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1. Introduction

1.1. Background

Hilbert schemes on a smooth projective variety X are moduli schemes which 
parametrise subschemes of X with given Hilbert polynomial. From the point of view of 
coherent sheaves, they can be regarded as moduli schemes of ideal sheaves of subschemes 
with fixed Chern character. The simplest example is the Hilbert scheme Hilbn(X) of n
points on X, whose ideal sheaves have Chern character (1, 0, · · · , 0, −n). There are lots of 
interesting studies on their geometry, topology and representation theory, most of which 
are concentrated on the cases dimC X � 2. The difficulty in extending these studies to 
higher dimensions comes from the fact that the Hilbert schemes are in general no longer 
smooth.

One surprising feature about dimC X = 3 is that, although Hilbn(X) can be very 
singular with different irreducible components of various dimensions, it still carries a 
degree zero virtual class [Hilbn(X)]vir [17]. The degree of this class is called a degree 
zero Donaldson–Thomas invariant of X [22]. An expression for the generating series 
of these invariants was conjectured and verified for local toric surfaces by Maulik–
Nekrasov–Okounkov–Pandharipande [17] and confirmed in full generality by Levine–
Pandharipande [15] and Li [16]. See also [2] for another proof in the Calabi–Yau case.

Our aim is to go one dimensional higher and restrict to the case of Calabi–Yau man-
ifolds [23]. By the work of Borisov–Joyce [3] and Cao–Leung [7], we have a virtual class 
construction for Gieseker moduli spaces of stable sheaves on smooth projective Calabi–
Yau 4-folds, which is in particular applicable to Hilbn(X). A difference from the case of 
3-folds is that the virtual class is no longer of degree zero, so we need natural insertions 
to define invariants.

1.2. The compact case

Let X be a smooth projective Calabi–Yau 4-fold and let Hilbn(X) denote the Hilbert 
scheme of n points on X. Assume the existence of an orientation o(L) on the determinant 
line bundle L over Hilbn(X). Then the results of [3,7] provide a DT4 virtual class

[Hilbn(X)]vir
o(L) ∈ H2n(Hilbn(X),Z). (1.1)

The virtual class (1.1) depends on the choice of orientation o(L). On each connected 
component of Hilbn(X), there are two choices of orientations, which affects the corre-
sponding contribution to the class (1.1) by a sign. We review facts about the DT4 virtual 
class in Section 2.1.

In order to define the invariants, we require insertions. Let L be a line bundle on 
X and denote by L[n] the tautological (rank n) vector bundle over Hilbn(X) with fibre 
H0(L|Z) over Z ∈ Hilbn(X). Then it makes sense to define the following:
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Definition 1.1. Let X be a smooth projective Calabi–Yau 4-fold and let L be a line bundle 
on X. Let L be the determinant line bundle of Hilbn(X) with quadratic form Q induced 
from Serre duality. Suppose L is given an orientation o(L). We define

DT4(X,L, n ; o(L)) :=
∫

[Hilbn(X)]vir
o(L)

e(L[n]) ∈ Z, if n � 1,

where e(−) denotes the Euler class. We also set DT4(X, L, 0 ; o(L)) := 1.

We make the following conjecture for the generating series of these invariants:

Conjecture 1.2 (Conjecture 2.2). Let X be a smooth projective Calabi–Yau 4-fold and L
be a line bundle on X. There exist choices of orientation such that

∞∑
n=0

DT4(X,L, n ; o(L)) qn = M(−q)
∫
X

c1(L)·c3(X),

where

M(q) =
∞∏

n=1

1
(1 − qn)n

denotes the MacMahon function.

We verify Conjecture 1.2 in some good cases based on the following geometric setting, 
where the line bundle L = OX(D) is associated to an effective divisor D ⊆ X.

Proposition 1.3 (Proposition 2.4). Let X be a smooth quasi-projective variety, D ⊆ X

any effective divisor, and L = OX(D). There exists a tautological section σ and an 
isomorphism of schemes

L[n]

π

σ−1(0) ∼= Hilbn(D) ι Hilbn(X).

σ

For n � 3 and D, X both smooth, the Hilbert schemes are smooth and we can ex-
plicitly compare deformation–obstruction theories on X and D (Proposition 2.8). The 
latter gives rise to zero-dimensional DT3 invariants on D, which are known by the work 
of [15,16].

Theorem 1.4 (Theorem 2.10). Let X be a smooth projective Calabi–Yau 4-fold, D ⊆ X

a smooth divisor, and L = OX(D). For each n � 3, there exists a choice of orientation 
o(L) such that
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∫
[Hilbn(X)]vir

o(L)

e(L[n]) =
∫

[Hilbn(D)]vir

1.

In particular, Conjecture 1.2 is true in this setting.

The proof for general n will rely on Joyce’s theory of D-manifolds or Kuranishi atlases. 
We hope to return to it in a future paper.

1.3. The toric case

When X is a smooth quasi-projective toric Calabi–Yau 4-fold with action of (C∗)4, 
we can study an equivariant version of Conjecture 1.2. Despite the non-compactness of 
X and Hilbn(X), we can still define an equivariant version of the DT4 virtual class on 
the torus fixed locus, which consists of a finite number of reduced points.

The definition involves the subtorus T ⊆ (C∗)4 preserving the Calabi–Yau volume 
form and hence Serre duality pairing. We note the following equality of fixed loci 
(Lemma 3.1, 3.6)

Hilbn(X)T = Hilbn(X)(C
∗)4 .

For any Z ∈ Hilbn(X)T , we consider the equivariant Euler class

eT (Ext1(IZ , IZ)) ∈ H∗(BT ),

and also the half Euler class

eT (Ext2(IZ , IZ), Q) ∈ H∗(BT ),

where Q is the quadratic form induced from the Serre duality pairing on Ext2(IZ , IZ). 
We then have

eT (Ext2(IZ , IZ), Q) = ±
√

(−1)
ext2(IZ,IZ )

2 eT
(
Ext2(IZ , IZ)

)
, (1.2)

where the class (−) in 
√

(−) is a square and the sign depends on the choice of orientation.

Definition 1.5. (Definition 3.8) The T -equivariant virtual class of Hilbn(X) is

[Hilbn(X)]vir
T,o(L) :=

∑
Z∈Hilbn(X)T

eT
(
Ext2(IZ , IZ), Q

)
eT

(
Ext1(IZ , IZ)

) ,

where o(L) denotes a choice of sign in (1.2) for each Z ∈ Hilbn(X)T .
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By fixing a T -equivariant line bundle L on X, we can consider the equivariant Euler 
class of its tautological bundle eT (L[n]) and define

DT4(X,T, L, n ; o(L)) :=
∑

Z∈Hilbn(X)T

eT
(
Ext2(IZ , IZ), Q

)
· eT (L[n]|Z)

eT
(
Ext1(IZ , IZ)

) .

An equivariant version of Conjecture 1.2 can then be posed as follows:

Conjecture 1.6 (Conjecture 3.12). Let X be a smooth quasi-projective toric Calabi–Yau 
4-fold and L be a T -equivariant line bundle on X. Then there exist choices of orientation 
o(L) such that

∞∑
n=0

DT4(X,T, L, n ; o(L)) qn = M(−q)
∫
X
cT1 (L) · cT3 (X),

where 
∫
X

denotes equivariant push-forward to a point.

When L = OX(D) corresponds to a smooth toric divisor D, we can prove Conjec-
ture 1.6.

Theorem 1.7 (Theorem 3.13). Conjecture 1.6 is true for L = OX(D), where D ⊆ X is 
a smooth (C∗)4-invariant divisor.

Any smooth quasi-projective toric Calabi–Yau 4-fold X can be covered by open 
(C∗)4-invariant subsets (equivariantly) isomorphic to C4. On each such subset, ev-
ery (C∗)4-invariant zero-dimensional subscheme corresponds to a solid partition π =
{πijk}i,j,k�1, i.e. a sequence of non-negative integers πijk ∈ Z�0 satisfying

πijk � πi+1,j,k, πijk � πi,j+1,k, πijk � πi,j,k+1 ∀ i, j, k � 1,

|π| :=
∑

i,j,k�1

πijk < ∞,

where |π| is called the size of π.
Using a vertex formalism as in MNOP [17], we reduce Conjecture 1.6 to the case 

X = C4 (Proposition 3.20). This leads us to assigning expressions Lπ(d1, d2, d3, d4)
(coming from eT (L[n])) and wπ (coming from eT

(
Ext2(IZ , IZ), Q

)
/eT

(
Ext1(IZ , IZ)

)
) 

to any solid partition π. See Definition 3.16. In fact, the equivariant weight wπ is only 
defined up to sign, reflecting the different signs in (1.2) for different choices of orientation. 
The case X = C4 then essentially corresponds to the following conjecture (which now 
includes a uniqueness assertion).

Conjecture 1.8 (Conjectures 3.19 and 3.21). There exists a unique way of choosing the 
signs for the equivariant weights wπ such that



606 Y. Cao, M. Kool / Advances in Mathematics 338 (2018) 601–648
∑
π

Lπ(d1, d2, d3, d4) wπ q
|π| = M(−q)

(d1λ1+d2λ2+d3λ3+d4λ4)(−λ1λ2λ3−λ1λ2λ4−λ1λ3λ4−λ2λ3λ4)
λ1λ2λ3λ4

holds in Q(λ1,λ2,λ3,λ4)
(λ1+λ2+λ3+λ4) (d1, d2, d3, d4)�q�, where the sum is over all solid partitions and 

M(q) denotes the MacMahon function.

Besides Theorem 1.7, we verify Conjecture 1.8 in the following setting by using a 
Maple program, which calculates wπ for a given solid partition π.

Theorem 1.9 (Theorem 3.22). Conjecture 1.8 is true modulo q7.

1.4. Application to counting solid partitions

By experimental study of many examples, we find that the specialisation

Lπ(0, 0, 0,−d) wπ

∣∣∣
λ1+λ2+λ3=0

(1.3)

is well-defined. We pose the following conjecture:

Conjecture 1.10 (Conjecture 4.1). Let π be a solid partition and let wπ be defined using 
the unique sign in Conjecture 1.8. Then the following properties hold:

(a) Lπ(0, 0, 0, −d) wπ ∈ Q(λ1,λ2,λ3,λ4,d)
(λ1+λ2+λ3+λ4) has no pole at λ4 = −(λ1 + λ2 + λ3).

(b) The specialisation Lπ(0, 0, 0, −d) wπ

∣∣∣
λ1+λ2+λ3=0

is independent of λ1, λ2, λ3.
(c) More precisely, there exists a rational number ωπ ∈ Q>0 (independent of d) such 

that

Lπ(0, 0, 0,−d) wπ

∣∣∣
λ1+λ2+λ3=0

= (−1)|π| ωπ

π111∏
l=1

(d− (l − 1)). (1.4)

In particular, for d ∈ Z>0, the LHS vanishes when π111 > d and otherwise has the 
same sign as (−1)π.

Geometrically, the specialisation (1.3) corresponds to taking X = C4 and D = {xd
4 =

0} ⊆ C4. Then L = O(D) ∼= O ⊗ t−d
4 . As we have seen in Proposition 1.3, the canonical 

section of L[n] on Hilbn(C4) cuts out the sublocus of zero-dimensional subschemes Z
contained in D. At the level of torus fixed points, we are therefore considering solid 
partitions π of height π111 � d. This is the geometric motivation for the specialisation
(1.3).

We have the following evidence for this conjecture:
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Proposition 1.11 (Proposition 4.2).

• Conjecture 1.10 is true for any solid partition π of size |π| � 6.
• Properties (a), (b), and the absolute value of equation (1.4) hold for d = 1 and any 

solid partition π satisfying π111 = 1 (in this case |ωπ| = 1).
• Properties (a), (b), and the absolute value of equation (1.4) hold for various individual 

solid partitions of size � 15 listed in Appendix A.

By combining Conjectures 1.8 and 1.10, we find a formula for enumerating ωπ-weighted 
solid partitions π.

Theorem 1.12 (Theorem 4.3). Assume Conjectures 1.8 and 1.10 are true. Then

∑
π

ωπ t
π111 q|π| = et(M(q)−1), (1.5)

where the sum is over all solid partitions, t is a formal parameter, and M(q) denotes the 
MacMahon function. In particular, for t = 1

∑
π

ωπ q
|π| = eM(q)−1.

This theorem inspired us to define an explicit combinatorial weight ωc
π ∈ Q>0 as-

sociated to each solid partition π (Definition 4.7). Firstly, we prove an unconditional 
version of Theorem 1.12 with ωπ replaced by ωc

π (Theorem 4.11). Secondly, we conjec-
ture that ωπ = ωc

π and check this for the cases of Proposition 1.11 (Conjecture 4.13, 
Proposition 4.14).

The definition of ωc
π (Definition 4.7) can naturally be extended to d-dimensional par-

titions for any d � 0, where d = 3 corresponds to the case of solid partitions. The proof 
of Theorem 4.11 immediately gives

log
∑

d-partitions π

ωc
π q

|π| =
∑

(d−1)-partitions π, |π|�1

q|π|

and we give a similar formula involving the formal parameter t (Remark 4.12). In a 
future work [5], we relate this formula to equivariant DT type invariants on Cd+1.

There is a related work due to Nekrasov [19], where he proposes a conjectural formula 
for a very general equivariant K-theoretical partition function on Hilbert schemes of 
points on C4. Specialisations of his partition function seem related to our Conjecture 1.8. 
We briefly discuss a very special instance of his conjecture in Appendix B, where we point 
out relations to our choices of orientation. As opposed to [19], our study of the C4 case 
emerges from first studying the compact case (Conjecture 1.2) and subsequently studying 
the toric analogues (Conjectures 1.6 and 1.8).
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2. The compact case

Before stating our conjecture for Hilbert schemes of points on smooth projective 
Calabi–Yau 4-folds, we review the framework of DT4 invariants.

2.1. Review of DT4 invariants

Let X be a smooth projective Calabi–Yau 4-fold, i.e. a smooth projective 4-fold X
satisfying KX

∼= OX and Hi(OX) = 0 for i = 1, 2, 3. Let ω be an ample divisor on X
and v ∈ H∗(X, Q) a cohomology class.

The coarse moduli space Mω(v) of ω-Gieseker semistable sheaves E on X with
ch(E) = v exists as a projective scheme. We always assume that Mω(v) is a fine moduli 
space, i.e. any point [E] ∈ Mω(v) is stable and there is a universal family

E ∈ Coh(X ×Mω(v)).

In [3,7], under certain hypotheses, the authors construct a DT4 virtual class

[Mω(v)]vir ∈ H2−χ(v,v)(Mω(v),Z), (2.1)

where χ(−, −) denotes the Euler pairing. This class is not necessarily algebraic.
Roughly speaking, in order to construct such a class, one chooses at every point 

[E] ∈ Mω(v), a half-dimensional real subspace of the usual obstruction space

Ext2+(E,E) ⊆ Ext2(E,E)

on which the non-degenerate quadratic form Q defined by Serre duality is real and 
positive definite. Then one glues local Kuranishi-type models of the form

κ+ = π+ ◦ κ : Ext1(E,E) → Ext2+(E,E),

where κ is a Kuranishi map of Mω(v) at E and π+ is projection onto the first factor of

Ext2(E,E) = Ext2+(E,E) ⊕
√
−1 · Ext2+(E,E). (2.2)
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In [7], local models are glued in three special cases:

1. when Mω(v) consists of locally free sheaves only;
2. when Mω(v) is smooth;
3. when Mω(v) is a shifted cotangent bundle of a derived smooth scheme.

In these cases, the corresponding virtual classes are constructed using either gauge theory 
or algebro-geometric perfect obstruction theory.

Assuming Mω(v) can be given a (−2)-shifted symplectic structure, a general gluing 
construction was given by Borisov–Joyce [3] based on Pantev–Töen–Vaquié–Vezzosi’s 
theory of shifted symplectic geometry [20] and Joyce’s theory of derived C∞-geometry. 
The corresponding virtual class is constructed using Joyce’s D-manifold theory (a ma-
chinery similar to Spivak’s theory of derived smooth manifolds or Fukaya–Oh–Ohta–
Ono’s theory of Kuranishi space structures used in defining Lagrangian Floer theory).

To have a better understanding of what DT4 virtual classes look like, we briefly review 
the construction in situations (2) and (3) mentioned above:

• When Mω(v) is smooth, the obstruction sheaf

Ob := Ext2πM
(E , E)

is a vector bundle on Mω(v) endowed with a non-degenerate quadratic form Q in-
duced by Serre duality, where πM : X×Mω(v) → Mω(v) denotes projection. A family 
version of (2.2) defines a real subbundle Ob+ ⊆ Ob on which Q is positive definite and 
Ob ∼= Ob+ ⊗R C are isomorphic as vector bundles with quadratic forms [9, Lem. 5]. 
Since Mω(v) is smooth, the Zariski tangent space Ext1(E, E) at any [E] ∈ Mω(v)
has the same dimension as Mω(v), which implies that the local Kuranishi maps are 
zero. The DT4 virtual class is given by

[Mω(v)]vir = PD
(
e(Ob, Q)

)
, (2.3)

where e(Ob, Q) denotes the half-Euler class of (Ob, Q), i.e. the Euler class of a 
real subbundle Ob+ and PD(−) denotes the Poincaré dual. Equality (2.3) holds up 
to a sign on each connected component. This sign is determined by the choice of 
orientation, which we review below. Note that the half-Euler class satisfies

e(Ob, Q)2 = (−1)
rk(Ob)

2 e(Ob), if rk(Ob) is even, (2.4)

e(Ob, Q) = 0, if rk(Ob) is odd.

• Suppose Mω(v) is a shifted cotangent bundle of a derived smooth scheme. Roughly 
speaking, this means that at any closed point [F ] ∈ Mω(v), we have a Kuranishi 
map
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κ : Ext1(F, F ) → Ext2(F, F ) = VF ⊕ V ∗
F ,

which factors through a maximal isotropic subspace VF of (Ext2(F, F ), Q). Then 
the DT4 virtual class of Mω(v) is, roughly speaking, the virtual class of the perfect 
obstruction theory formed by {VF }F∈Mω(v). When Mω(v) is furthermore smooth as 
a scheme, then it is simply the Euler class of the vector bundle {VF}F∈Mω(v) over 
Mω(v).

On orientations In order to construct the above virtual class (2.1) with coefficients in 
Z (instead of Z2), we need an orientability result for Mω(v), which is stated as follows. 
Let

L := det(RHomπM
(E , E)) ∈ Pic(Mω(v))

be the determinant line bundle of Mω(v), equipped with the non-degenerate symmetric 
pairing Q induced by Serre duality. An orientation of (L, Q) is a reduction of its structure 
group from O(1, C) to SO(1, C) = {1}. In other words, we require a choice of square 
root of the isomorphism

Q : L ⊗ L → OMω(v)

in order to construct the virtual class (2.1). The virtual class (2.1) depends on the choice 
of orientation o(L), so we write [Mω(v)]vir

o(L) in order to stress this dependence.
An existence result of orientations is proved in [6, Thm. 2.2] for Calabi–Yau 4-folds 

X such that Hol(X) = SU(4) and Hodd(X, Z) = 0. Notice that, if orientations exist, the 
different choices form a torsor for H0(Mω(v), Z2).

In particular, when Mω(v) is smooth, the choice of orientation on L is equivalent to 
a choice of orientation of a real subbundle Ob+ ⊆ Ob. By the homotopy equivalence 
O(n, C) ∼ O(n, R), the real subbundle is unique up to isomorphisms.

2.2. Conjecture for DT4 invariants of Hilbn(X)

Let X be a smooth projective Calabi–Yau 4-fold. For a positive integer n, we consider 
the Hilbert scheme Hilbn(X) of n points on X. It can be identified with the Gieseker 
moduli space of semistable sheaves with Chern character (1, 0, 0, 0, −n) ∈ Heven(X), 
which is a fine moduli space whose closed points parametrise ideal sheaves of points.

Given a line bundle L on X, we define its tautological bundle L[n] as follows [13, 
Sect. 4.1]

L[n] := (πM )∗
(
OZn

⊗ π∗
XL

)
,

where Zn ⊆ Hilbn(X) ×X denotes the universal subscheme and πM , πX are projections 
from the product Hilbn(X) × X to each factor. Since πM is a flat finite morphism of 
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degree n, L[n] is a rank n vector bundle on Hilbn(X) with fibre H0(L|Z) over Z ∈
Hilbn(X). Note that the (real) virtual dimension of Hilbn(X) is 2n by (2.1). Hence we 
define:

Definition 2.1. Let X be a smooth projective Calabi–Yau 4-fold and L a line bundle on X. 
Assume the determinant line bundle L of Hilbn(X), with its non-degenerate quadratic 
form Q induced from Serre duality, is given an orientation o(L). We define

DT4(X,L, n ; o(L)) :=
∫

[Hilbn(X)]vir
o(L)

e(L[n]) ∈ Z, if n � 1,

and DT4(X, L, 0 ; o(L)) := 1.

We make the following conjecture for the corresponding generating series.

Conjecture 2.2. Let X be a smooth projective Calabi–Yau 4-fold and L a line bundle 
on X. Then there exist choices of orientation such that

∞∑
n=0

DT4(X,L, n ; o(L)) qn = M(−q)
∫
X

c1(L)·c3(X),

where M(q) denotes the MacMahon function.

Remark 2.3. When L = OX , Conjecture 2.2 follows from the fact that O[n]
X has a nowhere 

vanishing section which sends Z to 1Z ∈ H0(X, OZ). Then e(O[n]
X ) = c1(OX) = 0.

2.3. Geometric motivation of the conjecture

Let us consider the case when L = OX(D) corresponds to an effective divisor D ⊆ X. 
The following proposition is similar to [12, Sect. A.2].1

Proposition 2.4. Let D ⊆ X be any effective divisor on a smooth quasi-projective variety 
X and let L := OX(D). The rank n vector bundle L[n] on Hilbn(X) has a tautological 
section σ whose zero locus is isomorphic to the Hilbert scheme Hilbn(D) of n points 
on D.

1 We thank the anonymous referee for pointing out a proof which is significantly simpler than our original.
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Proof. Consider the universal subscheme

Z
p q

Hilbn(X) ×X

Hilbn(X) X.

Let s : D ⊆ X be a section defining D. We claim that the tautological section σ := p∗q
∗s

of L[n] = p∗q∗L has the required property, i.e. we have an equality of schemes

Z(σ) = Hilbn(D).

In order to see this, it suffices to take any T -flat family

ZT

pT qT

T ×X

T X

with zero-dimensional length n fibres and prove that

ZT ⊆ T ×D ⊆ T ×X

if and only if the corresponding morphism f : T → Hilbn(X) factors through Z(σ).
Now f factors through Z(σ) if and only if f∗σ is the zero section of f∗L[n]. Note that 

ZT = Z ×T Hilbn(X) and

f∗σ = f∗p∗q
∗s = pT∗q

∗
T s.

Therefore f∗σ is the zero section if and only if ZT ⊆ T ×D as required. �
Let X be a smooth projective Calabi–Yau 4-fold with smooth divisor D ⊆ X and 

let L = OX(D). Ideally, if all moduli spaces are smooth of expected dimensions,2
i.e. dimC Hilbn(D) = 0 and dimR Hilbn(X) = 2n, then the section σ constructed in 
Proposition 2.4 is transverse to the zero section and we have∫

[Hilbn(X)]vir

e(L[n]) =
∫

[Hilbn(D)]vir

1,

modulo a sign coming from the choice of orientation involved in defining the LHS. Then 
Conjecture 2.2 would follow from the generating series of zero-dimensional Donaldson–
Thomas invariants of a smooth projective 3-fold D [15,16]

2 Of course, this fantasy situation never occurs.
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∞∑
n=0

( ∫
[Hilbn(D)]vir

1
)
qn = M(−q)

∫
D

c3(TD⊗KD)

and equation (2.5) below.
For later reference, we add the derivation of the equality∫

D

c3(TD ⊗KD) =
∫
X

c1(L) · c3(TX). (2.5)

Indeed, from the short exact sequence

0 → TD → TX|D → ND/X → 0

and the fact that ND/X
∼= OD(D) ∼= KD (X is Calabi–Yau), we obtain
∫
D

c(TD ⊗KD) =
∫
X

c1(L) · c(TX ⊗ L)
c(L⊗ L) ,

where c(−) denotes total Chern class. The degree 3 part of the fraction is easily calcu-
lated:

c3(TX) + c1(TX) · c1(L)2 = c3(TX),

where the last equality again uses the fact that X is Calabi–Yau.

2.4. Preparation on deformation and obstruction theories

We need to compare deformation–obstruction theories of Hilbn(X) and Hilbn(D) in 
order to verify our conjecture.

Lemma 2.5. Let X be a smooth projective variety and i : D ↪→ X be a smooth divisor. 
For any subscheme Z ⊆ D, we have a short exact sequence

0 → OX(−D) → IZ,X → i∗IZ,D → 0 (2.6)

of coherent sheaves on X, where IZ,� is the ideal sheaf of Z in 	 (	 = X or D).
Furthermore, if Z is zero-dimensional, we have a long exact sequence

0 → Ext0X(i∗IZ,D, i∗OZ) → Ext0X(IZ,X , i∗OZ) → H0(OZ(D)) →
→ Ext1X(i∗IZ,D, i∗OZ) → Ext1X(IZ,X , i∗OZ) → H1(OZ(D)) = 0,

(2.7)

and canonical isomorphisms

ExtiX(i∗IZ,D, i∗OZ) ∼= ExtiX(IZ,X , i∗OZ) for i � 2.
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Proof. Sequence (2.6) can be easily deduced from the short exact sequences

0 → OX(−D) → OX → OD → 0,

0 → IZ,X → OX → i∗OZ → 0,

0 → IZ,D → OD → OZ → 0,

and diagram chasing. Applying RHomX(−, i∗OZ) to (2.6), we get a distinguished trian-
gle

RHomX(i∗IZ,D, i∗OZ) → RHomX(IZ,X , i∗OZ) → RHomX(OX(−D), i∗OZ),

whose cohomology gives the long exact sequence (2.7) and the desired canonical isomor-
phisms because Z is zero-dimensional. �
Lemma 2.6. Let X be a smooth projective variety with dimC(X) � 3 and let L → X

be a line bundle on X. For any zero-dimensional subscheme Z ⊆ X, we have canonical 
isomorphisms

Ext1X(IZ,X , IZ,X ⊗ L)0 ∼= HomX(IZ,X ,OZ ⊗ L) ∼= Ext1X(OZ ,OZ ⊗ L),

Ext2X(IZ,X , IZ,X ⊗ L)0 ∼= Ext1X(IZ,X ,OZ ⊗ L) ∼= Ext2X(OZ ,OZ ⊗ L).

Proof. We apply RHomX(−, OZ ⊗ L) to 0 → IZ,X → OX → OZ → 0 and get the long 
exact sequence

0 → HomX(OZ ,OZ ⊗ L) → HomX(OX ,OZ ⊗ L) → HomX(IZ,X ,OZ ⊗ L) →

→ Ext1X(OZ ,OZ ⊗ L) → Ext1X(OX ,OZ ⊗ L) → Ext1X(IZ,X ,OZ ⊗ L) →

→ Ext2X(OZ ,OZ ⊗ L) → Ext2X(OX ,OZ ⊗ L) → Ext2X(IZ,X ,OZ ⊗ L) → · · · .

Since HomX(OZ , OZ ⊗ L) ∼= HomX(OX , OZ ⊗ L) and H>0(X, OZ ⊗ L) = 0 for zero-
dimensional subschemes Z ⊆ X, we obtain isomorphisms

ExtiX(IZ,X ,OZ ⊗ L) ∼= Exti+1
X (OZ ,OZ ⊗ L) for i � 0. (2.8)

In particular, for dimC(X) = 3, we obtain

dimC Ext2X(IZ,X ,OZ ⊗ L) = dimC Ext0X(OZ ,OZ), (2.9)

where we used Serre duality Ext3X(OZ , OZ) ∼= Ext0X(OZ , OZ ⊗KX)∗. We will use this 
later.



Y. Cao, M. Kool / Advances in Mathematics 338 (2018) 601–648 615
Next we consider the following commutative diagram

RΓ(L)[1] RΓ(L)[1]

RHomX(IZ,X ,OZ ⊗ L) RHomX(IZ,X , IZ,X ⊗ L)[1] RHomX(IZ,X , L)[1]

RHomX(IZ,X , IZ,X ⊗ L)0[1] RHomX(OZ , L)[2],

(2.10)

where the horizontal and vertical rows are distinguished triangles. By taking cones, we 
obtain a distinguished triangle

RHomX(IZ,X ,OZ ⊗ L) → RHomX(IZ,X , IZ,X ⊗ L)0[1] → RHomX(OZ , L)[2].

The long exact sequence of its cohomology gives an isomorphism

Ext1X(IZ,X , IZ,X ⊗ L)0 ∼= HomX(IZ,X ,OZ ⊗ L),

where we used Ext2X(OZ , L) ∼= Hn−2(X, OZ⊗KX⊗L−1) = 0 because n = dimC(X) � 3
and similarly Ext1X(OZ , L) = 0. Furthermore, we obtain an exact sequence

0 → Ext1X(IZ,X ,OZ ⊗ L) → Ext2X(IZ,X , IZ,X ⊗ L)0 → Ext3X(OZ , L) →
→ Ext2X(IZ,X ,OZ ⊗ L) → Ext3X(IZ,X , IZ,X ⊗ L)0 → · · · .

(2.11)

When dimC(X) � 4, Ext3X(OZ , L) ∼= Hn−3(X, OZ ⊗KX ⊗ L−1)∗ = 0 and we are done.
When dimC(X) = 3, the trace map Ext0X(IZ,X , IZ,X ⊗ L′) ∼= H0(X, L′) is an isomor-

phism for any line bundle L′ because Z has codimension > 1 (cf. [17, I, proof of Lem. 2]). 
Hence Ext3X(IZ,X , IZ,X ⊗ L)0 = 0. Furthermore

dimC Ext3X(OZ , L) = dimC H0(X,OZ)

= dimC Ext0X(OZ ,OZ)

= dimC Ext2X(IZ,X ,OZ ⊗ L),

where the second equality uses HomX(OZ , OZ) ∼= HomX(OX , OZ) and the third equality 
uses (2.9). The exact sequence (2.11) yields the desired isomorphism

Ext1X(IZ,X ,OZ ⊗ L) ∼= Ext2X(IZ,X , IZ,X ⊗ L)0. �
In the following lemma, we focus attention on Hilbn(X), where X is a smooth pro-

jective Calabi–Yau 4-fold and n � 3. We recall that for any smooth projective variety Y



616 Y. Cao, M. Kool / Advances in Mathematics 338 (2018) 601–648
and n � 3, the Hilbert scheme Hilbn(Y ) is smooth of dimension dimC(Y ) · n (e.g. [14]). 
In fact, for a subscheme Z of length n � 3, Lemma 2.6 implies

dimC Ext1X(IZ,X , IZ,X)0 = dimC Ext0X(IZ,X ,OZ) = 4n,

dimC Ext1D(IZ,D, IZ,D)0 = dimC Ext0D(IZ,D,OZ) = 3n.

Lemma 2.7. Let X be a smooth projective Calabi–Yau 4-fold and let i : D ↪→ X be a 
smooth divisor. For any zero-dimensional subscheme Z ⊆ D of length � 3, the exact 
sequence (2.7) in Lemma 2.5 breaks into an exact sequence and a canonical isomorphism

0 → Ext0X(i∗IZ,D, i∗OZ) → Ext0X(IZ,X , i∗OZ) → H0(OZ(D)) → 0,

Ext1X(i∗IZ,D, i∗OZ) ∼= Ext1X(IZ,X , i∗OZ).

Furthermore, using the isomorphism Ext1X(IZ,X , i∗OZ) ∼= Ext2X(IZ,X , IZ,X)0 of Lem-
ma 2.6, we obtain a canonical inclusion (constructed in the proof)

Ext1D(IZ,D,OZ) ↪→ Ext2X(IZ,X , IZ,X)0

of a half-dimensional subspace which is isotropic with respect to the non-degenerate 
quadratic form Q on Ext2X(IZ,X , IZ,X)0 defined by Serre duality.

Proof. In the proof, we will use the following dimensions

dimC Ext0D(IZ,D,OZ) = 3n, dimC Ext0X(IZ,X ,OZ) = 4n,

dimC Ext1D(IZ,D,OZ) = 3n. dimC Ext1X(IZ,X ,OZ) = 6n.
(2.12)

The first line follows from the fact that Hilbn(X) and Hilbn(D) are smooth for n � 3
and these are exactly the Zariski tangent spaces at Z. The second line can be seen 
in several ways. Firstly Ext1D(IZ,D, OZ) ∼= Ext2D(IZ,D, IZ,D)0 and Ext1X(IZ,X , OZ) ∼=
Ext2X(IZ,X , IZ,X)0 by Lemma 2.6, so it suffices to calculate the dimensions of the latter. 
By Hirzebruch–Riemann–Roch on D we have

0 = χ(OD) − χ(IZ,D, IZ,D) = dimC Ext1D(IZ,D, IZ,D)0 − dimC Ext2D(IZ,D, IZ,D)0
= 3n− dimC Ext2D(IZ,D, IZ,D)0.

By Hirzebruch–Riemann–Roch and Serre duality on X we have

2n = χ(OX) − χ(IZ,X , IZ,X) = 2dimC Ext1X(IZ,X , IZ,X)0 − dimC Ext2X(IZ,X , IZ,X)0
= 8n− dimC Ext2X(IZ,X , IZ,X)0.

This establishes (2.12).
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The spectral sequence

Ep,q
2 = ExtpD(IZ,D,OZ ⊗ ∧qKD) ⇒ Extp+q

X (i∗IZ,D, i∗OZ)

gives an isomorphism

Ext0D(IZ,D,OZ) ∼= Ext0X(i∗IZ,D, i∗OZ) (2.13)

and an exact sequence

0 → Ext1D(IZ,D,OZ) → Ext1X(i∗IZ,D, i∗OZ) → Ext0D(IZ,D,OZ ⊗KD) →
→ Ext2D(IZ,D,OZ) → Ext2X(i∗IZ,D, i∗OZ) → Ext1D(IZ,D,OZ ⊗KD) → 0,

(2.14)

where we use Ext3D(IZ,D, OZ) = 0 (see (2.8)).
Combining (2.12) and (2.13), we know the exact sequence (2.7) in Lemma 2.5 breaks 

into a short exact sequence and a canonical isomorphism

0 → Ext0X(i∗IZ,D, i∗OZ) → Ext0X(IZ,X , i∗OZ) → H0(OZ(D)) → 0,

Ext1X(i∗IZ,D, i∗OZ) ∼= Ext1X(IZ,X , i∗OZ). (2.15)

In particular, dimC Ext1X(i∗IZ,D, i∗OZ) = 6n by (2.12). Therefore (2.12) implies that the 
six term exact sequence (2.14) splits into two short exact sequences and we obtain

0 → Ext1D(IZ,D,OZ) → Ext1X(i∗IZ,D, i∗OZ) → Ext0D(IZ,D,OZ ⊗KD) → 0. (2.16)

Together (2.15) and (2.16) provide an inclusion

Ext1D(IZ,D,OZ) ↪→ Ext1X(IZ,X , i∗OZ) ∼= Ext2X(IZ,X , IZ,X)0,

where the second isomorphism comes from Lemma 2.6. We have obtained a canonical 
inclusion of a half-dimensional subspace (by (2.12)).

Next, we check Ext1D(IZ,D, OZ) is an isotropic subspace of 
(
Ext2X(IZ,X , IZ,X)0, Q

)
under this inclusion. Given u ∈ Ext1D(IZ,D, OZ), the corresponding element in 
Ext2X(IZ,X , IZ,X)0 is given by the composition

IZ,X
α→ i∗IZ,D

i∗u→ i∗OZ [1] β→ IZ,X [2],

where α is the morphism constructed in (2.6) and β is the obvious morphism. Given 
another u′ ∈ Ext1D(IZ,D, OZ), it is enough to show the vanishing of the composition

IZ,X
α→ i∗IZ,D

i∗u→ i∗OZ [1] β→ IZ,X [2] α[2]→ i∗IZ,D[2] i∗u
′[2]→ i∗OZ [3] β[2]→ IZ,X [4].

We claim
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Ext1X(i∗OZ , i∗IZ,D) ∼= Ext1D(OZ , IZ,D). (2.17)

This implies that the composition i∗OZ [1] β→ IZ,X [2] α[2]→ i∗IZ,D[2] can be written as i∗γ, 
for some γ : OZ → IZ,D[1]. Therefore the composition

i∗IZ,D
i∗u→ i∗OZ [1] β→ IZ,X [2] α[2]→ i∗IZ,D[2] i∗u

′[2]→ i∗OZ [3]

comes from Ext3D(IZ,D, OZ) which is zero by (2.8).
We are left to show (2.17). This follows at once from the spectral sequence

Ep,q
2 = ExtpD(OZ , IZ,D ⊗ ∧qKD) ⇒ Extp+q

X (i∗OZ , i∗IZ,D),

and

Ext0D(OZ , IZ,D ⊗ KD) ∼= Ext3D(IZ,D,OZ)∗ = 0,

where the vanishing is by (2.8). �
Combining Lemma 2.6 and 2.7, we deduce the following:

Proposition 2.8. Let X be a smooth projective Calabi–Yau 4-fold and let D ⊆ X be a 
smooth divisor. For any zero-dimensional subscheme Z ⊆ D of length � 3, we have short 
sequences

0 → Ext1D(IZ,D, IZ,D)0 → Ext1X(IZ,X , IZ,X)0 → H0(OZ(D)) → 0,

0 → Ext2D(IZ,D, IZ,D)0 → Ext2X(IZ,X , IZ,X)0 → Ext2D(IZ,D, IZ,D)∗0 → 0,

under which Ext2D(IZ,D, IZ,D)0 is a maximal isotropic subspace of Ext2X(IZ,X , IZ,X)0
with respect to the non-degenerate quadratic form Q defined by Serre duality.

Proof. By Lemma 2.6, we have isomorphisms

Exti+1
Y (IZ,Y , IZ,Y ⊗ L)0 ∼= ExtiY (IZ,Y ,OZ ⊗ L), for i = 0, 1 and Y = X,D.

Combining with Lemma 2.7, we obtain the desired short exact sequences and an inclusion

Ext2D(IZ,D, IZ,D)0 ↪→ Ext2X(IZ,X , IZ,X)0

of a maximal isotropic subspace.
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This leads to the following commutative diagram

0 Ext2D(IZ,D, IZ,D)0

∃ t

Ext2X(IZ,X , IZ,X)0

Q ∼=

W 0

0 W ∗ Ext2X(IZ,X , IZ,X)∗0 Ext2D(IZ,D, IZ,D)∗0 0.

Note that the restriction t of Q is injective, hence also an isomorphism by dimension 
counting. Thus the quadratic form Q gives an identification W ∼= Ext2D(IZ,D, IZ,D)∗0. �

A positive real form V+ on a complex even dimensional vector space V with non-
degenerate quadratic form Q is a half-dimensional real subspace on which Q is real 
and positive definite. When the obstruction space Ext2X(E, E)0 has a maximal isotropic 
subspace as in Proposition 2.8, we can apply the following useful fact:

Proposition 2.9. Let V be an even dimensional complex vector space with a non-
degenerate quadratic form Q and let Viso be a maximal isotropic subspace of (V, Q). 
Then for any positive real form V+ of (V, Q), the composition

c : Viso ↪→ V → V+

of the inclusion and projection is an isomorphism of the underlying real vector spaces.

Proof. Since dimensions of Viso and V+ are the same, we only need to check that the 
map c is injective. Take v ∈ Viso which projects to zero in V+. By

V = V+ ⊕
√
−1 · V+,

we know v ∈
√
−1 · V+. Then Q(v, v) = 0, by the isotropic property, which implies that 

v = 0 since Q is negative definite on the subspace 
√
−1 · V+. �

2.5. Verification in simple cases: n � 3

When the number n of points satisfies n � 3, the Hilbert schemes Hilbn(X) and 
Hilbn(D) are smooth of dimensions 4n and 3n respectively. Our conjecture can then be 
verified by direct calculation.

Theorem 2.10. Let X be a smooth projective Calabi–Yau 4-fold. Let D be a smooth divisor 
on X and set L := OX(D). For each n � 3, there exists a choice of orientation o(L)
such that ∫

[Hilbn(X)]vir

e(L[n]) =
∫

[Hilbn(D)]vir

1.
o(L)
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In particular, Conjecture 2.2 is true modulo q4 for L = OX(D) and D ⊆ X a smooth 
divisor.

Proof. When n � 3, the Hilbert schemes Hilbn(X), Hilbn(D) are smooth of dimensions 
4n and 3n respectively. We have also seen that the obstruction sheaf Ob on Hilbn(X) is 
locally free of rank 6n ((2.12) and Lemma 2.6).

Consider the quadric bundle (Ob, Q), where Q is the non-degenerate quadratic form 
defined by Serre duality. By [9, Lem. 5], we can choose a positive real form Ob+ of the 
quadric bundle (Ob, Q), such that Ob ∼= Ob+ ⊗R C as quadric bundles. Then

[Hilbn(X)]vir
o(L) = PD

(
e(Ob+)

)
∈ H2n(Hilbn(X))

for an appropriate choice of orientation o(L) in the definition of both sides. Therefore

∫
[Hilbn(X)]vir

o(L)

e(L[n]) =
∫

[Hilbn(X)]

e(L[n]) · e(Ob+)

=
∫

[Hilbn(D)]

e(Ob+)|Hilbn(D),

where the second equality follows from the fact that Hilbn(D) ⊆ Hilbn(X) represents 
the Poincaré dual of the Euler class e(L[n]) by Proposition 2.4.

Next, we use the fact that the subspaces

Ext2D(IZ,D, IZ,D)0 ↪→ Ext2X(IZ,X , IZ,X)0

determine a maximal isotropic subbundle Viso ⊆ Ob|Hilbn(D). Note that

Viso ∼= ObHilbn(D)

is precisely the obstruction bundle of the perfect obstruction theory on Hilbn(D) studied 
in [17], whose fibre over Z ∈ Hilbn(D) is Ext2D(IZ,D, IZ,D)0. By (a family version of) 
Proposition 2.9, we have

e(Ob+)|Hilbn(D) = e(Viso) = e(ObHilbn(D)).

Since Hilbn(D) is smooth, we also have

[Hilbn(D)]vir = e(ObHilbn(D)) ∩ [Hilbn(D)].

Putting everything together, we deduce
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∫
[Hilbn(D)]

e(Ob+)|Hilbn(D) =
∫

[Hilbn(D)]

e(ObHilbn(D))

=
∫

[Hilbn(D)]vir

1.

The final statement of the proposition follows from [15,16] and (2.5). �
For general Hilbn(X), we need Joyce’s theory of D-manifolds or Kuranishi atlases to 

prove a similar statement. We hope to return to this in a future work.

3. The toric case

3.1. Definition and conjecture

Following [7, Sect. 8], we can similarly study zero-dimensional DT4 invariants of toric 
Calabi–Yau 4-folds (which are never compact).

Let X be a smooth quasi-projective toric Calabi–Yau 4-fold. By this we mean a smooth 
quasi-projective toric 4-fold X satisfying KX

∼= OX and H>0(OX) = 0. We also assume 
the fan contains cones of dimension 4. Such cones correspond to (C∗)4-invariant affine 
open subsets (equivariantly) isomorphic to C4. Fix a Calabi–Yau volume form Ω on X
and denote by T ⊆ (C∗)4 the 3-dimensional subtorus which preserves Ω. Let • be SpecC
with trivial (C∗)4-action. We denote by C ⊗ ti the 1-dimensional (C∗)4-representation 
with weight ti and we write λi ∈ H∗

(C∗)4(•) for its (C∗)4-equivariant first Chern class. 
Then

H∗
(C∗)4(•) = C[λ1, λ2, λ3, λ4],

H∗
T (•) = C[λ1, λ2, λ3, λ4]/(λ1 + λ2 + λ3 + λ4) ∼= C[λ1, λ2, λ3].

The (C∗)4-action and T -action both canonically lift to the Hilbert scheme Hilbn(X) of 
n points on X, where T preserves the Serre duality pairing (for compactly supported 
sheaves).

Let L be a T -equivariant line bundle on X and let L[n] be its tautological bundle 
with induced T -equivariant structure. As in Definition 2.1, we would like to evaluate the 
integral

∫
[Hilbn(X)]vir

e(L[n]), for n � 1.

However, Hilbn(X) is non-compact, so the usual virtual class is not well-defined. Nev-
ertheless, Hilbn(X) is “equivariantly compact”, i.e. the T -fixed locus Hilbn(X)T is 
compact. In fact, it consists of finitely many points.
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Lemma 3.1. At the level of closed points, we have

Hilbn(X)T = Hilbn(X)(C
∗)4 ,

which consists of finitely many points.

Proof. We cover X by maximal (C∗)4-invariant open affine subsets {Uα} with centres 
at (C∗)4-fixed points. There exist coordinates x1, x2, x3, x4 on Uα

∼= C4, such that the 
action of t ∈ (C∗)4 on Uα is given by

t · xi = tixi, for all i = 1, 2, 3, 4.

Then the Calabi–Yau torus is given by

T = {t ∈ (C∗)4 | t1t2t3t4 = 1}

and we see that Uα is also T -invariant. Therefore it suffices to prove the lemma for 
X = Uα = C4 with the standard torus action.

The (C∗)4-invariant ideals in C[x1, x2, x3, x4] are precisely the monomial ideals. 
Clearly

Hilbn(X)T ⊇ Hilbn(X)(C
∗)4 .

By considering the weight of xn1
1 xn2

2 xn3
3 xn4

4 under the action of t ∈ C4, it is easy to see 
that any T -invariant ideal I ⊆ C[x1, x2, x3, x4] is of form

I = 〈xn11
1 xn12

2 xn13
3 xn14

4 f1(x1x2x3x4), · · · , xnl1
1 xnl2

2 xnl3
3 xnl4

4 fl(x1x2x3x4)〉,

where {fi(y)} are polynomials of one variable with constant coefficient 1 and nij ∈ Z�0. 
Suppose I is T -invariant and corresponds to a zero-dimensional subscheme Z. Then 
the underlying reduced subscheme Zred is a zero-dimensional T -invariant subset of C4, 
i.e. Zred = {(0, 0, 0, 0)}. Therefore I is determined by its restriction to any Zariski open 
neighbourhood U of (0, 0, 0, 0). Take

(0, 0, 0, 0) ∈ U = {f1(x1x2x3x4) �= 0} ∩ · · · ∩ {fl(x1x2x3x4) �= 0}.

The polynomials fi(x1x2x3x3) become invertible elements on U and therefore

I|U = 〈xn11
1 xn12

2 xn13
3 xn14

4 , · · · , xnl1
1 xnl2

2 xnl3
3 xnl4

4 〉.

We conclude that

I = 〈xn11
1 xn12

2 xn13
3 xn14

4 , · · · , xnl1
1 xnl2

2 xnl3
3 xnl4

4 〉

which shows Hilbn(X)T ⊆ Hilbn(X)(C∗)4 as sets. �
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Example 3.2. Consider X = C4 with standard torus action. Then

I = 〈x3
1, x

3
2, x

3
3, x

3
4, x

2
1x

2
2x

2
3x

2
4 + x1x2x3x4〉

defines a zero-dimensional T -invariant subscheme. According to the proof of Lemma 3.1, 
it is equal to 〈x3

1, x
3
2, x

3
3, x

3
4, x1x2x3x4〉. Indeed, we have

x1x2x3x4 = [x3
2x

3
3x

3
4]x3

1 + [1 − x1x2x3x4](x2
1x

2
2x

2
3x

2
4 + x1x2x3x4).

Let U ∼= C4 be a maximal (C∗)4-invariant affine open subset of X. Choose coordinates 
x1, . . . , x4 such that the action is given by

t · xi = tixi, for all i = 1, 2, 3, 4.

The T -invariant (and therefore (C∗)4-invariant by Lemma 3.1) zero-dimensional sub-
schemes of Uα can be labelled by solid partitions.

Definition 3.3. A solid partition π = {πijk}i,j,k�1 consists of a sequence of non-negative 
integers πijk ∈ Z�0 satisfying

πijk � πi+1,j,k, πijk � πi,j+1,k, πijk � πi,j,k+1 ∀ i, j, k � 1,

such that

|π| :=
∑

i,j,k�1

πijk < ∞.

Here |π| is called the size of π.

Specifically, the zero-dimensional subscheme Zπ corresponding to the solid partition 
π = {πijk}i,j,k�1 is defined by the monomial ideal

IZπ
:= 〈xi−1

1 xj−1
2 xk−1

3 x
πijk

4 | i, j, k � 1 〉

and |π| equals the length of Zπ. The (C∗)4-equivariant representation of Zπ is given by

Zπ =
∑

i,j,k�1

πijk∑
l=1

ti−1
1 tj−1

2 tk−1
3 tl−1

4 , (3.1)

where the sum is over all i, j, k � 1 for which πijk � 1.
In order to be able to apply Serre duality for Ext∗(IZ , IZ) on a non-compact toric 

Calabi–Yau 4-fold X, we will use the following lemma.
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Lemma 3.4. For any Z ∈ Hilbn(X)T , we have isomorphisms of T -representations

Exti(IZ ,OZ) ∼= Exti+1(IZ , IZ), i = 0, 1, 2,

Exti(IZ , IZ) ∼= Exti(OZ ,OZ), i = 1, 2, 3, Ext4(IZ , IZ) = 0.

Proof. All morphisms in this proof are T -equivariant. By applying RHom(−, OZ) to the 
short exact sequence,

0 → IZ → OX → OZ → 0, (3.2)

we obtain isomorphisms

Exti(IZ ,OZ) ∼= Exti+1(OZ ,OZ), i � 0, (3.3)

where we use Hi�1(OX) = 0. By applying RHom(IZ , −) to (3.2) we obtain an exact 
sequence

· · · → Exti(IZ ,OZ) → Exti+1(IZ , IZ) → Exti+1(IZ ,OX) → · · · . (3.4)

By applying RHom(−, OX) to (3.2), we find

Hom(IZ ,OX) = Hom(OX ,OX),

Ext1(IZ ,OX) = Ext2(IZ ,OX) = Ext4(IZ ,OX) = 0,

Ext3(IZ ,OX) ∼= Ext4(OZ ,OX),

(3.5)

where we use Hi�1(OX) = 0 and Exti(OZ , OX) = 0 for i � 3 (by [11, pp. 78], 
Exti�3(OZ , OX) = 0, so the vanishing follows from the local-to-global spectral sequence 
Hp(X, Extq(−, −)) ⇒ Extp+q(−, −) [11, pp. 85, (3.16)]). Combining with (3.4), we get 
the following isomorphisms and exact sequence

Ext0(IZ ,OZ) ∼= Ext1(IZ , IZ), Ext1(IZ ,OZ) ∼= Ext2(IZ , IZ),

0 → Ext2(IZ ,OZ) → Ext3(IZ , IZ) → Ext3(IZ ,OX) η→ Ext3(IZ ,OZ) →
→ Ext4(IZ , IZ) → Ext4(IZ ,OX) = 0.

(3.6)

For the first isomorphism of (3.6), we used Hom(IZ , IZ) ∼= Hom(IZ , OX). This follows 
from the fact that the isomorphism H0(OX) → Hom(IZ , OX) of (3.5) factors through 
H0(OX) → Hom(IZ , IZ) (see diagram (2.10)3).

3 Since X is smooth and quasi-projective, any (C∗)4-equivariant coherent sheaf on X has a finite 
(C∗)4-equivariant locally free resolution by [8, Prop. 5.1.28]. Therefore we have T -equivariant trace maps 
as usual.
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We claim that the map η is an isomorphism. In fact, we have a commutative diagram

Hom(IZ ,OX [3])

i1

η
Hom(IZ ,OZ [3])

i2

Hom(OZ [−1],OX [3])
φ

Hom(OZ [−1],OZ [3]),

where i1, i2 are isomorphisms in (3.5), (3.3) respectively, and φ is the map in the exact 
sequence

→ Ext4(OZ , IZ) → Ext4(OZ ,OX) φ→ Ext4(OZ ,OZ) → 0,

obtained by applying RHom(OZ , −) to (3.2). By Riemann–Roch and Serre duality, we 
have4

dimC Ext4(OZ ,OX) = dimC H0(X, Ext4(OZ ,OX))

= χ(OZ ,OX) = n,

dimC Ext4(OZ ,OZ) = dimC Ext0(OZ ,OZ) = n.

Therefore φ is an isomorphism and so is η. We conclude that Ext2(IZ , OZ) ∼= Ext3(IZ , IZ)
and Ext4(IZ , IZ) = 0 by (3.6), which finished the proof. �
Remark 3.5. Although a smooth quasi-projective toric Calabi–Yau 4-fold X is non-
compact, the sheaf OZ has proper support for any Z ∈ Hilbn(X)T . Therefore, we can 
apply T -equivariant Serre duality to Exti(OZ , OZ).5 Consequently, Lemma 3.4 allows 
us to apply T -equivariant Serre duality to Exti(IZ , IZ) for i = 1, 2, 3. We will use this 
throughout the rest of this section.

Similarly to [17, I, Lem. 6], we have the following.

Lemma 3.6. For any Z ∈ Hilbn(X)T , we have an isomorphism of T -representations

Ext0(IZ ,OZ) ∼= Ext1(IZ , IZ).

Moreover, Ext0(IZ , OZ)T = 0. In particular, the scheme Hilbn(X)T = Hilbn(X)(C∗)4

consists of finitely many reduced points.

4 Although X is non-compact, we can pass to a “toric compactification” X ⊂ X, i.e. a smooth projective 
toric 4-fold containing X as a (C∗)4-invariant open subset. Since Z ⊂ X has proper support, we get 
(C∗)4-equivariant isomorphisms H0(X, Ext4X(OZ , OX)) ∼= H0(X, Ext4X(OZ , OX)) and Ext∗X(OZ , OZ) ∼=
Ext∗X(OZ , OZ).
5 See footnote 4.
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Proof. The isomorphism Ext0(IZ , OZ) ∼= Ext1(IZ , IZ) was proved in Lemma 3.4.
Next we show Ext0(IZ , OZ)T = 0. In fact it suffices to prove this when X = C4. Then 

there exists a convenient basis for Ext0(IZ , OZ) of (C∗)4-equivariant homomorphisms. 
This basis is described by combinatorial objects, which we call Haiman arrows. See [18]
(and also [4]) for details. These are arrows α in the character lattice Z4 such that:

• the tail t(α) ∈ Z4 satisfies (IZ)t(α) �= 0, i.e. it lies on a nonzero weight space of IZ ,
• the head h(α) ∈ Z4 satisfies (OZ)h(α)+(n1,n2,n3,n4) �= 0 for some n1, n2, n3, n4 � 0.

Denote the standard basis of Z4 by

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1).

Suppose α is a Haiman arrow such that the arrow defined by t(α) ±ei, h(α) ±ei, for some 
choice of ± and some basis vector ei, is also a Haiman arrow. I.e. the Haiman arrow α
can be translated to another neighbouring Haiman arrow β. Then we call these Haiman 
arrows equivalent. This induces an equivalence relation on the collection of all Haiman 
arrows. Next, we consider the collection C of equivalence classes c of Haiman arrows 
such that all representatives α ∈ c satisfy h(α) ∈ (OZ)h(α) �= 0. Then the elements 
of C are in 1-1 correspondence with a basis of (C∗)4-equivariant homomorphisms of 
Ext0(IZ , OZ) as follows. To each class c ∈ C we assign a module morphism φc : IZ → OZ , 
which is determined as follows. For each α ∈ c such that t(α) corresponds to a minimal 
homogeneous generator of IZ , we define

φc(xt(α)) = xh(α)

and all other minimal homogeneous generators are mapped to zero. Here we use multi-
index notation xw := xw1

1 xw2
2 xw3

3 xw4
4 . It is part of Haiman’s theory that this is well-

defined and defines a basis {φc}c∈C of Hom(IZ , OZ). Clearly the weight of φc equals

h(α) − t(α),

which is independent of the choice α ∈ c. The statement we are after follows from the 
fact that any Haiman arrow β with the property that h(β) − t(β) = (n, n, n, n), for some 
n, is equivalent to a Haiman arrow γ satisfying (OZ)h(γ) = 0, i.e. [β] /∈ C. We conclude 
Ext0(IZ , OZ)T = 0. �
Example 3.7. Suppose IZ := (x1, x2, x3, x4)2. Then C consists of 40 elements (implying 
that Ext0(IZ , OZ) is 40-dimensional and Hilb5(C4) is singular at Z). Explicitly, the basis 
φc described in the proof of the previous lemma consists of the following 40 homomor-
phisms:

φij : x2
i �→ xj , any other minimal homogeneous generator �→ 0
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φabc : xaxb �→ xc, any other minimal homogeneous generator �→ 0

for all i, j and a, b, c with a < b. Observe that none of these homomorphisms has weight 
of the form (n, n, n, n). Therefore Ext0(IZ , OZ)T = 0.

We continue with the definition of equivariant DT4 invariants. For Z ∈ Hilbn(X)T , 
one can form complex vector bundle

ET ×T Exti(IZ , IZ)
↓

ET ×T {IZ} = BT

for i = 1, 2,

whose Euler class is the T -equivariant Euler class eT
(
Exti(IZ , IZ)

)
.

When i = 2, the Serre duality pairing on Ext2(OZ , OZ) defines a non-degenerate 
quadratic form Q on Ext2(IZ , IZ) (via Lemma 3.4) and also on ET ×T Ext2(IZ , IZ) as 
T preserves the Calabi–Yau volume form. We define

eT
(
Ext2(IZ , IZ), Q

)
∈ Z[λ1, λ2, λ3] (3.7)

as the half Euler class of (ET ×T Ext2(IZ , IZ), Q). By definition, this is the Euler class of 
its positive real form,6 which exists because the classifying space BT is simply connected. 
The half Euler class (3.7) depends on a choice of orientation on a positive real form.

Following [7, Sect. 8], we can define the equivariant virtual class as follows:

Definition 3.8. Let X be a smooth quasi-projective toric Calabi–Yau 4-fold. Denote by 
T ⊆ (C∗)4 the three-dimensional subtorus which preserves the Calabi–Yau volume form. 
The T -equivariant virtual class of Hilbn(X) is

[Hilbn(X)]vir
T,o(L) :=

∑
Z∈Hilbn(X)T

eT
(
Ext2(IZ , IZ), Q

)
eT

(
Ext1(IZ , IZ)

) ∈ Q(λ1, λ2, λ3),

where o(L) denotes a choice of orientation of a positive real form of (ET ×T

Ext2(IZ , IZ), Q) for each Z ∈ Hilbn(X)T .

Note that we have Exti(IZ , IZ) = Exti(IZ , IZ)0 for i = 1, 2, because H>0(OX) = 0.7

Remark 3.9. For each Z ∈ Hilbn(X)T , o(L) is equivalent to the choice of sign in the 
square root (1.2). If the number of fixed points Hilbn(X)T is N , the number of choices 
of o(L) is 2N .

6 I.e. a half rank real subbundle on which Q is real and positive definite.
7 See footnote 3 on the existence of T -equivariant trace maps.
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The T -equivariant version of Definition 2.1 is given as follows.

Definition 3.10. In the setup of Definition 3.8, let L be a T -equivariant line bundle on X
with corresponding tautological bundle L[n] on Hilbn(X). Then

DT4(X,T, L, n ; o(L))

:=
∑

Z∈Hilbn(X)T

eT
(
Ext2(IZ , IZ), Q

)
· eT (L[n]|Z)

eT
(
Ext1(IZ , IZ)

) ∈ Q(λ1, λ2, λ3), if n � 1,

DT4(X,T, L, 0 ; o(L)) := 1.

We recall the notion of equivariant push-forward for (not necessarily compact) mani-
folds with torus action (e.g. toric Calabi–Yau 4-folds). In the compact case, this coincides 
with the usual proper push-forward in the Atiyah–Bott localisation formula.

Definition 3.11. Let X be a smooth manifold with T ∼= (C∗)k-action such that the torus 
fixed locus XT consists of finite number of (necessarily reduced) points. The equivariant 
push-forward of π : X → pt is

∫
X

: H∗
T (X) → H∗

T (pt)loc, s.t.
∫
X

α =
∑

x∈XT

ι∗xα

eT (TxX) ,

where H∗
T (pt)loc is the ring of fractions of H∗

T (pt), which is isomorphic to C(λ1, · · · , λk)
if we identify H∗

T (pt) ∼= C[λ1, · · · , λk], and ιx : {x} ×T ET → X ×T ET is the natural 
inclusion.

We propose the following T -equivariant version of Conjecture 2.2.

Conjecture 3.12. Let X be a smooth quasi-projective toric Calabi–Yau 4-fold. Denote by 
T ⊆ (C∗)4 the three-dimensional subtorus which preserves the Calabi–Yau volume form. 
Let L be a T -equivariant line bundle on X. Then there exist choices of orientation such 
that

∞∑
n=0

DT4(X,T, L, n ; o(L)) qn = M(−q)
∫
X
cT1 (L) · cT3 (X),

where M(q) denotes the MacMahon function.

3.2. Proof for smooth toric divisors

Let L = OX(D) for a T -invariant divisor D ⊆ X. Note that if D is not (C∗)4-invariant, 
by the proof of Lemma 3.1, D can locally be written as the sum of a (C∗)4-invariant 
divisor and a T -invariant divisor which is not (C∗)4-invariant. Hence, locally near each 
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fixed point, L is T -equivariantly isomorphic to a (C∗)4-equivariant line bundle. Therefore 
it suffices to consider Conjecture 3.12 for (C∗)4-equivariant divisors only.

We prove Conjecture 3.12 when D ⊆ X is a smooth (C∗)4-equivariant divisor.

Theorem 3.13. Let X be a smooth quasi-projective toric Calabi–Yau 4-fold. Denote by 
T ⊆ (C∗)4 the three-dimensional subtorus which preserves the Calabi–Yau volume form. 
Let L = OX(D), where D ⊆ X is a smooth (C∗)4-invariant divisor. Then Conjecture 3.12
is true.

Proof. For Z ∈ Hilbn(X)T such that Z � D, i.e. Z does not lie scheme theoretically 
in D, we claim that

eT (L[n]|Z) = 0. (3.8)

Let U ∼= C4 be any (C∗)4-invariant affine open subset of X. As D is smooth and 
(C∗)4-invariant, we can choose coordinates x1, x2, x3, x4 on U such that the action is 
given by

t · xi = tixi, for all i = 1, 2, 3, 4,

and D ∩ U is defined by x4 = 0. Equation (3.8) then follows from Lemma 3.14 below.
Now we only need to calculate

∑
Z∈Hilbn(X)T , Z⊆D

eT (Ext2X(IZ,X , IZ,X), Q) · eT (L[n]|Z)
eT (Ext1X(IZ,X , IZ,X))

. (3.9)

For Z ∈ Hilbn(X)T and Z ⊆ D ⊆ X, Lemma 3.4 gives T -equivariant isomorphisms

ExtiX(IZ,X , IZ,X) ∼= ExtiX(OZ ,OZ), for i = 1, 2, 3,

ExtiD(IZ,D, IZ,D) ∼= ExtiD(OZ ,OZ), for i = 1, 2,

where the isomorphisms on D can be deduced similarly as for X.
From the T -equivariant distinguished triangle (e.g. [11, Cor. 11.4, pp. 248–249])

RHomD(OZ ,OZ) → RHomX(OZ ,OZ) → RHomD(OZ ,OZ ⊗KD)[−1],

we obtain a T -equivariant exact sequence

0 → Ext1D(OZ ,OZ) → Ext1X(OZ ,OZ) → HomD(OZ ,OZ ⊗KD) →
→ Ext2D(OZ ,OZ) → Ext2X(OZ ,OZ) → Ext1D(OZ ,OZ ⊗KD) →
→ Ext3D(OZ ,OZ) → Ext3X(OZ ,OZ) → Ext2D(OZ ,OZ ⊗KD) → 0.
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By T -equivariant Serre duality, this gives

Ext1X −Ext2X + Ext3X = Ext1D +(Ext1D)∗ − (Ext2D +(Ext2D)∗)
+H0(D,OZ ⊗KD) + H0(D,OZ ⊗KD)∗ ∈ KT (•)

in the T -equivariant K-theory of a point, where we abbreviate ExtiA := ExtiA(OZ , OZ). 
For the corresponding Euler classes, we deduce

eT (Ext1X) · eT (Ext3X)
eT (Ext2X)

= (−1)n ·
(
eT (Ext1D) · eT (H0(D,OZ ⊗KD))

eT (Ext2D)

)2

.

Therefore we have

eT (Ext2X(IZ,X , IZ,X), Q) · eT (L[n]|Z)
eT (Ext1X(IZ,X , IZ,X))

= eT (Ext2X(IZ,X , IZ,X), Q) · eT (H0(X,OZ ⊗OX(D)))
eT (Ext1X(IZ,X , IZ,X))

= eT (Ext2D(IZ,D, IZ,D))
eT (Ext1D(IZ,D, IZ,D))

,

where we used (1.2) and L|D = KD (X is Calabi–Yau). Moreover, the second equality 
is up to sign corresponding to the choice of orientation in defining the half Euler class.

Being a toric prime divisor, D ⊆ X is itself a smooth toric 3-fold [10, Sect. 3.1]. 
As above, on any (C∗)4-invariant open U ∼= C4 we can choose coordinates such that 
t · xi = tixi, for all i = 1, 2, 3, 4, and D ∩ U = {x4 = 0}. In these coordinates, the 
torus of D is obtained from T = {t1t2t3t4 = 1} by setting t4 = 1, i.e. at the level of 
equivariant parameters we have λ1 + λ2 + λ3 = λ4 = 0. We conclude that (3.9) becomes 
the T -equivariant Donaldson–Thomas invariants of n points on D which, by [17, II, 
Thm. 2], are equal to

∑
Z∈Hilbn(D)T

eT (Ext2D(IZ,D, IZ,D))
eT (Ext1D(IZ,D, IZ,D))

qn = M(−q)
∫
D
cT3 (TD⊗KD).

By the definition of equivariant push-forward (Definition 3.11), we have
∫
X

cT3 (X) · cT1 (L) :=
∑

x∈XT

ι∗x(cT3 (X) · cT1 (L))
cT4 (TxX)

=
∑

x∈XT

cT3 (TxX) · cT1 (L|x)
cT4 (TxX)

=
∑ cT3 (TxX) · cT1 (L|x)

cT4 (TxX)
,

x∈DT
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where ιx : {x} ×T ET → X ×T ET is the natural inclusion and the last equality follows 
from Lemma 3.14 below. Similarly, we have

∫
D

cT3 (TD ⊗KD) :=
∑

x∈DT

ι∗x(cT3 (TD ⊗KD))
cT3 (TxD)

=
∑

x∈DT

cT3 (TxD ⊗KD|x)
cT3 (TxD)

.

From the T -equivariant short exact sequence

0 → TD → TX|D → KD → 0,

we obtain

cT3 (TxX) = cT3 (TxD) + cT2 (TxD) · cT1 (KD|x), cT4 (TxX) = cT3 (TxD) · cT1 (KD|x),

cT3 (TxD ⊗KD|x)

= cT3 (TxD) + cT2 (TxD) · cT1 (KD|x) + cT1 (TxD) · cT1 (KD|x)2 + cT1 (KD|x)3.

Since KD|x = ∧3T ∗
xD, we have

cT1 (TxD) · cT1 (KD|x)2 + cT1 (KD|x)3 = (cT1 (TxD) + cT1 (KD|x)) · cT1 (KD|x)2 = 0

and therefore 
∫
X
cT3 (X) · cT1 (L) =

∫
D
cT3 (TD ⊗KD) for L = OX(D). �

In order to prove (3.8), let X = C4 with coordinates x1, x2, x3, x4 such that the action 
of t ∈ (C∗)4 satisfies

t · xi = tixi, for all i = 1, 2, 3, 4,

and the (C∗)4-equivariant line bundle L is given by

D := {x4 = 0} ⊆ C4 and L := O(D).

Lemma 3.14. We have a (C∗)4-equivariant isomorphism L[n] ∼= O[n]⊗ t−1
4 . Moreover, for 

any Z ∈ Hilbn(C4)T such that Z does not lie scheme theoretically in D, we have

eT (L[n]|Z) = 0.

Proof. Consider the ideal sheaf O(−D) ⊆ O. This corresponds to the inclusion

(x4) ⊆ C[x1, x2, x3, x4]
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and therefore O(−D) ∼= O ⊗ t4 and L ∼= O ⊗ t−1
4 . The fibres of L[n] are given by

L[n]|Z ∼= H0(L|Z) ∼= H0(OZ) ⊗ t−1
4 ,

where all isomorphisms are (C∗)4-equivariant isomorphisms. Hence, we have a (C∗)4-
equivariant isomorphism

L[n] ∼= O[n] ⊗ t−1
4 .

Now suppose Z ∈ Hilbn(C4) is a T -fixed (and therefore (C∗)4-fixed) element. Then Z
corresponds to a solid partitions π = {πijk}i,j,k�1. Suppose Z � D, i.e. Z is not scheme 
theoretically contained in D, then (x4) � IZ . Therefore, π111 > 1 and the class of Z in 
the (C∗)4-equivariant K-group K(C∗)4(•) contains the term t4. Hence

e(C∗)4(L[n]|Z) = e(C∗)4(Z ⊗ t−1
4 ) = e(C∗)4(1 + other terms)

= e(C∗)4(1) e(C∗)4(other terms) = 0.

This equality holds for T -equivariant Euler classes as well, which corresponds to setting 
λ4 = −(λ1 + λ2 + λ3). �
3.3. Vertex formalism

In order to prove Conjecture 3.12, it is in fact enough to prove it for affine space C4. 
In this section, we develop the necessary vertex formalism from which this follows. We 
follow the original arguments developed in the 3-dimensional case by MNOP [17] very 
closely.

Let X be a smooth quasi-projective toric Calabi–Yau 4-fold and let {Uα} be the 
cover by maximal (C∗)4-invariant affine open subsets. Let Z ⊆ X be a T -invariant 
zero-dimensional subscheme (hence also (C∗)4-invariant by Lemma 3.1). For each α, the 
restriction Zα := Z|Uα

corresponds to a solid partitions π(α), as described previously, 
and we write

Iα := IZ
π(α) .

By footnote 3, we have T -equivariant trace maps and we can take the trace-free part

−RHomX(IZ , IZ)0 ∈ KT (•).

Denote the global section functor by Γ(−). The local-to-global spectral sequence and 
calculation of sheaf cohomology with respect to the Čech cover {Uα} yields

−RHomX(IZ , IZ)0 =
∑

(−1)i
(
Γ(Uα,OUα

) − Γ(Uα, Exti(Iα, Iα))
)
.

α,i
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Here we use H>0(Uα, −) = 0, because Uα is affine. We also use that intersections Uα ∩
Uβ ∩ · · · , with α �= β, do not contribute because Z is zero-dimensional and therefore

IZ |Uα∩Uβ∩··· = OUα∩Uβ∩···.

This reduced the calculation to

−RHomUα
(Iα, Iα)0 =

∑
i

(−1)i
(
Γ(Uα,OUα

) − Γ(Uα, Exti(Iα, Iα))
)
.

On Uα
∼= C4, we use coordinates x1, x2, x3, x4 such that the (C∗)4-action is given by

t · xi = tixi, for all i = 1, 2, 3, 4.

Let U := Uα, Z := Zα, I := Iα, π := π(α), and R := Γ(OUα
) ∼= C[x1, x2, x3, x4]. Consider 

class [I] in the equivariant K-group K(C∗)4(U). By identifying [R] with 1, we obtain a 
ring isomorphism

K(C∗)4(U) ∼= Z[t±1 , t
±
2 , t

±
3 , t

±
4 ].

The Laurent polynomial P(I) corresponding to [I] under this isomorphism is called the 
Poincaré polynomial of I. For any w = (w1, w2, w3, w4) ∈ Z4, we use multi-index notation

tw := tw1
1 tw2

2 tw3
3 tw4

4 .

Then [R⊗ tw] ∈ K(C∗)4(U) corresponds to tw ∈ Z[t±1 , t
±
2 , t

±
3 , t

±
4 ].

Define an involution (·) on K(C∗)4(U) by Z-linear extension of

tw := t−w.

By definition, the trace map

tr : K(C∗)4(U) → Z((t1, t2, t3, t4))

corresponds to (C∗)4-equivariant restriction to the fixed point of U .
Take a (C∗)4-equivariant graded free resolution

0 → Fs → · · · → F0 → I → 0,

as in [17], where

Fi =
⊕
j

R⊗ tdij ,

for certain dij ∈ Z4. Then
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P(I) =
∑
i,j

(−1)itdij . (3.10)

The (C∗)4-character of OZ is given by (3.1) and can be expressed in terms of the Poincaré 
polynomial of I as follows

Z =
∑

i,j,k�1

πijk∑
l=1

ti−1
1 tj−1

2 tk−1
3 tl−1

4 = tr(OU − I) = 1 − P(I)
(1 − t1)(1 − t2)(1 − t3)(1 − t4)

. (3.11)

We deduce

RHomU (I, I) =
∑
i,j,k,l

(−1)i+kHom(R⊗ tdij , R⊗ tdkl)

=
∑
i,j,k,l

(−1)i+kR⊗ tdkl−dij

= P(I)P(I)

trRHomU (I,I) = P(I)P(I)
(1 − t1)(1 − t2)(1 − t3)(1 − t4)

,

where we used (3.10) for the third equality. Eliminating P(I) by using (3.11), the trace 
of −RHomUα

(Iα, Iα)0 is then given by

Vα := Zα + Zα

t1t2t3t4
− ZαZα(1 − t1)(1 − t2)(1 − t3)(1 − t4)

t1t2t3t4
, (3.12)

where we re-introduced the index α. Summing up, we have proved the following lemma:

Lemma 3.15. Let Z ⊆ X be a T -fixed zero-dimensional subscheme. Then

tr−RHomX(IZ ,IZ)0 =
∑
α

tr−RHomUα (IZα ,IZα )0 =
∑
α

Vα,

where the equivariant vertex Vα is defined by (3.12).

For a fixed α, after specialisation t1t2t3t4 = 1, we have

Vα = Ext1Uα
(IZα

, IZα
) + Ext3Uα

(IZα
, IZα

) − Ext2Uα
(IZα

, IZα
)

= Ext1Uα
(IZα

, IZα
) + Ext1Uα

(IZα
, IZα

)∗ − Ext2Uα
(IZα

, IZα
),

where each ExtiUα
(IZα

, IZα
), with i �= 0, is a finite-dimensional T -representation by 

Lemma 3.4 and Ext2Uα
(IZα

, IZα
) is self-dual. Consequently

eT (−Vα) = (−1)dimC Ext1Uα
(IZα ,IZα ) ·

eT (Ext2Uα
(IZα

, IZα
))

1 2
.

eT (ExtUα
(IZα

, IZα
))
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Since the Serre duality pairing on Ext2Uα
(IZα

, IZα
) is T -invariant, there exists a half 

Euler class eT
(
Ext2Uα

(IZα
, IZα

), Q
)

as in (3.7). By its property (2.4), we know

eT
(
Ext2Uα

(IZα
, IZα

), Q
)2 = (−1) 1

2 dimC Ext2Uα
(IZα ,IZα ) · eT (Ext2Uα

(IZα
, IZα

)).

Denoting the length of the zero-dimensional subscheme Zα by nα and using χ(OUα
) −

χ(Iα, Iα) = 2nα, we obtain

eT (−Vα) = (−1)nα ·
(
eT (Ext2Uα

(
IZα

, IZα
), Q

)
eT (Ext1Uα

(IZα
, IZα

))

)2

. (3.13)

Definition 3.16. Let π be a solid partition of size |π| and let Vπ be the expression defined 
by (3.12), where Z is the T -invariant zero-dimensional subscheme determined by (3.11). 
We define

wπ := ±
√

(−1)|π| · eT (−Vπ) ∈ Q(λ1, λ2, λ3, λ4)/(λ1 + λ2 + λ3 + λ4),

i.e. the square root of (−1)|π| times (3.13). We only define wπ up to a sign ±.

From Lemma 3.15 and Definition 3.16, we conclude:

Proposition 3.17. Let Z ⊆ X be a T -fixed zero-dimensional subscheme. Suppose the 
restriction Z|Uα

⊆ Uα corresponds to a solid partition π(α). Then

eT
(
Ext2(IZ , IZ), Q

)
eT

(
Ext1(IZ , IZ)

) = ±
∏
α

wπ(α) .

Insertions Let L be a (C∗)4-equivariant line bundle on X. For each α, there exists a 
character d(α) = (d(α)

1 , d(α)
2 , d(α)

3 , d(α)
4 ) ∈ Z4 such that

L|Uα
= OUα

⊗ td
(α)

.

As above, write U := Uα, d := d(α), and suppose we have the standard torus action 
t · xi = tixi for all i = 1, 2, 3, 4. Let Z ⊆ U be a 0-dimensional T -fixed subscheme 
corresponding to a solid partition π. Then we define

Lπ(d1, d2, d3, d4) := eT
(
H0(U,OZ ⊗ L|U )

)
∈ Q(λ1, λ2, λ3, λ4)/(λ1 + λ2 + λ3 + λ4),

where

H0(U,OZ ⊗ L|U ) =
∑ πijk∑

td1+i−1
1 td2+j−1

2 td3+k−1
3 td4+l−1

4 .

i,j,k�1 l=1
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Then for any Z ⊆ X we have

eT (L[n])|Z =
∏
α

Lπ(α)(d(α)
1 , d

(α)
2 , d

(α)
3 , d

(α)
4 ).

Example 3.18. Let Zπ = 1 + t1 + t4. The corresponding solid partition π satisfies

π111 = 2, π211 = 1, πijk = 0, otherwise.

Hence IZπ
= 〈x2

1, x1x4, x2
4, x2, x3〉. After specialisation t1t2t3t4 = 1, we get

Vπ =
(
t31t

2
2t

2
3 − t31t

2
2t3 − t31t2t

2
3 + t31t2t3 − t1t

2
2t

2
3 + t1t

2
2t3 + t1t2t

2
3

+ 2t1t2t3 − 2t1t2 + 2t1 + t1t
−1
3 + t1t

−1
2 − 2t1t3 − t1t

−1
2 t−1

3 + t2 + t3 − t2t3

)
+(

t−3
1 t−2

2 t−2
3 − t−3

1 t−2
2 t−1

3 − t−3
1 t−1

2 t−2
3 + t−3

1 t−1
2 t−1

3 − t−1
1 t−2

2 t−2
3 + t−1

1 t−2
2 t−1

3

+ t−1
1 t−1

2 t−2
3 + 2t−1

1 t−1
2 t−1

3 − 2t−1
1 t−1

2 + 2t−1
1 + t−1

1 t3 + t−1
1 t2 − 2t−1

1 t−1
3

− t−1
1 t2t3 + t−1

2 + t−1
3 − t−1

2 t−1
3

)
,

where all terms come in Serre dual pairs. One readily calculates

wπ = ±
(
(λ1 + λ2)2(λ1 + λ3)2(λ2 + λ3)(λ1 − λ2 − λ3)(λ1 + 2λ2 + 2λ3)

· (3λ1 + 2λ2 + λ3)(3λ1 + λ2 + 2λ3)
)

×
(
λ2

1λ2λ3(λ1 − λ2)(λ1 − λ3)(λ1 + λ2 + λ3)2(λ1 + 2λ2 + λ3)

· (λ1 + λ2 + 2λ3)(3λ1 + λ2 + λ3)(3λ1 + 2λ2 + 2λ3)
)−1

,

Lπ(d1, d2, d3, d4) =
(
(d1 − d4)λ1 + (d2 − d4)λ2 + (d3 − d4)λ3

)
·
(
(d1 − d4 + 1)λ1 + (d2 − d4)λ2 + (d3 − d4)λ3

)
·
(
(d1 − d4 − 1)λ1 + (d2 − d4 − 1)λ2 + (d3 − d4 − 1)λ3

)
,

where we used λ4 = −λ1 − λ2 − λ3.

The following conjecture is a combinatorial version of Conjecture 3.12 when X = C4.

Conjecture 3.19. There exists a way of choosing the signs for the equivariant weights wπ

in Definition 3.16 such that the following identity holds in Q(λ1,λ2,λ3,λ4)
(λ1+λ2+λ3+λ4) (d1, d2, d3, d4)�q�

∑
π

Lπ(d1, d2, d3, d4) wπ q
|π| = M(−q)

(d1λ1+d2λ2+d3λ3+d4λ4)(−λ1λ2λ3−λ1λ2λ4−λ1λ3λ4−λ2λ3λ4)
λ1λ2λ3λ4 ,

where the sum is over all solid partitions and M(q) denotes the MacMahon function.
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Combining Conjecture 3.19 with the vertex formalism, we can deduce Conjecture 3.12.

Proposition 3.20. Conjecture 3.19 is equivalent to Conjecture 3.12.

Proof. Conjecture 3.19 is a special case of Conjecture 3.12 when X = C4. Conversely, 
assuming Conjecture 3.19 is true, we want to prove Conjecture 3.12.

Let X be a smooth quasi-projective toric Calabi–Yau 4-fold with (C∗)4-equivariant 
line bundle L. Let {Uα}α=1,...e be the cover by maximal open affine (C∗)4-invariant 
subsets. Suppose (C∗)4 acts on the coordinates of Uα

∼= SpecC[x(α)
1 , x(α)

2 , x(α)
3 , x(α)

4 ] by

t · x(α)
i = χ

(α)
i (t)x(α)

i , for all i = 1, 2, 3, 4,

for certain characters χ(α)
i : (C∗)4 → C∗. If χ(α)

i (t) = ti is the standard torus action, 
then

cT1 (L|pα
) cT3 (TUα|pα

)
cT4 (TUα|pα

)

= (d1λ1 + d2λ2 + d3λ3 + d4λ4)(−λ1λ2λ3 − λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4)
λ1λ2λ3λ4

,

where pα = (0, 0, 0, 0) ∈ Uα is the unique (C∗)4-fixed point. For other characters, the 
RHS gets adapted accordingly. We deduce

∞∑
n=0

DT4(X,T, L, n ; o(L)) qn

=
∞∑

n=0
qn

∑
Z∈Hilbn(X)T

eT (Ext2X(IZ , IZ), Q) · eT (L[n]|Z)
eT (Ext1X(IZ , IZ))

=
∞∑

n=0
qn

∑
Z∈Hilbn(X)(C∗)4

eT (Ext2X(IZ , IZ), Q) · eT (L[n]|Z)
eT (Ext1X(IZ , IZ))

=
∞∑

n1=0

∑
Z1∈Hilbn1 (U1)(C∗)4

· · ·

∞∑
ne=0

∑
Ze∈Hilbne (Ue)(C∗)4

e∏
α=1

qnα
eT (Ext2Uα

(IZα
, IZα

), Q) · eT (L[nα]|Zα
)

eT (Ext1Uα
(IZα

, IZα
))

=
∏
α

∞∑
nα=0

qnα

∑
Zα∈Hilbnα (Uα)(C∗)4

eT (Ext2Uα
(IZα

, IZα
), Q) · eT (L[n]|Zα

)
eT (Ext1Uα

(IZα
, IZα

))

=
∏
α

∑
(α)

Lπ(α)(d(α)
1 , d

(α)
2 , d

(α)
3 , d

(α)
4 ) wπ(α) q|π

(α)|
solid partitions π
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=
∏
α

M(−q)
cT1 (L|pα )cT3 (TUα|pα )

cT4 (TUα|pα ) = M(−q)
∑

α

cT1 (L|pα )cT3 (TUα|pα )
cT4 (TUα|pα ) = M(−q)

∫
X

cT1 (L)cT3 (TX).

Here for each Z ∈ Hilbn(X)T , the signs of eT (Ext2X(IZ , IZ), Q) are induced from the 
choice of signs of {eT (Ext2Uα

(IZα
, IZα

), Q)}α when taking the square root of the following 
equation

(−1)
χ(IZ,IZ )0

2
eT (Ext2X(IZ , IZ))

eT (Ext1X(IZ , IZ)) eT (Ext3X(IZ , IZ))

=
∏
α

(−1)
χ(IZα

,IZα
)0

2
eT (Ext2Uα

(IZα
, IZα

))
eT (Ext1Uα

(IZα
, IZα

)) eT (Ext3Uα
(IZα

, IZα
))
.

In turn, the signs of {eT (Ext2Uα
(IZα

, IZα
), Q)}α are determined by the signs of {wπ(α)}α

provided by Conjecture 3.19 (via Definition 3.16 and Proposition 3.17). �
We implemented the calculation of wπ in Definition 3.16 into a Maple program. Using 

this in the context of Conjecture 3.19 leads us to conjecture the following:

Conjecture 3.21. There exists a unique way of choosing the signs for the equivariant 
weights wπ such that Conjecture 3.19 holds.

Using our Maple program, we checked the following:

Theorem 3.22. Conjectures 3.19 and 3.21 are true modulo q7.

Remark 3.23. A priori there are many possible choices of orientation, i.e. signs for wπ, 
in Conjecture 3.19. E.g. there are 140 solid partitions of size 6, so in this case there 
are 2140 ≈ 1042 choices! However, we have a (conjectural) very quick way of finding 
orientations which work. In fact, Conjecture 4.1 of the next section asserts that the 
specialisation Lπ(0, 0, 0, −d) wπ with λ1 + λ2 + λ3 = 0 is well-defined (and we check this 
in many cases). This specialisation is conjecturally equal to (−1)|π|

∏π111
l=1 (d − (l − 1))

times a non-zero rational number. By choosing the sign of wπ in such a way that this 
rational number is positive, we end up with existence of a collection of signs for which 
Conjecture 3.19 holds in the cases that we checked, i.e. modulo q7. For order q6, the 
calculation can be efficiently organised by comparing the coefficients of each monomial 
di11 di22 di33 di44 separately.

Remark 3.24. For orders q�3 we check brute force that the choices of orientation, 
i.e. signs for wπ, in Conjecture 3.19 are unique. For orders q4, q5, q6, we first specialise
to d1 = d2 = d3 = 0, d4 = −d, λ1 + λ2 + λ3 = 0 (after observing that this specialisation
is well-defined) in which case LHS and RHS of Conjecture 3.19 become polynomials of 
degree δ = 4, 5, 6 respectively. We then compare the coefficients of the terms of the poly-
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nomials starting with the leading term: dδ, dδ−1, · · · , d. It turns out that each comparison 
uniquely determines some of the signs. E.g. for q6, comparing the coefficients of d6 fixes 
1 sign, comparing the coefficients of d5 fixes 3 further signs, comparing the coefficients of 
d4 fixes 9 further signs, comparing the coefficients of d3 fixes 25 further signs, comparing 
the coefficients of d2 fixes 54 further signs, and comparing the coefficients of d fixes the 
last 48 signs.

4. Application to counting solid partitions

4.1. Weighted count of solid partitions

In this section, we study Conjecture 3.19 for a special choice of insertions

(d1, d2, d3, d4) = (0, 0, 0,−d), d � 1.

This has applications to enumerating solid partitions.
For a solid partition π = {πijk}i,j,k�1, we refer to π111 as its height. By experimental 

study of many examples (i.e. Proposition 4.2), we pose the following conjecture:

Conjecture 4.1. Let π be a solid partition and let wπ be defined using the unique sign in 
Conjecture 3.21. Then the following properties hold:

(a) Lπ(0, 0, 0, −d) wπ ∈ Q(λ1,λ2,λ3,λ4,d)
(λ1+λ2+λ3+λ4) has no pole at λ4 = −(λ1 + λ2 + λ3).

(b) The specialisation Lπ(0, 0, 0, −d) wπ

∣∣∣
λ1+λ2+λ3=0

is independent of λ1, λ2, λ3.
(c) More precisely, there exists a rational number ωπ ∈ Q>0 (independent of d) such 

that

Lπ(0, 0, 0,−d) wπ

∣∣∣
λ1+λ2+λ3=0

= (−1)|π| ωπ

π111∏
l=1

(d− (l − 1)). (4.1)

In particular, for d ∈ Z>0, the LHS vanishes when π111 > d and otherwise has the 
same sign as (−1)π.

Geometrically, this specialisation corresponds to taking X = C4 and D = {xd
4 = 0} ⊆

C4. Then L = O(D) ∼= O ⊗ t−d
4 . As we have seen in Proposition 2.4, the canonical 

section of L[n] on Hilbn(C4) cuts out the sublocus of zero-dimensional subschemes Z
contained in D. At the level of T -fixed (and therefore (C∗)4-fixed) points, this means we 
are considering solid partitions π of height π111 � d. This is the geometric motivation 
for the specialisation of Conjecture 4.1.

We give the following evidence for Conjecture 4.1:
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Proposition 4.2.

• Conjecture 4.1 is true for any solid partition π of size |π| � 6.
• Properties (a), (b), and the absolute value of equation (4.1) hold for d = 1 and any 

solid partition π satisfying π111 = 1 (in this case |ωπ| = 1).
• Properties (a), (b), and the absolute value of equation (4.1) hold for various individual 

solid partitions of size � 15 listed in Appendix A.

Proof. The second statement follows from Theorem 3.13 and [17, I, Sect. 4]. For the other 
cases, we use our Maple program, which calculates wπ for any given solid partition π. 
For the first statement, we use the unique choice of signs that we found when verifying 
Conjecture 3.21 (Theorem 3.22). �

Combining Conjectures 4.1 and 3.19, we obtain a generating function counting 
weighted solid partitions:

Theorem 4.3. Assume Conjectures 3.19 and 4.1 are true. Then

∑
π

ωπ t
π111 q|π| = et(M(q)−1), (4.2)

where the sum is over all solid partitions, t is a formal variable, and M(q) denotes the 
MacMahon function. In particular, when t = 1, we have

∑
π

ωπ q
|π| = eM(q)−1.

Proof. Consider Conjecture 3.19 for d1 = d2 = d3 = 0, d4 = −d, and the specialisation

λ1 + λ2 + λ3 = 0.

Then the power of M(−q) in Conjecture 3.19 becomes d. According to Conjecture 4.1, 
this specialisation is well-defined and we get

∑
π

ωπ ·
(

π111∏
l=1

(d− (l − 1))
)
q|π| = M(q)d,

for any d � 1. Then it is easy to see that

1 +
∑

π111=1
ωπ q

|π| = M(q),

1 + 2
∑

ωπ q
|π| + 2!

∑
ωπ q

|π| = M(q)2,

π111=1 π111=2
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1 + 3
∑

π111=1
ωπ q

|π| + 3 × 2
∑

π111=2
ωπ q

|π| + 3!
∑

π111=3
ωπ q

|π| = M(q)3,

. . .

1 +
k∑

i=1

k!
(k − i)!

∑
π111=i

ωπ q
|π| = M(q)k, k � 1.

Rearranging gives

t
∑

π111=1
ωπ q

|π| = t(M(q) − 1),

t2
∑

π111=2
ωπ q

|π| = t2

2
(
M(q)2 − 2M(q) + 1

)
,

t3
∑

π111=3
ωπ q

|π| = t3

3!
(
M(q)3 − 3M(q)2 + 3M(q) − 1

)
,

. . .

tk
∑

π111=k

ωπ q
|π| = tk

k!
(
M(q) − 1

)k
, k � 1,

whose summation gives the equality we want. �
Remark 4.4. Counting solid partitions is a very difficult question. In fact, MacMahon 
initially proposed an incorrect formula for its generating function [1]

∑
π

q|π|
?=

∞∏
n=1

1
(1 − qn) 1

2n(n+1) .

Exact enumeration using computers also does not go very far. As Stanley wrote in his 
PhD thesis [21]8

“The case r = 2 has a well-developed theory — here 2-dimensional partitions are 
known as plane partitions. (...) For r � 3, almost nothing is known and (...) casts only 
a faint glimmer of light on a vast darkness.”

We find that a specialisation of the weights L(d1, d2, d3, d4)π wπ, coming naturally from 
DT4 theory, gives a weighted count of solid partitions with a nice closed formula (4.2). 
Of course, one can always find ωπ such that (4.2) holds (e.g. simply by expanding the 
RHS of (4.2) and giving all solid partitions of the same size and height an equal weight).

8 This quote is taken from slides of a talk by S. Govindarajan, Aspects of Mathematics, IMSc, Chennai 
(2014).
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Below we will find an explicit (conjectural) formula of ωπ for any solid partition π (see 
Conjecture 4.13 and Proposition 4.14). In terms of this explicit formula, it actually be-
comes rather elementary to prove the counterpart of Theorem 4.3 (i.e. Proposition 4.11). 
Nevertheless, we find it interesting that such weights ωπ naturally arise from DT4 theory, 
even though they may have limited combinatorial interest.

4.2. Combinatorial approach to ωπ

In this section, we assign an explicit weight ωc
π to any solid partition (Definition 4.7). 

Firstly, we unconditionally prove the analogue of Theorem 4.3 with ωπ replaced by ωc
π

(Proposition 4.11). Secondly, an obvious generalisation of Proposition 4.11 turns out to 
hold for partitions of any dimension d (Remark 4.12). Thirdly, we conjecture ωπ = ωc

π, 
for any solid partition π, and we verify this in many examples (Conjecture 4.13 and 
Proposition 4.14).

Definition 4.5. Let ξ = {ξij}i,j�1 be a plane partition, i.e. a sequence of non-negative 
integers satisfying

ξij � ξi+1,j , ξij � ξi,j+1, ∀ i, j � 1,

|ξ| :=
∑
i,j

ξij < ∞.

We define the binary representation of ξ to be the sequence of integers {ξ(i, j, k)}i,j,k�1
given by

ξ(i, j, k) :=
{

1 if k � ξij
0 otherwise.

Example 4.6. Suppose ξ is given by ξ11 = 2, ξ21 = 1, ξ12 = 1. Then ξ(1, 1, 1) = ξ(1, 1, 2) =
ξ(2, 1, 1) = ξ(1, 2, 1) = 1 and ξ(i, j, k) = 0 for all other i, j, k � 1.

Definition 4.7. Let π = {πijk}i,j,k�1 be a (non-empty) solid partition and consider all 
possible sequences of integers {mξ}ξ, where the index ξ runs over all (non-empty) plane 
partitions and mξ ∈ Z�0. Define the following collection

Cπ :=
{
{mξ}ξ

∣∣∣∣∣ πijk =
∑
ξ

mξ · ξ(i, j, k) for all i, j, k
}
. (4.3)

We define

ωc
π :=

∑ ∏ 1
(mξ)!

. (4.4)

{mξ}ξ∈Cπ ξ
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For the empty solid partition π = ∅ we define ωc
π := 1.

Remark 4.8. For each {mξ}ξ ∈ Cπ, we have

|π| =
∑
ξ

mξ · |ξ|.

Hence, mξ = 0 if |ξ| is large. Therefore, the collection Cπ is a finite set and, for each 
{mξ}ξ ∈ Cπ, there are only finitely many nonzero mξ.

Example 4.9. Suppose π = {πijk}i,j,k�1 satisfies πijk = 0 unless i = j = 1. Then

ωc
π =

∞∏
k=1

1
(π11k − π11,k+1)!

.

This is due to the fact that the only plane partitions ξ = {ξijk}i,j,k�1 contributing to 
the defining equation in (4.3) satisfy ξ(i, j, k) = 0 unless i = j = 1. Define ξ(n) to be the 
plane partition with binary representation satisfying ξ(1, 1, k) = 1 for all 1 � k � n and 
ξ(i, j, k) = 0 otherwise. Then Cπ only consists of one element {mξ}ξ:

mξ =
{

π11k − π11,k+1 if ξ = ξ(k)

0 otherwise.

Example 4.10. Consider the solid partition π of Example 3.7, i.e. π111 = 2, π211 = π121 =
π112 = 1, and πijk = 0 otherwise. Then ωc

π = 4. Indeed Cπ contains the following four 
sequences, each contributing 1 to the sum in (4.4):

• Consider the plane partitions ξ(1) and ξ(2) defined by the following binary representa-
tions: ξ(1)(1, 1, 1) = ξ(1)(2, 1, 1) = ξ(1)(1, 2, 1) = ξ(1)(1, 1, 2) = 1 and ξ(1)(i, j, k) = 0
otherwise; ξ(2)(1, 1, 1) = 1 and ξ(2)(i, j, k) = 0 otherwise. Define {mξ}ξ by mξ = 1 if 
ξ = ξ(1) or ξ(2) and mξ = 0 otherwise.

• Consider the plane partitions ξ(1) and ξ(2) defined by the following binary represen-
tations: ξ(1)(1, 1, 1) = ξ(1)(2, 1, 1) = ξ(1)(1, 2, 1) = 1 and ξ(1)(i, j, k) = 0 otherwise; 
ξ(2)(1, 1, 1) = ξ(2)(1, 1, 2) = 1 and ξ(2)(i, j, k) = 0 otherwise. Define {mξ}ξ by mξ = 1
if ξ = ξ(1) or ξ(2) and mξ = 0 otherwise.

• Consider the plane partitions ξ(1) and ξ(2) defined by the following binary represen-
tations: ξ(1)(1, 1, 1) = ξ(1)(2, 1, 1) = ξ(1)(1, 1, 2) = 1 and ξ(1)(i, j, k) = 0 otherwise; 
ξ(2)(1, 1, 1) = ξ(2)(1, 2, 1) = 1 and ξ(2)(i, j, k) = 0 otherwise. Define {mξ}ξ by mξ = 1
if ξ = ξ(1) or ξ(2) and mξ = 0 otherwise.

• Consider the plane partitions ξ(1) and ξ(2) defined by the following binary represen-
tations: ξ(1)(1, 1, 1) = ξ(1)(1, 2, 1) = ξ(1)(1, 1, 2) = 1 and ξ(1)(i, j, k) = 0 otherwise; 
ξ(2)(1, 1, 1) = ξ(2)(2, 1, 1) = 1 and ξ(2)(i, j, k) = 0 otherwise. Define {mξ}ξ by mξ = 1
if ξ = ξ(1) or ξ(2) and mξ = 0 otherwise.
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The combinatorial weights ωc
π lead to the following generating series:

Proposition 4.11. The following identity holds

∑
π

ωc
π t

π111 q|π| = et(M(q)−1),

where the sum is over all solid partitions, t is a formal variable, and M(q) denotes the 
MacMahon function. In particular, when t = 1, we have

∑
π

ωc
π q

|π| = eM(q)−1.

Proof. The RHS can be rewritten as
(∏

ξ�1

etq

)(∏
ξ�2

etq
2

)(∏
ξ�3

etq
3

)
· · · (4.5)

where 
∏

ξ�n denotes the finite product over all plane partitions ξ of size n.
Choose a sequence of multiplicities {mξ ∈ Z�0}ξ with only finitely many mξ > 0. 

This choice gives rise to a solid partition π defined as follows

πijk :=
∑
ξ

mξ · ξ(i, j, k), for all i, j, k � 1,

which we call the solid partition associated to {mξ}ξ. Conversely, for a fixed solid par-
tition π, we can consider the collection of all sequences {mξ ∈ Z�0}ξ with only finitely 
many mξ > 0 whose associated solid partition is π. This collection is precisely Cπ.

Each term arising from multiplying out the infinite product (4.5) corresponds to a 
sequence {mξ ∈ Z�0}ξ with only finitely many mξ > 0. Such a term contributes

∏
ξ

tmξ

(mξ)!
qmξ|ξ|. (4.6)

Now collect all terms of the form (4.6) such that {mξ}ξ has associated solid partition π. 
This gives

∑
{mξ}ξ∈Cπ

∏
ξ

tmξ

(mξ)!
qmξ|ξ| =

( ∑
{mξ}ξ∈Cπ

∏
ξ

1
(mξ)!

)
tπ111q|π| = ωc

π t
π111q|π|,

where we use 
∑

ξ mξ = π111 in the first equality. Summing over all distinct solid partitions 
gives the formula of the proposition. �
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Remark 4.12. We may also start with d-partitions9 π for any d � 1 and define ωc
π

completely analogously using (d − 1)-partitions ξ and their binary representations. The 
same proof yields

log
∑

d-partitions π

ωc
π t

π111 q|π| = t
∑

(d−1)-partitions π, |π|�1

q|π|,

where we use the convention that there exists a single zero-dimensional partition of each 
size.

We end this section with the observation that a specialisation of DT4 theory precisely 
seems to recover the combinatorics that we just described (and this is how we found the 
weights ωc

π in the first place).

Conjecture 4.13. For any solid partition π, we have ωπ = ωc
π, where ωπ is defined using 

DT4 theory in Conjecture 4.1 and ωc
π is the explicit combinatorial weight of Defini-

tion 4.7.

Using our Maple program, which calculates wπ for a given π, we verified the following:

Proposition 4.14.

• Conjecture 4.13 is true for any solid partition π of size |π| � 6.
• |ωπ| = ωc

π for any solid partition π satisfying π111 = 1.
• |ωπ| = ωc

π for the explicit list of solid partitions of size � 15 given in Appendix A.

Appendix A. Explicit calculations of |ωπ|

Using our Maple program, which calculates wπ for a given solid partition π, we checked 
that

Lπ(0, 0, 0,−d) wπ

∣∣∣
λ1+λ2+λ3=0

= (−1)|π| ωπ

π111∏
l=1

(d− (l − 1)),

ωπ = ωc
π,

(A.1)

hold for all solid partitions π with |π| � 6. Here the signs of wπ are the ones induced 
from Conjecture 3.21. We also checked that the absolute value of equations (A.1) hold 
for:

• (Height 1 and d = 1) Let π be a solid partition with π111 = 1. Then |ωπ| = ωc
π = 1.

9 E.g. 1-partitions are partitions, 2-partitions are plane partitions, 3-partitions are solid partitions.



646 Y. Cao, M. Kool / Advances in Mathematics 338 (2018) 601–648
• (1-Partitions of size � 10) All solid partitions π = {πijk}i,j,k�1 with πijk = 0 unless 
i = j = 1 and |π| � 10. Then

|ωπ| = ωc
π =

∞∏
k=1

1
(π11k − π11,k+1)!

.

• (Size 7) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t2 + t1t2 + t3 + t4 + t24.

Then |ωπ| = ωc
π = 3

2 .
• (Size 8) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t2 + t1t2 + t3 + t4 + t1t4 + t24.

Then |ωπ| = ωc
π = 3.

• (Size 9) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t3 + t4 + t1t4 + t24.

Then |ωπ| = ωc
π = 6.

• (Size 10) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t24.

Then |ωπ| = ωc
π = 2.

• (Size 11) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24.

Then |ωπ| = ωc
π = 8.

• (Size 12) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24 + t34.

Then |ωπ| = ωc
π = 6.

• (Size 13) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24 + t34 + t44.

Then |ωπ| = ωc
π = 8 .
3
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• (Size 14) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24 + t34 + t44 + t54.

Then |ωπ| = ωc
π = 5

6 .
• (Size 15) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t22 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24 + t34 + t44 + t54.

Then |ωπ| = ωc
π = 5

3 .

Appendix B. Nekrasov’s conjecture

The first author heard the following related conjecture (written below in terms of 
equivariant DT4 theory) from Professor Nikita Nekrasov during a visit to the Simons 
Center for Geometry and Physics in October 2016. For a recent much more general 
K-theoretical version, see [19].

Let X = C4 and let T = {t ∈ (C∗)4 | t1t2t3t4 = 1} be the Calabi–Yau torus. Denote 
the equivariant parameters of (C∗)4 by λi (i = 1, 2, 3, 4). We define

[Hilbn(C4)]vir
T,o(L) :=

∑
Z∈Hilbn(C4)T

eT
(
Ext2(IZ , IZ), Q

)
eT

(
Ext1(IZ , IZ)

) .

As in Definition 3.8, this depends on a choice of orientation o(L) as in Definition 3.8
which is used to define the half Euler classes. Consider the generating function

ZC4 :=
∞∑

n=0

( ∫
[Hilbn(C4)]vir

T,o(L)

1
)
· qn ∈ Q(λ1, λ2, λ3, λ4)

(λ1 + λ2 + λ3 + λ4)
[[q]]].

Conjecture B.1. There exist choices of orientation such that

ZC4 = e
(λ1+λ2)(λ1+λ3)(λ2+λ3)

λ1λ2λ3(λ1+λ2+λ3) q.

Using the signs discussed in Remark 3.23, we checked the following with our Maple 
program:

Proposition B.2. Conjecture B.1 is true modulo q7.

In fact, the signs of Nekrasov’s conjecture seem to be unique as well:

Proposition B.3. Modulo q5, there are unique choices of signs for which Conjecture B.1
holds.
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