
https://doi.org/10.1177/1550059417724695

Clinical EEG and Neuroscience
2018, Vol. 49(2) 71–78
© EEG and Clinical Neuroscience 
Society (ECNS) 2017
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1550059417724695
journals.sagepub.com/home/eeg

Psychiatry/Psychology

Introduction

The advantages of nonlinear analyses in electroencephalogra-
phy (EEG) signals have become apparent during the past 
decades,1-7 which include the ability to detect certain character-
istics of a biological system that from a linear paradigm may be 
assumed as randomness caused by external disturbances, being 
reflected as irregularities in their waveforms.1,8 Rather than 
actual randomness, some characteristics may be due to a multi-
dimensional deterministic process instead of any stochastic 
activity.9,10

Scaling index (SI) and Lempel-Ziv complexity (LZC) are 2 
examples of nonlinear approaches. The SI is a measure related 
to the fractal dimension of a signal that quantifies the self-simi-
larity of its waveform,11 indicating how rough or smooth the 
signal is in different time scales according to its fractal proper-
ties.12,13 LZC, on the other hand, has been described in the litera-
ture as a method to quantify information directly from a time 
series associated to its randomness-like level. Both SI and LZC 
have been employed in several studies aiming to characterize 
neurological states using EEG signals.8,14-26 Nevertheless, a key 

issue in the application of these and other nonlinear measures is 
their sensitivity to nonstationarities in the time series, which is 
characterized by variations over time of their statistical proper-
ties.27 In case of EEG signals, nonstationarity episodes could be 
caused mainly by the sensitivity of dynamical parameters to the 
different time scales in brain activity,28,29 most likely reflecting 
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Abstract
Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. 
This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in 
EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear 
metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and 
in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear 
results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period 
of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes 
over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected 
with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG 
nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of 
control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics 
in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study 
aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or 
absence of a mental disorder.
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dynamical nonstationarity. A complete stationarity in an EEG 
time series cannot be assured, although it is possible to select 
epochs where this condition is maximized.

One of the first attempts to establish a suitable epoch length 
in EEG time series that enhances quasi-stationarity conditions 
was presented by McEwen and Anderson,30 indicating that the 
use of epochs of 2 seconds comprise low nonstationarity. 
However, Jeong et al31,32 reported that even an epoch of 6 sec-
onds does not have enough length to show a deterministic 
structure. Although several authors have developed some para-
metric and nonparametric methods to detect quasi-stationary 
epochs in an adaptive fashion,33-38 these techniques do not 
allow to obtain epochs of the same duration. Several studies 
employing SI and LZC are available in the current literature, 
where authors have assumed durations of epochs to fulfil quasi-
stationarity requirements covering values between 1 and 300 
seconds.13,15-24,26,39-47

In addition to the search of quasi-stationarity conditions, the 
number of data points also affects the nonlinear deterministic 
dynamics of these epochs; this is proportional to the sampling 
rate utilized in the acquisition of the signal, and too short data 
sets imply errors in the calculation of nonlinear metrics. 
Although under certain conditions this length should be larger 
than 100 000 data points according to criterion proposed by 
Eckmann and Ruelle48 for generic time series, Gallez and 
Babloyantz49 established that data sets larger than 20 000 data 
points can be suitable for evaluation of Lyapunov exponents in 
alpha activity, which is a nonlinear measure that quantifies the 
chaoticity in a time series. Nevertheless, periodical long-term 
nonstationarity is another aspect that influences a correct selec-
tion of the epoch for nonlinear analysis in EEG time series, 
which has not been taken into account by the rules of quasi-
stationarity and number of data points. Periodical long-term 
nonstationarities are associated to recurrence rate characterized 
by very slow waves in the brain cortical activity, caused by 
oscillations in the coupling strength of the neural networks. 
Tirsch et al50 reported that the periodicity of these oscillations 
in the nonlinear behavior of the brain has recurrence times 
between 50 and 60 seconds. A similar observation was pre-
sented in our previous study,17 in which we evaluated the con-
tribution of nonlinear analysis in patients with major depressive 
disorder (MDD) to increase the prediction rate of nonresponse 
to repetitive transcranial magnetic stimulation (rTMS) therapy, 
compared with prediction evaluated with linear methods only. 
We found that epoching in minute 1 and minute 2, instead of 10 
seconds, allowed to enhance the effects of the nonlinear analy-
sis to realize this prediction.

One of the aims of the present study was to determine an 
appropriate epoch length for nonlinear analysis in EEG time 
series based on its recurrence rate, as a methodological contri-
bution for further researches in this field, and its subsequent 
best use in diagnostic and prognostic uses of EEG in psychia-
try. For this study, data comprising 10 minute of eyes closed 
EEG were recorded, in order to explore the effects of periodic 
cortical oscillations given the recurrence rate in the brain 

activity, as well as the effects of the long-term nonstationarities 
in single EEG time series. The analyses were performed on 
alpha band activity due to their predominance in the EEG sig-
nal51 and the reported existence of one type of alpha rhythm 
with nonlinear origin.29 Given that MDD patients often show 
deviations in alpha band activity, such as increased posterior 
alpha and deviating alpha asymmetry,52 we included both a 
sample of MDD patients as well as controls, in order to demon-
strate that the “optimal” epoch length obtained both applies to 
controls and patients (ie, to verify if recurrent cortical oscilla-
tions and long-term nonstationarities are physiological charac-
teristics of the brain across patients and controls, independent 
of diagnosis).

Methods

Subjects

EEG data of 28 healthy subjects (average age 34.14 years; SD 
= 9.72; 13 males) and 64 MDD patients (average age 45.14 
years; SD = 14.10; 33 males) were analyzed in this work. The 
healthy subjects were screened using the Mini International 
Neuropsychiatric Interview (MINI) structured interview to 
exclude presence of a psychiatric disorder. MDD patients were 
screened for major depression or dysthymic disorder by a clini-
cal psychologist using a structured interview (MINI, sections 
Depressive Episode, Dysthymia, Suicide, Manic Episode, 
Alcohol Dependence and Abuse and Mixed Anxiety/Depressive 
Disorder) and were patients awaiting treatment with rTMS 
therapy. All subjects were asked to refrain from caffeine or 
nicotine intake for at least 2 hours prior to testing and all 
patients signed an informed consent form before treatment was 
initiated.

EEG Data Set Acquisition and Preprocessing

Data were acquired at Research Institute Brainclinics in 
Nijmegen, the Netherlands, from 26 channels (Fp1, Fp2, F7, 
F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, 
CP4, T5, P3, Pz, P4, T6, O1, Oz, and O2) in eyes-closed and 
steady-state condition over a period of 10 minutes (Quikcap; 
Compumedics NuAmps; 10-20 electrode international sys-
tem). The acquisition was carried out using a linked ears mon-
tage and participants were seated in a sound and light attenuated 
room that was controlled at an ambient temperature of 22°C. 
Horizontal eye movements were recorded with electrodes 
placed 1.5 cm lateral to the outer canthus of each eye. Vertical 
eye movements were recorded with electrodes placed 3 mm 
above the middle of the left eyebrow and 1.5 cm below the 
middle of the left bottom eyelid. Skin resistance was <5 kohm 
for all electrodes. The sampling rate of all channels was 500 
Hz. A low-pass filter with an attenuation of 40 dB per decade 
above 100 Hz was employed prior to digitization and a notch 
filter was applied off-line. Data were offline EOG-corrected 
using a regression-based technique according to Gratton et al.53 
Subsequently, only the central channels Fz, Oz, and Pz were 
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selected for analyses. Time series were high-pass filtered at 7 
Hz and low-pass filtered at 13 Hz (in both cases using zero-
phase eighth order Butterworth filters), with the aim to select 
alpha activity.

Nonlinear and Spectral Analysis

The calculation of the LZC metric was performed employing 
MATLAB 2015a (The MathWorks, Inc, Natrick, MA) applying 
a code originally presented by Small54 and adapted by Fulcher 
et al,55 whereas the SI was calculated employing the method 
presented by Sevcik56 with an algorithm adapted by Hasselman57 
(for details, see Supplementary Material).

In order to characterize the periodical long-term nonstation-
arities associated to cortical oscillations, each nonlinear metric 
was applied in form of sliding windows of 20 seconds and 
shifted every 1 second, which entailed an overlap of 19 seconds 
such as performed by Tirsch et al.50 A numerical result of the 
nonlinear measure applied was obtained by each iteration, 
hence a sequence of 579 points was obtained for each of the 3 
selected EEG channels (Fz, Oz, and Pz) and for both groups 
(healthy and MDD subjects). These sequences were smoothed 
with a zero-phase Butterworth filter of eighth order at cutoff 
frequency of 0.06 Hz, with the aim to facilitate the detection of 
the peaks, whose consecutive distances among them represent 
the recurrence rate of the brain activity. The cutoff frequency of 
0.06 Hz was selected based on observation of the spectrum of 
each sequence. The peaks were detected scanning the sequence 
from left to right, looking for the compliance of the conditions 
x n x n( ) > −( )1  and x n x n( ) > +( )1 , where x  represents the 
sequence and n  the scanned time point. Subsequently, the time 
distances between every couple of consecutive peaks were cal-
culated across all subjects of each group and the values of the 
median were computed.

A second analysis was carried out to evaluate the effects of 
the long-term nonstationarities on the nonlinear metrics. In this 
step, the measures were applied on the selected and prepro-
cessed EEG time series utilizing nonoverlapping windows of 1 
minute over a period of 9 minutes. The selection of this length 
was based on the work presented in Arns et al,17 where analysis 
with nonoverlapping windows of 1 minute facilitated the pre-
diction of nonresponders to rTMS. A spectral linear analysis 
was also carried out via fast Fourier transform in the same way 
as in the nonlinear analysis, calculating the spectral power by 
means of trapezoidal integration in the spectrum of every seg-
ment in both sliding windows and 1-minute nonoverlapping 
windows.

Statistical Analysis

The results of the sliding analysis were represented by histo-
grams of the distances between consecutive peaks. Results 
obtained with 1-minute nonoverlapping windows were pro-
cessed via an N-way analysis of variance (ANOVA) with 2 
within-subject factors, in order to evaluate the effects of chan-
nel (3 levels: Fz, Oz, Pz) and time (9 levels: minute 1 to minute 

9), as well as the interaction between them employing the func-
tion anovan within the statistics toolbox of the software 
MATLAB 2015a. To correct for multiple comparisons, a 
Bonferroni correction was applied with the function multcom-
pare of MATLAB 2015a. This analysis was conducted sepa-
rately for each group of results, that is, LZC in healthy subjects, 
SI in healthy subjects, LZC in MDD patients, and SI in MDD 
patients.

Results

Recurrence Rate in Cortical Oscillatory Activity

The curves in Figure 1 illustrate an example of the sequences 
obtained from the analysis with sliding windows for a healthy 
subject and an MDD patient applying the nonlinear metrics and 
spectral power (indicated as “power” in the plots) to channel 
Fz. These curves allow to observe the cortical oscillations dur-
ing a time segment close to 580 seconds.

In Figure 2, the histograms represent the distributions of 
time differences between consecutive peaks across all subjects 
per group (controls vs MDD), according to the results obtained 
with LZC, SI, and power at channel Fz. These results provide 
insight in the more predominant values of time differences, 
which vary around 40 seconds. In case of LZC, the averaged 
time differences and medians (in seconds) were 47.93 ± 15.39, 
median = 44 for healthy subjects (Figure 2A) and 47.36 ± 
14.89, median = 44 for MDD patients (Figure 2B); for SI these 
values were 46.20 ± 15.05, median = 44 for healthy subjects 
(Figure 2A) and 48.70 ± 15.60, median = 46 for MDD patients 
(Figure 2D); for spectral power the values were 47.59 ± 15.16, 
median = 44 in healthy subjects (Figure 2E) and 48.78 ± 14.81, 
median = 45 for MDD patients (Figure 2F). Note that the 
smoothing of the sequences obtained in the sliding analysis 
(gray curves in Figure 1) may ignore some peaks that could not 
be detected in the scanning, which is reflected by times around 
90 seconds in the histograms. Figures A1-A4 in the supplemen-
tary material show the counterparts of the Figure 1 and 2 for 
channels Pz and Oz, respectively, demonstrating similar results.

Long-Term Nonstationarities

Figure 3A and B illustrates the results of the averaged (mean 
and standard error) LZC values applying this measure in non-
overlapping continuous segments of 1 minute. An interesting 
observation is the augmented LZC at channel Fz with regard to 
the channels Pz and Oz for each group. The N-way ANOVA for 
the healthy subjects (Figure 3A) showed a channel effect (p « 
.05; df = 2; F = 24.37), and post hoc analysis indicated that the 
significant differences were in the couples Fz versus Pz and Fz 
versus Oz, whereas no effects were found for the factor time (p 
= .053; df = 8; F = 1.93) or for an interaction of channel * time 
(p = .999; df = 16; F = 0.18). Visually, a nonsignificant trend 
was observed in the curve of channel Pz, displaying a continu-
ous reduction that started at around 7 minutes. A similar visual 
trend, albeit with less regular curve, was also observed in 

https://journals.sagepub.com/doi/suppl/10.1177/1550059417724695
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channel Oz. In case of the group of LZC for MDD patients 
(Figure 3B), the N-way ANOVA analysis found effects in chan-
nel (p « .05; df = 2; F = 27.46) and time (p = .005; df = 8; F = 
2.75), whereas no significant effect was found for the channel 
* time interaction (p = .995; df = 16; F = 0.31). For the factor 
channel, post hoc analysis showed significant differences in the 
3 couples of channels Fz versus Oz, Fz versus Pz, and Oz ver-
sus Pz, whereas the effects of time were represented by signifi-
cant differences in minute 2 versus minute 9. An interesting 
nonsignificant trend was the reduction of LZC from minute 1 to 
minute 2, a subsequent increase from minute 2 to minute 3, 
continued with the ascending trend up to minute 9. This char-
acteristic was more noticeable in the channels Oz and Pz of the 
MDD group. All in all, an effect of channel with significant 
differences between Fz and Oz was established in both groups.

The results for the SI demonstrated an effect of channel (p = 
.013; df = 2; F = 4.4) and time (p = .002; df = 8; F = 3.05), 
whereas no effect was detected in the interaction channel * 
time (p = .928; df = 16; F = 0.54) for the group of healthy sub-
jects (Figure 3C), post hoc analysis demonstrated significant 
differences in Fz versus Oz, while for the factor time a signifi-
cant difference was found in minute 1 versus minute 6 and min-
ute 1 versus minute 8. However, in the group of MDD patients 
(Figure 3D) the N-way ANOVA analysis found effects for both 
channel (p « .05; df = 2; F = 16.88) and time (p « .05; df = 8; F 
= 3.94), but no interaction of channel * time (p = .990; df = 16; 
F = 0.36). Post hoc analysis demonstrated significant differ-
ences for the factor channel with the couples Fz versus Oz and 
Fz versus Pz, whereas for the factor time these were in minute 
2 versus minute 7, minute 2 versus minute 8, and minute 2 
versus minute 9. Applying the SI method, in both groups a non-
significant decreasing trend of the averaged values of the met-
ric was observed. All in all, an effect of channel with significant 
differences between Fz and Oz was established in both groups. 

Note that the absence of effects in the interaction of channel * 
time for all the 4 groups of analysis indicates that the time 
effects were independent of channel effects.

Regarding the power spectral analysis (Figure 3E), in the 
group of healthy subjects an effect of channel was also found (p 
< .05; df = 2; F = 12.28), whose post hoc analysis detected 
significant differences Fz versus Pz and Oz versus Pz, but no 
effects of time (p = .369; df = 8; F = 1.09) or of channel * time 
(p = 1; df = 16; F = 0.08). A nonsignificant reduction was 
observed in the 3 channels from minute 1 to minute 5 and after-
ward an apparent stabilization. In the group of MDD patients 
(Figure 3F), effects were found only in the factor of channel (p 
< .05; df = 2; F = 15.73), whose post hoc analysis showed also 
significant differences in Fz versus Pz and Oz versus Pz. No 
effects were found in time (p = .983; df = 8; F = 0.24) and in 
channel * time (p = 1; df = 16; F = 0.05). In both health and 
MDD subjects, the power of alpha waves in Pz channel was 
significantly larger in comparison with that in channels Fz and 
Oz.

Discussion

The present study has been carried out aiming for a better 
understanding of the long-term brain activity and its quantifica-
tion, using two nonlinear metrics (LZC and SI) and spectral 
power to obtain reliable estimates for the optimal epoch length 
in EEG nonlinear analysis. First, the application of the metrics 
in the sliding analysis showed oscillatory behavior (ie, a recur-
rence rate) of the cortical activity with periods around 40 sec-
onds. This finding underlines the evidence of periodic variations 
in the stability of coupling strength among sources of EEG sig-
nals. These periodic variations are associated with the brain’s 
predisposition to transition state between synchronized (low-
complex) and desynchronized (high-complex) brain activity,50 

Figure 1.  Examples of sequences of nonlinear measures from the analysis with sliding windows for the channel Fz in a healthy subject (A) 
and a patient with major depressive disorder (MDD) (B). Gray curves, original sequences; black curves, smoothed sequences; asterisks, 
locations of the peaks detected automatically.
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in order to control information processing in central and paral-
lel modes.58 Probably, this recurrence rate is related to the abil-
ity to characterize significant neural dynamics in functional 
magnetic resonance imaging (fMRI) data. In this sense, 
Liégeois et al59 reported that time windows between 40 and 60 
seconds facilitate the detection of functional and structural neu-
ral dynamics; however, further research should be carried out 
to confirm this association.

Although the 2 nonlinear measures characterize the wave-
form complexity of a time series in 2 different ways, this peri-
odic oscillatory feature was illustrated with both measures in 
both healthy subjects and MDD patients (Figure 2A-D). 
Together with the oscillations observed in the linear spectral 
analysis (Figure 2E and F), it is evident that choosing too small 
epochs, such as ranges between 1 and 20 seconds,16,19-22,39 
might neglect valuable information that could be detected by 
these methods of signal characterization. Second, from the 
analysis of long-term nonlinearities with LZC (Figure 3A and 

B), the significant differences between channel Fz with its 
counterparts at Pz and Oz may be explained by the absence of 
visual and tactile stimuli. As expected, the larger nonlinear 
activity recorded from channel Fz with respect to the other 2 
channels may be an indication of uninterrupted cognitive 
actions—or resting state activity—during EEG recording in an 
eyes-closed resting condition, possibly reflecting thoughts, 
imagination, memories, and so on. This can be an indication 
that the location in time of an EEG time series, to be analyzed 
with nonlinear metrics, should be carefully selected. Figure 3A 
and B illustrates that nonlinear activity in parietal and occipital 
lobes reduced as consequence of the absence of visual and tac-
tile stimuli. In this particular case, the application of the linear 
method entailed synchronization of alpha activity in the pari-
etal and occipital lobes by functional inhibition,60 as well as 
their desynchronization in the frontal lobe,51 so the LZC is 
inversely proportional to the synchronization of the alpha 
activity. In case of the MDD group (Figure 3B), 

Figure 2.  Histograms representing the range of recurrence time of the nonlinear brain cortical activity, detected from the smoothed 
sequences obtained in the application of the Lempel-Ziv complexity (LZC) and fractal dimension metrics. The histograms were constructed 
with 60 bins (panels A and C, healthy group; panels B and D, major depressive disorder [MDD] group). SI, scaling index.
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significant differences in the measure calculated in minute 9 in 
comparison with minute 1 was observed in MDD patients, 
which is thought to reflect long-term nonstationarities. 
Probably, after multiple minutes of EEG recording vigilance 
descends entailing arousal later in time. The mentioned syn-
chronization and desynchronization of alpha activity regarding 
the location of the channels are reflected by increase and 
decrease of the alpha power in Fz, Pz, and Oz for both groups 
(Figure 3E and F).

The trends of curves obtained in the calculation of the SI 
(Figure 3C and D) were anticorrelated with curves obtained 
with the LZC metric, indicating an increase of complexity 
linked to a decrease of self-similarity as time augments, result-
ing in long-term nonstationarities characterized by variations 
in time of nonlinear dynamics in cortical regions. This asser-
tion is supported by significant differences in minute 1 versus 
minute 6 and minute 1 versus minute 8 for the healthy group 
(Figure 3C), and minute 1 versus minute 7, minute 1 versus 
minute 8, and minute 1 versus minute 9 for the MDD group 
(Figure 3D). These last observations can be regarded reliable 
since the rise of random-like activity in the EEG signals implies 

an increase of complexity affecting the presence of self-similar 
patterns among large and small scales. Except for the healthy 
group analyzed with LZC (Figure 3A), significant changes in 
the nonlinear measures between the first and last time points of 
the EEG recordings were observed (Figure 3B-D). These could 
be the consequence of drowsiness building up throughout the 
measurement or stress that the subjects may present particu-
larly in the initial minutes of the EEG recording, triggering 
activity in the occipital and parietal lobes together with the 
frontal lobe. Note that these speculations should be a topic of 
future investigations. Figure 3E and F deserves a special inter-
est, where it is clearly shown that linear analysis in both groups 
does not reflect the long-term nonstationarity detected by the 
nonlinear analysis, such as observed in Figure 3B-D. This fact 
implies evidently that linear analysis does not detect biomark-
ers associated to longterm nonstationarities in EEG alpha activ-
ity of MDD patients.

In summary, the results of this work allow to infer that future 
studies carried out for nonlinear analysis of EEG time series, at 
least for alpha activity, should consider the application of the 
respective metrics in epochs within the identified recurrence 

Figure 3.  Averaged results of Lempel-Ziv complexity (LZC), scaling index (SI), and spectral power measured every 1 minute in the 
2groups of analysis with the information contained in the 3 channels. * Indicates significant time effects (p < .05).
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times. For practical purposes, an epoch length of 1 minute is 
suggested, based on the effects of time detected. Otherwise, it 
should be in the range between 40 and 60 seconds in order to 
obtain reliable estimates. As reported by Arns et al,17 LZC was 
associated with treatment response to rTMS in an MDD sam-
ple, only when using a 1 minute EEG epoch length, whereas 
that same information was lost when using shorter epoch 
length. Furthermore, this LZC metric contained data indepen-
dent of linear measures such as alpha power and alpha peak 
frequency, demonstrating added value of such measures in bio-
marker research. The current study collected 10 minutes EEG 
data to better investigate the true recurrence rate inherent to the 
data, which confirmed that indeed a 1 minute epoch length 
seems optimal for nonlinear characterization of EEG time 
series. Absence of effects of time in spectral analysis for both 
groups suggests that epoch lengths larger than 40 to 60 seconds 
are not required for linear analysis. The present work confirms 
that long-term nonstationarities are inherent to the cortical 
brain activity regardless presence or absence of mental 
disorder.
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