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ZERO-DIMENSIONAL DONALDSON-THOMAS INVARIANTS

OF CALABI-YAU 4-FOLDS

YALONG CAO AND MARTIJN KOOL

Abstract. We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold
X. We define DT4 invariants by integrating the Euler class of a tautological vector bundle
L[n] against the virtual class. We conjecture a formula for their generating series, which we
prove in certain cases when L corresponds to a smooth divisor on X. A parallel equivariant
conjecture for toric Calabi-Yau 4-folds is proposed. This conjecture is proved for smooth toric
divisors and verified for more general toric divisors in many examples.

Combining the equivariant conjecture with a vertex calculation, we find explicit positive
rational weights, which can be assigned to solid partitions. The weighted generating function
of solid partitions is given by exp(M(q) − 1), where M(q) denotes the MacMahon function.

1. Introduction

1.1. Background. Hilbert schemes on a smooth projective variety X are moduli schemes which
parametrize subschemes of X with given Hilbert polynomial. From the point of view of coherent
sheaves, they can be regarded as moduli schemes of ideal sheaves of subschemes with fixed
Chern character. The simplest example is the Hilbert scheme Hilbn(X) of n points on X , whose
ideal sheaves have Chern character (1, 0, · · · , 0,−n). There are lots of interesting studies on
their geometry, topology and representation theory, most of which are concentrated on the cases
dimC X 6 2. The difficulty in extending these studies to higher dimensions comes from the fact
that the Hilbert schemes are in general no longer smooth.

One surprising feature about dimC X = 3 is that, although Hilbn(X) can be very singular with
different irreducible components of various dimensions, it still carries a degree zero virtual class
[Hilbn(X)]vir [17]. The degree of this class is called a degree zero Donaldson-Thomas invariant of
X [22]. An expression for the generating series of these invariants was conjectured and verified
for local toric surfaces by Maulik-Nekrasov-Okounkov-Pandharipande [17] and confirmed in full
generality by Levine-Pandharipande [16] and Li [15]. See also [2] for another proof in the Calabi-
Yau case.

Our aim is to go one dimensional higher and restrict to the case of Calabi-Yau manifolds [23].
By the work of Borisov-Joyce [3] and Cao-Leung [6], we have a virtual class construction for
Gieseker moduli spaces of stable sheaves on smooth projective Calabi-Yau 4-folds, which is in
particular applicable to Hilbn(X). A difference from the case of 3-folds is that the virtual class
is no longer of degree zero, so we need natural insertions to define invariants.

1.2. The compact case. Let X be a smooth projective Calabi-Yau 4-fold and let Hilbn(X)
denote the Hilbert scheme of n points on X . Assume the existence of an orientation o(L) on the
determinant line bundle L over Hilbn(X). Then the results of [3, 6] provide a DT4 virtual class

[Hilbn(X)]viro(L) ∈ H2n(Hilb
n(X),Z).(1.1)

The virtual class (1.1) depends on the choice of orientation o(L). On each connected component
of Hilbn(X), there are two choices of orientations, which affects the corresponding contribution
to the class (1.1) by a sign. We review facts about the DT4 virtual class in Section 2.1.

In order to define the invariants, we require insertions. Let L be a line bundle on X and
denote by L[n] the tautological (rank n) vector bundle over Hilbn(X) with fibre H0(L|Z) over
Z ∈ Hilbn(X). Then it makes sense to define the following:

Definition 1.1. Let X be a smooth projective Calabi-Yau 4-fold and let L be a line bundle on
X . Let L be the determinant line bundle of Hilbn(X) with quadratic form Q induced from Serre
duality. Suppose L is given an orientation o(L). We define

DT4(X,L, n ; o(L)) :=
∫

[Hilbn(X)]vir
o(L)

e(L[n]) ∈ Z, if n > 1,

where e(−) denotes the Euler class. We also set DT4(X,L, 0 ; o(L)) := 1.

We make the following conjecture for the generating series of these invariants:
1
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Conjecture 1.2 (Conjecture 2.2). Let X be a smooth projective Calabi-Yau 4-fold and L be a
line bundle on X. There exist choices of orientation such that

∞
∑

n=0

DT4(X,L, n ; o(L)) qn = M(−q)
∫

X
c1(L)·c3(X),

where

M(q) =

∞
∏

n=1

1

(1− qn)n

denotes the MacMahon function.

We verify Conjecture 1.2 in some good cases based on the following geometric setting, where
the line bundle L = OX(D) is associated to an effective divisor D ⊆ X .

Proposition 1.3 (Proposition 2.4). Let X be a smooth quasi-projective variety, D ⊆ X any
effective divisor, and L = OX(D). There exists a tautological section σ and an isomorphism of
schemes

L[n]

π

��
σ−1(0) ∼= Hilbn(D)

ι // Hilbn(X).

σ

]]

For n 6 3 and D,X both smooth, the Hilbert schemes are smooth and we can explicitly
compare deformation-obstruction theories on X and D (Proposition 2.8). The latter gives rise
to zero-dimensional DT3 invariants on D, which are known by the work of [16, 15].

Theorem 1.4 (Theorem 2.10). Let X be a smooth projective Calabi-Yau 4-fold, D ⊆ X a
smooth divisor, and L = OX(D). For each n 6 3, there exists a choice of orientation o(L) such
that

∫

[Hilbn(X)]vir
o(L)

e(L[n]) =

∫

[Hilbn(D)]vir
1.

In particular, Conjecture 1.2 is true in this setting.

The proof for general n will rely on Joyce’s theory of D-manifolds or Kuranishi atlases. We
hope to return to it in a future paper.

1.3. The toric case. When X is a smooth quasi-projective toric Calabi-Yau 4-fold with action
of (C∗)4, we can study an equivariant version of Conjecture 1.2. Despite the non-compactness
of X and Hilbn(X), we can still define an equivariant version of the DT4 virtual class on the
torus fixed locus, which consists of a finite number of reduced points.

The definition involves the subtorus T ⊆ (C∗)4 preserving the Calabi-Yau volume form and
hence Serre duality pairing. We note the following equality of fixed loci (Lemma 3.1, 3.6)

Hilbn(X)T = Hilbn(X)(C
∗)4 .

For any Z ∈ Hilbn(X)T , we consider the equivariant Euler class

eT (Ext
1(IZ , IZ)) ∈ H∗(BT ),

and also the half Euler class

eT (Ext
2(IZ , IZ), Q) ∈ H∗(BT ),

where Q is the quadratic form induced from the Serre duality pairing on Ext2(IZ , IZ). We then
have

(1.2) eT (Ext
2(IZ , IZ), Q) = ±

√

(−1)
ext2(IZ ,IZ )

2 eT
(

Ext2(IZ , IZ)
)

,

where the class (−) in
√

(−) is a square and the sign depends on the choice of orientation.

Definition 1.5. (Definition 3.8) The T -equivariant virtual class of Hilbn(X) is

[Hilbn(X)]virT,o(L) :=
∑

Z∈Hilbn(X)T

eT
(

Ext2(IZ , IZ), Q
)

eT
(

Ext1(IZ , IZ)
) ,

where o(L) denotes a choice of sign in (1.2) for each Z ∈ Hilbn(X)T .
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By fixing a T -equivariant line bundle L on X , we can consider the equivariant Euler class of
its tautological bundle eT (L

[n]) and define

DT4(X,T, L, n ; o(L)) :=
∑

Z∈Hilbn(X)T

eT
(

Ext2(IZ , IZ), Q
)

· eT (L[n]|Z)
eT
(

Ext1(IZ , IZ)
) .

An equivariant version of Conjecture 1.2 can then be posed as follows:

Conjecture 1.6 (Conjecture 3.12). Let X be a smooth quasi-projective toric Calabi-Yau 4-fold
and L be a T -equivariant line bundle on X. Then there exist choices of orientation o(L) such
that

∞
∑

n=0

DT4(X,T, L, n ; o(L)) qn = M(−q)

∫

X
cT1 (L) · cT3 (X),

where
∫

X denotes equivariant push-forward to a point.

When L = OX(D) corresponds to a smooth toric divisor D, we can prove Conjecture 1.6.

Theorem 1.7 (Theorem 3.13). Conjecture 1.6 is true for L = OX(D), where D ⊆ X is a
smooth (C∗)4-invariant divisor.

Any smooth quasi-projective toric Calabi-Yau 4-foldX can be covered by open (C∗)4-invariant
subsets (equivariantly) isomorphic to C4. On each such subset, every (C∗)4-invariant zero-
dimensional subscheme corresponds to a solid partition π = {πijk}i,j,k>1, i.e. a sequence of
non-negative integers πijk ∈ Z>0 satisfying

πijk > πi+1,j,k, πijk > πi,j+1,k, πijk > πi,j,k+1 ∀ i, j, k > 1,

|π| :=
∑

i,j,k>1

πijk < ∞,

where |π| is called the size of π.
Using a vertex formalism as in MNOP [17], we reduce Conjecture 1.6 to the case X =

C4 (Proposition 3.20). This leads us to assigning expressions Lπ(d1, d2, d3, d4) (coming from
eT (L

[n])) and wπ (coming from eT
(

Ext2(IZ , IZ), Q
)

/eT
(

Ext1(IZ , IZ)
)

) to any solid partition
π. See Definition 3.16. In fact, the equivariant weight wπ is only defined up to sign, reflecting
the different signs in (1.2) for different choices of orientation. The case X = C4 then essentially
corresponds to the following conjecture (which now includes a uniqueness assertion).

Conjecture 1.8 (Conjectures 3.19 and 3.21). There exists a unique way of choosing the signs
for the equivariant weights wπ such that

∑

π

Lπ(d1, d2, d3, d4)wπ q
|π| = M(−q)

(d1λ1+d2λ2+d3λ3+d4λ4)(−λ1λ2λ3−λ1λ2λ4−λ1λ3λ4−λ2λ3λ4)
λ1λ2λ3λ4

holds in Q(λ1,λ2,λ3,λ4)
(λ1+λ2+λ3+λ4)

(d1, d2, d3, d4)[[q]], where the sum is over all solid partitions and M(q)

denotes the MacMahon function.

Besides Theorem 1.7, we verify Conjecture 1.8 in the following setting by using a Maple
program, which calculates wπ for a given solid partition π.

Theorem 1.9 (Theorem 3.22). Conjecture 1.8 is true modulo q7.

1.4. Application to counting solid partitions. By experimental study of many examples,
we find that the specialization

(1.3) Lπ(0, 0, 0,−d)wπ

∣

∣

∣

λ1+λ2+λ3=0

is well-defined. We pose the following conjecture:

Conjecture 1.10 (Conjecture 4.1). Let π be a solid partition and let wπ be defined using the
unique sign in Conjecture 1.8. Then the following properties hold:

(a) Lπ(0, 0, 0,−d)wπ ∈ Q(λ1,λ2,λ3,λ4,d)
(λ1+λ2+λ3+λ4)

has no pole at λ4 = −(λ1 + λ2 + λ3).

(b) The specialization Lπ(0, 0, 0,−d)wπ

∣

∣

∣

λ1+λ2+λ3=0
is independent of λ1, λ2, λ3.

(c) More precisely, there exists a rational number ωπ ∈ Q>0 (independent of d) such that

(1.4) Lπ(0, 0, 0,−d)wπ

∣

∣

∣

λ1+λ2+λ3=0
= (−1)|π| ωπ

π111
∏

l=1

(d− (l − 1)).

In particular, for d ∈ Z>0, the LHS vanishes when π111 > d and otherwise has the same
sign as (−1)π.
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Geometrically, the specialization (1.3) corresponds to takingX = C4 and D = {xd
4 = 0} ⊆ C4.

Then L = O(D) ∼= O⊗ t−d
4 . As we have seen in Proposition 1.3, the canonical section of L[n] on

Hilbn(C4) cuts out the sublocus of zero-dimensional subschemes Z contained in D. At the level
of torus fixed points, we are therefore considering solid partitions π of height π111 6 d. This is
the geometric motivation for the specialization (1.3).

We have the following evidence for this conjecture:

Proposition 1.11 (Proposition 4.2).

• Conjecture 1.10 is true for any solid partition π of size |π| 6 6.
• Properties (a), (b), and the absolute value of equation (1.4) hold for d = 1 and any solid

partition π satisfying π111 = 1 (in this case |ωπ| = 1).
• Properties (a), (b), and the absolute value of equation (1.4) hold for various individual

solid partitions of size 6 15 listed in Appendix A.

By combining Conjectures 1.8 and 1.10, we find a formula for enumerating ωπ-weighted solid
partitions π.

Theorem 1.12 (Theorem 4.3). Assume Conjectures 1.8 and 1.10 are true. Then

(1.5)
∑

π

ωπ t
π111 q|π| = et(M(q)−1),

where the sum is over all solid partitions, t is a formal parameter, and M(q) denotes the MacMa-
hon function. In particular, for t = 1

∑

π

ωπ q
|π| = eM(q)−1.

This theorem inspired us to define an explicit combinatorial weight ωc
π ∈ Q>0 associated to

each solid partition π (Definition 4.7). Firstly, we prove an unconditional version of Theorem
1.12 with ωπ replaced by ωc

π (Theorem 4.11). Secondly, we conjecture that ωπ = ωc
π and check

this for the cases of Proposition 1.11 (Conjecture 4.13, Proposition 4.14).
The definition of ωc

π (Definition 4.7) can naturally be extended to d-dimensional partitions
for any d > 0, where d = 3 corresponds to the case of solid partitions. The proof of Theorem
4.11 immediately gives

log
∑

d-partitions π

ωc
π q

|π| =
∑

(d−1)-partitions π, |π|>1

q|π|

and we give a similar formula involving the formal parameter t (Remark 4.12). In a future work
[5], we relate this formula to equivariant DT type invariants on Cd+1.

There is a related work due to Nekrasov [19], where he proposes a conjectural formula for
a very general equivariant K-theoretical partition function on Hilbert schemes of points on C4.
Specializations of his partition function seem related to our Conjecture 1.8. We briefly discuss
a very special instance of his conjecture in Appendix B, where we point out relations to our
choices of orientation. As opposed to [19], our study of the C4 case emerges from first studying
the compact case (Conjecture 1.2) and subsequently studying the toric analogues (Conjectures
1.6 and 1.8).

1.5. Acknowledgement. This work was initiated during a visit of the first author to the Math-
ematical Institute of Utrecht University. He is grateful to the institute for providing an excellent
environment. Y. C. is supported by The Royal Society Newton International Fellowship. We are
very grateful to Professor Nikita Nekrasov for sending us his preprint and correspondence via
e-mails. We also thank the anonymous referee for providing numerous suggestions to improve
the exposition of the paper.

2. The compact case

Before stating our conjecture for Hilbert schemes of points on smooth projective Calabi-Yau
4-folds, we review the framework of DT4 invariants.
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2.1. Review of DT4 invariants. Let X be a smooth projective Calabi-Yau 4-fold, i.e. a smooth
projective 4-fold X satisfying KX

∼= OX and Hi(OX) = 0 for i = 1, 2, 3. Let ω be an ample
divisor on X and v ∈ H∗(X,Q) a cohomology class.

The coarse moduli space Mω(v) of ω-Gieseker semistable sheaves E on X with ch(E) = v
exists as a projective scheme. We always assume that Mω(v) is a fine moduli space, i.e. any
point [E] ∈ Mω(v) is stable and there is a universal family

E ∈ Coh(X ×Mω(v)).

In [3, 6], under certain hypotheses, the authors construct a DT4 virtual class

[Mω(v)]
vir ∈ H2−χ(v,v)(Mω(v),Z),(2.1)

where χ(−,−) denotes the Euler pairing. This class is not necessarily algebraic.
Roughly speaking, in order to construct such a class, one chooses at every point [E] ∈ Mω(v),

a half-dimensional real subspace of the usual obstruction space

Ext2+(E,E) ⊆ Ext2(E,E)

on which the non-degenerate quadratic form Q defined by Serre duality is real and positive
definite. Then one glues local Kuranishi-type models of the form

κ+ = π+ ◦ κ : Ext1(E,E) → Ext2+(E,E),

where κ is a Kuranishi map of Mω(v) at E and π+ is projection onto the first factor of

(2.2) Ext2(E,E) = Ext2+(E,E)⊕
√
−1 · Ext2+(E,E).

In [6], local models are glued in three special cases:

(1) when Mω(v) consists of locally free sheaves only;
(2) when Mω(v) is smooth;
(3) when Mω(v) is a shifted cotangent bundle of a derived smooth scheme.

In these cases, the corresponding virtual classes are constructed using either gauge theory or
algebro-geometric perfect obstruction theory.

Assuming Mω(v) can be given a (−2)-shifted symplectic structure, a general gluing construc-
tion was given by Borisov-Joyce [3] based on Pantev-Töen-Vaquié-Vezzosi’s theory of shifted
symplectic geometry [20] and Joyce’s theory of derived C∞-geometry. The corresponding vir-
tual class is constructed using Joyce’s D-manifold theory (a machinery similar to Spivak’s theory
of derived smooth manifolds or Fukaya-Oh-Ohta-Ono’s theory of Kuranishi space structures used
in defining Lagrangian Floer theory).

To have a better understanding of what DT4 virtual classes look like, we briefly review the
construction in situations (2) and (3) mentioned above:

• When Mω(v) is smooth, the obstruction sheaf

Ob := Ext2πM
(E , E)

is a vector bundle on Mω(v) endowed with a non-degenerate quadratic form Q induced
by Serre duality, where πM : X ×Mω(v) → Mω(v) denotes projection. A family version
of (2.2) defines a real subbundle Ob+ ⊆ Ob on which Q is positive definite and Ob ∼=
Ob+ ⊗R C are isomorphic as vector bundles with quadratic forms [9, Lem. 5]. Since
Mω(v) is smooth, the Zariski tangent space Ext1(E,E) at any [E] ∈ Mω(v) has the
same dimension as Mω(v), which implies that the local Kuranishi maps are zero. The
DT4 virtual class is given by

(2.3) [Mω(v)]
vir = PD

(

e(Ob, Q)
)

,

where e(Ob, Q) denotes the half-Euler class of (Ob, Q), i.e. the Euler class of a real
subbundle Ob+ and PD(−) denotes the Poincaré dual. Equality (2.3) holds up to a sign
on each connected component. This sign is determined by the choice of orientation,
which we review below. Note that the half-Euler class satisfies

(2.4) e(Ob, Q)2 = (−1)
rk(Ob)

2 e(Ob), if rk(Ob) is even,

e(Ob, Q) = 0, if rk(Ob) is odd.

• Suppose Mω(v) is a shifted cotangent bundle of a derived smooth scheme. Roughly
speaking, this means that at any closed point [F ] ∈ Mω(v), we have a Kuranishi map

κ : Ext1(F, F ) → Ext2(F, F ) = VF ⊕ V ∗
F ,



6 YALONG CAO AND MARTIJN KOOL

which factors through a maximal isotropic subspace VF of (Ext2(F, F ), Q). Then the
DT4 virtual class of Mω(v) is, roughly speaking, the virtual class of the perfect obstruc-
tion theory formed by {VF }F∈Mω(v). When Mω(v) is furthermore smooth as a scheme,
then it is simply the Euler class of the vector bundle {VF }F∈Mω(v) over Mω(v).

On orientations. In order to construct the above virtual class (2.1) with coefficients in Z

(instead of Z2), we need an orientability result for Mω(v), which is stated as follows. Let

L := det(RHomπM
(E , E)) ∈ Pic(Mω(v))

be the determinant line bundle of Mω(v), equipped with the non-degenerate symmetric pairing
Q induced by Serre duality. An orientation of (L, Q) is a reduction of its structure group from
O(1,C) to SO(1,C) = {1}. In other words, we require a choice of square root of the isomorphism

Q : L⊗ L → OMω(v)

in order to construct the virtual class (2.1). The virtual class (2.1) depends on the choice of
orientation o(L), so we write [Mω(v)]

vir
o(L) in order to stress this dependence.

An existence result of orientations is proved in [7, Thm. 2.2] for Calabi-Yau 4-folds X such
that Hol(X) = SU(4) and Hodd(X,Z) = 0. Notice that, if orientations exist, the different
choices form a torsor for H0(Mω(v),Z2).

In particular, when Mω(v) is smooth, the choice of orientation on L is equivalent to a choice
of orientation of a real subbundle Ob+ ⊆ Ob. By the homotopy equivalence O(n,C) ∼ O(n,R),
the real subbundle is unique up to isomorphisms.

2.2. Conjecture for DT4 invariants of Hilbn(X). Let X be a smooth projective Calabi-Yau
4-fold. For a positive integer n, we consider the Hilbert scheme Hilbn(X) of n points on X .
It can be identified with the Gieseker moduli space of semistable sheaves with Chern character
(1, 0, 0, 0,−n) ∈ Heven(X), which is a fine moduli space whose closed points parametrize ideal
sheaves of points.

Given a line bundle L on X , we define its tautological bundle L[n] as follows [13, Sect. 4.1]

L[n] := (πM )∗
(

OZn
⊗ π∗

XL
)

,

where Zn ⊆ Hilbn(X) × X denotes the universal subscheme and πM , πX are projections from
the product Hilbn(X) ×X to each factor. Since πM is a flat finite morphism of degree n, L[n]

is a rank n vector bundle on Hilbn(X) with fibre H0(L|Z) over Z ∈ Hilbn(X). Note that the
(real) virtual dimension of Hilbn(X) is 2n by (2.1). Hence we define:

Definition 2.1. Let X be a smooth projective Calabi-Yau 4-fold and L a line bundle on X .
Assume the determinant line bundle L of Hilbn(X), with its non-degenerate quadratic form Q
induced from Serre duality, is given an orientation o(L). We define

DT4(X,L, n ; o(L)) :=
∫

[Hilbn(X)]vir
o(L)

e(L[n]) ∈ Z, if n > 1,

and DT4(X,L, 0 ; o(L)) := 1.

We make the following conjecture for the corresponding generating series.

Conjecture 2.2. Let X be a smooth projective Calabi-Yau 4-fold and L a line bundle on X.
Then there exist choices of orientation such that

∞
∑

n=0

DT4(X,L, n ; o(L)) qn = M(−q)
∫

X
c1(L)·c3(X),

where M(q) denotes the MacMahon function.

Remark 2.3. When L = OX , Conjecture 2.2 follows from the fact that O[n]
X has a nowhere

vanishing section which sends Z to 1Z ∈ H0(X,OZ). Then e(O[n]
X ) = c1(OX) = 0.

2.3. Geometric motivation of the conjecture. Let us consider the case when L = OX(D)
corresponds to an effective divisorD ⊆ X . The following proposition is similar to [12, Sect. A.2]1.

Proposition 2.4. Let D ⊆ X be any effective divisor on a smooth quasi-projective variety X
and let L := OX(D). The rank n vector bundle L[n] on Hilbn(X) has a tautological section σ
whose zero locus is isomorphic to the Hilbert scheme Hilbn(D) of n points on D.

1We thank the anonymous referee for pointing out a proof which is significantly simpler than our original.
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Proof. Consider the universal subscheme

Z
p

{{✇✇
✇✇
✇✇
✇✇
✇✇

q

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

�

� / Hilbn(X)×X

Hilbn(X) X.

Let s : D ⊆ X be a section defining D. We claim that the tautological section σ := p∗q
∗s of

L[n] = p∗q
∗L has the required property, i.e. we have an equality of schemes

Z(σ) = Hilbn(D).

In order to see this, it suffices to take any T -flat family

ZT

pT

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ qT

##●
●●

●●
●●

●●

�

� / T ×X

T X

with zero-dimensional length n fibres and prove that

ZT ⊆ T ×D ⊆ T ×X

if and only if the corresponding morphism f : T → Hilbn(X) factors through Z(σ).
Now f factors through Z(σ) if and only if f∗σ is the zero section of f∗L[n]. Note that

ZT = Z ×T Hilbn(X) and

f∗σ = f∗p∗q
∗s = pT∗q

∗
T s.

Therefore f∗σ is the zero section if and only if ZT ⊆ T ×D as required. �

Let X be a smooth projective Calabi-Yau 4-fold with smooth divisor D ⊆ X and let L =
OX(D). Ideally, if all moduli spaces are smooth of expected dimensions 2, i.e. dimC Hilbn(D) = 0
and dimR Hilbn(X) = 2n, then the section σ constructed in Proposition 2.4 is transverse to the
zero section and we have

∫

[Hilbn(X)]vir
e(L[n]) =

∫

[Hilbn(D)]vir
1,

modulo a sign coming from the choice of orientation involved in defining the LHS. Then Conjec-
ture 2.2 would follow from the generating series of zero-dimensional Donaldson-Thomas invari-
ants of a smooth projective 3-fold D [16, 15]

∞
∑

n=0

(

∫

[Hilbn(D)]vir
1
)

qn = M(−q)
∫

D
c3(TD⊗KD)

and equation (2.5) below.
For later reference, we add the derivation of the equality

(2.5)

∫

D

c3(TD ⊗KD) =

∫

X

c1(L) · c3(TX).

Indeed, from the short exact sequence

0 → TD → TX |D → ND/X → 0

and the fact that ND/X
∼= OD(D) ∼= KD (X is Calabi-Yau), we obtain

∫

D

c(TD ⊗KD) =

∫

X

c1(L) ·
c(TX ⊗ L)

c(L⊗ L)
,

where c(−) denotes total Chern class. The degree 3 part of the fraction is easily calculated:

c3(TX) + c1(TX) · c1(L)2 = c3(TX),

where the last equality again uses the fact that X is Calabi-Yau.

2Of course, this fantasy situation never occurs.
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2.4. Preparation on deformation and obstruction theories. We need to compare deformation-
obstruction theories of Hilbn(X) and Hilbn(D) in order to verify our conjecture.

Lemma 2.5. Let X be a smooth projective variety and i : D →֒ X be a smooth divisor. For any
subscheme Z ⊆ D, we have a short exact sequence

(2.6) 0 → OX(−D) → IZ,X → i∗IZ,D → 0

of coherent sheaves on X, where IZ,⋆ is the ideal sheaf of Z in ⋆ ( ⋆ = X or D).
Furthermore, if Z is zero-dimensional, we have a long exact sequence

0 → Ext0X(i∗IZ,D, i∗OZ) → Ext0X(IZ,X , i∗OZ) → H0(OZ(D)) →
→ Ext1X(i∗IZ,D, i∗OZ) → Ext1X(IZ,X , i∗OZ) → H1(OZ(D)) = 0,

(2.7)

and canonical isomorphisms

ExtiX(i∗IZ,D , i∗OZ) ∼= ExtiX(IZ,X , i∗OZ) for i > 2.

Proof. Sequence (2.6) can be easily deduced from the short exact sequences

0 → OX(−D) → OX → OD → 0,

0 → IZ,X → OX → i∗OZ → 0,

0 → IZ,D → OD → OZ → 0,

and diagram chasing. Applying RHomX(−, i∗OZ) to (2.6), we get a distinguished triangle

RHomX(i∗IZ,D , i∗OZ) → RHomX(IZ,X , i∗OZ) → RHomX(OX(−D), i∗OZ),

whose cohomology gives the long exact sequence (2.7) and the desired canonical isomorphisms
because Z is zero-dimensional. �

Lemma 2.6. Let X be a smooth projective variety with dimC(X) > 3 and let L → X be a line
bundle on X. For any zero-dimensional subscheme Z ⊆ X, we have canonical isomorphisms

Ext1X(IZ,X , IZ,X ⊗ L)0 ∼= HomX(IZ,X ,OZ ⊗ L) ∼= Ext1X(OZ ,OZ ⊗ L),

Ext2X(IZ,X , IZ,X ⊗ L)0 ∼= Ext1X(IZ,X ,OZ ⊗ L) ∼= Ext2X(OZ ,OZ ⊗ L).

Proof. We apply RHomX(−,OZ ⊗ L) to 0 → IZ,X → OX → OZ → 0 and get the long exact
sequence

0 → HomX(OZ ,OZ ⊗ L) → HomX(OX ,OZ ⊗ L) → HomX(IZ,X ,OZ ⊗ L) →
→ Ext1X(OZ ,OZ ⊗ L) → Ext1X(OX ,OZ ⊗ L) → Ext1X(IZ,X ,OZ ⊗ L) →
→ Ext2X(OZ ,OZ ⊗ L) → Ext2X(OX ,OZ ⊗ L) → Ext2X(IZ,X ,OZ ⊗ L) → · · · .

Since HomX(OZ ,OZ ⊗L) ∼= HomX(OX ,OZ ⊗L) and H>0(X,OZ ⊗L) = 0 for zero-dimensional
subschemes Z ⊆ X , we obtain isomorphisms

(2.8) ExtiX(IZ,X ,OZ ⊗ L) ∼= Exti+1
X (OZ ,OZ ⊗ L) for i > 0.

In particular, for dimC(X) = 3, we obtain

(2.9) dimC Ext2X(IZ,X ,OZ ⊗ L) = dimC Ext0X(OZ ,OZ),

where we used Serre duality Ext3X(OZ ,OZ) ∼= Ext0X(OZ ,OZ ⊗KX)∗. We will use this later.
Next we consider the following commutative diagram

RΓ(L)[1]

��

RΓ(L)[1]

��
RHomX(IZ,X ,OZ ⊗ L) // RHomX(IZ,X , IZ,X ⊗ L)[1] //

��

RHomX(IZ,X , L)[1]

��
RHomX(IZ,X , IZ,X ⊗ L)0[1] RHomX(OZ , L)[2],

(2.10)

where the horizontal and vertical rows are distinguished triangles. By taking cones, we obtain a
distinguished triangle

RHomX(IZ,X ,OZ ⊗ L) → RHomX(IZ,X , IZ,X ⊗ L)0[1] → RHomX(OZ , L)[2].

The long exact sequence of its cohomology gives an isomorphism

Ext1X(IZ,X , IZ,X ⊗ L)0 ∼= HomX(IZ,X ,OZ ⊗ L),
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where we used Ext2X(OZ , L) ∼= Hn−2(X,OZ ⊗KX ⊗ L−1) = 0 because n = dimC(X) > 3 and
similarly Ext1X(OZ , L) = 0. Furthermore, we obtain an exact sequence

0 → Ext1X(IZ,X ,OZ ⊗ L) → Ext2X(IZ,X , IZ,X ⊗ L)0 → Ext3X(OZ , L) →
→ Ext2X(IZ,X ,OZ ⊗ L) → Ext3X(IZ,X , IZ,X ⊗ L)0 → · · · .

(2.11)

When dimC(X) > 4, Ext3X(OZ , L) ∼= Hn−3(X,OZ ⊗KX ⊗ L−1)∗ = 0 and we are done.
When dimC(X) = 3, the trace map Ext0X(IZ,X , IZ,X ⊗ L′) ∼= H0(X,L′) is an isomorphism

for any line bundle L′ because Z has codimension > 1 (cf. [17, I, proof of Lem. 2]). Hence
Ext3X(IZ,X , IZ,X ⊗ L)0 = 0. Furthermore

dimC Ext3X(OZ , L) = dimC H0(X,OZ)

= dimC Ext0X(OZ ,OZ)

= dimC Ext2X(IZ,X ,OZ ⊗ L),

where the second equality uses HomX(OZ ,OZ) ∼= HomX(OX ,OZ) and the third equality uses
(2.9). The exact sequence (2.11) yields the desired isomorphism

Ext1X(IZ,X ,OZ ⊗ L) ∼= Ext2X(IZ,X , IZ,X ⊗ L)0. �

In the following lemma, we focus attention on Hilbn(X), where X is a smooth projective
Calabi-Yau 4-fold and n 6 3. We recall that for any smooth projective variety Y and n 6 3, the
Hilbert scheme Hilbn(Y ) is smooth of dimension dimC(Y ) ·n (e.g. [14]). In fact, for a subscheme
Z of length n 6 3, Lemma 2.6 implies

dimC Ext1X(IZ,X , IZ,X)0 = dimC Ext0X(IZ,X ,OZ) = 4n,

dimC Ext1D(IZ,D, IZ,D)0 = dimC Ext0D(IZ,D ,OZ) = 3n.

Lemma 2.7. Let X be a smooth projective Calabi-Yau 4-fold and let i : D →֒ X be a smooth
divisor. For any zero-dimensional subscheme Z ⊆ D of length 6 3, the exact sequence (2.7) in
Lemma 2.5 breaks into an exact sequence and a canonical isomorphism

0 → Ext0X(i∗IZ,D, i∗OZ) → Ext0X(IZ,X , i∗OZ) → H0(OZ(D)) → 0,

Ext1X(i∗IZ,D, i∗OZ) ∼= Ext1X(IZ,X , i∗OZ).

Furthermore, using the isomorphism Ext1X(IZ,X , i∗OZ) ∼= Ext2X(IZ,X , IZ,X)0 of Lemma 2.6, we
obtain a canonical inclusion (constructed in the proof)

Ext1D(IZ,D,OZ) →֒ Ext2X(IZ,X , IZ,X)0

of a half-dimensional subspace which is isotropic with respect to the non-degenerate quadratic
form Q on Ext2X(IZ,X , IZ,X)0 defined by Serre duality.

Proof. In the proof, we will use the following dimensions

dimC Ext0D(IZ,D,OZ) = 3n, dimC Ext0X(IZ,X ,OZ) = 4n,

dimC Ext1D(IZ,D,OZ) = 3n. dimC Ext1X(IZ,X ,OZ) = 6n.
(2.12)

The first line follows from the fact that Hilbn(X) and Hilbn(D) are smooth for n 6 3 and these
are exactly the Zariski tangent spaces at Z. The second line can be seen in several ways. Firstly
Ext1D(IZ,D,OZ) ∼= Ext2D(IZ,D, IZ,D)0 and Ext1X(IZ,X ,OZ) ∼= Ext2X(IZ,X , IZ,X)0 by Lemma 2.6,
so it suffices to calculate the dimensions of the latter. By Hirzebruch-Riemann-Roch on D we
have

0 = χ(OD)− χ(IZ,D , IZ,D) = dimC Ext1D(IZ,D, IZ,D)0 − dimC Ext2D(IZ,D, IZ,D)0

= 3n− dimC Ext2D(IZ,D, IZ,D)0.

By Hirzebruch-Riemann-Roch and Serre duality on X we have

2n = χ(OX)− χ(IZ,X , IZ,X) = 2dimC Ext1X(IZ,X , IZ,X)0 − dimC Ext2X(IZ,X , IZ,X)0

= 8n− dimC Ext2X(IZ,X , IZ,X)0.

This establishes (2.12).
The spectral sequence

Ep,q
2 = ExtpD(IZ,D,OZ ⊗ ∧qKD) ⇒ Extp+q

X (i∗IZ,D, i∗OZ)

gives an isomorphism

(2.13) Ext0D(IZ,D ,OZ) ∼= Ext0X(i∗IZ,D, i∗OZ)
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and an exact sequence

0 → Ext1D(IZ,D ,OZ) → Ext1X(i∗IZ,D, i∗OZ) → Ext0D(IZ,D,OZ ⊗KD) →
→ Ext2D(IZ,D ,OZ) → Ext2X(i∗IZ,D, i∗OZ) → Ext1D(IZ,D,OZ ⊗KD) → 0,

(2.14)

where we use Ext3D(IZ,D,OZ) = 0 (see (2.8)).
Combining (2.12) and (2.13), we know the exact sequence (2.7) in Lemma 2.5 breaks into a

short exact sequence and a canonical isomorphism

0 → Ext0X(i∗IZ,D, i∗OZ) → Ext0X(IZ,X , i∗OZ) → H0(OZ(D)) → 0,

(2.15) Ext1X(i∗IZ,D, i∗OZ) ∼= Ext1X(IZ,X , i∗OZ).

In particular, dimC Ext1X(i∗IZ,D, i∗OZ) = 6n by (2.12). Therefore (2.12) implies that the six
term exact sequence (2.14) splits into two short exact sequences and we obtain

(2.16) 0 → Ext1D(IZ,D ,OZ) → Ext1X(i∗IZ,D, i∗OZ) → Ext0D(IZ,D,OZ ⊗KD) → 0.

Together (2.15) and (2.16) provide an inclusion

Ext1D(IZ,D ,OZ) →֒ Ext1X(IZ,X , i∗OZ) ∼= Ext2X(IZ,X , IZ,X)0,

where the second isomorphism comes from Lemma 2.6. We have obtained a canonical inclusion
of a half-dimensional subspace (by (2.12)).

Next, we check Ext1D(IZ,D ,OZ) is an isotropic subspace of
(

Ext2X(IZ,X , IZ,X)0, Q
)

under this

inclusion. Given u ∈ Ext1D(IZ,D ,OZ), the corresponding element in Ext2X(IZ,X , IZ,X)0 is given
by the composition

IZ,X
α→ i∗IZ,D

i∗u→ i∗OZ [1]
β→ IZ,X [2],

where α is the morphism constructed in (2.6) and β is the obvious morphism. Given another
u′ ∈ Ext1D(IZ,D ,OZ), it is enough to show the vanishing of the composition

IZ,X
α→ i∗IZ,D

i∗u→ i∗OZ [1]
β→ IZ,X [2]

α[2]→ i∗IZ,D[2]
i∗u

′[2]→ i∗OZ [3]
β[2]→ IZ,X [4].

We claim

(2.17) Ext1X(i∗OZ , i∗IZ,D) ∼= Ext1D(OZ , IZ,D).

This implies that the composition i∗OZ [1]
β→ IZ,X [2]

α[2]→ i∗IZ,D[2] can be written as i∗γ, for
some γ : OZ → IZ,D [1]. Therefore the composition

i∗IZ,D
i∗u→ i∗OZ [1]

β→ IZ,X [2]
α[2]→ i∗IZ,D[2]

i∗u
′[2]→ i∗OZ [3]

comes from Ext3D(IZ,D,OZ) which is zero by (2.8).
We are left to show (2.17). This follows at once from the spectral sequence

Ep,q
2 = ExtpD(OZ , IZ,D ⊗ ∧qKD) ⇒ Extp+q

X (i∗OZ , i∗IZ,D),

and

Ext0D(OZ , IZ,D ⊗ KD) ∼= Ext3D(IZ,D,OZ)
∗ = 0,

where the vanishing is by (2.8). �

Combining Lemma 2.6 and 2.7, we deduce the following:

Proposition 2.8. Let X be a smooth projective Calabi-Yau 4-fold and let D ⊆ X be a smooth
divisor. For any zero-dimensional subscheme Z ⊆ D of length 6 3, we have short sequences

0 → Ext1D(IZ,D, IZ,D)0 → Ext1X(IZ,X , IZ,X)0 → H0(OZ(D)) → 0,

0 → Ext2D(IZ,D, IZ,D)0 → Ext2X(IZ,X , IZ,X)0 → Ext2D(IZ,D, IZ,D)∗0 → 0,

under which Ext2D(IZ,D, IZ,D)0 is a maximal isotropic subspace of Ext2X(IZ,X , IZ,X)0 with respect
to the non-degenerate quadratic form Q defined by Serre duality.

Proof. By Lemma 2.6, we have isomorphisms

Exti+1
Y (IZ,Y , IZ,Y ⊗ L)0 ∼= ExtiY (IZ,Y ,OZ ⊗ L), for i = 0, 1 and Y = X,D.

Combining with Lemma 2.7, we obtain the desired short exact sequences and an inclusion

Ext2D(IZ,D, IZ,D)0 →֒ Ext2X(IZ,X , IZ,X)0

of a maximal isotropic subspace.
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This leads to the following commutative diagram

0 // Ext2D(IZ,D , IZ,D)0 //

∃ t

��

Ext2X(IZ,X , IZ,X)0

Q ∼=

��

// W // 0

0 // W ∗ // Ext2X(IZ,X , IZ,X)∗0 // Ext2D(IZ,D, IZ,D)∗0 // 0.

Note that the restriction t of Q is injective, hence also an isomorphism by dimension counting.
Thus the quadratic form Q gives an identification W ∼= Ext2D(IZ,D, IZ,D)∗0. �

A positive real form V+ on a complex even dimensional vector space V with non-degenerate
quadratic form Q is a half-dimensional real subspace on which Q is real and positive definite.
When the obstruction space Ext2X(E,E)0 has a maximal isotropic subspace as in Proposition
2.8, we can apply the following useful fact:

Proposition 2.9. Let V be an even dimensional complex vector space with a non-degenerate
quadratic form Q and let Viso be a maximal isotropic subspace of (V,Q). Then for any positive
real form V+ of (V,Q), the composition

c : Viso →֒ V → V+

of the inclusion and projection is an isomorphism of the underlying real vector spaces.

Proof. Since dimensions of Viso and V+ are the same, we only need to check that the map c is
injective. Take v ∈ Viso which projects to zero in V+. By

V = V+ ⊕
√
−1 · V+,

we know v ∈
√
−1 · V+. Then Q(v, v) = 0, by the isotropic property, which implies that v = 0

since Q is negative definite on the subspace
√
−1 · V+. �

2.5. Verification in simple cases: n 6 3. When the number n of points satisfies n 6 3, the
Hilbert schemes Hilbn(X) and Hilbn(D) are smooth of dimensions 4n and 3n respectively. Our
conjecture can then be verified by direct calculation.

Theorem 2.10. Let X be a smooth projective Calabi-Yau 4-fold. Let D be a smooth divisor on
X and set L := OX(D). For each n 6 3, there exists a choice of orientation o(L) such that

∫

[Hilbn(X)]vir
o(L)

e(L[n]) =

∫

[Hilbn(D)]vir
1.

In particular, Conjecture 2.2 is true modulo q4 for L = OX(D) and D ⊆ X a smooth divisor.

Proof. When n 6 3, the Hilbert schemes Hilbn(X), Hilbn(D) are smooth of dimensions 4n and
3n respectively.We have also seen that the obstruction sheaf Ob on Hilbn(X) is locally free of
rank 6n ((2.12) and Lemma 2.6).

Consider the quadric bundle (Ob, Q), where Q is the non-degenerate quadratic form defined
by Serre duality. By [9, Lem. 5], we can choose a positive real form Ob+ of the quadric bundle
(Ob, Q), such that Ob ∼= Ob+ ⊗R C as quadric bundles. Then

[Hilbn(X)]viro(L) = PD
(

e(Ob+)
)

∈ H2n(Hilb
n(X))

for an appropriate choice of orientation o(L) in the definition of both sides. Therefore
∫

[Hilbn(X)]vir
o(L)

e(L[n]) =

∫

[Hilbn(X)]

e(L[n]) · e(Ob+)

=

∫

[Hilbn(D)]

e(Ob+)|Hilbn(D),

where the second equality follows from the fact that Hilbn(D) ⊆ Hilbn(X) represents the
Poincaré dual of the Euler class e(L[n]) by Proposition 2.4.

Next, we use the fact that the subspaces

Ext2D(IZ,D, IZ,D)0 →֒ Ext2X(IZ,X , IZ,X)0

determine a maximal isotropic subbundle Viso ⊆ Ob|Hilbn(D). Note that

Viso
∼= ObHilbn(D)
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is precisely the obstruction bundle of the perfect obstruction theory on Hilbn(D) studied in [17],
whose fiber over Z ∈ Hilbn(D) is Ext2D(IZ,D , IZ,D)0. By (a family version of) Proposition 2.9,
we have

e(Ob+)|Hilbn(D) = e(Viso) = e(ObHilbn(D)).

Since Hilbn(D) is smooth, we also have

[Hilbn(D)]vir = e(ObHilbn(D)) ∩ [Hilbn(D)].

Putting everything together, we deduce
∫

[Hilbn(D)]

e(Ob+)|Hilbn(D) =

∫

[Hilbn(D)]

e(ObHilbn(D))

=

∫

[Hilbn(D)]vir
1.

The final statement of the proposition follows from [16, 15] and (2.5). �

For general Hilbn(X), we need Joyce’s theory of D-manifolds or Kuranishi atlases to prove a
similar statement. We hope to return to this in a future work.

3. The toric case

3.1. Definition and conjecture. Following [6, Sect. 8], we can similarly study zero-dimensional
DT4 invariants of toric Calabi-Yau 4-folds (which are never compact).

Let X be a smooth quasi-projective toric Calabi-Yau 4-fold. By this we mean a smooth
quasi-projective toric 4-fold X satisfying KX

∼= OX and H>0(OX) = 0. We also assume
the fan contains cones of dimension 4. Such cones correspond to (C∗)4-invariant affine open
subsets (equivariantly) isomorphic to C4. Fix a Calabi-Yau volume form Ω on X and denote by
T ⊆ (C∗)4 the 3-dimensional subtorus which preserves Ω. Let • be SpecC with trivial (C∗)4-
action. We denote by C⊗ ti the 1-dimensional (C∗)4-representation with weight ti and we write
λi ∈ H∗

(C∗)4(•) for its (C∗)4-equivariant first Chern class. Then

H∗
(C∗)4(•) = C[λ1, λ2, λ3, λ4],

H∗
T (•) = C[λ1, λ2, λ3, λ4]/(λ1 + λ2 + λ3 + λ4) ∼= C[λ1, λ2, λ3].

The (C∗)4-action and T -action both canonically lift to the Hilbert scheme Hilbn(X) of n points
on X , where T preserves the Serre duality pairing (for compactly supported sheaves).

Let L be a T -equivariant line bundle on X and let L[n] be its tautological bundle with induced
T -equivariant structure. As in Definition 2.1, we would like to evaluate the integral

∫

[Hilbn(X)]vir
e(L[n]), for n > 1.

However, Hilbn(X) is non-compact, so the usual virtual class is not well-defined. Nevertheless,
Hilbn(X) is “equivariantly compact”, i.e. the T -fixed locus Hilbn(X)T is compact. In fact, it
consists of finitely many points.

Lemma 3.1. At the level of closed points, we have

Hilbn(X)T = Hilbn(X)(C
∗)4 ,

which consists of finitely many points.

Proof. We cover X by maximal (C∗)4-invariant open affine subsets {Uα} with centres at (C∗)4-
fixed points. There exist coordinates x1, x2, x3, x4 on Uα

∼= C4, such that the action of t ∈ (C∗)4

on Uα is given by
t · xi = tixi, for all i = 1, 2, 3, 4.

Then the Calabi-Yau torus is given by

T = {t ∈ (C∗)4 | t1t2t3t4 = 1}
and we see that Uα is also T -invariant. Therefore it suffices to prove the lemma for X = Uα = C4

with the standard torus action.
The (C∗)4-invariant ideals in C[x1, x2, x3, x4] are precisely the monomial ideals. Clearly

Hilbn(X)T ⊇ Hilbn(X)(C
∗)4 .

By considering the weight of xn1
1 xn2

2 xn3
3 xn4

4 under the action of t ∈ C4, it is easy to see that any
T -invariant ideal I ⊆ C[x1, x2, x3, x4] is of form

I = 〈xn11
1 xn12

2 xn13
3 xn14

4 f1(x1x2x3x4), · · · , xnl1
1 xnl2

2 xnl3
3 xnl4

4 fl(x1x2x3x4)〉,
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where {fi(y)} are polynomials of one variable with constant coefficient 1 and nij ∈ Z>0. Suppose
I is T -invariant and corresponds to a zero-dimensional subscheme Z. Then the underlying
reduced subscheme Zred is a zero-dimensional T -invariant subset of C4, i.e. Zred = {(0, 0, 0, 0)}.
Therefore I is determined by its restriction to any Zariski open neighbourhood U of (0, 0, 0, 0).
Take

(0, 0, 0, 0) ∈ U = {f1(x1x2x3x4) 6= 0} ∩ · · · ∩ {fl(x1x2x3x4) 6= 0}.
The polynomials fi(x1x2x3x3) become invertible elements on U and therefore

I|U = 〈xn11
1 xn12

2 xn13
3 xn14

4 , · · · , xnl1
1 xnl2

2 xnl3
3 xnl4

4 〉.
We conclude that

I = 〈xn11
1 xn12

2 xn13
3 xn14

4 , · · · , xnl1
1 xnl2

2 xnl3
3 xnl4

4 〉
which shows Hilbn(X)T ⊆ Hilbn(X)(C

∗)4 as sets. �

Example 3.2. Consider X = C4 with standard torus action. Then

I = 〈x3
1, x

3
2, x

3
3, x

3
4, x

2
1x

2
2x

2
3x

2
4 + x1x2x3x4〉

defines a zero-dimensional T -invariant subscheme. According to the proof of Lemma 3.1, it is
equal to 〈x3

1, x
3
2, x

3
3, x

3
4, x1x2x3x4〉. Indeed, we have

x1x2x3x4 = [x3
2x

3
3x

3
4]x

3
1 + [1− x1x2x3x4](x

2
1x

2
2x

2
3x

2
4 + x1x2x3x4).

Let U ∼= C4 be a maximal (C∗)4-invariant affine open subset of X . Choose coordinates
x1, . . . , x4 such that the action is given by

t · xi = tixi, for all i = 1, 2, 3, 4.

The T -invariant (and therefore (C∗)4-invariant by Lemma 3.1) zero-dimensional subschemes of
Uα can be labelled by solid partitions.

Definition 3.3. A solid partition π = {πijk}i,j,k>1 consists of a sequence of non-negative inte-
gers πijk ∈ Z>0 satisfying

πijk > πi+1,j,k, πijk > πi,j+1,k, πijk > πi,j,k+1 ∀ i, j, k > 1,

such that

|π| :=
∑

i,j,k>1

πijk < ∞.

Here |π| is called the size of π.

Specifically, the zero-dimensional subscheme Zπ corresponding to the solid partition π =
{πijk}i,j,k>1 is defined by the monomial ideal

IZπ
:= 〈xi−1

1 xj−1
2 xk−1

3 x
πijk

4 | i, j, k > 1 〉
and |π| equals the length of Zπ. The (C∗)4-equivariant representation of Zπ is given by

(3.1) Zπ =
∑

i,j,k>1

πijk
∑

l=1

ti−1
1 tj−1

2 tk−1
3 tl−1

4 ,

where the sum is over all i, j, k > 1 for which πijk > 1.

In order to be able to apply Serre duality for Ext∗(IZ , IZ) on a non-compact toric Calabi-Yau
4-fold X , we will use the following lemma.

Lemma 3.4. For any Z ∈ Hilbn(X)T , we have isomorphisms of T -representations

Exti(IZ ,OZ) ∼= Exti+1(IZ , IZ), i = 0, 1, 2,

Exti(IZ , IZ) ∼= Exti(OZ ,OZ), i = 1, 2, 3, Ext4(IZ , IZ) = 0.

Proof. All morphisms in this proof are T -equivariant. By applying RHom(−,OZ) to the short
exact sequence,

(3.2) 0 → IZ → OX → OZ → 0,

we obtain isomorphisms

(3.3) Exti(IZ ,OZ) ∼= Exti+1(OZ ,OZ), i > 0,
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where we use Hi>1(OX) = 0. By applying RHom(IZ ,−) to (3.2) we obtain an exact sequence

(3.4) · · · → Exti(IZ ,OZ) → Exti+1(IZ , IZ) → Exti+1(IZ ,OX) → · · · .
By applying RHom(−,OX) to (3.2), we find

Hom(IZ ,OX) = Hom(OX ,OX),

Ext1(IZ ,OX) = Ext2(IZ ,OX) = Ext4(IZ ,OX) = 0,

Ext3(IZ ,OX) ∼= Ext4(OZ ,OX),

(3.5)

where we use Hi>1(OX) = 0 and Exti(OZ ,OX) = 0 for i 6 3 (by [11, pp. 78], Exti63(OZ ,OX) =
0, so the vanishing follows from the local-to-global spectral sequence Hp(X, Extq(−,−)) ⇒
Extp+q(−,−) [11, pp. 85, (3.16)]). Combining with (3.4), we get the following isomorphisms and
exact sequence

Ext0(IZ ,OZ) ∼= Ext1(IZ , IZ), Ext1(IZ ,OZ) ∼= Ext2(IZ , IZ),

0 → Ext2(IZ ,OZ) → Ext3(IZ , IZ) → Ext3(IZ ,OX)
η→ Ext3(IZ ,OZ) →

→ Ext4(IZ , IZ) → Ext4(IZ ,OX) = 0.

(3.6)

For the first isomorphism of (3.6), we used Hom(IZ , IZ) ∼= Hom(IZ ,OX). This follows from
the fact that the isomorphism H0(OX) → Hom(IZ ,OX) of (3.5) factors through H0(OX) →
Hom(IZ , IZ) (see diagram (2.10) 3).

We claim that the map η is an isomorphism. In fact, we have a commutative diagram

Hom(IZ ,OX [3])

i1

��

η // Hom(IZ ,OZ [3])

i2

��
Hom(OZ [−1],OX [3])

φ // Hom(OZ [−1],OZ [3]),

where i1, i2 are isomorphisms in (3.5), (3.3) respectively, and φ is the map in the exact sequence

→ Ext4(OZ , IZ) → Ext4(OZ ,OX)
φ→ Ext4(OZ ,OZ) → 0,

obtained by applying RHom(OZ ,−) to (3.2). By Riemann-Roch and Serre duality, we have 4

dimC Ext4(OZ ,OX) = dimC H0(X, Ext4(OZ ,OX))

= χ(OZ ,OX) = n,

dimC Ext4(OZ ,OZ) = dimC Ext0(OZ ,OZ) = n.

Therefore φ is an isomorphism and so is η. We conclude that Ext2(IZ ,OZ) ∼= Ext3(IZ , IZ) and
Ext4(IZ , IZ) = 0 by (3.6), which finished the proof. �

Remark 3.5. Although a smooth quasi-projective toric Calabi-Yau 4-fold X is non-compact,
the sheaf OZ has proper support for any Z ∈ Hilbn(X)T . Therefore, we can apply T -equivariant

Serre duality to Exti(OZ ,OZ)
5. Consequently, Lemma 3.4 allows us to apply T -equivariant

Serre duality to Exti(IZ , IZ) for i = 1, 2, 3. We will use this throughout the rest of this section.

Similarly to [17, I, Lem. 6], we have the following.

Lemma 3.6. For any Z ∈ Hilbn(X)T , we have an isomorphism of T -representations

Ext0(IZ ,OZ) ∼= Ext1(IZ , IZ).

Moreover, Ext0(IZ ,OZ)
T = 0. In particular, the scheme Hilbn(X)T = Hilbn(X)(C

∗)4 consists
of finitely many reduced points.

Proof. The isomorphism Ext0(IZ ,OZ) ∼= Ext1(IZ , IZ) was proved in Lemma 3.4.
Next we show Ext0(IZ ,OZ)

T = 0. In fact it suffices to prove this when X = C4. Then there
exists a convenient basis for Ext0(IZ ,OZ) of (C∗)4-equivariant homomorphisms. This basis is
described by combinatorial objects, which we call Haiman arrows. See [18] (and also [4]) for
details. These are arrows α in the character lattice Z4 such that:

3Since X is smooth and quasi-projective, any (C∗)4-equivariant coherent sheaf on X has a finite (C∗)4-
equivariant locally free resolution by [8, Prop. 5.1.28]. Therefore we have T -equivariant trace maps as usual.

4Although X is non-compact, we can pass to a “toric compactification” X ⊂ X , i.e. a smooth projective toric
4-fold containing X as a (C∗)4-invariant open subset. Since Z ⊂ X has proper support, we get (C∗)4-equivariant

isomorphisms H0(X, Ext4
X
(OZ ,OX)) ∼= H0(X, Ext4

X
(OZ ,O

X
)) and Ext∗

X
(OZ ,OZ) ∼= Ext∗

X
(OZ ,OZ ).

5See footnote 4.
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• the tail t(α) ∈ Z4 satisfies (IZ)t(α) 6= 0, i.e. it lies on a nonzero weight space of IZ ,

• the head h(α) ∈ Z4 satisfies (OZ)h(α)+(n1,n2,n3,n4) 6= 0 for some n1, n2, n3, n4 > 0.

Denote the standard basis of Z4 by

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1).

Suppose α is a Haiman arrow such that the arrow defined by t(α)±ei, h(α)±ei, for some choice
of ± and some basis vector ei, is also a Haiman arrow. I.e. the Haiman arrow α can be translated
to another neighbouring Haiman arrow β. Then we call these Haiman arrows equivalent. This
induces an equivalence relation on the collection of all Haiman arrows. Next, we consider the
collection C of equivalence classes c of Haiman arrows such that all representatives α ∈ c satisfy
h(α) ∈ (OZ)h(α) 6= 0. Then the elements of C are in 1-1 correspondence with a basis of (C∗)4-

equivariant homomorphisms of Ext0(IZ ,OZ) as follows. To each class c ∈ C we assign a module
morphism φc : IZ → OZ , which is determined as follows. For each α ∈ c such that t(α)
corresponds to a minimal homogeneous generator of IZ , we define

φc(x
t(α)) = xh(α)

and all other minimal homogeneous generators are mapped to zero. Here we use multi-index
notation xw := xw1

1 xw2
2 xw3

3 xw4
4 . It is part of Haiman’s theory that this is well-defined and defines

a basis {φc}c∈C of Hom(IZ ,OZ). Clearly the weight of φc equals

h(α)− t(α),

which is independent of the choice α ∈ c. The statement we are after follows from the fact that
any Haiman arrow β with the property that h(β)− t(β) = (n, n, n, n), for some n, is equivalent
to a Haiman arrow γ satisfying (OZ)h(γ) = 0, i.e. [β] 6∈ C. We conclude Ext0(IZ ,OZ)

T = 0. �

Example 3.7. Suppose IZ := (x1, x2, x3, x4)
2. Then C consists of 40 elements (implying that

Ext0(IZ ,OZ) is 40-dimensional and Hilb5(C4) is singular at Z). Explicitly, the basis φc described
in the proof of the previous lemma consists of the following 40 homomorphisms:

φij : x
2
i 7→ xj , any other minimal homogeneous generator 7→ 0

φabc : xaxb 7→ xc, any other minimal homogeneous generator 7→ 0

for all i, j and a, b, c with a < b. Observe that none of these homomorphisms has weight of the
form (n, n, n, n). Therefore Ext0(IZ ,OZ)

T = 0.

We continue with the definition of equivariant DT4 invariants. For Z ∈ Hilbn(X)T , one can
form complex vector bundle

ET ×T Exti(IZ , IZ)
↓

ET ×T {IZ} = BT
for i = 1, 2,

whose Euler class is the T -equivariant Euler class eT
(

Exti(IZ , IZ)
)

.

When i = 2, the Serre duality pairing on Ext2(OZ ,OZ) defines a non-degenerate quadratic
form Q on Ext2(IZ , IZ) (via Lemma 3.4) and also on ET ×T Ext2(IZ , IZ) as T preserves the
Calabi-Yau volume form. We define

(3.7) eT
(

Ext2(IZ , IZ), Q
)

∈ Z[λ1, λ2, λ3]

as the half Euler class of (ET ×T Ext2(IZ , IZ), Q). By definition, this is the Euler class of its
positive real form 6, which exists because the classifying space BT is simply connected. The half
Euler class (3.7) depends on a choice of orientation on a positive real form.

Following [6, Sect. 8], we can define the equivariant virtual class as follows:

Definition 3.8. Let X be a smooth quasi-projective toric Calabi-Yau 4-fold. Denote by T ⊆
(C∗)4 the three-dimensional subtorus which preserves the Calabi-Yau volume form. The T -
equivariant virtual class of Hilbn(X) is

[Hilbn(X)]virT,o(L) :=
∑

Z∈Hilbn(X)T

eT
(

Ext2(IZ , IZ), Q
)

eT
(

Ext1(IZ , IZ)
) ∈ Q(λ1, λ2, λ3),

where o(L) denotes a choice of orientation of a positive real form of (ET ×T Ext2(IZ , IZ), Q) for
each Z ∈ Hilbn(X)T .

6I.e. a half rank real subbundle on which Q is real and positive definite.
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Note that we have Exti(IZ , IZ) = Exti(IZ , IZ)0 for i = 1, 2, because H>0(OX) = 0 7.

Remark 3.9. For each Z ∈ Hilbn(X)T , o(L) is equivalent to the choice of sign in the square
root (1.2). If the number of fixed points Hilbn(X)T is N , the number of choices of o(L) is 2N .

The T -equivariant version of Definition 2.1 is given as follows.

Definition 3.10. In the setup of Definition 3.8, let L be a T -equivariant line bundle on X with
corresponding tautological bundle L[n] on Hilbn(X). Then

DT4(X,T, L, n ; o(L)) :=
∑

Z∈Hilbn(X)T

eT
(

Ext2(IZ , IZ), Q
)

· eT (L[n]|Z)
eT
(

Ext1(IZ , IZ)
) ∈ Q(λ1, λ2, λ3), if n > 1,

DT4(X,T, L, 0 ; o(L)) := 1.

We recall the notion of equivariant push-forward for (not necessarily compact) manifolds with
torus action (e.g. toric Calabi-Yau 4-folds). In the compact case, this coincides with the usual
proper push-forward in the Atiyah-Bott localization formula.

Definition 3.11. Let X be a smooth manifold with T ∼= (C∗)k-action such that the torus fixed
locus XT consists of finite number of (necessarily reduced) points. The equivariant push-forward
of π : X → pt is

∫

X

: H∗
T (X) → H∗

T (pt)loc, s.t.

∫

X

α =
∑

x∈XT

ι∗xα

eT (TxX)
,

where H∗
T (pt)loc is the ring of fractions of H∗

T (pt), which is isomorphic to C(λ1, · · · , λk) if we
identify H∗

T (pt)
∼= C[λ1, · · · , λk], and ιx : {x} ×T ET → X ×T ET is the natural inclusion.

We propose the following T -equivariant version of Conjecture 2.2.

Conjecture 3.12. Let X be a smooth quasi-projective toric Calabi-Yau 4-fold. Denote by T ⊆
(C∗)4 the three-dimensional subtorus which preserves the Calabi-Yau volume form. Let L be a
T -equivariant line bundle on X. Then there exist choices of orientation such that

∞
∑

n=0

DT4(X,T, L, n ; o(L)) qn = M(−q)

∫

X
cT1 (L) · cT3 (X),

where M(q) denotes the MacMahon function.

3.2. Proof for smooth toric divisors. Let L = OX(D) for a T -invariant divisor D ⊆ X .
Note that if D is not (C∗)4-invariant, by the proof of Lemma 3.1, D can locally be written as the
sum of a (C∗)4-invariant divisor and a T -invariant divisor which is not (C∗)4-invariant. Hence,
locally near each fixed point, L is T -equivariantly isomorphic to a (C∗)4-equivariant line bundle.
Therefore it suffices to consider Conjecture 3.12 for (C∗)4-equivariant divisors only.

We prove Conjecture 3.12 when D ⊆ X is a smooth (C∗)4-equivariant divisor.

Theorem 3.13. Let X be a smooth quasi-projective toric Calabi-Yau 4-fold. Denote by T ⊆
(C∗)4 the three-dimensional subtorus which preserves the Calabi-Yau volume form. Let L =
OX(D), where D ⊆ X is a smooth (C∗)4-invariant divisor. Then Conjecture 3.12 is true.

Proof. For Z ∈ Hilbn(X)T such that Z 6⊆ D, i.e. Z does not lie scheme theoretically in D, we
claim that

(3.8) eT (L
[n]|Z) = 0.

Let U ∼= C4 be any (C∗)4-invariant affine open subset of X . As D is smooth and (C∗)4-invariant,
we can choose coordinates x1, x2, x3, x4 on U such that the action is given by

t · xi = tixi, for all i = 1, 2, 3, 4,

and D ∩ U is defined by x4 = 0. Equation (3.8) then follows from Lemma 3.14 below.
Now we only need to calculate

(3.9)
∑

Z∈Hilbn(X)T , Z⊆D

eT (Ext
2
X(IZ,X , IZ,X), Q) · eT (L[n]|Z)
eT (Ext

1
X(IZ,X , IZ,X))

.

For Z ∈ Hilbn(X)T and Z ⊆ D ⊆ X , Lemma 3.4 gives T -equivariant isomorphisms

ExtiX(IZ,X , IZ,X) ∼= ExtiX(OZ ,OZ), for i = 1, 2, 3,

7See footnote 3 on the existence of T -equivariant trace maps.
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ExtiD(IZ,D, IZ,D) ∼= ExtiD(OZ ,OZ), for i = 1, 2,

where the isomorphisms on D can be deduced similarly as for X .
From the T -equivariant distinguished triangle (e.g. [11, Cor. 11.4, pp. 248–249])

RHomD(OZ ,OZ) → RHomX(OZ ,OZ) → RHomD(OZ ,OZ ⊗KD)[−1],

we obtain a T -equivariant exact sequence

0 → Ext1D(OZ ,OZ) → Ext1X(OZ ,OZ) → HomD(OZ ,OZ ⊗KD) →
→ Ext2D(OZ ,OZ) → Ext2X(OZ ,OZ) → Ext1D(OZ ,OZ ⊗KD) →
→ Ext3D(OZ ,OZ) → Ext3X(OZ ,OZ) → Ext2D(OZ ,OZ ⊗KD) → 0.

By T -equivariant Serre duality, this gives

Ext1X −Ext2X +Ext3X = Ext1D +(Ext1D)∗ − (Ext2D +(Ext2D)∗)

+H0(D,OZ ⊗KD) +H0(D,OZ ⊗KD)∗ ∈ KT (•)
in the T -equivariant K-theory of a point, where we abbreviate ExtiA := ExtiA(OZ ,OZ). For the
corresponding Euler classes, we deduce

eT (Ext
1
X) · eT (Ext3X)

eT (Ext
2
X)

= (−1)n ·
(

eT (Ext
1
D) · eT (H0(D,OZ ⊗KD))

eT (Ext
2
D)

)2

.

Therefore we have

eT (Ext
2
X(IZ,X , IZ,X), Q) · eT (L[n]|Z)
eT (Ext

1
X(IZ,X , IZ,X))

=
eT (Ext

2
X(IZ,X , IZ,X), Q) · eT (H0(X,OZ ⊗OX(D)))

eT (Ext
1
X(IZ,X , IZ,X))

=
eT (Ext

2
D(IZ,D , IZ,D))

eT (Ext
1
D(IZ,D , IZ,D))

,

where we used (1.2) and L|D = KD (X is Calabi-Yau). Moreover, the second equality is up to
sign corresponding to the choice of orientation in defining the half Euler class.

Being a toric prime divisor, D ⊆ X is itself a smooth toric 3-fold [10, Sect. 3.1]. As above,
on any (C∗)4-invariant open U ∼= C4 we can choose coordinates such that t · xi = tixi, for
all i = 1, 2, 3, 4, and D ∩ U = {x4 = 0}. In these coordinates, the torus of D is obtained
from T = {t1t2t3t4 = 1} by setting t4 = 1, i.e. at the level of equivariant parameters we have
λ1 + λ2 + λ3 = λ4 = 0. We conclude that (3.9) becomes the T -equivariant Donaldson-Thomas
invariants of n points on D which, by [17, II, Thm. 2], are equal to

∑

Z∈Hilbn(D)T

eT (Ext
2
D(IZ,D , IZ,D))

eT (Ext
1
D(IZ,D , IZ,D))

qn = M(−q)

∫

D
cT3 (TD⊗KD).

By the definition of equivariant push-forward (Def. 3.11), we have
∫

X

cT3 (X) · cT1 (L) :=
∑

x∈XT

ι∗x(c
T
3 (X) · cT1 (L))
cT4 (TxX)

=
∑

x∈XT

cT3 (TxX) · cT1 (L|x)
cT4 (TxX)

=
∑

x∈DT

cT3 (TxX) · cT1 (L|x)
cT4 (TxX)

,

where ιx : {x} ×T ET → X ×T ET is the natural inclusion and the last equality follows from
Lemma 3.14 below. Similarly, we have

∫

D

cT3 (TD ⊗KD) :=
∑

x∈DT

ι∗x(c
T
3 (TD ⊗KD))

cT3 (TxD)

=
∑

x∈DT

cT3 (TxD ⊗KD|x)
cT3 (TxD)

.

From the T -equivariant short exact sequence

0 → TD → TX |D → KD → 0,

we obtain

cT3 (TxX) = cT3 (TxD) + cT2 (TxD) · cT1 (KD|x), cT4 (TxX) = cT3 (TxD) · cT1 (KD|x),
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cT3 (TxD ⊗KD|x) = cT3 (TxD) + cT2 (TxD) · cT1 (KD|x) + cT1 (TxD) · cT1 (KD|x)2 + cT1 (KD|x)3.
Since KD|x = ∧3T ∗

xD, we have

cT1 (TxD) · cT1 (KD|x)2 + cT1 (KD|x)3 = (cT1 (TxD) + cT1 (KD|x)) · cT1 (KD|x)2 = 0

and therefore
∫

X
cT3 (X) · cT1 (L) =

∫

D
cT3 (TD ⊗KD) for L = OX(D). �

In order to prove (3.8), let X = C4 with coordinates x1, x2, x3, x4 such that the action of
t ∈ (C∗)4 satisfies

t · xi = tixi, for all i = 1, 2, 3, 4,

and the (C∗)4-equivariant line bundle L is given by

D := {x4 = 0} ⊆ C4 and L := O(D).

Lemma 3.14. We have a (C∗)4-equivariant isomorphism L[n] ∼= O[n] ⊗ t−1
4 . Moreover, for any

Z ∈ Hilbn(C4)T such that Z does not lie scheme theoretically in D, we have

eT (L
[n]|Z) = 0.

Proof. Consider the ideal sheaf O(−D) ⊆ O. This corresponds to the inclusion

(x4) ⊆ C[x1, x2, x3, x4]

and therefore O(−D) ∼= O ⊗ t4 and L ∼= O ⊗ t−1
4 . The fibres of L[n] are given by

L[n]|Z ∼= H0(L|Z) ∼= H0(OZ)⊗ t−1
4 ,

where all isomorphisms are (C∗)4-equivariant isomorphisms. Hence, we have a (C∗)4-equivariant
isomorphism

L[n] ∼= O[n] ⊗ t−1
4 .

Now suppose Z ∈ Hilbn(C4) is a T -fixed (and therefore (C∗)4-fixed) element. Then Z corre-
sponds to a solid partitions π = {πijk}i,j,k>1. Suppose Z 6⊆ D, i.e. Z is not scheme theoretically
contained in D, then (x4) 6⊆ IZ . Therefore, π111 > 1 and the class of Z in the (C∗)4-equivariant
K-group K(C∗)4(•) contains the term t4. Hence

e(C∗)4(L
[n]|Z) = e(C∗)4(Z ⊗ t−1

4 ) = e(C∗)4(1 + other terms) = e(C∗)4(1) e(C∗)4(other terms) = 0.

This equality holds for T -equivariant Euler classes as well, which corresponds to setting λ4 =
−(λ1 + λ2 + λ3). �

3.3. Vertex formalism. In order to prove Conjecture 3.12, it is in fact enough to prove it
for affine space C4. In this section, we develop the necessary vertex formalism from which this
follows. We follow the original arguments developed in the 3-dimensional case by MNOP [17]
very closely.

Let X be a smooth quasi-projective toric Calabi-Yau 4-fold and let {Uα} be the cover by
maximal (C∗)4-invariant affine open subsets. Let Z ⊆ X be a T -invariant zero-dimensional
subscheme (hence also (C∗)4-invariant by Lemma 3.1). For each α, the restriction Zα := Z|Uα

corresponds to a solid partitions π(α), as described previously, and we write

Iα := IZ
π(α)

.

By footnote 3, we have T -equivariant trace maps and we can take the trace-free part

−RHomX(IZ , IZ)0 ∈ KT (•).
Denote the global section functor by Γ(−). The local-to-global spectral sequence and calculation
of sheaf cohomology with respect to the Čech cover {Uα} yields

−RHomX(IZ , IZ)0 =
∑

α,i

(−1)i
(

Γ(Uα,OUα
)− Γ(Uα, Ext i(Iα, Iα))

)

.

Here we use H>0(Uα,−) = 0, because Uα is affine. We also use that intersections Uα ∩Uβ ∩ · · · ,
with α 6= β, do not contribute because Z is zero-dimensional and therefore

IZ |Uα∩Uβ∩··· = OUα∩Uβ∩···.

This reduced the calculation to

−RHomUα
(Iα, Iα)0 =

∑

i

(−1)i
(

Γ(Uα,OUα
)− Γ(Uα, Ext i(Iα, Iα))

)

.

On Uα
∼= C4, we use coordinates x1, x2, x3, x4 such that the (C∗)4-action is given by

t · xi = tixi, for all i = 1, 2, 3, 4.
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Let U := Uα, Z := Zα, I := Iα, π := π(α), and R := Γ(OUα
) ∼= C[x1, x2, x3, x4]. Consider

class [I] in the equivariant K-group K(C∗)4(U). By identifying [R] with 1, we obtain a ring
isomorphism

K(C∗)4(U) ∼= Z[t±1 , t
±
2 , t

±
3 , t

±
4 ].

The Laurent polynomial P(I) corresponding to [I] under this isomorphism is called the Poincaré
polynomial of I. For any w = (w1, w2, w3, w4) ∈ Z4, we use multi-index notation

tw := tw1
1 tw2

2 tw3
3 tw4

4 .

Then [R⊗ tw] ∈ K(C∗)4(U) corresponds to tw ∈ Z[t±1 , t
±
2 , t

±
3 , t

±
4 ].

Define an involution (·) on K(C∗)4(U) by Z-linear extension of

tw := t−w.

By definition, the trace map

tr : K(C∗)4(U) → Z((t1, t2, t3, t4))

corresponds to (C∗)4-equivariant restriction to the fixed point of U .
Take a (C∗)4-equivariant graded free resolution

0 → Fs → · · · → F0 → I → 0,

as in [17], where

Fi =
⊕

j

R⊗ tdij ,

for certain dij ∈ Z4. Then

(3.10) P(I) =
∑

i,j

(−1)itdij .

The (C∗)4-character of OZ is given by (3.1) and can be expressed in terms of the Poincaré
polynomial of I as follows

(3.11) Z =
∑

i,j,k>1

πijk
∑

l=1

ti−1
1 tj−1

2 tk−1
3 tl−1

4 = tr(OU − I) =
1− P(I)

(1− t1)(1 − t2)(1− t3)(1− t4)
.

We deduce

RHomU (I, I) =
∑

i,j,k,l

(−1)i+kHom(R⊗ tdij , R⊗ tdkl)

=
∑

i,j,k,l

(−1)i+kR⊗ tdkl−dij

= P(I)P(I)

trRHomU (I,I) =
P(I)P(I)

(1− t1)(1 − t2)(1 − t3)(1− t4)
,

where we used (3.10) for the third equality. Eliminating P(I) by using (3.11), the trace of
−RHomUα

(Iα, Iα)0 is then given by

(3.12) Vα := Zα +
Zα

t1t2t3t4
− ZαZα(1 − t1)(1− t2)(1− t3)(1 − t4)

t1t2t3t4
,

where we re-introduced the index α. Summing up, we have proved the following lemma:

Lemma 3.15. Let Z ⊆ X be a T -fixed zero-dimensional subscheme. Then

tr−RHomX (IZ ,IZ)0 =
∑

α

tr−RHomUα (IZα ,IZα )0 =
∑

α

Vα,

where the equivariant vertex Vα is defined by (3.12).

For a fixed α, after specialization t1t2t3t4 = 1, we have

Vα = Ext1Uα
(IZα

, IZα
) + Ext3Uα

(IZα
, IZα

)− Ext2Uα
(IZα

, IZα
)

= Ext1Uα
(IZα

, IZα
) + Ext1Uα

(IZα
, IZα

)∗ − Ext2Uα
(IZα

, IZα
),

where each ExtiUα
(IZα

, IZα
), with i 6= 0, is a finite-dimensional T -representation by Lemma 3.4

and Ext2Uα
(IZα

, IZα
) is self-dual. Consequently

eT (−Vα) = (−1)dimC Ext1Uα
(IZα ,IZα ) · eT (Ext

2
Uα

(IZα
, IZα

))

eT (Ext
1
Uα

(IZα
, IZα

))2
.
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Since the Serre duality pairing on Ext2Uα
(IZα

, IZα
) is T -invariant, there exists a half Euler class

eT
(

Ext2Uα
(IZα

, IZα
), Q

)

as in (3.7). By its property (2.4), we know

eT
(

Ext2Uα
(IZα

, IZα
), Q

)2
= (−1)

1
2 dimC Ext2Uα

(IZα ,IZα ) · eT (Ext2Uα
(IZα

, IZα
)).

Denoting the length of the zero-dimensional subscheme Zα by nα and using χ(OUα
)−χ(Iα, Iα) =

2nα, we obtain

(3.13) eT (−Vα) = (−1)nα ·
(

eT (Ext
2
Uα

(

IZα
, IZα

), Q
)

eT (Ext
1
Uα

(IZα
, IZα

))

)2

.

Definition 3.16. Let π be a solid partition of size |π| and let Vπ be the expression defined by
(3.12), where Z is the T -invariant zero-dimensional subscheme determined by (3.11). We define

wπ := ±
√

(−1)|π| · eT (−Vπ) ∈ Q(λ1, λ2, λ3, λ4)/(λ1 + λ2 + λ3 + λ4),

i.e. the square root of (−1)|π| times (3.13). We only define wπ up to a sign ±.

From Lemma 3.15 and Definition 3.16, we conclude:

Proposition 3.17. Let Z ⊆ X be a T -fixed zero-dimensional subscheme. Suppose the restriction
Z|Uα

⊆ Uα corresponds to a solid partition π(α). Then

eT
(

Ext2(IZ , IZ), Q
)

eT
(

Ext1(IZ , IZ)
) = ±

∏

α

wπ(α) .

Insertions. Let L be a (C∗)4-equivariant line bundle on X . For each α, there exists a character

d(α) = (d
(α)
1 , d

(α)
2 , d

(α)
3 , d

(α)
4 ) ∈ Z4 such that

L|Uα
= OUα

⊗ td
(α)

.

As above, write U := Uα, d := d(α), and suppose we have the standard torus action t · xi = tixi

for all i = 1, 2, 3, 4. Let Z ⊆ U be a 0-dimensional T -fixed subscheme corresponding to a solid
partition π. Then we define

Lπ(d1, d2, d3, d4) := eT
(

H0(U,OZ ⊗ L|U )
)

∈ Q(λ1, λ2, λ3, λ4)/(λ1 + λ2 + λ3 + λ4),

where

H0(U,OZ ⊗ L|U ) =
∑

i,j,k>1

πijk
∑

l=1

td1+i−1
1 td2+j−1

2 td3+k−1
3 td4+l−1

4 .

Then for any Z ⊆ X we have

eT (L
[n])|Z =

∏

α

Lπ(α)(d
(α)
1 , d

(α)
2 , d

(α)
3 , d

(α)
4 ).

Example 3.18. Let Zπ = 1 + t1 + t4. The corresponding solid partition π satisfies

π111 = 2, π211 = 1, πijk = 0, otherwise.

Hence IZπ
= 〈x2

1, x1x4, x
2
4, x2, x3〉. After specialization t1t2t3t4 = 1, we get

Vπ =
(

t31t
2
2t

2
3 − t31t

2
2t3 − t31t2t

2
3 + t31t2t3 − t1t

2
2t

2
3 + t1t

2
2t3 + t1t2t

2
3

+ 2t1t2t3 − 2t1t2 + 2t1 + t1t
−1
3 + t1t

−1
2 − 2t1t3 − t1t

−1
2 t−1

3 + t2 + t3 − t2t3
)

+

(

t
−3
1 t

−2
2 t

−2
3 − t

−3
1 t

−2
2 t

−1
3 − t

−3
1 t

−1
2 t

−2
3 + t

−3
1 t

−1
2 t

−1
3 − t

−1
1 t

−2
2 t

−2
3 + t

−1
1 t

−2
2 t

−1
3 + t

−1
1 t

−1
2 t

−2
3

+ 2t−1
1 t−1

2 t−1
3 − 2t−1

1 t−1
2 + 2t−1

1 + t−1
1 t3 + t−1

1 t2 − 2t−1
1 t−1

3 − t−1
1 t2t3 + t−1

2 + t−1
3 − t−1

2 t−1
3

)

,

where all terms come in Serre dual pairs. One readily calculates

wπ = ±
(λ1 + λ2)

2(λ1 + λ3)
2(λ2 + λ3)(λ1 − λ2 − λ3)(λ1 + 2λ2 + 2λ3)(3λ1 + 2λ2 + λ3)(3λ1 + λ2 + 2λ3)

λ2
1λ2λ3(λ1 − λ2)(λ1 − λ3)(λ1 + λ2 + λ3)2(λ1 + 2λ2 + λ3)(λ1 + λ2 + 2λ3)(3λ1 + λ2 + λ3)(3λ1 + 2λ2 + 2λ3)

,

Lπ(d1, d2, d3, d4) =
(

(d1 − d4)λ1 + (d2 − d4)λ2 + (d3 − d4)λ3

)(

(d1 − d4 + 1)λ1 + (d2 − d4)λ2 + (d3 − d4)λ3

)

·
(

(d1 − d4 − 1)λ1 + (d2 − d4 − 1)λ2 + (d3 − d4 − 1)λ3

)

,

where we used λ4 = −λ1 − λ2 − λ3.

The following conjecture is a combinatorial version of Conjecture 3.12 when X = C4.



ZERO-DIMENSIONAL DT4 INVARIANTS 21

Conjecture 3.19. There exists a way of choosing the signs for the equivariant weights wπ in

Definition 3.16 such that the following identity holds in Q(λ1,λ2,λ3,λ4)
(λ1+λ2+λ3+λ4)

(d1, d2, d3, d4)[[q]]

∑

π

Lπ(d1, d2, d3, d4)wπ q
|π| = M(−q)

(d1λ1+d2λ2+d3λ3+d4λ4)(−λ1λ2λ3−λ1λ2λ4−λ1λ3λ4−λ2λ3λ4)
λ1λ2λ3λ4 ,

where the sum is over all solid partitions and M(q) denotes the MacMahon function.

Combining Conjecture 3.19 with the vertex formalism, we can deduce Conjecture 3.12.

Proposition 3.20. Conjecture 3.19 is equivalent to Conjecture 3.12.

Proof. Conjecture 3.19 is a special case of Conjecture 3.12 when X = C4. Conversely, assuming
Conjecture 3.19 is true, we want to prove Conjecture 3.12.

Let X be a smooth quasi-projective toric Calabi-Yau 4-fold with (C∗)4-equivariant line bundle
L. Let {Uα}α=1,...e be the cover by maximal open affine (C∗)4-invariant subsets. Suppose (C∗)4

acts on the coordinates of Uα
∼= SpecC[x

(α)
1 , x

(α)
2 , x

(α)
3 , x

(α)
4 ] by

t · x(α)
i = χ

(α)
i (t)x

(α)
i , for all i = 1, 2, 3, 4,

for certain characters χ
(α)
i : (C∗)4 → C∗. If χ

(α)
i (t) = ti is the standard torus action, then

cT1 (L|pα
) cT3 (TUα|pα

)

cT4 (TUα|pα
)

=
(d1λ1 + d2λ2 + d3λ3 + d4λ4)(−λ1λ2λ3 − λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4)

λ1λ2λ3λ4
,

where pα = (0, 0, 0, 0) ∈ Uα is the unique (C∗)4-fixed point. For other characters, the RHS gets
adapted accordingly. We deduce

∞
∑

n=0

DT4(X,T, L, n ; o(L)) qn

=

∞
∑

n=0

qn
∑

Z∈Hilbn(X)T

eT (Ext
2
X(IZ , IZ), Q) · eT (L[n]|Z)
eT (Ext

1
X(IZ , IZ))

=
∞
∑

n=0

qn
∑

Z∈Hilbn(X)(C∗)4

eT (Ext
2
X(IZ , IZ), Q) · eT (L[n]|Z)
eT (Ext

1
X(IZ , IZ))

=

∞
∑

n1=0

∑

Z1∈Hilbn1(U1)(C
∗)4

· · ·
∞
∑

ne=0

∑

Ze∈Hilbne (Ue)(C
∗)4

e
∏

α=1

qnα
eT (Ext

2
Uα

(IZα
, IZα

), Q) · eT (L[nα]|Zα
)

eT (Ext
1
Uα

(IZα
, IZα

))

=
∏

α

∞
∑

nα=0

qnα

∑

Zα∈Hilbnα (Uα)(C∗)4

eT (Ext
2
Uα

(IZα
, IZα

), Q) · eT (L[n]|Zα
)

eT (Ext
1
Uα

(IZα
, IZα

))

=
∏

α

∑

solid partitionsπ(α)

Lπ(α)(d
(α)
1 , d

(α)
2 , d

(α)
3 , d

(α)
4 )wπ(α) q|π

(α)|

=
∏

α

M(−q)

cT
1

(L|pα )cT
3

(TUα|pα )

cT
4

(TUα|pα ) = M(−q)

∑

α

cT
1

(L|pα )cT
3

(TUα|pα )

cT
4

(TUα|pα ) = M(−q)
∫

X
cT1 (L)cT3 (TX).

Here for each Z ∈ Hilbn(X)T , the signs of eT (Ext
2
X(IZ , IZ), Q) are induced from the choice of

signs of {eT (Ext2Uα
(IZα

, IZα
), Q)}α when taking the square root of the following equation

(−1)
χ(IZ,IZ )0

2
eT (Ext

2
X(IZ , IZ))

eT (Ext
1
X(IZ , IZ)) eT (Ext

3
X(IZ , IZ))

=
∏

α

(−1)
χ(IZα

,IZα
)0

2
eT (Ext

2
Uα

(IZα
, IZα

))

eT (Ext
1
Uα

(IZα
, IZα

)) eT (Ext
3
Uα

(IZα
, IZα

))
.

In turn, the signs of {eT (Ext2Uα
(IZα

, IZα
), Q)}α are determined by the signs of {wπ(α)}α provided

by Conjecture 3.19 (via Definition 3.16 and Proposition 3.17). �

We implemented the calculation of wπ in Definition 3.16 into a Maple program. Using this in
the context of Conjecture 3.19 leads us to conjecture the following:

Conjecture 3.21. There exists a unique way of choosing the signs for the equivariant weights
wπ such that Conjecture 3.19 holds.

Using our Maple program, we checked the following:
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Theorem 3.22. Conjectures 3.19 and 3.21 are true modulo q7.

Remark 3.23. A priori there are many possible choices of orientation, i.e. signs for wπ, in
Conjecture 3.19. E.g. there are 140 solid partitions of size 6, so in this case there are 2140 ≈ 1042

choices! However, we have a (conjectural) very quick way of finding orientations which work.
In fact, Conjecture 4.1 of the next section asserts that the specialization Lπ(0, 0, 0,−d)wπ with
λ1 + λ2 + λ3 = 0 is well-defined (and we check this in many cases). This specialization is
conjecturally equal to (−1)|π|

∏π111

l=1 (d− (l− 1)) times a non-zero rational number. By choosing
the sign of wπ in such a way that this rational number is positive, we end up with existence of a
collection of signs for which Conjecture 3.19 holds in the cases that we checked, i.e. modulo q7.
For order q6, the calculation can be efficiently organized by comparing the coefficients of each
monomial di11 di22 di33 di44 separately.

Remark 3.24. For orders q63 we check brute force that the choices of orientation, i.e. signs for
wπ, in Conjecture 3.19 are unique. For orders q4, q5, q6, we first specialize to d1 = d2 = d3 = 0,
d4 = −d, λ1 + λ2 + λ3 = 0 (after observing that this specialization is well-defined) in which
case LHS and RHS of Conjecture 3.19 become polynomials of degree δ = 4, 5, 6 respectively.
We then compare the coefficients of the terms of the polynomials starting with the leading
term: dδ, dδ−1, · · · , d. It turns out that each comparison uniquely determines some of the signs.
E.g. for q6, comparing the coefficients of d6 fixes 1 sign, comparing the coefficients of d5 fixes 3
further signs, comparing the coefficients of d4 fixes 9 further signs, comparing the coefficients of
d3 fixes 25 further signs, comparing the coefficients of d2 fixes 54 further signs, and comparing
the coefficients of d fixes the last 48 signs.

4. Application to counting solid partitions

4.1. Weighted count of solid partitions. In this section, we study Conjecture 3.19 for a
special choice of insertions

(d1, d2, d3, d4) = (0, 0, 0,−d), d > 1.

This has applications to enumerating solid partitions.
For a solid partition π = {πijk}i,j,k>1, we refer to π111 as its height. By experimental study

of many examples (i.e. Proposition 4.2), we pose the following conjecture:

Conjecture 4.1. Let π be a solid partition and let wπ be defined using the unique sign in
Conjecture 3.21. Then the following properties hold:

(a) Lπ(0, 0, 0,−d)wπ ∈ Q(λ1,λ2,λ3,λ4,d)
(λ1+λ2+λ3+λ4)

has no pole at λ4 = −(λ1 + λ2 + λ3).

(b) The specialization Lπ(0, 0, 0,−d)wπ

∣

∣

∣

λ1+λ2+λ3=0
is independent of λ1, λ2, λ3.

(c) More precisely, there exists a rational number ωπ ∈ Q>0 (independent of d) such that

(4.1) Lπ(0, 0, 0,−d)wπ

∣

∣

∣

λ1+λ2+λ3=0
= (−1)|π| ωπ

π111
∏

l=1

(d− (l − 1)).

In particular, for d ∈ Z>0, the LHS vanishes when π111 > d and otherwise has the same
sign as (−1)π.

Geometrically, this specialization corresponds to taking X = C4 and D = {xd
4 = 0} ⊆ C4.

Then L = O(D) ∼= O⊗ t−d
4 . As we have seen in Proposition 2.4, the canonical section of L[n] on

Hilbn(C4) cuts out the sublocus of zero-dimensional subschemes Z contained in D. At the level
of T -fixed (and therefore (C∗)4-fixed) points, this means we are considering solid partitions π of
height π111 6 d. This is the geometric motivation for the specialization of Conjecture 4.1.

We give the following evidence for Conjecture 4.1:

Proposition 4.2.

• Conjecture 4.1 is true for any solid partition π of size |π| 6 6.
• Properties (a), (b), and the absolute value of equation (4.1) hold for d = 1 and any solid

partition π satisfying π111 = 1 (in this case |ωπ| = 1).
• Properties (a), (b), and the absolute value of equation (4.1) hold for various individual

solid partitions of size 6 15 listed in Appendix A.

Proof. The second statement follows from Theorem 3.13 and [17, I, Sect. 4]. For the other
cases, we use our Maple program, which calculates wπ for any given solid partition π. For the
first statement, we use the unique choice of signs that we found when verifying Conjecture 3.21
(Theorem 3.22). �
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Combining Conjectures 4.1 and 3.19, we obtain a generating function counting weighted solid
partitions:

Theorem 4.3. Assume Conjectures 3.19 and 4.1 are true. Then

(4.2)
∑

π

ωπ t
π111 q|π| = et(M(q)−1),

where the sum is over all solid partitions, t is a formal variable, and M(q) denotes the MacMahon
function. In particular, when t = 1, we have

∑

π

ωπ q
|π| = eM(q)−1.

Proof. Consider Conjecture 3.19 for d1 = d2 = d3 = 0, d4 = −d, and the specialization

λ1 + λ2 + λ3 = 0.

Then the power of M(−q) in Conjecture 3.19 becomes d. According to Conjecture 4.1, this
specialization is well-defined and we get

∑

π

ωπ ·
(

π111
∏

l=1

(d− (l − 1))

)

q|π| = M(q)d,

for any d > 1. Then it is easy to see that

1 +
∑

π111=1

ωπ q
|π| = M(q),

1 + 2
∑

π111=1

ωπ q
|π| + 2!

∑

π111=2

ωπ q
|π| = M(q)2,

1 + 3
∑

π111=1

ωπ q
|π| + 3× 2

∑

π111=2

ωπ q
|π| + 3!

∑

π111=3

ωπ q
|π| = M(q)3,

. . .

1 +

k
∑

i=1

k!

(k − i)!

∑

π111=i

ωπ q
|π| = M(q)k, k > 1.

Rearranging gives

t
∑

π111=1

ωπ q
|π| = t(M(q)− 1),

t2
∑

π111=2

ωπ q
|π| =

t2

2

(

M(q)2 − 2M(q) + 1
)

,

t3
∑

π111=3

ωπ q
|π| =

t3

3!

(

M(q)3 − 3M(q)2 + 3M(q)− 1
)

,

. . .

tk
∑

π111=k

ωπ q
|π| =

tk

k!

(

M(q)− 1
)k
, k > 1,

whose summation gives the equality we want. �

Remark 4.4. Counting solid partitions is a very difficult question. In fact, MacMahon initially
proposed an incorrect formula for its generating function [1]

∑

π

q|π|
?
=

∞
∏

n=1

1

(1− qn)
1
2n(n+1)

.

Exact enumeration using computers also does not go very far. As Stanley wrote in his PhD
thesis [21] 8

“The case r = 2 has a well-developed theory — here 2-dimensional partitions are known as plane
partitions. (...) For r > 3, almost nothing is known and (...) casts only a faint glimmer of light
on a vast darkness.”

We find that a specialization of the weights L(d1, d2, d3, d4)π wπ, coming naturally from DT4

theory, gives a weighted count of solid partitions with a nice closed formula (4.2). Of course, one
can always find ωπ such that (4.2) holds (e.g. simply by expanding the RHS of (4.2) and giving
all solid partitions of the same size and height an equal weight).

8This quote is taken from slides of a talk by S. Govindarajan, Aspects of Mathematics, IMSc, Chennai (2014).
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Below we will find an explicit (conjectural) formula of ωπ for any solid partition π (see
Conjecture 4.13 and Proposition 4.14). In terms of this explicit formula, it actually becomes
rather elementary to prove the counterpart of Theorem 4.3 (i.e. Proposition 4.11). Nevertheless,
we find it interesting that such weights ωπ naturally arise from DT4 theory, even though they
may have limited combinatorial interest.

4.2. Combinatorial approach to ωπ. In this section, we assign an explicit weight ωc
π to any

solid partition (Definition 4.7). Firstly, we unconditionally prove the analogue of Theorem 4.3
with ωπ replaced by ωc

π (Proposition 4.11). Secondly, an obvious generalization of Proposition
4.11 turns out to hold for partitions of any dimension d (Remark 4.12). Thirdly, we conjecture
ωπ = ωc

π, for any solid partition π, and we verify this in many examples (Conjecture 4.13 and
Proposition 4.14).

Definition 4.5. Let ξ = {ξij}i,j>1 be a plane partition, i.e. a sequence of non-negative integers
satisfying

ξij > ξi+1,j , ξij > ξi,j+1, ∀ i, j > 1,

|ξ| :=
∑

i,j

ξij < ∞.

We define the binary representation of ξ to be the sequence of integers {ξ(i, j, k)}i,j,k>1 given by

ξ(i, j, k) :=

{

1 if k 6 ξij
0 otherwise.

Example 4.6. Suppose ξ is given by ξ11 = 2, ξ21 = 1, ξ12 = 1. Then ξ(1, 1, 1) = ξ(1, 1, 2) =
ξ(2, 1, 1) = ξ(1, 2, 1) = 1 and ξ(i, j, k) = 0 for all other i, j, k > 1.

Definition 4.7. Let π = {πijk}i,j,k>1 be a (non-empty) solid partition and consider all possible
sequences of integers {mξ}ξ, where the index ξ runs over all (non-empty) plane partitions and
mξ ∈ Z>0. Define the following collection

(4.3) Cπ :=

{

{mξ}ξ

∣

∣

∣

∣

∣

πijk =
∑

ξ

mξ · ξ(i, j, k) for all i, j, k
}

.

We define

(4.4) ωc
π :=

∑

{mξ}ξ∈Cπ

∏

ξ

1

(mξ)!
.

For the empty solid partition π = ∅ we define ωc
π := 1.

Remark 4.8. For each {mξ}ξ ∈ Cπ, we have

|π| =
∑

ξ

mξ · |ξ|.

Hence, mξ = 0 if |ξ| is large. Therefore, the collection Cπ is a finite set and, for each {mξ}ξ ∈ Cπ,
there are only finitely many nonzero mξ.

Example 4.9. Suppose π = {πijk}i,j,k>1 satisfies πijk = 0 unless i = j = 1. Then

ωc
π =

∞
∏

k=1

1

(π11k − π11,k+1)!
.

This is due to the fact that the only plane partitions ξ = {ξijk}i,j,k>1 contributing to the defining

equation in (4.3) satisfy ξ(i, j, k) = 0 unless i = j = 1. Define ξ(n) to be the plane partition
with binary representation satisfying ξ(1, 1, k) = 1 for all 1 6 k 6 n and ξ(i, j, k) = 0 otherwise.
Then Cπ only consists of one element {mξ}ξ:

mξ =

{

π11k − π11,k+1 if ξ = ξ(k)

0 otherwise.

Example 4.10. Consider the solid partition π of Example 3.7, i.e. π111 = 2, π211 = π121 =
π112 = 1, and πijk = 0 otherwise. Then ωc

π = 4. Indeed Cπ contains the following four sequences,
each contributing 1 to the sum in (4.4):

• Consider the plane partitions ξ(1) and ξ(2) defined by the following binary representa-
tions: ξ(1)(1, 1, 1) = ξ(1)(2, 1, 1) = ξ(1)(1, 2, 1) = ξ(1)(1, 1, 2) = 1 and ξ(1)(i, j, k) = 0
otherwise; ξ(2)(1, 1, 1) = 1 and ξ(2)(i, j, k) = 0 otherwise. Define {mξ}ξ by mξ = 1 if

ξ = ξ(1) or ξ(2) and mξ = 0 otherwise.
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• Consider the plane partitions ξ(1) and ξ(2) defined by the following binary represen-
tations: ξ(1)(1, 1, 1) = ξ(1)(2, 1, 1) = ξ(1)(1, 2, 1) = 1 and ξ(1)(i, j, k) = 0 otherwise;
ξ(2)(1, 1, 1) = ξ(2)(1, 1, 2) = 1 and ξ(2)(i, j, k) = 0 otherwise. Define {mξ}ξ by mξ = 1 if

ξ = ξ(1) or ξ(2) and mξ = 0 otherwise.

• Consider the plane partitions ξ(1) and ξ(2) defined by the following binary represen-
tations: ξ(1)(1, 1, 1) = ξ(1)(2, 1, 1) = ξ(1)(1, 1, 2) = 1 and ξ(1)(i, j, k) = 0 otherwise;
ξ(2)(1, 1, 1) = ξ(2)(1, 2, 1) = 1 and ξ(2)(i, j, k) = 0 otherwise. Define {mξ}ξ by mξ = 1 if

ξ = ξ(1) or ξ(2) and mξ = 0 otherwise.

• Consider the plane partitions ξ(1) and ξ(2) defined by the following binary represen-
tations: ξ(1)(1, 1, 1) = ξ(1)(1, 2, 1) = ξ(1)(1, 1, 2) = 1 and ξ(1)(i, j, k) = 0 otherwise;
ξ(2)(1, 1, 1) = ξ(2)(2, 1, 1) = 1 and ξ(2)(i, j, k) = 0 otherwise. Define {mξ}ξ by mξ = 1 if

ξ = ξ(1) or ξ(2) and mξ = 0 otherwise.

The combinatorial weights ωc
π lead to the following generating series:

Proposition 4.11. The following identity holds
∑

π

ωc
π t

π111 q|π| = et(M(q)−1),

where the sum is over all solid partitions, t is a formal variable, and M(q) denotes the MacMahon
function. In particular, when t = 1, we have

∑

π

ωc
π q

|π| = eM(q)−1.

Proof. The RHS can be rewritten as

(4.5)

(

∏

ξ⊢1

etq

)(

∏

ξ⊢2

etq
2

)(

∏

ξ⊢3

etq
3

)

· · ·

where
∏

ξ⊢n denotes the finite product over all plane partitions ξ of size n.

Choose a sequence of multiplicities {mξ ∈ Z>0}ξ with only finitely many mξ > 0. This choice
gives rise to a solid partition π defined as follows

πijk :=
∑

ξ

mξ · ξ(i, j, k), for all i, j, k > 1,

which we call the solid partition associated to {mξ}ξ. Conversely, for a fixed solid partition π,
we can consider the collection of all sequences {mξ ∈ Z>0}ξ with only finitely many mξ > 0
whose associated solid partition is π. This collection is precisely Cπ.

Each term arising from multiplying out the infinite product (4.5) corresponds to a sequence
{mξ ∈ Z>0}ξ with only finitely many mξ > 0. Such a term contributes

(4.6)
∏

ξ

tmξ

(mξ)!
qmξ|ξ|.

Now collect all terms of the form (4.6) such that {mξ}ξ has associated solid partition π. This
gives

∑

{mξ}ξ∈Cπ

∏

ξ

tmξ

(mξ)!
qmξ|ξ| =

(

∑

{mξ}ξ∈Cπ

∏

ξ

1

(mξ)!

)

tπ111q|π| = ωc
π t

π111q|π|,

where we use
∑

ξ mξ = π111 in the first equality. Summing over all distinct solid partitions gives
the formula of the proposition. �

Remark 4.12. We may also start with d-partitions9 π for any d > 1 and define ωc
π completely

analogously using (d− 1)-partitions ξ and their binary representations. The same proof yields

log
∑

d-partitionsπ

ωc
π t

π111 q|π| = t
∑

(d−1)-partitionsπ, |π|>1

q|π|,

where we use the convention that there exists a single zero-dimensional partition of each size.

We end this section with the observation that a specialization of DT4 theory precisely seems
to recover the combinatorics that we just described (and this is how we found the weights ωc

π in
the first place).

9E.g. 1-partitions are partitions, 2-partitions are plane partitions, 3-partitions are solid partitions.
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Conjecture 4.13. For any solid partition π, we have ωπ = ωc
π, where ωπ is defined using DT4

theory in Conjecture 4.1 and ωc
π is the explicit combinatorial weight of Definition 4.7.

Using our Maple program, which calculates wπ for a given π, we verified the following:

Proposition 4.14.

• Conjecture 4.13 is true for any solid partition π of size |π| 6 6.
• |ωπ| = ωc

π for any solid partition π satisfying π111 = 1.
• |ωπ| = ωc

π for the explicit list of solid partitions of size 6 15 given in Appendix A.

Appendix A. Explicit calculations of |ωπ|
Using our Maple program, which calculates wπ for a given solid partition π, we checked that

Lπ(0, 0, 0,−d)wπ

∣

∣

∣

λ1+λ2+λ3=0
= (−1)|π| ωπ

π111
∏

l=1

(d− (l − 1)),

ωπ = ωc
π,

(A.1)

hold for all solid partitions π with |π| 6 6. Here the signs of wπ are the ones induced from
Conjecture 3.21. We also checked that the absolute value of equations (A.1) hold for:

• (Height 1 and d = 1) Let π be a solid partition with π111 = 1. Then |ωπ| = ωc
π = 1.

• (1-Partitions of size 6 10) All solid partitions π = {πijk}i,j,k>1 with πijk = 0 unless
i = j = 1 and |π| 6 10. Then

|ωπ| = ωc
π =

∞
∏

k=1

1

(π11k − π11,k+1)!
.

• (Size 7) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t2 + t1t2 + t3 + t4 + t24.

Then |ωπ| = ωc
π = 3

2 .
• (Size 8) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t2 + t1t2 + t3 + t4 + t1t4 + t24.

Then |ωπ| = ωc
π = 3.

• (Size 9) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t3 + t4 + t1t4 + t24.

Then |ωπ| = ωc
π = 6.

• (Size 10) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t24.

Then |ωπ| = ωc
π = 2.

• (Size 11) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24.

Then |ωπ| = ωc
π = 8.

• (Size 12) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24 + t34.

Then |ωπ| = ωc
π = 6.

• (Size 13) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24 + t34 + t44.

Then |ωπ| = ωc
π = 8

3 .
• (Size 14) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24 + t34 + t44 + t54.

Then |ωπ| = ωc
π = 5

6 .
• (Size 15) Consider the solid partition π corresponding to

Zπ = 1 + t1 + t21 + t2 + t22 + t1t2 + t2t3 + t3 + t4 + t1t4 + t2t4 + t24 + t34 + t44 + t54.

Then |ωπ| = ωc
π = 5

3 .
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Appendix B. Nekrasov’s conjecture

The first author heard the following related conjecture (written below in terms of equivariant
DT4 theory) from Professor Nikita Nekrasov during a visit to the Simons Center for Geometry
and Physics in October 2016. For a recent much more general K-theoretical version, see [19].

Let X = C4 and let T = {t ∈ (C∗)4 | t1t2t3t4 = 1} be the Calabi-Yau torus. Denote the
equivariant parameters of (C∗)4 by λi (i = 1, 2, 3, 4). We define

[Hilbn(C4)]virT,o(L) :=
∑

Z∈Hilbn(C4)T

eT
(

Ext2(IZ , IZ), Q
)

eT
(

Ext1(IZ , IZ)
) .

As in Definition 3.8, this depends on a choice of orientation o(L) as in Definition 3.8 which is
used to define the half Euler classes. Consider the generating function

ZC4 :=

∞
∑

n=0

(

∫

[Hilbn(C4)]vir
T,o(L)

1
)

· qn ∈ Q(λ1, λ2, λ3, λ4)

(λ1 + λ2 + λ3 + λ4)
[[q]].

Conjecture B.1. There exist choices of orientation such that

ZC4 = e
(λ1+λ2)(λ1+λ3)(λ2+λ3)

λ1λ2λ3(λ1+λ2+λ3) q
.

Using the signs discussed in Remark 3.23, we checked the following with our Maple program:

Proposition B.2. Conjecture B.1 is true modulo q7.

In fact, the signs of Nekrasov’s conjecture seem to be unique as well:

Proposition B.3. Modulo q5, there are unique choices of signs for which Conjecture B.1 holds.
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