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Abstract

Canine hypercortisolism is most often caused by an ACTH-secreting pituitary adenoma (pituitary-dependent hypercortisolism;
PDH). An interesting target for a selective medical treatment of PDH would be the receptor for ACTH: the melanocortin 2
receptor (MC2R). In this study we investigated whether two peptide compounds, BIM-22776 (#776) and BIM-22A299 (#299),
are effective MC2R antagonists in vitro. Their effects on cortisol production and mRNA expression of steroidogenic enzymes,
MC2R and melanocortin 2 receptor accessory protein (MRAP) were evaluated in primary adrenocortical cell cultures (n = 8) of
normal canine adrenal glands. Cortisol production stimulated by 50 nM ACTH was dose-dependently inhibited by #299
(inhibition 90.7 £2.3% at 5 uM) and by #776 (inhibition 38.0+5.2% at 5 uM). The ACTH-stimulated mRNA expression of
steroidogenic enzymes, MC2R and MRAP was significantly inhibited by both compounds, but most potently by #299. These
results indicate that canine primary cell culture is a valuable in vitro system to test MC2R antagonists, and that these compounds,
but especially #299, are effective MC2R antagonists in vitro. To determine its efficacy in vivo, further studies are warranted.

Antagonism of the MC2R is a promising potential treatment approach in canine PDH.
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Introduction

Hypercortisolism (Cushing’s syndrome) is one of the most
frequently diagnosed endocrinopathies in dogs (Galac et al.
2010c). This serious endocrine disorder is characterized by
chronic exposure to excessive amounts of glucocorticoids,
which can be caused by either glucocorticoid administration
or endogenous cortisol overproduction. Endogenous
hypercortisolism occurs in approximately 1 to 2.5 per 1000
dogs per year (Willeberg and Priester 1982; O’Neill et al.
2016), and is most frequently (~80-85%) caused by an
ACTH-producing pituitary adenoma (pituitary-dependent
hypercortisolism; PDH) (Galac et al. 2010c).

The current drug of choice for the medical treatment of
canine PDH is trilostane, which competitively inhibits the
steroidogenic enzyme 3 3-hydroxysteroid dehydrogenase type
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2 (HSD3B2) (Potts et al. 1978; Ramsey 2010). However,
HSD3B2 is required for all classes of adrenocortical hormones
and therefore not only inhibits the production of cortisol but
also that of aldosterone (Galac et al. 2010a; Reid et al. 2014).
Although trilostane is generally well tolerated,
hypoadrenocorticism can occur (King and Morton 2017),
and adrenal necrosis might occur more commonly than gen-
erally thought (Reusch et al. 2007), possibly due to increased
ACTH secretion (Burkhardt et al. 2011). A more selective
treatment option where the negative effects of increased
ACTH secretion are countered could therefore improve the
current medical treatment of canine PDH.

An interesting target for a more selective medical treatment
of PDH would be the receptor for ACTH: the Gg,-protein-
coupled melanocortin 2 receptor (MC2R) (Mountjoy et al.
1992). The MC2R is expressed in all zones of the adrenal
cortex, but its major function is to stimulate the zona
fasciculata cells to produce cortisol (Clark et al. 2016;
Sanders et al. 2016). The MC2R is one of five melanocortin
receptors: MC1R-MCS5R, which are all activated by
melanocortin peptides that are derived from the precursor
pro-opiomelanocortin (Bicknell 2008). The MC2R is unique
in its ligand selectivity: while multiple melanocortin peptides
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can bind to the other MC receptors, only ACTH binds to the
MC2R (Cerda-Reverter et al. 2012; Dores et al. 2014). The
MC2R needs to be transported from the endoplasmic reticu-
lum to the cell surface, for which it requires the melanocortin 2
receptor accessory protein (MRAP). MRAP forms a complex
with the MC2R which allows the MC2R to leave the endo-
plasmic reticulum and reach the cell surface, and which is
necessary for binding of ACTH to the MC2R (Cooray et al.
2011; Cerda-Reverter et al. 2012). This binding activates the
cAMP-protein kinase A pathway which facilitates cholesterol
transport to the inner mitochondrial membrane and the phos-
phorylation of several transcription factors. These activated
transcription factors then increase the availability of free cho-
lesterol and the transcription of genes encoding for steroido-
genic enzymes, which eventually results in increased cortisol
production (Stocco 1997; Ruggiero and Lalli 2016).

Consequently, a potent MC2R antagonist would be a great
new treatment option to selectively inhibit ACTH-dependent
hypercortisolism. The aim of this study was to evaluate
whether the two peptide compounds BIM-22776 (#776) and
BIM-22A299 (#299) are potent MC2R antagonists in vitro,
and to determine whether MC2R antagonists have potential as
a future treatment option for canine PDH.

Materials & methods
Animals & tissues

The adrenal glands of eight healthy dogs were used. The dogs
were euthanized for reasons unrelated to this study, which was
approved by the Ethical Committee of Utrecht University. The
dogs were between 18 and 48 months of age (median
23 months), two were mongrels and six were beagles. One
dog was female and seven were male, all of the dogs were
sexually intact.

Primary cell culture

The adrenocortical cell suspensions were prepared as de-
scribed previously (Sanders et al. 2018). In short, the adrenal
cortices were digested in a collagenase solution, then filtered
and washed. The cell suspensions were diluted to 1 x 10°
cells/mL with DMEM F-12 (Gibco, Invitrogen, Breda, the
Netherlands) with 1% Insulin-Transferrin-Selenium (Gibco),
0.125% BSA, 2.5% Nu-Serum (Corning, Amsterdam, the
Netherlands) and 1% penicillin/streptomycin, and seeded in
Multiwell 96 well plates (100 L per well) (Primaria™,
Corning).

Two 96 well plates were used for each adrenal cell suspen-
sion: one plate for cortisol/DNA ratio measurements and one
plate for reverse transcription quantitative PCR (RT-qPCR)
analysis. The cells were left to attach for 4 to 7 days at
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37 °C in a humidified atmosphere of 95% air and 5% CO,,
after which the culture medium was refreshed prior to com-
pound incubations.

Stock solutions of 500 uM were prepared for compounds
#776 and #299, dissolved in 10 mM HCI. The cells were
incubated with 50 nM ACTH (1-24) (Synacthen®, Sigma-
tau BV, Utrecht, the Netherlands) and 50 nM, 500 nM and
5 uM of #776 and #299. To determine whether the com-
pounds would only affect cortisol production when
ACTH(1-24) was added, cells were also incubated without
ACTH(1-24) and with 5 uM of #776 and #299. Incubations
were performed in quadruplicate. After 24 h of incubation,
cortisol concentrations were measured in the culture medium
of four wells per condition by radioimmunoassay as described
previously (Meijer et al. 1978).

DNA measurements

To correct for differences in number of cells per well, DNA
was measured in each well to calculate cortisol/DNA ratios.
After removing the culture medium, the culture plates
underwent three freeze/thaw cycles, after which 50 pL Tris/
EDTA (10 mM Tris, | mM EDTA, pH 8.0) was added to each
well. The Qubit® dsDNA HS Assay Kit (Fisher Scientific,
Landsmeer, the Netherlands) was used according to the man-
ufacturer’s instructions and DNA concentrations were mea-
sured with the Qubit® 2.0 Fluorometer (Fisher Scientific).
The cortisol/DNA ratios were calculated of four wells per
condition, of which the results were averaged prior to statisti-
cal analysis.

RT-qPCR

After removing the culture medium, the wells for each condi-
tion were pooled and RNA was isolated from the cells with the
RNeasy Micro Kit (QIAGEN, Venlo, the Netherlands), includ-
ing the DNase treatment, according to the manufacturer’s in-
structions. RNA concentrations were measured with NanoDrop
(ND-1000, Isogen Life Science, Utrecht, the Netherlands), after
which cDNA was synthesized from 500 ng total RNA with the
iScript™ cDNA Synthesis Kit (Bio-Rad) according to protocol.
The cDNA was subsequently diluted to 1 ng/uL. RT-qPCR
analysis was used to determine the mRNA expression of eight
genes: steroidogenic acute regulatory protein (StAR), cyto-
chrome P450 side chain cleavage (CYP11A1), HSD3B2,
17a-hydroxylase/17,20-lyase (CYP17), 21-hydroxylase
(CYP21), 11p3-hydroxylase cytochrome P450 (CYP11B1),
MC2R and MRAP (primers shown in Table 1). Optimization
and confirmation of the primer specificity were performed as
described previously (Galac et al. 2010b).

To correct for differences in ¢cDNA concentrations,
Ribosomal protein S19 (RPS19), succinate dehydrogenase
complex subunit A (SDHA), hypoxanthine-guanine
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Table 1 Primers used for RT-
qPCR Target gene  Primer sequence (5' — 3') Product size (bp)  Annealing Tm (°C)
StAR Fw: CTC TGC TTG GTT CTC GG 125 62.5
Rv: CCT TCT TCC AGC CTT CC
CYPI11A1 Fw: CAC CGC CTC CTT AAA AAGTAACAAG 129 63.3
Rv: GCT GCG TGC CAT CTC GTA G
CYP17 Fw: CCT GCG GCC CCT ATG CTC 134 60.0
Rv: GGC CGG TAC CAC TCC TTC TCA
HSD3B2 Fw: CAG GAG GGT TTC TGG GTC AG 186 56.5
Rv: AGG CTC TCT TCA GGC ACT GC
CYP21 Fw: AGC CCG ACC TTC CCC TCC ACC TG 152 64.5
Rv: TCT GCC GGC GAA GTC CAC CCATTT
CYP11B1 Fw: GCC TAC CCC TTG TGG ATG AC 126 62.0
Rv: CTC TGT GAC TGC TGT CTG GG
MC2R Fw: TCA TGT GGT TTT GCC GGA AGA GAT 138 58.5
Rv: AAT GGC CAG GCT GCA AAT GAA A
MRAP Fw: CAC AGG TGA GGA ACA ACG 227 64.6
Rv: ATC GAA GGT CAG TCC TGG
RPS19 Fw: CCT TCC TCA AAA AGT CTG GG 95 61.0
Rv: GTT CTC ATC GTA GGG AGC AAG
SDHA Fw: GCC TTG GAT CTC TTG ATG GA 92 61.0
Rv: TTC TTG GCT CTT ATG CGATG
HPRT Fw: AGC TTG CTG GRG AAA AGG AC 104 58.0

Rv: TTATAG TCA AGG GCATAT CC
YWHAZ Fw: CGA AGT TGC TGC TGG TGA 94 58.0

Rv: TTG CAT TTC CTT TTT GCT GA

phosphoribosyltransferase (HPRT) and tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase activation
protein zeta (YWHAZ) were used as reference genes
(primers shown in Table 1) (Brinkhof et al. 2006; Stassen
et al. 2015).

SYBRgreen supermix (Bio-Rad) was used for the RT-qPCR
reactions, and amplification was performed using a CFX 384
Touch™ Real-Time PCR Detection System (Bio-Rad) with the
following cycle parameters: initial denaturation for 3 min at 95 °C,
then 40 cycles of 10 s at 95 °C followed by 30 s at the primer-
specific optimal annealing temperature, and ending with melting
curve analysis by one cycle of 10 s 95 °C and a temperature
increment of 0.5 °C for 5 s from 65 °C to 95 °C. To exclude the
possibility of interfering genomic DNA, for each sample a control
where no reverse transcriptase was added in the cDNA reaction
was analyzed. Data were analyzed with CFX Manager 3.1 (Bio-
Rad). Two technical replicates were used for each sample.
GeNorm software (Vandesompele et al. 2002) was used to analyze
expression levels of the reference genes, which justified their use.
To calculate the normalized relative expression of each target gene,
the 2”22 method (Livak and Schmittgen 2001) was used.

Statistical analysis
Logarithmic transformation resulted in normally distributed

data, which was confirmed with the Shapiro-Wilk test. After
logarithmic transformation, cortisol/DNA ratios and RT-

qPCR fold changes were analyzed with repeated measures
ANOVA with a Bonferroni post-hoc test to correct for multiple
comparisons. A p value of <0.05 was considered significant.
Data are reported as mean + SEM of eight individual cell
cultures.

Results
Cortisol production: cortisol/DNA ratios

Incubation with 50 nM ACTH(1-24) increased the cortisol/
DNA ratio 35.4 +10.4-fold (p <0.0001). Co-incubation with
#776 dose-dependently inhibited the ACTH-stimulated
cortisol/DNA ratio by 33.5+7.1% at 500 nM and by 38.0
52% at 5 uM (Fig. 1A). Co-incubation with #299 dose-
dependently inhibited the ACTH-stimulated cortisol/DNA ra-
tio by 25.1+£5.0% at 50 nM, by 78.8 = 7.2% at 500 nM and by
90.7+2.3% at 5 uM (Fig. 1A).

In the non-ACTH-stimulated cells, neither compound
inhibited the cortisol/DNA ratio. On the contrary, #776
slightly but significantly (p =0.002) increased the non-
ACTH-stimulated cortisol/DNA ratio 1.4 +0.1-fold at
5 uM (Fig. 1B). Compound #299 did not affect the non-
ACTH-stimulated cortisol/DNA ratio (1.1 +0.1-fold, P=
1) (Fig. 1B).
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Fig. 1 The effects of compounds BIM-22776 (#776) and BIM-22A299
(#299) on the cortisol production of ACTH(1-24)-stimulated (A) and
non-ACTH-stimulated (B) canine primary adrenocortical cell cultures
(n=28). Cortisol/DNA ratios are shown in percentages, normalized to

RT-qPCR

Incubation with 50 nM ACTH(1-24) significantly (P <0.01
or lower) upregulated the mRNA expression of all the genes
analyzed in this study, but most notably that of CYP17,
followed by MRAP, CYP11B1 and StAR (Fig. 2). Co-
incubation with 5 uM #776 significantly inhibited the
ACTH-stimulated expression of five of the eight genes ana-
lyzed in this study (Fig. 2), while co-incubation with 5 uM
#299 significantly inhibited the ACTH-stimulated expression
of all the genes analyzed in this study (Fig. 2).

Discussion

The results of this study show that canine primary adrenocor-
tical cell culture stimulated with synthetic ACTH(1-24) is a
functional in vitro model to test the efficacy of MC2R antag-
onists. Moreover, this study shows that #299 and #776 are
effective MC2R antagonists, of which #299 is the most potent.

Multiple attempts to create or isolate MC2R antagonists
have been made previously (Seelig and Sayers 1973; Yang
et al. 1997; Dores 2013), mostly with varying effects.
Recently, Bouw et al. (2014) showed that GPS1573 and
GPS1574, two ACTH analogs, can antagonize MC2R
in vitro in the nanomolar range in a human embryonic kidney
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the ACTH-stimulated control. Asterisks represent significant differences
compared to the ACTH-stimulated controls: *P <0.05, **P<0.01,
%P < (0.001

cell line transfected with the MC2R (Bouw et al. 2014).
However, a subsequent study by Nensey et al. (2016) demon-
strated that GPS1573 could not antagonize the adrenal re-
sponse to ACTH in neonatal rats in vivo. High concentrations
of GPS1574 did dose-dependently inhibit corticosterone pro-
duction in these rats (Nensey et al. 2016). Whether #776 and
#299 can antagonize the adrenal response to ACTH in vivo
remains to be determined, but using primary adrenocortical
cell cultures might be a better predictor of in vivo functionality
than using homogeneous and genetically altered cell lines
from extra-adrenal sources.

In this study we evaluated how the compounds affected the
cortisol production of both ACTH-stimulated and non-
ACTH-stimulated cells. We aimed to mimic ACTH-
dependent hypercortisolism by adding 50 nM synthetic
ACTH(1-24). This ACTH concentration significantly and
strongly increased the cortisol production, which indicates
that the cells responded as expected and that canine primary
adrenocortical cell culture is a good in vitro model to test the
effects of ACTH. Because we corrected the cortisol values
with the DNA concentrations, we could exclude the possibil-
ity that any observed differences in the cortisol production
were caused by a difference in the number of cells.

In the non-ACTH-stimulated canine adrenocortical cells,
incubation with #776 slightly but significantly increased the
cortisol production, which could indicate that #776 has
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Fig. 2 The effects of incubation with 50 nM ACTH(1-24) and of co-
incubation of ACTH(1-24) with 5 uM of compounds BIM-22776 (#776)
and BIM-22A299 (#299) on the relative mRNA expression of steroido-
genic enzymes, MC2R, and MRAP in canine primary adrenocortical cell
cultures (n=8). Fold changes are normalized to the non-ACTH-
stimulated controls, i.e. the basal expression. Asterisks represent signifi-
cant differences: *P <0.05, **P<0.01, ***P<0.001. All conditions

agonistic properties when the natural agonist is absent. Since
using MC2R antagonists in a clinical setting would only be
indicated when ACTH is excessively secreted, this phenome-
non is expected to be clinically irrelevant. Incubation with
#299 did not affect non-ACTH-stimulated cortisol production.

To evaluate whether the compounds were able to antago-
nize the ACTH-induced changes in the mRNA expressions of
steroidogenic enzymes, the MC2R and MRAP, we performed
RT-gPCR analyses. ACTH upregulated the mRNA expres-
sions of all the genes analyzed in this study, while #299
inhibited the ACTH-stimulated mRNA expressions of these
genes. These results show that #299 can antagonize the
ACTH-induced changes in the mRNA expressions of ste-
roidogenic enzymes, the MC2R and MRAP. Co-incubation
with #776 downregulated the ACTH-stimulated mRNA ex-
pression of most of the genes analyzed in this study, but not of
all genes and not as vigorously as #299.

One of the advantages of using MC2R antagonists is that
functional MC2R expression is limited to the adrenal gland;
antagonism of the MC2R is therefore unlikely to result in off-
target effects. However, since the other melanocortin receptors
have a variety of functions in other tissue types, inadvertently
antagonizing or agonizing these receptors could result in
many unwanted side-effects (Clark et al. 2016). It is therefore
important to determine whether the compounds are selective
for the MC2R, and do not affect the other melanocortin recep-
tors. This compound selectivity will have to be determined in
future studies.

I
HSD3B2

I I I I
CYP21 CYP11B1 MC2R MRAP

were significantly different from the basal expression, except when indi-
cated with an “a”. StAR, steroidogenic acute regulatory protein;
CYP11A1, cytochrome P450 side chain cleavage; CYP17, 17-hydrox-
ylase/17,20-lyase; HSD3B2, 33-hydroxysteroid hydrogenase type 2;
CYP21, 21-hydroxylase; CYP11B1, 11#3-hydroxylase cytochrome
P450; MC2R, melanocortin 2 receptor; MRAP, melanocortin type 2 ac-
cessory protein

Conclusion

In conclusion, the results of this study indicate that canine
primary cell culture is a valuable in vitro system to test
MC2R antagonists, and that these compounds, but especially
#2909, are effective MC2R antagonists in vitro. To determine
their efficacy in vivo, further studies are warranted.
Antagonism of the MC2R is a promising potential treatment
approach in canine PDH.
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