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Abstract: Incoherently illuminated or luminescent objects give rise to a low-contrast speckle-
like pattern when observed through a thin diffusive medium, as such a medium effectively 
convolves their shape with a speckle-like point spread function (PSF). This point spread 
function can be extracted in the presence of a reference object of known shape. Here it is 
shown that reference objects that are both spatially and spectrally separated from the object of 
interest can be used to obtain an approximation of the point spread function. The crucial 
observation, corroborated by analytical calculations, is that the spectrally shifted point spread 
function is strongly correlated to a spatially scaled one. With the approximate point spread 
function thus obtained, the speckle-like pattern is deconvolved to produce a clear and sharp 
image of the object on a speckle-like background of low intensity. 
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1. Introduction 
Imaging through scattering media [1–3] is a challenge as the wavefront of the incident light is 
distorted by scattering due to the inhomogeneous distribution of the refractive index of the 
media. Several methods have been put forward to compensate for the wavefront distortion 
and facilitate imaging. Wavefront shaping [4–6] and optical phase conjugation [7–10] are 
widely used to compensate the heavy distortion caused by multiple scattering. Transmission 
matrix methods [11–13] have been applied to obtain an image through scattering media. 
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Speckle correlation [14] appears to be a very promising method relying on the so-called 
memory effect (ME), which is the angular tilt-invariant property of the speckle pattern when 
the incident light is rotated with a small angle [15–17]. Within the small ME range, the 
speckle pattern can be considered as the convolution of the point spread function (PSF) with 
the object’s response. Methods based on speckle autocorrelation retrieval [18–25] can be 
exploited to reconstruct objects non-invasively. Coherent speckle-correlation [26, 27] 
methods provide field-based information through thick scattering media. Deconvolution 
methods [28–32] are also exploited to demonstrate fast, 3D, high-resolution and large field-
of-view imaging. Among them, color imaging [28] is realized when R, G, B wavelength 
components of the object are retrieved from their corresponding PSFs captured by a color 
camera. Single-shot multi-spectral imaging has also been demonstrated [31] with a 
monochromatic camera. It was found that an image of an object can be reconstructed by 
deconvolution with the PSF obtained using different illumination, but only if the illumination 
spectra overlap. To realize multi-spectral imaging, Sahoo et al. [31] recorded PSFs at 
different wavelengths in advance and assumed them to be uncorrelated. Hyperspectral 
imaging has been realized based on a nanowire scattering medium [32]. We have recently 
reported a deconvolution method to image objects at different depth by scaling the reference 
PSF [33] according to the focal length of the imaging system [34]. Several other recent 
imaging techniques [35–37] have shown retrieval of depth information or even full 3D 
images using various methods to obtain the PSF. 

In this paper, we introduce a method to retrieve the PSF of a scattering layer from the 
transmission pattern of a reference object that emits light at a different wavelength than the 
object of interest. The crucial ingredient is the presence of a strong correlation between the 
PSF with shifted wavelength, and the PSF with scaled spatial coordinates. The wavelength 
scaling is combined with the spatial scaling methods of [34] to image incoherently 
illuminated or luminescent objects through a thin scattering layer, using a reference object 
that can have a non-overlapping spectrum and be in a different depth plane than the object 
being imaged. Furthermore, the reference object can be physically extended, which is more 
robust and provides a higher SNR than the use of a point object in the case of incoherent 
illumination. The gain in signal strength obtained from an extended object is more important 
than the loss of contrast in many cases [30]. We demonstrate the use of a color CCD to 
capture a spectrally separated object and reference in a single shot, which is promising for 
imaging through dynamic scattering media. The principle we demonstrate here may enable 
fluorescence imaging through turbid layers using reference objects emitting at a different 
wavelength. 

This paper is structured as follows: In Sec. 2 we describe imaging through a diffuser using 
a PSF retrieved from a reference object that is separated in depth but not in wavelength, then 
in Sec. 3 we consider objects that are separated in wavelength but not depth. In Sec. 4 we 
demonstrate a single shot method to capture the object and reference speckle patterns and 
apply this to an object and reference that are separated both in depth and in wavelength. 

 

Fig. 1. Experimental setup: Imaging objects at another depth by deconvolution with a scaled 
PSF. The reference object and the unknown object are inserted alternately. 
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