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Abstract The climate variability associated with the Pleistocene Ice Ages is one of
the most fascinating puzzles in the Earth Sciences still awaiting a satisfactory expla-
nation. In particular, the explanation of the dominant 100 kyr period of the glacial
cycles over the last million years is a long-standing problem. Based on bifurcation
analyses of low-order models, many theories have been suggested to explain these
cycles and their frequency. The new aspect in this contribution is that, for the first
time, numerical bifurcation analysis is applied to a two-dimensional marine ice sheet
model with a dynamic grounding line. In this model, we find Hopf bifurcations with
an oscillation period of about 100 kyr which may be relevant to glacial cycles.

Keywords Marine ice sheets · Bifurcation analysis · Multiple equilibria
Oscillatory modes

1 Introduction

Very detailed information on past temperatures on Earth has been obtained from
marine benthic records, in particular oxygen isotope ratios.Water in ice cores contains
two isotopes of oxygen, 18O and 16O. The normalized isotope ratio δ18O is calculated
as a deviation from a reference sample as

δ18O = (
18O
16O )sample − (

18O
16O )re f erence

(
18O
16O )re f erence

, (1)
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where the reference sample is ‘standard mean’ ocean water. The isotope 16O is
lighter than 18O so that water containing 16O is preferentially evaporated and a
temperature-dependent fractionation occurs. Changes in δ18O reflect the combined
effect of changes in global ice volume and temperature at the time of deposition of
the sampled material. During very cold conditions, global ice volume is relatively
large and hence sea level is low, which enriches water in the ocean with 18O . Also,
because of the colder temperatures, more 18O remains in the ocean and less 18O
becomes locked in the ice. Hence, the ratio δ18O in ice cores will decrease (becomes
more negative) under colder conditions.

In marine sediment cores the opposite behavior of the isotope ratio is found and
δ18O increases (becomes more positive) when the temperature decreases (during
colder conditions, the concentration of the heavier isotope will increase). In Fig. 1, a
time series is shownof a composite δ18O ocean sediment (benthic) record over the last
2 Myr [1]. A cooling trend is found on which variability in ice cover is superposed.
Analysis reveals that this variability is first dominated by a 41 kyr period and after
the so-called Mid Pleistocene Transition (MPT) at about 700 kyr, it is dominated by
a 100 kyr period.

The European Project for IceCoring inAntarctica (EPICA) has provided two deep
ice cores in East Antarctica from which climate conditions can be reconstructed
back to 800 kyr BP [2]. From the reconstructed temperature anomaly time series
(Fig. 2), one observes the asymmetry between the slow glaciation and the rapid
deglaciations. Glacial-interglacial transitions have affected all components of the
climate system and induced relatively large amplitude changes of many variables in
these components. One important player in the climate system responsible for the
globalization of these transitions is believed to be the atmosphericCO2 concentration.
A composite CO2 record is also shown in Fig. 2, created from a combination of
records from the Dome C and Vostok ice cores. It is observed that the atmosphere
CO2 concentration varies from about 180 to 280 ppm during a glacial-interglacial
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Fig. 1 The LR04 benthic δ18O stack over the Pleistocene, constructed by the graphic correlation
of 57 globally distributed benthic δ18O records (data from [1]). The x-axis indicates time BC in
kyr (so the time is increasing from right to left)
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Fig. 2 Reconstructed temperature (drawn) and atmospheric CO2 (dotted) concentration from ice
cores on Antarctica

transition and that an optimal correlation with the δ18O time series occurs near lag
zero.

These results lead to many intriguing questions: Why did glacial-interglacial
cycles appear in the Pleistocene? Which processes in the climate system caused
the glacial-interglacial changes in global mean temperature and ice sheet extent?
What caused the transition (the MPT) from the 41 kyr world to the 100 kyr world
about 700 kyr ago?

Approaches to answers on the Pleistocene Ice Ages problem have a very interest-
ing history which is nicely described in [3]. A connection with the orbital character-
istics of the Earth-Sun system was already made in the 19th century, but in the 1930s
it was suggested [4] that glaciations occur when the insolation intensity is weak at
high northern latitudes during summer. When the 65◦N insolation is small, ice can
persist throughout the year leading to the growth of ice sheets. Favorable conditions
for this to happen are when the spin axis is less tilted and the aphelion (the point
in the orbit, where the Earth is farthest from the Sun) coincides with summer in the
Northern Hemisphere.

The variations in insolation are caused by the changes in orbital characteristics
of the Earth, and there are three types of motion relevant for the amount of radiation
received at a particular point on Earth. First, the spin axis of the Earth undergoes
precession. One full cycle of precession has a period of 27 kyr, but coupled to the
movement of the long end of the ellipse around the Sun (in 105 kyr) the net effect is
a fluctuation in solar radiation with a period of 23 kyr. In addition, both the obliquity
and the eccentricity of the Earth’s orbit undergo periodic variations. The tilt angle
changes in 41 kyr between 22◦ and 24◦ leading to variations in seasonal contrast, and
the eccentricity varies from 0.0 (perfect circle) to about 0.05 with periodicities of
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Fig. 3 a June insolation at 60◦ N. b Spectrum of the time series in a. c Time series of δ18O at
ODP677 (83◦ W, 1◦ N) over the last 1 Myr. d Spectrum of the time series in c. Note that 1/23 =
0.043, 1/19 = 0.053, 1/41 = 0.024 and 1/100 = 0.01

100 kyr and 450 kyr. A time series of the insolation at 60◦N (Fig. 3a) clearly shows
variations of about 100 Wm−2 over the last 1 Myr. A comparison of the spectrum
of this insolation curve (Fig. 3b) and the spectrum of a δ18O record from an ocean
sediment core (Fig. 3d) over the last 1Myr (as shown in Fig. 3c) shows that there are
clear signatures of the 19 and 23 kyr precession and of the 41 kyr obliquity variations
of theEarth’s orbit in theOceanDrillingProgram record.On the other hand, at the 100
kyr time scale, there is hardly any forcing amplitude while the climate signal in the
δ18O record has the largest amplitude. Comparing δ18O records with the insolation
time series [5], it is interesting that the amplitude of the ice-cover variations can be
very large while the insolation variation is very small. Furthermore, the variations
in insolation provide no clue on the transition from the 41 kyr world to the 100 kyr
world as they have the same temporal characteristics through the transition.

Although it is clear that the orbital insolation variations must play a role, a simple
linear forcing-response relation apparently does not apply. The 100 kyr variations in
insolation due to eccentricity are very weak (and it is the only forcing with an annual
mean signal) and the 41 kyr and 23 kyr provide only low-frequency variations on
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the seasonal variations, not on the annual mean insolation. Hence, processes internal
to the climate system must play a role in the amplification of the orbitally induced
insolation variations.

2 Basic Theories of Interglacial-Glacial Cycles

There have been many suggestions on the dominant mechanisms of ice-age variabil-
ity. The orbital variations in insolation over the globe are at the heart of all these
theories. Traditionally, the June insolation at 65◦N (such as shown in Fig. 3a) has
been used as the most important part of this forcing as this determines whether snow
will be left at the end of the Northern Hemisphere Summer season. Below, we will
refer to this orbital component of the insolation as the M-forcing.

In a first theory, the behavior of the climate system is considered as a transient
deviation from a single steady equilibrium due to the M-forcing. One can calculate
that a 1% change in solar insolation leads to about a 1◦C temperature change. The
dominant amplitude of eccentricity variations is at a period of about 400 kyr while
the next strongest variations occur on about a 100 kyr time scale. The variations in
eccentricity do modify the globally and annually-averaged amount of insolation but
the amplitudes are very small, in the order of 0.1%of the solar constant. The variations
in eccentricity can therefore only account for a climate signal of at most 0.1 K.
A similar analysis gives that the total variations in precession and obliquity can
only account directly for a signal of at most 0.5◦C, about an order of magnitude
too small. When considering many other processes (e.g., ice sheets, bedrock) in the
direct response to the M-forcing, the sensitivity does not increase enough to explain
the climate signal [6].

There have been several suggestions that the existence of multiple steady states
gives, together with the M-forcing, rise to glacial cycles. For example, in the model
by [7] there are three equilibrium states in the climate system: an interglacial state i,
a weak glacial state g, and a strong glacial stateG. Transitions from i to g occur when
the summer insolation at 65◦N drops below a value i0. Furthermore, transitions from
g to G occur when the ice volume V increases above some critical level Vc. Finally,
a transition from G to i occurs when the insolation increases above a level i1. These
are the only transitions which are allowed in this model. By forcing the model with
the M-forcing, there is a good overall agreement between model and observations
(considering the simplicity of the model). By allowing for a slight linear trend in the
maximum ice volume and one in the insolation forcing, [7] also finds the MPT at
around the correct time and the spectra of hismodel and typical δ18O data correspond
reasonably well to each other.

When multiple equilibria, a weak periodic forcing, and noise are present there
is also the possibility of stochastic resonance. In fact, the discovery of stochastic
resonance actually occurred [8–10] while trying to explain the 100 kyr dominant
glacial cycles using an energy balance atmosphere model. The central element of
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this theory is the amplification of the weak periodic eccentricity component of the
M-forcing by noise in the presence of multiple equilibria.

Coupled atmosphere-cryosphere and cryospheric-lithosphere processes can also
give rise to internal variability. The question is of course, whether these processes
can also give rise to sustained oscillations (through Hopf bifurcations). If so, the
time scales and amplitude ranges of these oscillations with ‘realistic’ values of the
parameters will be of interest regarding the glacial cycles. Typical results can be
found in [11] where a sustained oscillation is indeed present under steady forcing.
The time scale of the oscillation is about 6–7 kyr and not 100 kyr which shows that
the processes captured in this simple model are not able to generate this long time
scale. In [12], the model in [13] is forced by anM-type forcing and the 100 kyr period
arises due to nonlinear resonances of the external frequency of the forcing and the
internal frequency of oscillation [6].

Many other idealizedmodels have been proposedwhich involve other components
of the climate system [14], for example, those involving the atmospheric concentra-
tion of CO2 and the global ocean state. The model proposed by [15] attributes to
the Antarctic ice sheet extent a central role in linking climatic and CO2 glacial-
interglacial changes. The model proposed by [16] investigates the role of marine cal-
cifiers in glacial-interglacial cycles. For many of these models, bifurcation diagrams
have been computed showing that oscillations are associated with Hopf bifurcations
[17].

A relatively simple model, where an internal oscillation exists with a time scale
of about 100 kyr is that of [18]. The model is a box model of the climate where a
similar atmospheric-cryospheric model as in the previous subsection is coupled to
an ocean model with a sea-ice component. In [19], results of the model forced by
constant annual mean insolation (no seasonal or Milankovitch forcing) are presented
to assess the degree to which the internal processes (particularly sea-ice) may control
glacial cycle variability. A typical result for (near) standard values of the parameters
in [19] shows that oscillations with a time scale of about 100 kyr are found. The
proposed mechanism of the variability is referred to as the sea-ice switch, where
rapid sea-ice growth and decay can act as a switch for the precipitation-temperature
feedback affecting the growth and/or decay of ice sheets. The 100 kyr time scale is
due to the growth and decay of ice sheets which is coupled by relatively rapid sea
ice changes.

When this model is forced with Milankovitch insolation changes, nonlinear res-
onances may occur between the internal oscillation and the orbital forcing lead-
ing to time series which qualitatively resemble the observed records [20], which
demonstrates how phase locking to Milankovitch forcing affects glacial cycles in
this idealized model. These nonlinear resonances are likely to be present in every
model where a strong nonlinear interaction is represented, explaining for example
the good agreement between very conceptual models, where only a multiple state
switch [7] is represented, and observations. In other words, even if the mechanism
of the glacial-interglacial variability is incorrect, there may still be a good fit with
the isotopic record. Due to the synchronization, a comparison between time series
of simple models and isotope records is not mechanistically selective [21].
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Although many bifurcation studies have been done on low-order models, there
appear to have been no studies where numerical bifurcation analysis has been applied
to spatially extended models of ice sheets. In this contribution, we make a first step
in this direction, by looking for multiple equilibria and Hopf bifurcations in a two-
dimensional model of a marine ice sheet.

3 Methodology

Consider in Fig. 4 a two-dimensional marine ice sheet situated on a bedrock topog-
raphy in a Cartesian coordinate system. The ice sheet and bedrock are taken sym-
metrical, with a symmetry axis at x = 0. The grounding line is indicated by xg , the
ice thickness by h, and the bedrock by b.

3.1 Model

An introduction to ice-sheet and glacier modeling can be found in [22, 23]. The
dynamics of a marine ice sheet is modeled using the shallow-shelf approximation
(SSA), which is obtained by simplifying the full Stokes problem for gravity driven ice
flow [22]. The two-dimensional SSA, as implemented in [24], is used as a benchmark
problem for the marine ice sheet intercomparison project (MISMIP, [25]). Since a

 Ice
 Bedrock
 Sea level at the grounding line
 Reference (zero) line

Fig. 4 A two-dimensional marine ice sheet. The ice thickness is given by h(x) and the horizontal
ice velocity by u(x). Up until the grounding line xg , the ice sheet rests on the bedrock b(x). At xg
the ice sheet extends into a floating ice shelf
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thorough comparison with other results is available, this will be our model of choice
for the bifurcation analysis. Conservation of mass gives:

∂h

∂t
+ ∂(uh)

∂x
= a, (2)

where h is the ice thickness, u the ice velocity and a the accumulation rate. On a
downward sloping bed (Fig. 4), the accumulation a and the ice flux uh at the ground-
ing line are in equilibrium: a positive perturbation of the grounding line increases
both the accumulation and the flux, leading to a zero net ice growth.

Conservation of momentum gives:

∂

∂x

[
2A− 1

n h

∣∣∣∣∂u∂x

∣∣∣∣
1
n −1

∂u

∂x

]
− C |u|(m−1) u − ρi gh

∂(h − b)

∂x
= 0, (3)

where A and n are coefficients of Glen’s flow law, a constitutive relation describing
the rheology of ice ([22, 23], typically n = 3). The ice density is given by ρi , g
is the gravitational acceleration and b the bedrock taken positive in the downward
direction. The consecutive terms in themomentum balance (3) represent longitudinal
stresses, vertical shear stresses, and the driving stress respectively. The parameters
C and m determine the sliding of the ice. Together, A and C effectively describe
the size of the transition zone, i.e., the region in which the grounded sheet becomes
afloat and transforms into an ice shelf.

The left boundary of the domain is located at an ice divide, a location in the ice
with zero horizontal flow. Hence, we take u = 0 at x = 0. As we assume symmetry
around x = 0, we also require that

∂(h − b)

∂x
= 0 for x = 0. (4)

We will denote the grounding line by xg . At xg the ice sheet becomes afloat and the
following flotation condition holds:

ρi h = ρwb for x = xg. (5)

From an integration of the shelf flow [24], an extra condition at the grounding line
is obtained:

2A− 1
n

∣∣∣∣∂u∂x

∣∣∣∣
1
n −1

∂u

∂x
= 1

2

(
1 − ρi

ρw

)
ρi gh for x = xg. (6)

Note that the profile of the shelf is not given by the SSA model, but obtained using
an equilibrium analysis [23].
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3.2 Non-dimensional Equations

Thefirst difficulty one encounters is the unknown right boundary of the problemgiven
by the grounding line position xg . As discussed in [24, 26], a moving grid approach
can be used to track xg . Using a transformation z = x/xg , the original domain x ∈
[0, xg] is mapped onto the fixed domain z ∈ [0, 1]. As a result, the problem now has
three unknowns: h, u and xg . The differential operators are transformed using the
chain rule:

∂

∂t
= ∂

∂τ

∂τ

∂t
+ ∂

∂z

∂z

∂t
= ∂

∂τ
− z

xg

dxg
dt

∂

∂z
,

∂

∂x
= ∂

∂τ

∂τ

∂x
+ ∂

∂z

∂z

∂x
= 1

xg

∂

∂z
,

where z and τ denote the independent variables in the transformed domain. Since
we only transform in space we have that τ = t . The transformations of (2)–(6) are
then given by:

∂h

∂τ
− z

xg

dxg
dτ

∂h

∂z
+ 1

xg

∂(uh)

∂z
= a, (7)

1

x
1
n +1
g

∂

∂z

[
2A− 1

n h

∣∣∣∣∂u∂z
∣∣∣∣
1
n −1

∂u

∂z

]
− C |u|(m−1) u − ρi gh

xg

∂(h − b)

∂z
= 0, (8)

∂(h − b)

∂z
= u = 0 for z = 0, (9)

ρi h = ρwb for z = 1, (10)

2A− 1
n
1

x
1
n
g

∣∣∣∣∂u∂z
∣∣∣∣
1
n −1

∂u

∂z
= 1

2

(
1 − ρi

ρw

)
ρi gh for z = 1. (11)

To improve numerical accuracy the equations are non-dimensionalized. Let

h = h0h̃, b = h0b̃, xg = x0 x̃g, τ = τ0τ̃ , u = u0ũ, u0 = x0
τ0

, (12)

with typical thickness h0 = 1 × 103 m, horizontal extent x0 = 1 × 105 m and typical
timescale τ0 = 100 y. Substituting these expressions into (7) gives

h0
τ0

(
∂ h̃

∂τ̃
− z

x̃g

dx̃g
dτ̃

∂ h̃

∂z
+ 1

x̃g

∂(ũh̃)

∂z

)
= a ⇔ ∂ h̃

∂τ̃
− z

x̃g

dx̃g
dτ̃

∂ h̃

∂z
+ 1

x̃g

∂(ũh̃)

∂z
= Ω,

(13)
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where we let Ω = τ0
h0
a. Similarly, the non-dimensionalized version of (8) is given

by

1

x̃
1
n +1
g

∂

∂z

[
h̃

∣∣∣∣∂ ũ∂z
∣∣∣∣
1
n −1

∂ ũ

∂z

]
− Γ |ũ|(m−1) ũ − Λ

ρi gh̃

x̃g

∂(h̃ − b̃)

∂z
= 0, (14)

where we introduce the new constants

Γ := C

(
x0
τ0

)m / ⎛
⎝2A− 1

n

(
x0
τ0

) 1
n h0

x
1
n +1
0

⎞
⎠ and Λ := h20

x0

/ ⎛
⎝2A− 1

n

(
x0
τ0

) 1
n h0

x
1
n +1
0

⎞
⎠ .

(15)
Finally, at the boundaries we obtain

∂(h̃ − b̃)

∂z
= ũ = 0 for z = 0, (16)

ρi h̃ = ρwb̃ for z = 1, (17)

1

x̃
1
n
g

∣∣∣∣∂ ũ∂z
∣∣∣∣
1
n −1

∂ ũ

∂z
= Σ

(
1 − ρi

ρw

)
ρi gh̃ for z = 1, (18)

with

Σ := 1

2
h0

/ ⎛
⎝2A− 1

n
1

τ
1
n
0

⎞
⎠ . (19)

3.3 Numerical Implementation

From here on we omit the tildes and assume the unknowns are non-dimensional. As
in [24], the domain z ∈ [0, 1] is discretized using a staggered grid with a fixed mesh-
width: Δz = 1/(N − 1/2). The left boundary is taken at the vertex i = 1 and the
right boundary at the cell center i = N + 1/2. Thus, for i = 1, 2, . . . , N , we have
vertices at zi = Δz(i − 1) and cell centers at zi+1/2 = Δz(i − 1/2). The discretized
solution values for ice thickness are located at the vertices hi , while the values for
ice velocity are positioned at the cell centers ui+1/2.

The transformed and non-dimensionalized continuity equation (13) is discretized
using a central difference for the stretching and an upwind discretization for the flux:

dhi
dτ

− zi
xg

(
hi+1 − hi−1

2Δz

)
dxg
dτ

= −hi
(
ui+1/2 + ui−1/2

) − hi−1
(
ui−1/2 + ui−3/2

)
2xgΔz

+ Ωi .

(20)
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At the left boundary symmetry requires

(h2 − h0)/(2Δz) = 0 (central),

(h1 − h0)/Δz = 0 (upwind),

u3/2 + u1/2 = 0, u5/2 + u−1/2 = 0.

Using these expressions we can resolve the dependence on nonexistent grid-points.
For i = 1 and i = 2, mass conservation is therefore given by

(i = 1)
dh1
dτ

= −h1
(
u3/2 + u5/2

)
2xgΔz

+ Ω1, (21)

(i = 2)
dh2
dτ

− z2
xg

(
h3 − h1
2Δz

)
dxg
dτ

= −h2
(
u5/2 + u3/2

)
2xgΔz

+ Ω2. (22)

Note that at the rightmost vertex (i = N ), the right hand side of the discretized mass
conservation (20) does not contain any dependencies on nonexistent grid-points. In
the left hand side we will need to use a one-sided difference for the stretching term.

Define Δui := ui+1/2 − ui−1/2. The momentum conservation (14) is discretized
using central differences:

0 = 1

(xgΔz)1+1/n

[
hi+1 |Δui+1|1/n−1 Δui+1 − hi |Δui |1/n−1 Δui

]
− Γ

∣∣ui+1/2

∣∣m−1
ui+1/2 − Λ

(
hi + hi+1

2

)
ρi g

xgΔz

[
hi+1 − bi+1 − hi + bi

]
.

(23)

At the left boundary we let Δu1 = 2u3/2. At the right boundary we impose the
following discretization of (18) with a substituted flotation condition ρi hN = ρwbN
(cf. (17)):

0 = 1

(xgΔz)1/n
|ΔuN |1/n−1 (ΔuN ) − Σ

(
1 − ρi

ρw

)
ρwgbN . (24)

The discretization contains N unknown hi , N unknown ui+1/2 and an unknown
grounding line position xg . To achieve a closed system of 2N + 1 equations, the
flotation criterion at the cell center zN+1/2 is prescribed using an extrapolation of the
thickness, which gives the closing requirement:

0 = 3hN − hN−1 − 2
ρw

ρi
bN . (25)

Finally we obtain a problem of the form
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M
d

dt
x = F(x, λ), with x =

⎡
⎣ h
u
xg

⎤
⎦ . (26)

The unknown functions are discretized: h,u ∈ R
N . The real-valued matrix M ∈

R
(2N+1)×(2N+1) and nonlinear operator F : R2N+1 → R

2N+1 are given by

M =
⎡
⎣ I 0 Mstr(h, xg)

0 0 0
0 0 0

⎤
⎦ , F =

⎡
⎣Fmass(h,u, xg)
Fmom(h,u, xg)
Fflot(h, xg)

⎤
⎦ . (27)

Here, Mstr(h, xg) ∈ R
N is the discretization of the stretching in the left-hand side

of Equations (20)–(22). Fmass(h,u, xg) ∈ R
N is given by the right-hand side of dis-

cretizations (20)–(22). Similarly, Fmom(h,u, xg) ∈ R
N and Fflot(h,u, xg) ∈ R are

given by the right hand sides of the discretized momentum equation and flotation
criterion (23)–(24).

3.4 Pseudo-arclength Continuation

The discretized equations give a problem of the form

M
dx
dt

= F(x, λ), (28)

where M and F(·) are linear and non-linear operators respectively. We explicitly
introduce the parameter dependence λ since we are interested in solution branches
(x, λ) satisfying F(x, λ) = 0. For example, our first parameter of interest will be the
temperature, which is present in the coefficient A in Glen’s flow law.

Various continuation techniques exist to trace a stationary solution branch while
varying a parameter. A successful approach is to parameterize a solution branch with
a pseudo-arclength parameter s: γ (s) = (x(s), λ(s)) and impose an approximate
normalization condition on the tangent, to close the system of equations: ẋT (x −
x0) + λ̇(λ − λ0) − Δs = 0, where (x0, λ0) is an initial known stationary solution,
(ẋ, λ̇) the tangents w.r.t. the arclength parameter at (x0, λ0) and Δs a specified step
size [27, 28].

To find a new point on the solution branch a predictor-corrector method is used.
A suitable tangent predictor is given by

x1 = x0 + Δs ẋ,

λ1 = λ0 + Δs λ̇.
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Note that the prediction is denoted by (x1, λ1), whereas an actual new solution will
be denoted by (x1, λ1). The correction onto the solution branch is made through the
solution of the nonlinear system given by

F(x, λ) = 0, (29)

ẋT (x − x0) + λ̇(λ − λ0) − Δs = 0. (30)

A Newton–Raphson root finding procedure, initialized with the prediction (x1, λ1),
gives the following iteration:

[
Fx Fλ

ẋT λ̇

] [
Δx
Δλ

]
=

[ −F(xk, λ)

Δs − ẋT (xk − x0) − λ̇(λk − λ0)

]
, (31)

where Δx := xk+1 − xk , Δλ := λk+1 − λk and [Fx, Fλ] is the Jacobian matrix of F .
If this iteration converges a new stationary solution (x1, λ1) has been found. At a
fold bifurcation the Jacobian matrix Fx will have a zero eigenvalue, yet the system in
(31) remains non-singular, and the continuation is able to trace the solution branch
into its unstable domain.

When a stationary solution x̄, satisfying

F(x̄, λ) = 0, (32)

has been found, its stability can be investigatedwith a perturbation x̄ + x̃ and a Taylor
expansion around the stationary solution:

M
d

dt
(x̄ + x̃) = M

d

dt
x̄ + M

d

dt
x̃ = F(x̄ + x̃, λ) ≈ F(x̄, λ) + Fx̄(x̄, λ)x̃ ⇔

M
d

dt
x̃ = Fx̄(x̄, λ)x̃. (33)

Solutions of (33) are of the form x̃ = x̂eσ t . Substitution gives a generalized eigen-
value problem:

σM x̂ = Fx̄(x̄, λ)x̂. (34)

The stability of a stationary solution depends on the sign of the real part of the
eigenvalues. If we find an eigenvalue with positive real part the solution contains a
growing mode and is thus unstable.
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4 Results

4.1 Bifurcation Diagram

First we consider the case of constant accumulation, represented by a constant a,
together with a fixed bedrock b(x). The bedrock profile is chosen as in [24]:

b(x) = −
(
729 − 2184.8

( x

S

)2 + 1031.72
( x

S

)4 − 151.72
( x

S

)6
)

, (35)

with S = 750 × 103 m. To find a stationary solution, an ice sheet surface profile of
the form

s = h − b = C1

√
1 −

(
x

xg

)2

+ C2, with x ∈ [0, xg], (36)

is used as initial guess for the Newton–Raphson iteration solving F(x, λ) = 0. Typ-
ically, C1 = 3 × 103 and C2 is chosen such that the flotation criterion is satisfied:
C2 = (ρw/ρi − 1)bg , where bg is the bedrock at the grounding line. The analytic
profile contains a steep gradient at the grounding line, which is essential for a good
convergence of the root finding process.

After an initial equilibrium profile is obtained for A = 4.6416 × 10−24, a pseudo-
arclength continuation traces the solution branch γ (s) in the direction of decreasing
A, see Fig. 5. The presented bifurcation diagram confirms the multiple equilibria
regime associated with the hysteretic behavior shown in [24]. For a fixed value of
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Fig. 5 One-parameter bifurcation diagram (left) and solutions (right), decreasing the parameter A
in the SSA model which corresponds to a decrease in temperature and an increase in ice growth.
The bedrock contains an upward slope which admits multiple steady states ((b), (d) and (f)) for a
constant parameter. Eigenvalue analysis shows two saddle-node bifurcations: a single eigenvalue
crosses the imaginary axis to the positive right half plane at c and returns to the left half plane at e.
The number of grid-points is N = 1600; the other parameters are given in Table1
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Table 1 Parameter values for the experiment in Fig. 5, similar to the values chosen in [24, 25]

C 7.624×106 Pa m−1/3 s1/3
m 1/3
n 3
g 9.8 m s−2

i 900 kg m−3

w 1000 kg m−3

a 0.3 m y−1

A (s−1 Pa−3)
(a) 4.6416×10−24

(b) 8.5014×10−26

(c) 4.9274×10−26

(d) 8.5014×10−26

(e) 2.0450×10−25

(f) 8.5014×10−26

the parameter A, three equilibria are distinguished and marked as (b), (d) and (f).
At the point (c) a saddle-node bifurcation occurs and an eigenvalue is observed to
cross the imaginary axis to the right half plane. At (e), the same eigenvalue returns
to the right half plane through a second saddle-node bifurcation. The values of the
parameters are summarized in Table 1.

4.2 Numerical Accuracy

In order to investigate the numerical accuracy of the discretization and continuation
methodology we perform a convergence experiment, see Table 2. Let the error in the
approximated bifurcation point AN be proportional to a power of the mesh-width:

AN = A + α(Δz)β, (37)

where A denotes the actual bifurcation point and α and β are constants. We
define a difference between subsequent mesh-halvings DN := AN − AN/2 and let
Δz ≈ 1/N . Then, the ratio between consecutive differences only depends on the
power β:

RN := DN/2

DN
= AN/2 − AN/4

AN − AN/2
= (1/2)β − 1

(1/4)β − (1/2)β
. (38)

Table 2 Convergence of the first bifurcation (point (c) in Fig. 5)

N AN DN RN

50 2.61941 × 10−26

100 3.48732 × 10−26 8.67909 × 10−27

200 4.14983 × 10−26 6.62512 × 10−27 1.31003

400 4.56744 × 10−26 4.17606 × 10−27 1.58645

800 4.80250 × 10−26 2.35065 × 10−27 1.77655

1600 4.92741 × 10−26 1.24911 × 10−27 1.88186
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From Table 2 we suspect RN → 2 as N becomes large, corresponding to β = 1.
The scheme must therefore be of first-order accuracy, which is undoubtedly due to
the first-order upwind discretization in the continuity equation (20). Unfortunately,
the upwind discretization of the ice flux is essential to the stability of the scheme.
We conclude that a higher order upwind scheme should be considered in (20).

4.3 Mechanism

The advantage of the approach chosen here is that the spatial patterns of perturbations
destabilizing the marine ice sheet can be determined from the eigenvectors in (34).
For the unstable equilibrium (d) in Fig. 5 it is of interest to examine the eigenmode
with a positive growth factor, showing in detail the characteristics of the instability.
The eigenvector is made available using (34) and is depicted for the steady states (b),
(c), (d), (e) and (f) in Fig. 6. The perturbations in thickness and velocity are taken
corresponding to a positive grounding line perturbation. Note that a perturbation of
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Fig. 6 Normalized components of the eigenmode that becomes unstable. The corresponding steady
states are located at the points (b–f), described in Fig. 5 and Table1. We distinguish between a
perturbation pattern related to sheet thickness ĥ and a pattern related to ice velocity û. The signs
of the eigenvectors are taken such that the perturbation in the grounding line is positive. From the
eigenvectors and the equilibrium solution we compute a normalized spatial pattern of the evolution
∂ h̃/∂t , together with normalized components −∂(ûh̄)/∂x and −∂(ūĥ)/∂x
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the solution vector has the form x̂eσ t = [ĥ, û, x̂g]T eσ t , with x̂g the scalar grounding
line perturbation. An eigenvector with corresponding eigenvalue σ > 0 and x̂g < 0
gives the destabilizing pattern for unstable ice sheet retreat. By adjusting the sign of
the eigenvector, such that x̂g > 0, we restrict our exposition to destabilizing patterns
for unstable ice sheet growth.

At the grounding line xg , the perturbation of the unstable steady state (d) shows
a slight decrease in ice thickness, while at (b), (c), (e) and (f) a slight increase is
observed. In the interior of the ice sheet a relatively large increase in ice thickness
is visible for the unstable equilibrium (d), indicating interior ice growth due to an
imbalance between global accumulation and ice flux at the grounding line.

The velocity perturbation at the grounding line shows an increase for stable states
and a clear decrease for the unstable state (d). Together with the negative perturbation
in thickness this implies that, at (d), there must be a decrease in flux uh across the
grounding line for a positive perturbation x̂g > 0. An increase in grounding line
position implies a rise in global accumulation, hence the reduction in grounding line
flux implies a net ice growth, confirming the marine ice sheet instability hypothesis.
Note that a similar result holds if we take the perturbation in xg negative, giving a
net ice loss and a retreat from equilibrium.

The continuation approach allows an efficient computation of flux perturbations
using (34). From a linear stability analysis of (2) with perturbation h̃ = cĥ, ũ =
cû around an equilibrium h̄, ū we obtain an evolution equation for the thickness
perturbation h̃:

∂ h̃

∂t
+ c

∂q̂

∂x
= 0, with c > 0, (39)

q̂(x) = ûh̄ + ūĥ, (40)

where we neglect higher order terms. At the unstable steady state (d) in Fig. 6, the
thickness perturbation (green squares) shows positive growth, whereas the other
points show a dampening. These patterns are determined by spatial derivatives of
the perturbed advection of the steady thickness ûh̄ (black dash-dotted line)and the
advected thickness perturbation ūĥ (red dotted line). The latter clearly dominates the
instability in (d). Note that at the bifurcation points (c) and (e) the components of
the perturbation flux have a compensating effect.

To investigate how a perturbation changes from stable to unstable through the
saddle-node bifurcation L1, we compute the accumulation and grounding line fluxes.
The steady state (h̄, ū) gives a balance:

q̄(x) = ūh̄ = ax . (41)

In Fig. 7 we show perturbations of the balance (41) at the grounding line. A
perturbation in accumulationflux is given bya

∣∣x̂g∣∣, a grounding line fluxperturbation
by q̂(x̄g) in (40). The perturbations are plotted against A/A0 (Fig. 7a) and x̄g (Fig. 7b),
together with the bifurcation points and the bedrock slope. At the first saddle-node
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Fig. 7 Perturbations in grounding line and accumulation flux against the parameter A (a) and as a
function of xg (b), together with the bedrock slope. The first and second saddle-node bifurcations
are marked L1 and L2. Dashed lines correspond to growing perturbations of unstable steady states.
The perturbations q̂(x̄g) and a

∣∣x̂g∣∣ correspond to a positive grounding line perturbation x̂g > 0. At
L1 and L2, the grounding line bedrock slope is −195 mm/km and −65 mm/km respectively. The
maximum slope in the unstable regime is 620 mm/km. Note that grounding line flux perturbations
depend on the steady grounding line position x̄g , whereas accumulation flux perturbations depend
on the grounding line perturbation x̂g

bifurcation L1, the flux q̂(xg) becomes smaller than the accumulation a
∣∣x̂g∣∣. Beyond

this point, a change in accumulation due to x̂g is not balanced by the grounding line
flux and, hence, the perturbation x̃ changes from damped to growing. At L2, q̂(xg)
becomes greater than a

∣∣x̂g∣∣ and the mode is damped again.
In Fig. 7b we also plot the bedrock slope, taken positive when the bed elevation

increases with x , that is
rbed = −b′(xg), (42)

with b(x) as in (35). Note that the sign switch in q̂(xg) coincides with the sign switch
in the bedrock slope. The grounding line flux will increase for a positive x̂g between
the bifurcation L1 and the point of zero bedrock slope, but, since the change is less
than the change in accumulation, the ice sheet will grow. Thus, Fig. 7 confirms that
an eigenvalue of the ‘full model’ in [24] becomes positive when a

∣∣x̂g∣∣ − q̂(xg) > 0.
Using a continuation of steady states with the original SSA equations, we find

that the flux perturbations and their relative magnitude fully describe the instability
mechanism, confirming the analysis in [29]. In addition, the eigenvectors reveal
destabilizing interior patterns with, most interestingly, interior thickness anomalies
and their advection. These turn out to play a major role in the unstable growth and
retreat of the ice sheet.

4.4 Glacial Isostatic Adjustment

The simplestmodel describing the interaction between an ice sheet and the underlying
bedrock is a local lithosphere, relaxing asthenosphere (LLRA)model.An equilibrium
argument [22] gives:
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ρag(b
∗ − b0) = ρi gh ⇒ (b∗ − b0) = ρi

ρa
h, (43)

with ρa the density of the asthenosphere, b∗ the equilibrium bedrock and b0 the
initial, load-free bedrock. Due to the highly viscous asthenosphere the equilibrium
bedrock is reached after a significant response time τa . The evolution of the bedrock
can be modeled using

∂b

∂t
= 1

τa

[
(b∗ − b0) − (b − b0)

] = 1

τa

[
ρi

ρa
h − (b − b0)

]
, (44)

with b the actual bedrock profile.
Adding this elastic bedrock to the SSA model means introducing a new unknown

and a new discretized differential equation. To remain consistent with the implemen-
tation in Sect. 3.3, we need to perform the transformation z = x/xg , giving

∂b

∂τ
− z

xg

dxg
dτ

∂b

∂z
= 1

τa

[
ρi

ρa
h − (b − b0)

]
. (45)

Non-dimensionalizing (45) is straightforward. Using a central difference for the
stretching we obtain the following discretization:

dbi
dτ

− z

xg

dxg
dτ

(
bi+1 − bi−1

2Δz

)
= 1

τa

[
ρi

ρa
hi − (bi − b0i )

]
. (46)

Symmetry at the left boundary gives a vanishing spatial derivative. At the grounding
line the pressure exerted by a column of ice equals that of the column of water:
ρi hN = ρwbN . Substituting the flotation criterion gives the following discretization
for the right boundary of the bedrock equation:

dbN
dτ

− z

xg

dxg
dτ

(
ρi

ρw
hN − bN−1

Δz

)
= ρw − ρa

ρaτa

[
bN − ρa

ρa − ρw
b0N

]
. (47)

Equation (47) acts as a Dirichlet boundary condition in the stationary case. Note
that, with this boundary, we assume the bedrock is adjusted regardless of the type of
material that is on top of it. Hence, the initial load-free bedrock b0 cannot be subject
to a water load. At the grounding line, ice and water exert the same pressure such
that the bedrock extends continuously into its submerged part.

Again we let the problem have the form

M
d

dt
x = F(x, λ), (48)

but now with x = [hT ,uT ,bT , xg]T , h,u,b ∈ R
N , M ∈ R

(3N+1)×(3N+1) and F :
R

(3N+1) → R
(3N+1), given by
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M =

⎡
⎢⎢⎣

I 0 0 Mmass(h, xg)
0 0 0 0
0 0 I Mbed(b, xg)
0 0 0 0

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣
Fmass(h,u,b, xg)
Fmom(h,u,b, xg)
Fbed(h,b, xg)
Fflot(h,b, xg)

⎤
⎥⎥⎦ . (49)

The functions Mmass and Mbed give the discretizations of the stretchings in the left
hand side of the continuity and bedrock equation, Fbed ∈ R

N gives the discretization
of the elastic bedrock equation (46). The other functions are the same as in Sect. 3.3,
except with their dependence on b made explicit.

Instead of having a constant accumulation a, as in [30] we will give it a linear
dependence on the surface height s(x) = h(x) − b(x) and a ceiling amax:

a(s) = min (amax, θ(s − E)) , (50)

where θ is an accumulation gradient and E the equilibrium height. Below E we
have mass loss, i.e. ablation, the opposite of accumulation. The balance between
accumulation and ablation is governed by air temperature, which we assume to
decrease with increasing surface height.

The implementation of the height-dependent accumulation is straightforward,
mainly requiring a few extra dependencies on h and b in the Jacobian matrix. To
obtain a smooth transition from the linear function θ(s − E) to the ceiling amax, we
use an approximation to the Heavyside function:

a(s) = amax − 1

2

(
1 + tanh

(
amax − θ(s − E)

ε

))
(amax − θ(s − E)) , (51)

with ε moderately small.
Recall the bedrock b as given in (35). Now that we have implemented the isostatic

adjustment, we need to define a smooth original bedrock b0 that is not subject to a
water load. Eventually, the bedrock will only be partially submerged, but adjusting b
only within the submerged sub-interval introduces unfavorable discontinuities. For
that reason we will obtain b0 using a global adjustment.

Consider the stationary case of (44). Replacing the ice load ρi h with a water load
ρwb gives the required adjustment:

b0 = ρa − ρw

ρa
b. (52)

The added components open up a multitude of possible continuation parameters.
Herewewill restrict ourselves to a continuation in the equilibriumheight E , to pursue
oscillatory solutions due to the load accumulation feedback [31]: as ice thickness
increases due to accumulation, the surface height may decrease as a result of isostatic
adjustment (with a delay τa), leading to a decrease in accumulation. This feedback
suggests the possibility of oscillatory solutions within a certain parameter regime.
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A Hopf bifurcation occurs when a steady periodical solution emerges from a
fixed point. In the spectrum given by the eigenvalue analysis, a Hopf bifurcation
corresponds to a complex conjugate pair crossing the imaginary axis from the left to
the right half plane. The result of a continuation in E is shown in Fig. 8. An additional
list of parameters is given in Table 3.

A Hopf bifurcation is detected at E = 1.04 × 103 m, with complex conjugate
eigenpair σ = σR ± iσI ≈ 0 ± i0.006. The corresponding complex eigenmode x̂ =
x̂R ± i x̂ I describes the perturbation destabilizing the solution. The real part of the
perturbation gives a disturbance profile [27]:

Re(x̂eσ t ) = eσRt
[
x̂R cos(σI t) − x̂ I sin(σI t)

]
. (53)

At the bifurcationwehaveσR = 0, then x̂R and x̂ I give two instances of the oscillatory
perturbation: x̂R at σI t = 0 and x̂ I at σI t = 3π/2, see Fig. 9. The non-dimensional
period is given by T̂ = 2π

σI
≈ 1.047 × 103. As the timescale in the experiment is

taken τ0 = 100 y, the dimensional period is T = 1.047 × 105 y.
The obtained oscillating perturbation demonstrates the dynamics of the load accu-

mulation feedback. For the ice thickness, the perturbation in the interior seems to
be constantly ahead of the perturbation at the grounding line. Note that the region
between the ice divide and the point atwhich the surface attains the equilibriumheight
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Fig. 8 Bifurcation diagram (left) and solution (right) of a continuation in equilibrium height E ,
starting at E = 0. A Hopf bifurcation is detected at a: E = 1.04 × 103 m and the corresponding
solution is plotted on the right. Instances of the oscillatory perturbation corresponding to the complex
conjugate eigenpair are plotted in Fig. 9. The number of grid-points is N = 800, the other parameters
are given in Table 3

Table 3 Parameter values for the experiment in Fig. 8. The accumulation ceiling and gradient are
chosen similar to [30]. Parameters not mentioned here remain equal to the ones given in Table 1

τa 10000 y Asthenosphere relaxation timescale

ρa 3300 kg m−3 Asthenosphere density

amax 0.1 m y−1 Maximum accumulation

θ 0.001 y−1 Accumulation gradient

A 1.8969 × 10−26 s−1 Pa−3 Glen’s flow law rheology parameter
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Fig. 9 Oscillating perturbation in ice thickness (left) and velocity (right), given by the eigenvector
corresponding to the complex conjugate eigenpair at the Hopf bifurcation E = 1.04 × 103 m.
Several instances of the perturbation are obtained using (53). The angular frequency is given by
ω = σI
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Fig. 10 Oscillating perturbation in the bedrock, given by the eigenvector corresponding to the
complex conjugate eigenpair at the Hopf bifurcation

(x ≈ 476 km) is subject to a net accumulation. From the perturbation in thickness
we see that the feedback is clearly driven by the accumulation.

Beyond x ≈ 476 km there is a net ablation. In this region the perturbations in
thickness and velocity show a drastic change in behavior. A steep increase in velocity
occurs when the ice thickness decreases (ωt = π/2), which corresponds to a large
increase in flux to facilitate the mass loss. Similarly, when the sheet grows (ωt =
3π/2), the flux needs to reduce to facilitate growth.

In the ablation region the perturbation in ice thickness shows a few peculiar oscil-
lations. At the grounding line the sheet thickness seems to be slightly less than at the
ice divide, perhaps to facilitate the appropriate flux. However, just before the ground-
ing line and after x ≈ 476 km the effect of a reverse accumulation feedback seems
to be visible. Due to the negative accumulation the bedrock is adjusted differently,
see Fig. 10. In the oscillatory bedrock perturbation there seems to be some irregu-
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lar influence from the free boundary. Nevertheless, a change in adjustment around
x ≈ 476 km is visible in at least two phases of the oscillation at ωt = 0 and ωt = π .

5 Summary and Discussion

From the theories of ice-age cycles, it is clear that ice-sheet dynamics plays a central
role in the explanation on how the variations in insolation lead to multi-millennial
variability of the climate system, in particular on the 100 kyr time scale. A problem
with the current theories is that there are many different conceptual models which
can give a dominant 100 kyr variability, but it is difficult to falsify them based on the
proxy data record [21].

A step forward is to determine spatial patterns of variability associated with the
glacial cycles, similar to what has been done for other problems of climate variability
such as El Niño [32] and the Atlantic Multidecadal Variability [33]. This obviously
requires a next level of models in the hierarchy (see Chap.6 of [34]), at least for-
mulated in terms of partial differential equations (spatially extended models), also
(often) referred to as intermediate complexity models (ICMs).

In this contribution, we applied techniques of numerical bifurcation theory to
study the bifurcation behavior of solutions of such an ICM two-dimensional ice
sheet model [24]. The complication arises here from the grounding line dynamics at
x = xg , which is in principle a free boundary problem. Here, it is handled by using a
transformation z = x/xg , where the original domain x ∈ [0, xg] is mapped onto the
fixed domain z ∈ [0, 1].

In the version of the model where the bottom topography is fixed, the results
provide insight into the mechanism of marine ice sheet instability. There are robust
intervals in parameter space, where multiple equilibria occur, corresponding to a
large ice sheet and a small ice sheet. Hence, for these parameter values, transitions
can occur where the ice-sheet decreases substantially in shape and length. Tracing
unstable equilibria and performing a stability analysis enables the investigation of
the actual structure of the growing perturbation. We have shown numerically that
a positive eigenvalue is associated with the instability criterion [29] for the full
problem, and that the advected thickness perturbation (the term ūĥ, where ū is the
steady state velocity and ĥ the ice thickness perturbation) dominates the instability
process.

Transition behavior under the effects of noise in the accumulation parameter a
on the grounding line motion under stable conditions have been studied in [35]. The
magnitude (for typical noise levels) of these motions is in the order of 1000 m, which
are similar amplitudes as observed for example in [36]. It appears to bemore likely to
jump from a large ice sheet state to a small ice sheet state than vice versa. Grounding
line flux variability shows a related asymmetry, likely due to differences in local
bedrock conditions and/or global ice sheet extent.

When the load-accumulation feedback is included by extending the ice-sheet with
a dynamical bottom topography, oscillatory instabilities occur through a Hopf bifur-
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cation. Here, the eigenvectors associated with the instability provide an interesting
spatial pattern of variations of the ice sheet, with largest amplitudes near the ground-
ing line. The time scale here is connected to the relaxation time scale τa of the bottom
topography reflecting the interaction between the ice sheet and bedrock below.

Of course, such an analysis does not solve the glacial - interglacial variability
problem because the ICM used here does not capture essential processes. Currently,
this land-ice model, a sea ice model and a carbon cycle model are coupled to the
fully implicit ocean model THCM [37, 38] to provide a fully implicit climate model
(still very idealizedwith respect to state-of-the-art global climatemodels) withwhich
bifurcation analysis can be performed. Using this model, we aim to show that there
are different Hopf bifurcations involved in the glacial - interglacial problem and how
the external M-forcing can interact with the internal variability generated by these
instabilities.
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