exist matrices U, V ∈ R

n×k and A ∈ R
n×n

such that K has a resolvent kernel R given by

R(t) = UT Z(t), (2.9)

where Z : R+ → R
n×k is the solution of the initial value problem

d

dt
Z(t) = AZ(t), (2.10)

Z(0) = V . (2.11)

As a normalisation we always take the columns of V to be unit vectors with respect to the
l1-norm. In the special case k = n this means that, possibly after a change of bases, V is the
identity matrix.

Tomotivate the formulation of our first result, we observe that, by defining H = A−VUT

one can write (2.10) and (2.11) equivalently as

d

dt
Z(t) = VUT Z(t) + HZ(t), (2.12)

Z(0) = V . (2.13)
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Theorem 2.2 The renewal equation (2.3) is ODE-reducible if and only if for some positive
integer n there are matrices U, V ∈ R

n×k and H ∈ R
n×n such that

K (t) = UT etH V . (2.14)

Proof To prove sufficiency, assume that K (t) = UT etH V . Then, by (2.4),

R(t) = UT etH V +
∫ t

0
UT e(t−s)HV R(s)ds

= UT
(
etH V +

∫ t

0
e(t−s)HV R(s)ds

)
(2.15)

= UT Z(t), (2.16)

where

Z(t) = etH V +
∫ t

0
e(t−s)HV R(s)ds. (2.17)

Direct verification shows that Z defined by (2.17) satisfies (2.12) and (2.13) and thus
sufficiency is proved.

Assume now that the resolvent kernel R of K is given by R(t) = UT Z(t), where Z is the
solution of (2.12) and (2.13). From the definition (2.6) of the resolvent kernel we have

UT Z(t) = K (t) +
∫ t

0
K (t − τ)UT Z(τ )dτ (2.18)

and by applying the variation of constants formula to (2.12) and (2.13) we have

UT Z(t) = UT etH V +
∫ t

0
UT e(t−τ)HVUT Z(τ )dτ. (2.19)

Subtracting (2.19) from (2.18) we get that Q(t) = K (t) −UT etH V satisfies

Q(t) +
∫ t

0
Q(t − s)R(s)ds = 0,

which has a unique solution Q(t) = 0, t > 0. This shows that K (t) = UT etH V and
completes the necessity part of the proof. ��

When the renewal equation (2.3) is ODE-reducible one recovers the solution x from the
formula (2.8) with K and R given by (2.14) and (2.9), respectively. But there is a quicker
and perhaps more instructive way, which we now present.

Let the kernel K be given by (2.14). From (2.1) we then get

x(t) =
∫ ∞

0
UT esHV x(t − s)ds = UT z(t), (2.20)

where

z(t) =
∫ ∞

0
esH V x(t − s)ds =

∫ t

−∞
e(t−s)HV x(s)ds. (2.21)

Differentiating (2.21) and taking (2.20) into account, one obtains

d

dt
z(t) =

(
VUT + H

)
z(t) (2.22)
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and from (2.21) and (2.2) we infer that

z(0) =
∫ ∞

0
esH Vϕ(−s)ds. (2.23)

We conclude that whenever the renewal equation (2.3) is ODE-reducible its solution is
obtained by first solving the ordinary differential equation (2.22) with initial condition (2.23)
and then defining

x(t) = UT z(t) (2.24)

for t > 0.

3 Construction of the Matrices H , U and V from a Given Kernel

It is well-known in the theory of ordinary differential equations that the entries of the matrix
exponential etH contain scalar exponentials etλ� multiplied by powers of t . Thus the kernel
K = UT etH V giving rise to an ODE-reducible renewal equation is necessarily of the form

K (t) =
r∑

�=1

p�−1∑
j=0

β�j
t j

j ! e
λ�t , (3.1)

where the coefficients β�j are k × k matrices.
In this sectionwe consider the converse problem:Given a kernel of the form (3.1), construct

the matrices H , U and V such that

UT etH V = K (t). (3.2)

3.1 The Case of a Scalar Kernel

We first consider the case of a scalar kernel, in which the coefficients β�j are scalars and U
and V are column vectors of the same length. The general case then follows easily.

Taking the Laplace transform of (3.2) with K given by (3.1) one obtains

UT (λI − H)−1 V =
r∑

�=1

p�−1∑
j=0

β�j (λ − λ�)
−( j+1). (3.3)

Let P� be the identity matrix of dimension p� × p� and let N� be the shift operator (ones
on the first subdiagonal, zeros everywhere else) of dimension p� × p�. Let P and N be the
(p1 + · · · + pr ) × (p1 + · · · + pr ) dimensional block matrices

P =

⎛
⎜⎜⎜⎝

P1 0 · · · 0
0 P2 0
...

. . .
...

0 · · · 0 Pr

⎞
⎟⎟⎟⎠ , N =

⎛
⎜⎜⎜⎝

N1 0 · · · 0
0 N2 0
...

. . .
...

0 · · · 0 Nr

⎞
⎟⎟⎟⎠ . (3.4)

Abusing symbols, we also use P� and N� to denote the (p1 + · · · + pr ) × (p1 + · · · + pr )
dimensional matrices obtained by putting Pj = 0 and N j = 0 for j 	= � in (3.4). We then
have

I = P1 + P2 + · · · + Pr , (3.5)

N = N1 + N2 + · · · + Nr . (3.6)
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Define

H =
n∑

�=1

(λ�P� + N�) . (3.7)

Note that H is almost the Jordan normal form of a (p1 + · · · + pr ) × (p1 + · · · + pr )
dimensional matrix with n distinct eigenvalues λ� of multiplicity p�. The standard Jordan
form has ones on the diagonal immediately above the main diagonal, whereas H has ones
on the first subdiagonal. The reason for this unorthodox choice is that in applications to
population dynamics H can be interpreted as the state-transition matrix for the process of
survival and i-state development (see Sect. 5). Often an individual progresses through the
different states in a particular order during its life and it is natural to number the states in
the same order. This leads to a matrix with non-zero elements only on the main diagonal and
first subdiagonal and it is natural to keep this structure for the Jordan normal form, too.

The resolvent of H is given by

(λI − H)−1 =
r∑

�=1

⎛
⎝(λ − λ�)

−1P� +
p�−1∑
j=0

(λ − λ�)
−( j+1)N j

�

⎞
⎠ . (3.8)

Inserting (3.8) into (3.3) we find that we have to determine U and V such that the following
equations are satisfied.

UT P�V = β�0, � = 1, 2, . . . , r, (3.9)

UT N j
� V = β�j , � = 1, 2, . . . , r, j = 0, 1, . . . , p� − 1. (3.10)

We now fix the (p1 + · · · + pr ) dimensional vector V with components vk by defining

v1 = vp1+1 = vp1+p2+1 = · · · = vp1+p2+···+pr−1+1 = 1 (3.11)

and
vk = 0 (3.12)

for all other indices k. With this choice of V we can solve the system (3.9)–(3.10) for the
components of U obtaining

u1 = β10

u2 = β11
...

u p1 = β1,p1−1

u p1+1 = β20

u p1+2 = β21
...

u p1+p2 = β2,p2−1

u p1+···+pr−1+1 = βr0
u p1+···+pr−1+2 = βr1

...

u p1+···+pr−1+pn = βr,pr−1

(3.13)

We have thus solved the problem.
The biological interpretation is as follows: There are p1 + · · · + pr discrete states (com-

partments). The matrix H is the transition matrix describing movement between these states.
Newborns enter r of the states (states numbered 1, p1 +1, p1 + p2 +1, . . . , p1 + p2 +· · ·+
pr−1 + 1). For � = 1, 2, . . . , r, j = 0, 1, . . . , p� − 1 the number β�,p�− j−1 is the rate at
which individuals in state p1 + · · · + p� − j give birth to offspring (distributed uniformly
over the states 1, p1 + 1, p1 + p2 + 1, . . . , p1 + p2 + · · · + pr−1 + 1).

The solution presented above is of course not unique. The choice of V made in (3.11)–
(3.12) was made for mathematical convenience. A different choice of V is often more
appropriate from the point of view of biological interpretation. Let Ṽ be any non-zero
(p1 + · · · + pr ) dimensional vector and choose an invertible matrix Q such that

QṼ = V,
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where V is the vector chosen in (3.11)–(3.12). Then

UT etH V = UT QQ−1etH QQ−1V = UT QetQ
−1HQQ−1V = UT QetQ

−1HQṼ . (3.14)

So a different choice of V is compensated by a similarity transformation of H .
Because the given kernel K is a scalar valued function, there is essentially only one state-

at-birth represented by a fixed linear combination of states as determined by Ṽ . The choice
Ṽ = (1 0 0 . . . 0)T is therefore rather natural.

Example 3.1 Let

K (t) = β10e
λ1t + (β20 + β21t) e

λ2t .

According to the solution above, we have

H =
⎛
⎝λ1 0 0

0 λ2 0
0 1 λ2

⎞
⎠ , V =

⎛
⎝ 1
1
0

⎞
⎠ , U =

⎛
⎝β10

β20

β21

⎞
⎠

The ODE

dx

dt
= Hx

is easy to solve and yields

etH =
⎛
⎝ eλ1t 0 0

0 eλ2t 0
0 teλ2t eλ2t

⎞
⎠

Direct verification shows that

UT etH V = K (t)

as it should.
Finally we consider the case Ṽ = (1 0 0)T . The invertible matrix

Q =
⎛
⎝ 1 0 0
1 1 0
0 0 1

⎞
⎠

maps Ṽ to V . One has

Q−1HQ =
⎛
⎝ λ1 0 0

−λ1 + λ2 λ2 0
1 1 λ2

⎞
⎠ , UT Q = (β10 + β20 β20 β21).

The biological interpretation going with this finite state representation is that everyone is
born in state 1, individuals are recruited to state 2 from state 1 and to state 3 from state 2 and
also directly from state 1. The vector UT Q gives the fecundity rates in the different states.

The next example is inspired by Problem 20 of Farini and Rinaldi [17], p. 84.

Example 3.2 Let
K (t) = (C + A cosωt + B sinωt) . (3.15)
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To ensure that the kernel K is positive we assume that C >
√
A2 + B2. The kernel is of the

form (3.1), but now with complex λ2,3 = ±iω in addition to the real λ1 = 0. We write the
matrix H with real entries

H =
⎛
⎝ 0 0 0
0 0 ω

0 −ω 0

⎞
⎠ (3.16)

from which it follows that

etH =
⎛
⎝ 1 0 0
0 cosωt sinωt
0 − sinωt cosωt

⎞
⎠ . (3.17)

The orbits of the dynamical system (3.17) are ellipses with centre on the z1-axis and with
the z1-coordinate constant. It is therefore clear that no orbit will remain in the positive cone.

Taking V = (1 1 1)T one finds as in the preceding example that

U =
(
C,

1

2
(A + B),

1

2
(A − B)

)T

.

TakingC small (and hence A and B even smaller), the norm of VUT will be small and hence
the orbits of the system (2.22), that is,

d

dt
z(t) =

(
VUT + H

)
z(t)

will, for small time, stay close to the orbits of (3.17). This shows that this particular finite
dimensional representation of the renewal equation with kernel K defined by H, U and V
does not preserve positivity. Any other representation of the same dimension is related to this
one by a similarity transformation and hence cannot preserve positivity either. Farina and
Rinaldi [17] state that actually no finite dimensional representation of the system defined by
the kernel (3.15) is positivity preserving and give this as an exercise of the highest level of
difficulty ([17], p. 84).

3.2 The General Case

In the general case the kernel K (t) is a k × k matrix of the form (3.1), where the coefficients
β�j are k × k matrices. The construction of Sect. 3.1 works mutatis mutandis. The main
change is that the non-zero components vk in (3.11) are no longer the scalar 1, but the k × k
identity matrix, while the zero components in (3.12) are the k×k zeromatrix. Thematrix V is
built up by these blocks of identity and zero matrices and has dimension k×k(p1+· · ·+ pr ).

4 Linear Delay Differential Equations

In this section we consider the linear delay differential equation

ẏ(t) =
∫ ∞

0
dL(s)y(t − s), t > 0 (4.1)

with initial condition
y(t) = ψ(t), t ≤ 0. (4.2)

As in ([7]; see the references therein for earlier work) we work with continuous functions
ψ with values in R

k and require θ �→ eθψ(θ) to be continuous and to vanish at −∞ for
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some  > 0. The kernel L is a k × k matrix-valued function defined on R+, the entries of
which are normalized functions of bounded variation such that

et V (t)

is bounded (here V is the total variation function, see [13]). Normalization is done such that
L(0) = 0 and L is continuous from the right on the open interval (0,∞).

Exactly as in the finite delay case treated by Diekmann et al. [13, Section I.2]; one shows
that the solution of (4.1) and (4.2) coincides for t ≥ 0 with the solution of the linear renewal
equation

y(t) =
∫ t

0
L(s)y(t − s)ds + f (t), (4.3)

where

f (t) = ψ(0) +
∫ ∞

0
(L(t + σ) − L(σ )) ψ(−σ)dσ. (4.4)

Therefore, as in the case of (2.1) and (2.2), all the information of the solution of (4.1) and
(4.2) is contained in the resolvent kernel R of L and we define ODE-reducibility of (4.1)
and (4.2) by Definition 2.1 (with L instead of K ). As an immediate consequence we get the
following theorem:

Theorem 4.1 The problem (4.1) and (4.2) is ODE-reducible if and only if there are matrices
U, V ∈ R

n×k and H ∈ R
n×n such that

L(t) =
{
0, t = 0,

UT etH V, t > 0.
(4.5)

As in the preceding section, we close by showing how one recovers the solution y of an
ODE-reducible delay differential equation (4.1). To this end, assume that L is given by (4.5).
Equation (4.1) is then equivalent to

d

dt
y(t) = UT V y(t) +UT Hz(t), (4.6)

where

z(t) =
∫ ∞

0
esH V y(t − s)ds =

∫ t

−∞
e(t−s)HV y(s)ds. (4.7)

Differentiating (4.7) one obtains

d

dt
z(t) = V y(t) + Hz(t). (4.8)

The solution y of an ODE-reducible delay differential equation (4.1) is thus obtained by
solving the system (4.6) and (4.8) with initial condition

y(0) = ψ(0), (4.9)

z(0) =
∫ ∞

0
esHψ(−s)ds. (4.10)

However, we can go one step further to arrive at an ODE system in z only, which is almost
identical to the corresponding system (2.22) for the case of a renewal equation.

It follows from (4.6) and (4.8) that

d

dt
y(t) = UT d

dt
z(t)

123



J Dyn Diff Equat (2018) 30:1439–1467 1451

and hence that

y(t) −UT z(t) = y(0) −UT z(0) = ψ(0) −UT
∫ ∞

0
esH Vψ(−s)ds

for all t ≥ 0. We can therefore rewrite (4.8) as

d

dt
z(t) = V y(t) + Hz(t) =

(
VUT + H

)
z(t) + Vc,

where c is the constant vector

c = ψ(0) −UT
∫ ∞

0
esH Vψ(−s)ds. (4.11)

The solution y of a linear ODE-reducible delay differential equation (4.1) can thus alterna-
tively be obtained by solving the initial value problem

d

dt
z(t) =

(
VUT + H

)
z(t) + Vc, (4.12)

z(0) =
∫ ∞

0
esH Vψ(−s)ds (4.13)

and then defining
y(t) = UT z(t) + c. (4.14)

Note that the only difference between the initial value problem (4.12) and (4.13) with output
(4.14) and the corresponding system (2.22)–(2.24) for the renewal equation is manifested in
the constant vector c. When c = 0 the two systems coincide.

5 Markov Chain Population Models with Finitely Many Individual States

In the previous sections we gave necessary and sufficient conditions for when solving a
renewal equation or a delay differential equation can be reduced to solving a system of
ordinary differential equations, but we neither fully interpreted the resulting ODE system
biologically nor considered whether it was the most economical reduction. Structured popu-
lations with a finite number n of individual states (i-states for short) can be modelled directly
as a system of ODEs

d

dt
N (t) = (B + H)N (t), (5.1)

where the unknown N takes on values in R
n . The j th component of N (t) represents the

density of individuals with i-state j . The n × n matrix H generates the process of survival
and i-state development: for i 	= j , Hi j is the rate at which an individual with i-state j jumps
to i-state i , while −Hj j is the rate at which an individual with i-state j either changes state
or dies. The n × n matrix B represents reproduction. The component Bi j is the rate at which
an individual with i-state j gives birth to an individual with i-state i .

In this section we will relate the system (5.1) to a linear ODE-reducible renewal equa-
tion and characterize the next generation matrix, the basic reproduction number and the
Malthusian parameter.

In many (perhaps most) population models the possible states at birth form a proper subset
of all i-states. This means that the dimension k of the range R(B) of B is usually less than
n and in any case k ≤ n. Moreover, it may happen that individuals produce offspring of
different i-states, but in a fixed proportion. When this is the case the dimension ofR(B) will
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be further reduced (see also [12]). To take advantage of this, we let V ∈ R
n×k be a matrix, the

columns of which are unit vectors (with respect to the l1-norm) that form a basis for the range
of B. Because V is an injection, there is a unique matrix U ∈ R

n×k such that B = VUT .
The system (5.1) is now of the same form as (2.22):

d

dt
N (t) = (VUT + H)N (t). (5.2)

Define the birth rate vector b(t) ∈ R
k at time t by

b(t) = UT N (t). (5.3)

Equation (5.2) can now be written as

d

dt
N (t) = Vb(t) + HN (t). (5.4)

The interpretation of H implies that all its eigenvalues have negative real part and so

lim
t→−∞ e−t H = 0. (5.5)

We make the biologically reasonable assumption that the population vector N (t) remains
bounded as t → −∞ after which (5.5) and an application of the variation of constants
formula yields

N (t) =
∫ t

−∞
e(t−s)HVb(s)ds. (5.6)

Substituting (5.6) into (5.3) one finds that b satisfies the renewal equation

b(t) =
∫ t

−∞
UT e(t−s)HVb(s)ds, (5.7)

which is simply Eq. (2.1) with the ODE-reducible kernel (2.14).
Recall from the introduction that the entry Ki j (a) of the kernel in the renewal equation

(1.1) is the rate at which an individual of age a whowas born with i-state j produces offspring
of i-state i . The life time contribution of a set of individuals with i-state distribution at birth
given by the vector b ∈ R

k to the next generation is therefore

�b :=
∫ ∞

0
K (a) b da. (5.8)

The matrix

� =
∫ ∞

0
K (a)da (5.9)

is called the next generation matrix. The basic reproduction number R0 is, by definition, the
spectral radius of �. In population problems � is a positive matrix and the spectral radius is
an eigenvalue.

The Malthusian parameter r is the exponential growth rate of the population (and hence
of the birth rate b). It is the real λ = r such that the matrix∫ ∞

0
e−λaK (a)da (5.10)

has dominant eigenvalue 1.
Let us now return to the Eq. (5.1). Because of the biological interpretation we assume that

the transition matrix H has positive off-diagonal elements (thus etH is a positive matrix for
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all t) and that B is positive. Because H involves the death rates (which by assumption are not
all equal to zero) it is plain that all the eigenvalues of H have negative real part. Therefore H
is invertible. Again from the interpretation, eaHφ is the (defective) probability distribution
over the different i-states of a cohort of age a who had i-state distribution φ at birth, that is,
at a = 0. So the next generation matrix is

� =
∫ ∞

0
BeaHda = −BH−1.

To find R0 we have to solve the eigenvalue problem

−BH−1ξ = λξ

for λ > 0 and ξ ∈ R
n+. Obviously ξ has to belong to the range of B and by construction of

V there is a unique η ∈ R
k such that

ξ = Vη.

Remembering that B = VUT , we get the eigenvalue problem

−VUT H−1Vη = λVη,

which, because V is injective, reduces to

−UT H−1Vη = λη. (5.11)

On the other hand, if the renewal equation is ODE-reducible, then K (t) = UT etH V and the
next generation matrix is

� =
∫ ∞

0
UT etH Vdt = −UT H−1V . (5.12)

We conclude that the problem (5.11) of finding R0 for the model (5.1) is the same as finding
R0 for the ODE-reducible renewal equation model.

The Malthusian parameter of the model (5.1) is the positive eigenvalue of the matrix
B + H . So we consider

(B + H)ξ = λξ.

This can be written as

VUT ξ = (λI − H)ξ.

Put

η = UT ξ.

Then, if λ is not an eigenvalue of H ,

ξ = (λI − H)−1 Vη

and hence

UT (λI − H)−1Vη = η,

which says thatUT (λI − H)−1V has eigenvalue 1. Notice that for an ODE-reducible kernel
K we have ∫ ∞

0
e−λt K (t)dt =

∫ ∞

0
e−λtUT etH Vdt = UT (λI − H)−1V,
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which shows that finding the Malthusian parameter for (5.1) and for an ODE-reducible
renewal equation amount to the same thing.

6 Minimality of the Finite Dimensional State Space Representation

When we in the last section built a structured population model directly in terms of ODEs,
positivity of the resulting dynamical system was automatic. We now return to our general
framework in which we do not pay attention to positivity.

As already noticed in Sect. 3, the matrices U, V and H in the representation K (t) =
UT etH V are not unique as a similarity transformation of H together with corresponding
transformations ofUT and V does not change the kernel K , see (3.14). Neither is the dimen-
sion n of the reduced state space unique. This is obvious because adding an arbitrary number
of zero rows and columns to H and the same number of arbitrary rows to U and V will
not have any effect on K . It is of course desirable to choose the finite dimensional state
space as economically as possible. So we want to eliminate extra dimensions that do not
contribute to the kernel K . In this section we consider the problem of minimality in the case
of a scalar renewal equation (k = 1) which in a population dynamical context corresponds to
the assumption of only one individual state at birth. The general case can be treated similarly.

As explained in Sect. 5 the vector V corresponds to the state at birth and UT gives the
rates at which individuals in different states produce offspring. If a state cannot be reached
from the state at birth, then this state is, from the point of view of renewal, superfluous. Our
first requirement of minimality is thus:

(M1) The set
{
etH V : t ≥ 0

}
spans the whole space Rn of column vectors.

Assume now that the set
{
UT etH : t ≥ 0

}
does not span the whole space R

n (of row
vectors). This would mean that there are states such that individuals in these states will never
reproduce, neither at the current time nor in the future (when they might have moved to
another state). Such states do not affect the renewal process and should be removed. We are
thus led to our second condition of minimality, which is dual to the first one.

(M2) The set
{
UT etH : t ≥ 0

}
spans the whole space Rn of row vectors.

Definition 6.1 Afinite dimensional state space representation defined byU, V and H is said
to be minimal if conditions (M1) and (M2) hold.

The terminology of Definition 6.1 is justified by the following theorem.

Theorem 6.2 Let H and H̃ be n by n and ñ by ñ matrices, respectively. If

K (t) = UT etH V = Ũ T et H̃ Ṽ

for all t ≥ 0 and if the finite dimensional state space representation defined by U, V and H
is minimal, then ñ ≥ n.

The basic idea of the proof is the following: The generalized eigenspaces corresponding
to an eigenvalue λ of H are the nullspaces of (H −λI )k and hence they are naturally ordered
by the power k. One can eliminate the span of a generalized eigenvector corresponding to the
highest rank without affecting subspaces corresponding to lower powers. But if one elimi-
nates the span of a generalized eigenvector corresponding to some lower rank, automatically
additional directions in subspaces corresponding to higher values of k are eliminated too.
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Therefore minimality is characterized by the requirement that the generalized eigenvectors
of highest rank cannot be missed.

Instead of giving a formal proof of Theorem 6.2 we verify it in the case where H is a 3×3
matrix with only one eigenvalue of algebraic multiplicity 3. In the general case each Jordan
block can be treated separately in the same way. Recall from Sect. 3 that we use a slightly
unorthodox representation of Jordan blocks.

Let H have the following Jordan normal form:

H =
⎛
⎝λ1 0 0

1 λ1 0
0 1 λ1

⎞
⎠ .

Then

etH =
⎛
⎝ eλ1t 0 0

teλ1t eλ1t 0
1
2 t

2eλ1t teλ1t eλ1t

⎞
⎠ . (6.1)

From (6.1) it is obvious that condition (M1) holds if and only if v1 	= 0. The general condition
is that the inner product of V and all (true) eigenvectors must not vanish.

Next we investigate the implications of condition (M2). By (6.1) we have

UT etH =
⎛
⎜⎝
u1eλ1t + u2teλ1t + u3

1
2 t

2eλ1t

u2eλ1t + u3teλ1t

u3eλ1t

⎞
⎟⎠

T

, (6.2)

from which it is immediate that condition (M2) holds if and only if u3 	= 0.
We finally examine the way the conditions (M1) and (M2) influence the kernel K . From

(6.2) we get

K (t) = UT etH V = (u1v1 + u2v2 + u3v3)e
λ1t + (u2v1 + u3v2)te

λ1t + u3v1
1

2
t2eλ1t .

It is now clear that if either (M1) or (M2) (or both) are violated, the dimension of the
system can be reduced. If u3 = 0 or v1 = 0, then the direction of the generalized eigenvector
of rank 3 corresponding to the eigenvalue λ1 can be removed without affecting the kernel K .
If u2v1 + u3v2 = 0, but u3v1 	= 0 then one cannot remove the direction of the generalized
eigenvector of rank 2.

It is also clear that if conditions (M1) and (M2) hold, then any other representation pro-
ducing the same kernel must have at least dimension 3, so the conditions indeed define
minimality.

7 Finite Dimensional State Representation of Renewal Equations with
Input

In this section we consider linear renewal equations with an R
m valued function E of time

as input.
Assume that to every given function E : R → R

m there corresponds a two parameter
matrix valued kernel KE (t, s). The corresponding linear renewal equation with input is

x(t) =
∫ t

−∞
KE (t, s)x(s)ds, t > 0 (7.1)
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with initial condition
x(t) = ϕ(t), t ≤ 0, (7.2)

or, equivalently

x(t) =
∫ 0

−∞
KE (t, τ )ϕ(τ)dτ +

∫ t

0
KE (t, τ )x(τ )dτ. (7.3)

The resolvent kernel RE is now a two parameter kernel satisfying

RE (t, s) = KE (t, s) +
∫ t

s
KE (t, τ )RE (τ, s)dτ = KE (t, s) +

∫ t

s
RE (t, τ )KE (τ, s)dτ.

(7.4)
Equation (7.4) is of the form (2.6) with the product ∗ in the ring of two parameter families
of matrices defined by

(F ∗ G) (t, s) =
∫ t

s
F(t, τ )G(τ, s)dτ. (7.5)

Definition 7.1 The renewal equation (7.3) with input E has a state representation of finite
dimension n ∈ N ( is ODE-reducible) if there are functions U : Rm → R

n×k , V : Rm →
R
n×k and H : Rm → R

n×n , such that

RE (t, s) = U (E(t))T�E (t, s)V (E(s)), (7.6)

where �E (t, s) is the fundamental matrix solution for the linear non-autonomous system of
ordinary differential equations

d

dt
Z(t) =

(
V (E(t))U (E(t))T + H(E(t))

)
Z(t), (7.7)

Note that in Definition 7.1 we assume that n is independent of E , but allow the normalised
columns of V to depend on E . In the setting of Sect. 5 this corresponds to the range of
B(E) having fixed dimension, but the basis for this range being E-dependent. As a matter
of fact, if the renewal equation (7.1) or, equivalently (7.3), is ODE-reducible in the sense
of Definition 7.1, then its solution can always be recovered from the solution of an other
renewal equation, possibly of higher dimension, that is ODE-reducible with V = I . This is
shown in Remark 7.3 below.

Theorem 7.2 The renewal equation (7.3) with input E is ODE-reducible if and only if there
are functions U : Rm → R

n×k , V : Rm → R
n×k and H : Rm → R

n×n, such that

KE (t, s) = U (E(t))T�E (t, s)V (E(s)), (7.8)

where �E (t, s) is the fundamental matrix solution of the linear non-autonomous system

d

dt
Z(t) = H(E(t))Z(t). (7.9)

Proof Let KE (t, s) have the form (7.8) for some matrices U (E(t)), V (E(t)) and H(E(t))
and let �E (t, s) be the fundamental matrix solution corresponding to the system (7.7). By
the variation of constants formula

�E (t, s)V (E(s))

= �E (t, s)V (E(s)) +
∫ t

s
�E (t, σ )V (E(σ ))U (E(σ ))T�E (σ, s)V (E(s))dσ. (7.10)
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Multiplying (7.10) from the left by U (E(t))T one obtains

U (E(t))T�E (t, s)V (E(s)) = U (E(t))T�E (t, s)V (E(s))

+
∫ t

s
U (E(t))T�E (t, σ )V (E(σ ))U (E(σ ))T�E (σ, s)V (E(s))dσ, (7.11)

or, equivalently,

U (E(t))T�E (t, s)V (E(s))

= KE (t, s) +
∫ t

s
KE (t, σ )U (E(σ ))T�E (σ, s)V (E(s))dσ, (7.12)

Thus U (E(t))T�E (t, s)V (E(s)) satisfies the first equation in (7.4). It follows by the
uniqueness of the resolvent that RE (t, s) is given by (7.6) and hence that (7.3) is ODE-
reducible.

Conversely, assume that the resolvent RE (t, s) of KE (t, s) has the form (7.6) and define

QE (t, s) = KE (t, s) −U (E(t))T�E (t, s)V (E(s))

Subtracting (7.11) from the first equation in (7.4) one obtains

0 = QE (t, s) +
∫ t

s
QE (t, σ )RE (σ, s)ds,

which has the unique solution QE = 0. This shows that KE (t, s) = U (E(t))T�E (t, s)V
(E(s)) and completes the proof. ��

It is of practical importance to be able to determine, directly from a given kernel, whether
the system is ODE reducible or not. The result by Vogel [31] expressed in (1.24) yields an
algorithm for checking this. Given a kernel K (t, s), differentiate it with respect to time t and
check whether K and ∂K/∂t are linearly dependent, that is, whether there exist functions a0
and a1 such that

a1(t)
∂K (t, s)

∂t
+ a0(t)K (t, s) = 0. (7.13)

If they are, we are done and conclude that the system is ODE-reducible. If not, we dif-
ferentiate K once more and check, whether K , ∂K/∂t and ∂2K/∂t2 are linearly dependent,
and so on. If this process stops after a finite number of steps the system is ODE-reducible,
otherwise not.

Remark 7.3 In Definition 7.1 we allowed the matrix V to depend on the value of the input.
We now show that, if the renewal equation (7.1) or, equivalently (7.3), is ODE-reducible in
the sense of Definition 7.1, then its solution can be recovered from the solution of an other
renewal equation, possibly of higher dimension, that is ODE-reducible with V = I .

To see this, assume that (7.1) is ODE-reducible. Then, according to Theorem 7.2,

x(t) =
∫ t

−∞
U (E(t))T�E (t, s)V (E(s))x(s)ds. (7.14)

Define
x̃(t) = V (E(t))x(t) (7.15)

and multiply Eq. (7.14) from the left by V (E(t)) to obtain

x̃(t) =
∫ t

−∞
V (E(t))U (E(t))T�E (t, s)x̃(s)ds, (7.16)
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ApplyingTheorem7.2 once again, we see that Eq. (7.16) isODE-reduciblewithU (E)V (E)T

playing the role of U (E) and the identity matrix that of V (E). Once x̃ has been solved, we
recover the solution x of the original problem from

x(t) =
∫ t

−∞
U (E(t))T�E (t, s)x̃(s)ds. (7.17)

8 Closing the Feedback Loop

In this section we consider the nonlinear problem (1.1)–(1.3), or

b(t) =
∫ t

−∞
K (1)

E (t, s)b(s)ds, t > 0, (8.1)

X (t) =
∫ t

−∞
K (2)

E (t, s)b(s)ds t > 0, (8.2)

d

dt
Y (t) = G

(
Y (t),

∫ t

−∞
K (3)

E (t, s)b(s)ds

)
, t > 0, (8.3)

E(t) = (X (t), Y (t))T . (8.4)

The unknowns b, X and Y take on values in R
k , Rm1 and R

m2 , respectively. Thus E takes
on values in R

m with m = m1 + m2. Therefore we have to assume that K (1)
E (t, s) ∈

R
k×k, K (2)

E (t, s) ∈ R
k×m1 , K (3)

E (t, s) ∈ R
k×m3 and that the nonlinear function G maps

R
m2 × R

m3 into R
m2 for some integer m3. Note that the kernels K (i)

E (t, s) depend on the
history of E . Therefore we need to prescribe the initial history of the unknowns for t ≤ 0:

b(t) = ϕ1(t), (8.5)

X (t) = ϕ2(t), (8.6)

Y (t) = ϕ3(t). (8.7)

As explained by Diekmann and Gyllenberg [7], it is natural, both from a mathematical and
from a biological point of view, to choose a weighted L1-space of functions on R− as state
space for b, whereasY should be taken continuous. TheEq. (1.2) [or (8.2)] is often obtained by
a quasi-steady-state approximation in a differential equation of the type (1.3) or (8.3). Ideally
the state space should not be affected by this approximation and so X should be continuous.
However, experience shows that jump discontinuities may develop, so we should be prepared
to enlarge, if necessary, the state space to the space of bounded measurable functions (and
giving up on strong continuity of the semigroup of solution operators).Yet the initial condition
(8.6) specifies the history of X pointwise exactly as (8.7) specifies the history of Y , whereas
the initial condition (8.5) for b cares only about integrals.

The distinctive feature of Eq. (8.1) is that it is linear in b and that the nonlinearity enters
only through feedback via the environmental condition E . In particular, if the environmental
condition is a given function of time, then Eq. (8.1) for b is a linear renewal equation with
input of the type considered in Sect. 7. Theorem 7.2 gives necessary and sufficient conditions
on the kernel K (1)

E (t, s) for this renewal equation to be ODE-reducible. In this section we
refrain from seeking necessary and sufficient conditions for the full system (8.1)–(8.4) to be
ODE-reducible or even giving an exact definition of ODE-reducibility. Instead we notice that
because the action on b has the same form in all three equations, it is plausible that if the
kernels K (i)

E (t, s), i = 1, 2, 3 have the same form as the kernel KE (t, s) in Theorem 7.2, a
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reduction to a finite dimensional system should be possible. In this section we show that this
is indeed the case.

We assume that for i = 1, 2, 3, there are integers ni and functions Ui : Rm → R
ni×k ,

Vi : Rm → R
ni×k and Hi : Rm → R

ni×ni , such that

K (i)
E (t, s) = Ui (E(t))T�

(i)
E (t, s)Vi (E(s)), (8.8)

where �
(i)
E (t, s) is the fundamental matrix solution of the linear non-autonomous system

d

dt
Z(t) = Hi (E(t))Z(t). (8.9)

Substituting (8.8) into (8.1)–(8.3) and defining

zi (t) =
∫ t

−∞
�

(i)
E (t, s)Vi (E(s))b(s)ds, i = 1, 2, 3, (8.10)

one obtains

d

dt
zi (t) = Vi (X (t), Y (t))U1(X (t), Y (t))T z1(t) + Hi (X (t), Y (t))zi (t), (8.11)

i = 1, 2, 3,

X (t) = U2(X (t), Y (t))T z2(t), (8.12)
d

dt
Y (t) = G

(
Y (t),U3(X (t), Y (t))T z3(t)

)
. (8.13)

The system (8.11)–(8.13) is a semi-explicit systemof differential-algebraic equations [24].
In addition to the n1 + n2 + n3 +m2 scalar differential equations given by (8.11) and (8.13)
there are m1 undifferentiated or “algebraic” equations given by (8.12). If X can be solved
explicitly in terms of z2 and Y from Eq. (8.12), then this solution can be substituted into
(8.11) and (8.13) and the system can be reduced to a system of n1 + n2 + n3 + m2 scalar
differential equations.

If the matrix-valued function U2 is continuously differentiable, then

dX

dt
=

(
∂

∂X
U2(X, Y )T

dX

dt

)
z2 +

(
∂

∂Y
U2(X, Y )T

dY

dt

)
z2 +U2(X, Y )

dz2
dt

. (8.14)

If, in addition, the map �(X, Y, z2) : ξ �→ ξ − (
∂

∂X U2(X, Y )T ξ
)
z2 is invertible, then (8.14)

can be solved for dX/dt in terms of X, Y, z2, dz2/dt, dY/dt and the system (8.11)–(8.13)
can be transformed into a system of n1 + n2 + n3 + m scalar differential equations.

As in the linear cases we can recover the solution (b, X, Y ) from the solution of the finite
dimensional system as we now proceed to show. It follows from the definition (8.10) and the
initial conditions (8.5)–(8.7) that

zi (0) =
∫ 0

−∞
�

(i)
(ϕ2,ϕ3)

(0, s)Vi (ϕ2(s), ϕ3(s))ϕ1(s)ds (8.15)

and
Y (0) = ϕ3(0). (8.16)

Once the system (8.11)–(8.13) has been solved with the initial conditions (8.15) and (8.16),
one obtains b from the formula

b(t) = U1(X (t), Y (t))T z1(t), t > 0. (8.17)

We collect our findings into a theorem
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Theorem 8.1 Assume that for i = 1, 2, 3, there are integers ni and functions Ui : Rm →
R
ni×k , Vi : Rm → R

ni×k and Hi : Rm → R
ni×ni , such that

K (i)
E (t, s) = Ui (E(t))T�

(i)
E (t, s)Vi (E(s)),

where �
(i)
E (t, s) is the fundamental matrix solution of the linear non-autonomous system

d

dt
Z(t) = Hi (E(t))Z(t).

Then the nonlinear system (8.1)–(8.7) is equivalent with the finite dimensional differential-
algebraic system (8.11)–(8.13), (8.15), (8.16) in the sense that if (b, X, Y ) satisfies the former
system, then (z1, z2, z3, X, Y ) satisfies the latter system and vice versa, where the correspon-
dence between b and z1, z2, z3 is given by (8.10) in one direction and by (8.17) in the other.

9 Examples of Nonlinear Models with Finite Dimensional State
Representation

9.1 The Gurtin–MacCamy Model

We illustrate the reduction to a finite dimensional system by applying it to the Gurtin–
MacCamy model (1.5)–(1.8) mentioned in the introduction. The delay formulation (8.1) and
(8.2) of the Gurtin–MacCamy model is

b(t) =
∫ t

−∞
β(t − s, X (t))e− ∫ t

s μ(τ−s,X (τ ))dτb(s)ds, (9.1)

X (t) =
∫ t

−∞
e− ∫ t

s μ(τ−s,X (τ ))dτb(s)ds, (9.2)

which with the choice (1.9) and (1.10) for μ and β, respectively, becomes

b(t) = β0(X (t))
∫ t

−∞
e− ∫ t

s (α+μ0(X (τ )))dτ αb(s)ds, (9.3)

X (t) =
∫ t

−∞
e− ∫ t

s μ0(X (τ ))dτb(s)ds. (9.4)

From this we infer that

U1(X) = β0(X), V1 = α, H1(X) = −(α + μ0(X)),

U2 = 1, V2 = 1, H2(X) = −μ0(X).
(9.5)

According to (8.10), z1 and z2 should be defined by

z1(t) =
∫ t

−∞
e− ∫ t

s (α+μ0(X (τ )))dτ αb(s)ds, (9.6)

z2(t) =
∫ t

−∞
e− ∫ t

s μ0(X (τ ))dτb(s)ds (9.7)

and the Eq. (8.11) become

dz1
dt

= (αβ0(z2) − α − μ0(z2)) z1, (9.8)
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dz2
dt

= β0(z2)z1 − μ0(z2)z2, (9.9)

which are precisely the Eqs. (1.11) and (1.12). Equation (8.12) simply reduces to

X (t) = z2(t).

9.2 Age-Structured Growth in a Chemostat

Consider a chemostat with dilution rate D in which an age-structured consumer with birth
rate b feeds on an unstructured substrate S. We neglect mortality other than that caused by
washout from the chemostat. The model for such a system is

b(t) =
∫ t

−∞
β(t − s, St )e

−D(t−s)b(s)ds, (9.10)

d

dt
S(t) = D

(
S0 − S(t)

) −
∫ t

−∞
γ (t − s, St )e

−D(t−s)b(s)ds. (9.11)

here β(a, St ) and γ (a, St ) are the age-specific per capita fecundity and consumption rate,
respectively, given the history St of the substrate.

Assume that consumers are either juvenile or adult, that only adults produce offspring
at an otherwise age-independent rate β0(S) and that juveniles and adults have different
consumption rates γJ (S) and γA(S), respectively. Assume further that juveniles are recruited
to the adult stage at a rate α(S). The probability that an individual born at time s is still alive
and in the juvenile stage at time t is

e−D(t−s)e− ∫ t
s α(S(σ ))dσ ,

while the probability that it is in the adult stage is

e−D(t−s)
(
1 − e− ∫ t

s α(S(σ ))dσ
)

.

As a consequence, the equations become

b(t) =
∫ t

−∞
β0(S(t))

(
1 − e− ∫ t

s α(S(σ ))dσ
)
e−D(t−s)b(s)ds, (9.12)

d

dt
S(t) = D

(
S0 − S(t)

)

−
∫ t

−∞

(
γJ (S(t))e− ∫ t

s α(S(σ ))dσ + γA(S(t))
(
1 − e− ∫ t

s α(S(σ ))dσ
))

e−D(t−s)b(s)ds,

(9.13)

which is simply (9.10)–(9.11) with

β(a, St ) = β0(S(t))
(
1 − e− ∫ t

s α(S(σ ))dσ
)

,

γ (a, St ) = γJ (S(t))e− ∫ t
s α(S(σ ))dσ + γA(S(t))

(
1 − e− ∫ t

s α(S(σ ))dσ
)

.

The kernel in (9.12) is of the form

K (1)
S (t, s) = U1(S(t))T�S(t, s)V (S(s)),

with

U1(S) =
(
0 β0(S)T

)
, V = (1 0)T
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and �S(t, s) the fundamental matrix solution corresponding to the matrix

H(S) =
(−(α(S) + D) 0

α(S) −D

)
.

The kernel K (3)
S (t, s) in (9.13) is almost the same as K (1)

S (t, s), the only difference being that
U1(S) is replaced by

U3(S) = (γJ (S) γA(S))T .

Because V1 and V3 are the same (and denoted simply by V ) it follows from (8.10) that also z1
and z3 coincide. The components of this variable correspond to the densities of juveniles and
adults, respectively, so we denote z1 = z3 = (J A)T . The finite dimensional representation
of (9.12)–(9.13) is thus

d J

dt
= β0(S)A − (D + α(S))J, (9.14)

d A

dt
= α(S)J − DA, (9.15)

dS

dt
= D

(
S0 − S

) − γJ (S)J − γA(S)A, (9.16)

exactly as one would obtain when formulating the model right from the beginning in terms
of J and A.

9.3 Epidemic Models

In their 1927 classic, Kermack and McKendrick [23] introduced as their key modelling
ingredient

K (τ ) := expected contribution to the force of infection by an individual that
was itself infected τ units of time ago

Let

F(t) := force of infection at time t,
S(t) := density (= number per unit area) of susceptibles at time t.

Then the incidence b(t) (= number of new cases per unit of time and area) is given by

b(t) = F(t)S(t)

and the interpretation of K (τ ) translates into the equation

F(t) =
∫ t

−∞
K (t − τ)b(τ )dτ

Now suppose K is of the form (2.14) for k = 1. Define

Z(t) =
∫ t

−∞
e(t−τ)HVb(τ )dτ.

Then

dZ

dt
= HZ + Vb,

F = UT Z ,
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b = FS

so

dZ

dt
= HZ + SVUT Z

and if we add a differential equation for S like

dS

dt
= −FS = −SUT Z

(closed population, i.e., no demographic turnover) or

dS

dt
= g(S) − FS = g(S) − SUT Z

(births and deaths incorporated in g; beware that K , too, has now to incorporate the possibility
of death) we have a closed nonlinear ODE system for (S, Z).

Note that for fixed S one has a linear system for Z and the discussion about R0 and r
presented in Sect. 5 carries over verbatim.

In the standard SIR compartmental model an individual becomes infectious immediately
upon becoming infected and stays infectious for an exponentially distributed amount of time
with rate parameter α, i.e., the mean of the infectious period is α−1. During the infectious
period it produces new cases at rate βS. This corresponds to n = 1, H = −α,U = β, V = 1
and the relabeling Z = I . Beware that the symbol I now refers to “infectious” and not to
“identity”.

Similarly theSEIRmodel (where individuals are ‘exposed’ for an exponentially distributed
amount of time, with rate parameter γ , before becoming infectious) corresponds to n = 2,

H =
(−γ 0

γ −α

)
, V = (1 0)T , U = (0 β)T

and relabelling Z1 = E and Z2 = I . Beware that the symbol E now refers to “exposed” and
not to “environment”.

Currently network models are en vogue in infectious disease epidemiology, so let us have
a brief look at one of those. A key feature is that individuals have repeated contacts with the
same partner(s). For static configuration networks a nonlinear renewal equation is informally
derived by Leung and Diekmann [25]; see [2] for a rigorous derivation. It reads

x(t) = F(∞) −
∫ t

−∞
g(x(σ ))F ′(t − σ)dσ (9.17)

where F(τ ) is the probability that transmission of the infectious agent to a partner has not
(yet) occurred at disease-age τ and

g(x) =
∑∞

k=1 kpkx
k−1∑∞

k=1 kpk

with pk the probability that an individual has k partners/neighbours, i.e., has degree k. The
kernel F is rather similar to the Kermack–McKendrick kernel K in the sense that it captures
the progress of disease, in particular infectiousness, within an individual, but it also takes
into account that any partner can be infected at most once.

Consequently we should consider a Markov process that describes both progress of the
disease in an infected individual and the status, in terms of susceptible versus infected, of a
partner. For example, consider the modified standard SIR model where during the infectious
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period any susceptible partner is infected with probability per unit of time β. At τ = 0 we
start with an (I,S)-couple. The transition (I,S) → (I,I) occurs at rate β and the transition (I,S)
→ (R,S) at rate α. So the probability PIS that the state is still (I,S) at disease-age τ equals
e−(α+β)τ . Since F(0) = 1 and F ′(τ ) = −βPIS(τ ) we find

F(τ ) = 1 − β

∫ τ

0
e−(α+β)σ dσ = α

α + β
+ β

α + β
e−(α+β)τ

For this choice of F differentiation of (9.17) yields the ODE

dx

dt
= βg(x) − (α + β)x + α,

see [29].
The generalization

F(τ ) = 1 − βT
∫ τ

0
e(H−diagβ)σ dσV

involves n-vectors β and V and an n × n-matrix H and derives from

dP

dt
= (H − diagβ)P, P(0) = V,

dF
dt

= −βT P, F(0) = 1.

If we define

Z(t) =
∫ t

−∞
g(x(σ ))e(H−diagβ)(t−σ)dσV

then

dZ

dt
= g(x)V + (H − diagβ)Z

and since (9.17) amounts to x = F(∞) − βT Z this is, in fact, a closed ODE system for Z .
As a particular example, we mention the SEI1I2R system defined by n = 3 and

V = (1 0 0)T , β = (0 β1 β2)
T , H =

⎛
⎝−γ 0 0

γ −α1 0
0 α1 −α2

⎞
⎠

We conclude that by an appropriate modification the Markov approach of Sect. 5 extends to
models of the spread of infection over static configuration networks. In particular many of
the ODEs derived by Miller and Volz [30] follow from (9.17) by a choice of two n-vectors
β and V and an n × n-matrix H .

10 Conclusions

In this paper we have considered finite dimensional state representations of a class of both
linear and nonlinear infinite dimensional systems corresponding to delay-equations. Most
of the results for linear renewal and delay differential equations are known, in particular to
researchers in systems and/or control theory. They are either part of the folklore or presented
in slightly different guises in works such as [16,31–33]. The novelty of our presentation lies
in the approach which is tailored for applications to models of physiologically structured
populations. Our results on linear systems with input and nonlinear systems are new.
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When applied to population dynamics the unknown b(t) in (1.1) represents the birth
rate. There are relevant population models in which the reproduction process cannot fully
be described by rates. One example is when individuals reproduce exactly upon reaching a
certain fixed size. For this reason we considered in the paper [14] the cumulative number
of births in the following manner: Instead of a kernel KE in the form of a matrix valued
function, our basic ingredient was a kernel �E with the interpretation that �E (t, s)(ξ, ω)

is the expected number of offspring, with state-at-birth in the measurable subset ω of the
individual state space �, produced by an individual with i-state ξ at time s, within the time
interval [s, t), given the course of the environmental condition E on the interval [s, t). The
resolvent equation then became

�c
E = �E + (

� ∗ �c)
E = �E + (

�c ∗ �
)
E , (10.1)

where the ∗ stands for a convolution-like product involving Stieltjes integrals with respect to
time. In the present paper we have defined ODE-reducibility by requiring that the resolvent
[�c

E in (10.1)] should be (a linear operator applied to) the solution of a finite dimensional
system of ODEs. But such a solution is continuously differentiable and hence we can differ-
entiate (10.1) obtaining an equation which in full detail reads as follows:

λcE (t, s)(ξ, ω) = λE (t, s)(ξ, ω) +
∫ t

s

∫
�

λE (t, τ )(η, ω)λcE (τ, s)(ξ, dη)dτ

= λE (t, s)(ξ, ω) +
∫ t

s

∫
�

λcE (t, τ )(η, ω)λE (τ, s)(ξ, dη)dτ. (10.2)

In this equation, which is an analogue of (7.4), the kernel λE (t, s)(ξ, ω) is the rate at which
an individual, which had i-state ξ at time s, produces offspring in the set ω at time t , given
the environment E . The convolution-like product does no longer contain Stieltjes integrals.
This shows that for the problem of finding conditions for ODE-reducibility there was no loss
of generality in abandoning cumulative outputs and Stieltjes integrals.

The equations from Sect. 8 exemplify how people generally build community dynamical
models, to wit by combining single populations models in a lego-like fashion, taking popula-
tion outputs as inputs for other populations or for similarly represented inanimate resources.
The “community equation” from Sect. 8 is of the simplest possible type, with X the effect
of the population on the condition of instantaneously reacting resources, like the density of
occupied nestboxes (supposing that b refers to the birth rate of, say, great tits), and Y the
densities of dynamically reacting resources like nitrogen availability (supposing that b refers
to the birth rate of, say, planktonic algae). K (1)

E then depends on the density of occupied nest
boxes xi through the intervening variable n − xi , where n is the total density of nest boxes,
affecting the stochastic dynamics of a binary i-state component—have or have-not—which
in turn affects an individual’s metabolism, death rate and reproduction, while K (2)

E tells how
nest boxes are monopolised by individuals born some time ago, with a similar story in the
case of nitrogen availability affecting algae.

From this “lego point of view” the models of Sect. 7 are prospective building blocks for
the construction of community models. If all building blocks of a community model are
ODE-reducible, then so is the full model. This is the gist of Sect. 7. In general the converse
need not be true, as the coupling of the populations imposes constraints on the inputs, while
the reasoning in Sect. 8 implicitly assumed the absence of such constraints. However, the
lego point of view offers an alternative formulation for a converse: suppose that our lego set
is so rich that by changing the community embedding of our focal population we can produce
a sufficiently diverse variety of inputs from its output, and moreover all other building blocks
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are ODE-reducible, then for all these communities to be ODE-reducible, our focal population
should satisfy the conditions put forward in Sect. 7, with K extended to include the output
generating kernels [the analogues of K (2) and K (3) of Sect. 8]. This heuristic phrasing leaves
open the following difficult problems: What sets of inputs “vary sufficiently” (all inputs
considered in Theorem 7.2 certainly suffice but maybe we can do with less)? How to test
whether a set of building blocks when coupled in various combinations and fed with the
population output, together produce such a sufficiently variying set?

In the other direction, but within the same model building spirit, we want to know how
the ingredients making up our building blocks relate to their ODE-reducibility. In a follow-
up paper [10] we will take Eq. (10.2) as starting point and obtain necessary and sufficient
conditions, in terms of individual birth, death and growth rates, for a population model to be
representable by a finite system of ordinary differential equations.
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