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ABSTRACT

Currently, cows with poor metabolic adaptation 
during early lactation, or poor metabolic adaptation 
syndrome (PMAS), are often identified based on detec-
tion of hyperketonemia. Unfortunately, elevated blood 
ketones do not manifest consistently with indications 
of PMAS. Expected indicators of PMAS include el-
evated liver enzymes and bilirubin, decreased rumen 
fill, reduced rumen contractions, and a decrease in 
milk production. Cows with PMAS typically are higher 
producing, older cows that are earlier in lactation and 
have greater body condition score at the start of lacta-
tion. It was our aim to evaluate commonly used mea-
sures of metabolic health (input variables) that were 
available [i.e., blood β-hydroxybutyrate acid, milk fat: 
protein ratio, blood nonesterified fatty acids (NEFA)] 
to characterize PMAS. Bavarian farms (n = 26) with 
robotic milking systems were enrolled for weekly visits 
for an average of 6.7 wk. Physical examinations of the 
cows (5–50 d in milk) were performed by veterinarians 
during each visit, and blood and milk samples were col-
lected. Resulting data included 790 observations from 
312 cows (309 Simmental, 1 Red Holstein, 2 Holstein). 
Principal component analysis was conducted on the 3 
input variables, followed by K-means cluster analysis 
of the first 2 orthogonal components. The 5 resulting 
clusters were then ascribed to low, intermediate, or 
high PMAS classes based on their degree of agreement 
with expected PMAS indicators and characteristics in 
comparison with other clusters. Results revealed that 
PMAS classes were most significantly associated with 
blood NEFA levels. Next, we evaluated NEFA values 
that classify observations into appropriate PMAS class-
es in this data set, which we called separation values. 

Our resulting NEFA separation values [<0.39 mmol/L 
(95% confidence limits = 0.360–0.410) to identify low 
PMAS observations and ≥0.7 mmol/L (95% confidence 
limits = 0.650–0.775) to identify high PMAS observa-
tions] were similar to values determined for Holsteins 
in conventional milking settings diagnosed with hyper-
ketonemia and clinical symptoms such as anorexia and 
a reduction in milk yield, as reported in the literature. 
Future studies evaluating additional clinical and labo-
ratory data, breeds, and milking systems are needed to 
validate these finding. The aim of future studies would 
be to build a PMAS prediction model to alert produc-
ers of cows needing attention and help evaluate on-farm 
metabolic health management at the herd level.
Key words: metabolic adaptation, cluster analysis, 
negative energy balance, nonesterified fatty acid

INTRODUCTION

Cows with poor metabolic adaptation during early 
lactation, or poor metabolic adaptation syndrome 
(PMAS), are often identified based on detection of 
hyperketonemia (blood BHB ≥1.2 mmol/L). Despite 
initial observations (Sjollema and Van der Zande, 1923; 
Shaw, 1956), elevated blood ketone levels do not manifest 
consistently with indications of poor metabolic adapta-
tion during early lactation (Andersson, 1984; Simensen 
et al., 1990; Duffield et al., 2009). The indications for 
poor metabolic adaptation to negative energy balance 
(NEB) during early lactation are secondary to the high 
energy demands of milk production and a concurrent 
decrease in DMI that is independent of milk production 
demands (Baird, 1982). Expected indications of PMAS 
include elevated liver enzymes and bilirubin, decreased 
rumen fill, reduced rumen contractions, and a decrease 
in milk production (Ghanem et al., 2016; Issi et al., 
2016; Cao et al., 2017). Cows with PMAS typically are 
higher producing, older cows that are earlier in lacta-
tion and have greater BCS at the start of lactation 
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(Baird, 1982; Rukkwamsuk et al., 1999; Andrews et al., 
2004; Ghanem et al., 2016).

The need for an accurate measurement associated 
with PMAS has not been addressed. It was our aim to 
re-evaluate the commonly used measures of metabolic 
health (input variables) that were available [i.e., blood 
BHB acid, milk fat: protein ratio, blood nonesterified 
fatty acids (NEFA)] to characterize patterns of PMAS. 
Unlike some infectious diseases with clear case defini-
tions (present or absent), cases of metabolic disease 
are more defined as syndromes observed on a spectrum 
of signs. A strictly binomial outcome variable such as 
“diseased or healthy” can be difficult to define for the 
purpose of prediction models. Principal component 
analysis (PCA) and cluster analysis do not require 
an outcome variable. A PCA detects important pat-
terns among cases by generating linear combinations 
of meaningful potential predictors that represent the 
data’s variance associated with disease. The PCA is fol-
lowed by a cluster analysis that systematically groups 
the most similar observations into clusters that best 
explain the data’s variance and therefore disease states 
(Borcard et al., 2011).

We hypothesized that performing a PCA and a clus-
ter analysis using the input variables would differenti-
ate groups of cattle with regards to patterns of PMAS. 
A clear understanding of PMAS is needed to further 
study the underlying mechanisms, possible prevention, 
and treatment options and to provide better indicators 
of genetic selection for metabolic health.

MATERIALS AND METHODS

Data Collection

Sixty farms equipped with Lely (Lely Industries 
N.V., Maassluis, the Netherlands) or Lemmer-Fullwood 
(Lemmer-Fullwood GmbH, Lohmar, Germany) auto-
matic milking systems up to 70 km from Munich were 
asked to participate in the study. Twenty-six Bavarian 
farms (10 Lely, 16 Lemmer-Fullwood) were enrolled 
between May 2015 and December 2015. Data were col-
lected between May 2015 and February 2016 as farms 
were enrolled. On average, farms were visited for 6.65 
(SD 1.16) consecutive weeks (range: 3–10).

Up to 8 early-lactation cows between 5 and 50 DIM 
were evaluated during each visit. If more than 8 cows 
were between 5 and 50 DIM, the 8 cows earliest in their 
lactation were sampled. There was no minimum num-
ber of cows sampled to be included in the analysis. Milk 
samples were collected from all milkings on the day 
before the visit using an automatic sample collecting 
system attached to the automatic milking system for a 

minimum duration of 12 h (0700–1900 h or 0800–2000 
h). Milk collection had to be from voluntary milkings 
(samples were not collected by hand, and cows were not 
fetched into the milking robot for collection).

Physical exams of the cows and blood sample col-
lection were performed by the same 2 veterinarians 
(SP and HL). To screen animals for negative health 
conditions other than PMAS, physical exams included 
evaluating behavior, hygiene, and conformation; mea-
suring internal body temperature, heart rate, and res-
piration rate; and performing heart auscultation, lung 
auscultation, complete udder examination, abdominal 
auscultation, percussion, and rectal palpation. Farm 
and cow identification numbers, date, DIM, breed, 
and lactation number were recorded. Clinical infor-
mation documented for use in the analysis included 
the frequency of rumen contractions as described by 
Dirksen (1979), milk reduction compared with the day 
before, back fat measured by ultrasound as described 
by Staufenbiel (1992), change in back fat in 1 wk, and 
rumen fill (scored between 1 and 5, with 5 representing 
the most fill; Zaaijer and Noordhuizen, 2003; Appen-
dix, Table A1).

Blood samples were analyzed using the Cobas 
c311-Analyzer (Roche Diagnostics, Rotkreuz, Swit-
zerland) for total blood protein, albumin, cortisol, 
bilirubin, aspartate aminotransferase (AST), gamma-
glutamyl transferase (GGT), glutamate dehydrogenase 
(GLDH), creatine kinase (CK), BHB, and NEFA. 
Milk production (kg) was calculated using the auto-
matic milking system mid-24-h milk production mea-
surement. Corresponding milk samples were analyzed 
for milk fat and protein percentage, urea, and lactose 
using the MilkoScan FT-6000 (Foss GmbH, Hamburg, 
Germany), and SCC was measured using the Fosso-
matic 5000 (Foss GmbH).

Data Editing

Several criteria were used to select data for the 
analysis. Observations were removed if any non-PMAS-
related health event was suspected or diagnosed at 
the time of the physical exam and if milk data were 
not collected from the robot. The earlier observations 
were removed if multiple milk samples were collected 
from a cow within the previous 12-h period. Outliers, 
most likely due to data entry errors, were identified by 
visual inspection of each variable’s histogram. Finally, 
observations were removed if they had a missing value 
for an input variable. The descriptive statistics (mean, 
standard deviation, and number of missing values) and 
variable descriptions of the final data set were exam-
ined.
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PCA and Cluster Analysis

All analyses were performed using the program R ver-
sion 3.0.1 (R Development Core Team, 2013). The prin-
comp and kmeans functions were used to perform the 
PCA and cluster analysis, respectively. The assumption 
of PCA is that input variables are normally distributed 
and that they have linear relationships (Borcard et al., 
2011). The statistical assumption about the indepen-
dence of observations can be relaxed with heuristic 
procedures (noninference methods) such as PCA and 
cluster analysis (Jolliffe, 2002). The 3 input variables 
[NEFA, BHB, and milk fat: protein ratio (FPR)] were 
scaled and centered to standardize the data using the 
scale function in R. The scale function subtracts the 
mean of each variable from all the variable’s values 
and then divides each value by the variable’s standard 
deviation. Furthermore, scatter plots of the input vari-
ables were inspected for nonlinear relationships.

A PCA was performed to transform the data into 
several orthogonal principal components (PC; Borcard 
et al., 2011). The PC are ordered in descending order 
based on the amount of the variance they explain. The 
PCA results were examined by means of a scree plot 
that shows the decreasing amount of variance explained 
by PC sorted by the amount of variance explained. The 
“elbow rule” was applied to determine how many PC 
would be used in the cluster analysis. Briefly, the elbow 
rule selects PC up until the elbow of the plot, where the 
slope between PC begins to increase most prominently 
(Jackson, 1993; Johnson and Wichern, 2002).

A cluster analysis was performed using K-means, a 
least squares method. K-means is a linear method and 
as such requires normally distributed input variables 
that are not highly correlated (Borcard et al., 2011). 
The resulting PC were visually inspected for normality 
by creating histograms, and pairwise Pearson correla-
tions were calculated. The wrapper cascadeKM() cal-
culated the simple structure index (SSI) criterion 1,000 
times per cluster number between 2 and 10 clusters 
(Borcard et al., 2011). The final number of clusters was 
selected by applying the elbow rule to the SSI plot. This 
was done to balance the minimum number of clusters 
with the maximum SSI criteria (Hothorn and Everitt, 
2014). The silhouette plot was used to identify misclas-
sifications (any observations with negative silhouette 
widths) and to evaluate the distribution of observations 
among clusters.

Comparison of External Variables  
per Cluster or PMAS Class

External variables are all the variables available that 
were not used as input variables for the PCA and clus-

ter analysis: DIM, lactation, clinical information, and 
blood and milk data excluding BHB, FPR, and NEFA. 
Linear mixed-effect regression models were used to test 
for statistically significant associations between each of 
the external variables and the clusters with an α of 
0.05. Cow ID and Farm ID were included as random 
effects on the intercept. Because there was no within-
cow variation in lactation number, duplicate cow–clus-
ter observations were removed and only farm ID was 
included as a random effect when modeling lactation 
number. A fixed effect of DIM and an interaction be-
tween DIM and cluster number were added if they sig-
nificantly improved the models’ goodness of fit using a 
log-likelihood ratio test. Goodness of fit was evaluated 
using diagnostic plots of the residuals among which the 
predicted versus fitted values plot. External variables 
were log-transformed to normalize residuals, but the 
model estimates were transformed into the original 
scale for reporting the results. Results were presented 
as least squares means and standard errors per cluster, 
and post hoc comparisons among clusters’ estimates 
were adjusted for multiple comparisons using Tukey’s 
honest significant difference method (Gelman and Hill, 
2006). The significance of cluster number as a fixed 
effect was based on type III sum of squares and used an 
α level of 0.05 to determine significance. Post hoc esti-
mates for back fat were also reported at the beginning 
of lactation (DIM = 5) when the interaction between 
cluster number and DIM was significant. Linear mixed-
effect regression models were used again to quantify 
associations among each of the external variables and 
the 3 PMAS classes described in the next paragraph.

Classification of Clusters to PMAS Classes

The clusters’ external variable characteristics were 
compared with expected indicators and characteristics 
of PMAS, including elevated liver enzymes and biliru-
bin, decreased rumen fill, reduced rumen contractions, 
and a decrease in milk production (Ghanem et al., 
2016; Issi et al., 2016; Cao et al., 2017). Cows with 
PMAS typically are higher producing, older cows that 
are earlier in lactation and have greater BCS at the 
start of lactation (Baird, 1982; Rukkwamsuk et al., 
1999; Andrews et al., 2004; Ghanem et al., 2016). The 
clusters were then ascribed to low, intermediate, or high 
PMAS classes based on their degree of agreement with 
expected PMAS indicators in comparison with other 
clusters.

Separation of PMAS Classes

The PCA biplot was examined to identify how the in-
put variables influenced the cluster separation and how 
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clusters separated into the new PMAS classifications. 
The most influential input variable(s) was selected as 
the PMAS measure to be used to identify values that 
classify observations into appropriate PMAS classes 
in this data set, which we called separation values. 
Separation values that maximized the accuracy of clas-
sification were selected. Accuracy is the proportion of 
correctly classified observations out of all observations 
(Dohoo et al., 2012). First, separation values of the se-
lected PMAS measure were evaluated for correctly pre-
dicting the PMAS classifications of intermediate PMAS 
observations compared with low PMAS observations in 
this data set. Second, separation values of the PMAS 
measure were evaluated for correctly predicting the 
PMAS classifications of the high PMAS observations 
compared with intermediate PMAS observations in this 
data set.

RESULTS

Data Collection

On average, 14.65 (SD 3.68) cows were sampled per 
farm (range: 9–21). A total of 381 cows were evaluated. 
An average of 57.88 (SD 20.50) observations were col-
lected per farm (range: 22–116). Each cow was evalu-
ated on average 3.95 times (SD 2.50).

Data Editing

The starting data set contained 1,505 observations; 
427 observations were removed due to a negative health 
condition other than PMAS being suspected. Examples 
of such conditions include mastitis, retained placenta, 
milk fever, and displaced abomasum. In addition, 254 
observations were removed because of multiple milk 
samples corresponding to a blood sample, and 30 ob-
servations were removed due to missing milk data from 
the robot. Outlier observations were removed, includ-
ing 2 observations with CK values above 12,000 U/L 
and 1 outlier sample with a blood protein value less 
than 5 g/L. One sample was removed due to a missing 
NEFA value.

The resulting data set contained 790 observations 
from 26 farms and represented 312 cows, of which 309 
were German Simmental cows, 1 was a Red Holstein 
cow, and 2 were Holstein cows. On average, 12 (SD 
2.99) cows were sampled per farm (range: 8–19). An 
average of 30.38 (SD 7.81) observations were collected 
per farm (range: 13–42). Each cow was evaluated an 
average of 2.53 times (SD 1.32). Of those, 67 cows were 
in their first lactations, 81 cows were in their second 
lactations, and 164 cows were in their third or later 
lactations. There were 260 missing change in back fat 

values because the calculation of this value depended 
on having 2 consecutive measurements.

The descriptive statistics (mean, standard deviation, 
and number of missing values) of the final data set are 
shown in Table 1. On average, cows in this study were 
27.51 DIM (SD 12.01) and produced 32.02 kg of milk/d 
(SD 7.10). Mean FPR was 1.28 (SD 0.25), BHB mean 
was 0.80 mmol/L (SD 0.38), and NEFA mean was 0.45 
mmol /L (SD 0.35).

PCA and Cluster Analysis

The standardized input variables (i.e., BHB, FPR, 
NEFA) met the linearity assumption and were then 
transformed into PC by means of a PCA to be used in 
the cluster analysis. The first and second components 
(PC1, PC2) explained 76.5% of the variance in the 
data, and the second component was identified as the 
elbow in the scree plot. The loadings of NEFA, BHB, 
and FPR were −0.55, −0.59, and −0.59, respectively, 
in PC1 and 0.84, −0.38, and −0.40, respectively, in 
PC2.

A feature of PCA is that the resulting orthogonal PC 
are normally distributed and not correlated (Borcard 
et al., 2011); therefore, PC1 and PC2 met the assump-

Table 1. Descriptive statistics of all variables in a data set of n = 790 
observations originating from 312 cows and 26 Bavarian herds sampled 
between 5 and 50 DIM

Variable Mean SD

Missing 
values  
(no.)

Lactation no. 3.00 1.60 0
DIM 27.5 12.0 0
Milk production,1 kg 32.0 7.1 0
Milk fat, % 4.16 0.83 0
Milk protein, % 3.27 0.32 0
Milk fat:protein ratio 1.28 0.25 0
SCC, 1,000 cells/mL 158.8 488.4 0
Urea, mg/dL 23.8 8.7 0
Lactose, % 4.83 0.17 0
Blood protein, g/L 71.2 5.1 0
Albumin, g/L 36.5 2.8 0
Bilirubin, µmol/L 1.21 1.08 0
Aspartate aminotransferase, U/L 84.2 25.1 0
Gamma-glutamyl transferase, U/L 19.8 6.1 0
Glutamate dehydrogenase, U/L 12.4 11.2 0
Creatine kinase, U/L 281 452 0
BHB, mmol/L 0.80 0.38 0
Nonesterified fatty acids, mmol/L 0.45 0.35 0
Cortisol, ng/mL 26.0 20.2 1
Rumen contractions, no./2 min 2.02 0.33 0
Diagnostic rumen fill score2 3.08 0.68 1
Back fat,3 mm 12.1 3.9 15
Milk production reduction in 1 d, kg 0.012 0.055 15
Difference in back fat in 1 wk, mm −0.63 2.37 260
1Mid-24-h milk calculated from robot data.
2Scoring system described in the Appendix. Theoretical range = 1–5.
3Measured by ultrasound.
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tions for cluster analysis. The cluster analysis results 
were visualized by means of an SSI plot. Based on the 
elbow rule, the elbow in the SSI plot was identified at 5 
clusters (SSI = 1.21). Therefore, 5 clusters were select-
ed for our final clustering results. No misclassifications 
were recognized in the silhouette plot, and the num-
ber of observations and silhouette widths were similar 
among clusters. Cluster 1 included 234 observations, 
cluster 2 included 157 observations, cluster 3 included 
137 observations, cluster 4 included 142 observations, 
and cluster 5 included 120 observations. Boxplots of 
the input variables per cluster number are described in 
Table 2. On average, a cow had observations in 1.776 
different clusters (SD 0.838).

Comparison of External Variables per Cluster

Somatic cell count, GLDH, CK, and cortisol were 
log-transformed to normalize residuals. All regression 
models of the external variables included DIM as a 

fixed effect except DIM, FPR, BHB, rumen fill, and 
change in back fat. The only regression models that 
included an interaction between cluster number and 
DIM were milk protein, bilirubin, AST, GLDH, NEFA, 
and back fat. All external variables, with the exception 
of urea, SCC, albumin, GGT, CK, rumen contractions, 
and milk production reduction, were significantly as-
sociated with cluster assignment (P < 0.05; Table 2). 
The input variables’ linear mixed-effects regression 
model results were also reported for comparison (Table 
2), although it is to be expected that they would be 
significantly associated with the cluster classifications 
(Legendre and Legendre, 2012).

Classification of Clusters to PMAS Classes

Clusters 1 and 2 had the greatest rumen fill and 
consisted of younger cows and cows later in lactation 
compared with the other clusters (Table 2). Clusters 
1 and 2 had low bilirubin, AST, GLDH, CK, and 

Table 2. Results of the linear mixed-effects regression models including least squares means and standard errors (in parentheses) by cluster 
number and type III sum of squares P-values1

Variable

Cluster

P-value1 2 3 4 5

Lactation2 2.70a (0.17) 2.84a (0.19) 3.11a (0.20) 3.09a (0.19) 2.87a (0.19) 0.16
DIM 30.6a (1.03) 30.5a (1.17) 23.2b (1.24) 23.5b (1.20) 26.3b (1.26) <0.001
Milk production, kg 31.2bc (0.73) 31.4bc (0.74) 32.7a (0.76) 32.1ab (0.75) 30.9c (0.75) <0.001
Milk fat, % 3.76d (0.053) 4.44b (0.060) 4.23c (0.064) 4.89a (0.062) 3.56e (0.064) <0.001
Milk protein,3 % 3.34a (0.031) 3.24b (0.033) 3.18bc (0.035) 3.11c (0.034) 3.36a (0.034) <0.001
Milk fat:protein ratio4 1.12c (0.012) 1.36b (0.014) 1.33b (0.015) 1.57a (0.015) 1.06d (0.016) <0.001
SCC, 1,000 cells/mL 66.7a (6.70) 81.5a (8.87) 66.0a (7.59) 72.3a (8.04) 74.6a (8.45) 0.17
Urea, mg/dL 23.9a (1.11) 23.5a (1.16) 23.7a (1.20) 23.7a (1.18) 22.8a (1.20) 0.68
Lactose, % 4.85a (0.013) 4.82ab (0.015) 4.82ab (0.016) 4.80b (0.016) 4.83ab (0.016) 0.058
Blood protein, g/L 71.2a (0.47) 70.7a (0.50) 71.5a (0.52) 70.7a (0.51) 71.8a (0.52) 0.061
Albumin, g/L 36.1a (0.25) 36.1a (0.27) 36.6a (0.28) 36.3a (0.27) 36.2a (0.27) 0.15
Bilirubin,3 µmol/L 0.86c (0.071) 0.77c (0.086) 1.90a (0.092) 1.33b (0.091) 1.38b (0.092) <0.001
Aspartate aminotransferase,3 U/L 81.7b (1.97) 79.9b (2.24) 89.8a (2.41) 89.2a (2.31) 83.8ab (2.38) <0.001
Gamma-glutamyl transferase, U/L 20.0a (0.38) 19.3a (0.42) 20.3a (0.44) 19.9a (0.43) 20.0a (0.43) 0.15
Glutamate dehydrogenase,3 U/L 9.28a (0.47) 9.48a (0.53) 10.24a (0.60) 10.50a (0.60) 9.71a (0.55) <0.001
Creatine kinase, U/L 179a (9.7) 175a (11.3) 205a (14.4) 205a (13.8) 186a (13.2) 0.24
Blood BHB,4 mmol/L 0.68c (0.029) 0.86b (0.032) 0.79b (0.034) 1.11a (0.033) 0.60c (0.034) <0.001
Blood nonesterified fatty acids,3,4 mmol/L 0.264c (0.016) 0.242c (0.020) 0.889a (0.021) 0.516b (0.021) 0.490b (0.021) <0.001
Cortisol, ng/mL 18.6a (1.51) 17.8ab (1.62) 23.1a (2.24) 14.2b (1.33) 19.5a (1.89) <0.001
Rumen contractions (no./2 min) 2.00a (0.024) 2.02a (0.029) 1.99a (0.031) 2.01a (0.030) 2.06a (0.032) 0.52
Rumen fill5 3.17a (0.058) 3.21a (0.065) 2.92b (0.070) 3.09ab (0.067) 2.95b (0.069) <0.001
Back fat,3 mm 12.2a (0.41) 12.3a (0.43) 12.5a (0.44) 12.1a (0.43) 12.1a (0.44) <0.001
DIM = 5 13.2bc (0.54) 12.8c (0.64) 15.1a (0.57) 14.7ab (0.57) 13.8abc (0.56)  
Milk production reduction, kg 0.019a (0.004) 0.005a (0.004) 0.010a (0.005) 0.012a (0.005) 0.010a (0.005) 0.18
Change in back fat, mm −0.18b (0.189) −0.51ab (0.217) −0.87ab (0.244) −1.25a (0.248) −0.74ab (0.273) 0.010
a–eMeans within a row with different superscripts differ (P < 0.05).
1Multiple comparisons among cluster numbers are adjusted using Tukey’s honestly significant difference method. The data set originated from 
312 cows and 26 Bavarian herds sampled 5 to 50 DIM (n = 790).
2Duplicate cluster–cow combinations removed due to a lack in variance per cow (n = 554).
3Significant interaction between cluster and DIM (P < 0.05).
4These variables were used as input variables for the cluster analysis and are therefore expected to be significantly associated among clusters.
5The description of the scoring system is available in the Appendix. Theoretical range = 1–5.
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NEFA. These characteristics align with characteristics 
of healthy cows. Cluster 3 had greater milk production, 
greater back fat at the beginning of lactation (DIM = 
5), and earlier DIM compared with clusters 1 and 2 
(Table 2). These risk factors, in addition to decreased 
rumen fill and elevated bilirubin, AST, GLDH, CK, 
and NEFA, align with expected characteristics of cows 
with PMAS. Clusters 4 and 5 had intermediate back 
fat at the beginning of lactation (DIM = 5), rumen 
fill, bilirubin, and NEFA (Table 2). These intermediate 
levels of liver values and clinical results during early 
lactation placed clusters 4 and 5 between the levels of 
agreement of the other clusters. Therefore, clusters 1 
and 2 were classified together as low, clusters 4 and 5 
were classified as intermediate, and cluster 3 was re-
defined as the only cluster with high agreement with 
expected PMAS indicators.

On average, cows had observations in 1.532 PMAS 
classes (SD 0.641). Eighty-seven cows had at least 1 
observation classified in the high PMAS class. Thirty-
one cows had more than 1 observation classified in the 
high PMAS class.

Comparison of External Variables per PMAS Class

Somatic cell count, GLDH, CK, and cortisol were 
log-transformed to normalize residuals. All regres-
sion models of the external variables included DIM 
as a fixed effect except DIM, rumen fill, and change 
in back fat. The only regression models that included 
an interaction between cluster number and DIM were 
milk protein, bilirubin, AST, GLDH, BHB, NEFA, 
and back fat. All external variables, with the excep-
tion of lactation, urea, SCC, lactose, blood protein, 
GGT, CK, rumen contractions, and milk production 
reduction, were significantly associated with the PMAS 
classifications (P < 0.05; Table 3). The input variables’ 
linear mixed-effects regression model results were also 
reported for comparison, although it is to be expected 
that they would be significantly associated with the 
PMAS classifications (Legendre and Legendre, 2012). 
The low PMAS class had significantly lower average 
FPR, bilirubin, AST, and NEFA compared with the in-
termediate and high PMAS classes (Table 3). The low 
PMAS class also had significantly greater DIM, rumen 
fill, and milk protein compared with the intermediate 
and high PMAS classes (Table 3). Although not signifi-
cantly different, the low PMAS class had lower average 
lactation number, milk production, and albumin com-
pared with the intermediate and high PMAS classes. 
The high PMAS class had significantly lower BHB and 
greater milk production, bilirubin, NEFA, and cortisol 
compared with the intermediate PMAS class (Table 3). 

Although not significantly different, the high PMAS 
class had the lowest rumen fill and greatest back fat at 
beginning of lactation compared with low and interme-
diate PMAS classes. Bilirubin and NEFA were the only 
variables that were significantly different among all 3 
PMAS classifications.

Separation of PMAS Classes

Examining the biplot of the PCA, it is apparent that 
NEFA’s direction of influence is what separated out 
the 3 PMAS classifications in our data set (Figure 1). 
The influence of BHB was in the same direction as the 
one of FPR (arrows overlap in Figure 1). The direction 
of influence of BHB and FPR separated out cluster 
1 from cluster 2 and cluster 4 from cluster 5 within 
their own classification of low and intermediate PMAS, 
respectively. Nonesterified fatty acids was selected as 
the PMAS measure for this data set because NEFA’s 
direction of influence in the biplot was responsible 
for separating out low, intermediate, and high PMAS 
classifications, and NEFA was the only input variable 
significantly different among all 3 PMAS classifica-
tions. The greatest accuracy of separation between low 
and intermediate PMAS observations was at a value of 
0.390 (95% CI: 0.360–0.410) mmol/L of NEFA (Figure 
2). The greatest accuracy of separation between inter-
mediate and high PMAS observations in this data set 
was at a value of 0.700 (95% CI: 0.650–0.775) mmol/L 
of NEFA (Figure 3).

DISCUSSION

Metabolic Adaptation to NEB

The 3 levels of agreement with expected PMAS in-
dicators did not follow differences in BHB levels. This 
was highlighted by the differences between clusters 
3 and 4 wherein cluster 3 had the highest agreement 
with expected PMAS indicators, whereas cluster 4 had 
the highest BHB values. The contrast between PMAS 
classes and BHB measurements may be due to the fact 
that ketogenesis, and resulting ketonemia, are normal 
physiological responses to compensate for NEB and do 
not necessarily reflect pathological changes. Indeed, 
keto-adaptation is a well-known phenomenon; in hu-
mans, ketones become the major fuel source following 
a period of adaptation to low carbohydrate intake. Fur-
thermore, endurance athletes have been shown to be 
in an almost constant state of ketonemia during NEB 
(Volek et al., 2016). As ketonemia does not necessarily 
reflect pathology, it becomes important for veterinary 
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clinicians to be able to distinguish between appropriate 
and inappropriate responses to NEB.

Klein et al. (2012) proposed that cows may compen-
sate for NEB in 1 of 2 ways: by reducing fat in milk 
or by increasing fat mobilization from adipose tissue. 
Only the latter group consistently developed hyperke-
tonemia (Klein et al., 2012). Although more research 
is needed in this area, our data are in agreement with 
this hypothesis. Cluster 5, a group with intermediate 
NEFA levels, had low milk fat but no elevation in BHB 
compared with cluster 4, which had similar NEFA lev-
els. This suggests that cluster 5 adapts to NEB either 
by limiting milk fat or by being limited in ketogenesis, 
which in turn limits milk fat (Baumgard et al., 2000). 
Cluster 4 had the highest BHB level as well as the high-
est milk fat of any cluster. This suggests that cluster 
4 adapts to NEB by increasing ketogenesis and not by 
limiting milk fat. Cluster 3 had the highest agreement 
with expected PMAS indicators. These observations did 

not have decreased milk fat like cluster 5 or mobilized 
ketones like cluster 4, which suggests that they did not 
adapt appropriately to NEB. At the same time, cluster 
3 exhibited higher NEFA values than clusters 4 or 5.

NEFA Separation Values

Currently, NEFA values are used during the prepar-
tum period to indicate the success of transition cow 
management programs (Oetzel, 2007). The majority 
of studies have focused on the use of NEFA values to 
predict negative sequellae during lactation (e.g., dis-
placed abomasum, retained placenta, metritis, culling, 
reduced reproduction performance, and so on). These 
outcomes can result from elevated NEFA, which can 
impair immune, liver, and ovarian function (Adewuyi 
et al., 2005). Furthermore, NEFA values above 0.4 
mmol/L during the prepartum period are associated 
with negative outcomes during the subsequent lactation 

Table 3. Results of the linear mixed-effects regression models including least squares means and standard errors (in parentheses) by poor 
metabolic adaptation syndrome (PMAS) classification and type III sum of squares P-values1

Variable

PMAS classification2

P-valueLow Intermediate High

Lactation3 2.76a (0.158) 2.97a (0.164) 3.12a (0.202) 0.15
DIM 30.5a (0.93) 24.8b (1.00) 23.2b (1.24) <0.001
Milk production, kg 31.3b (0.72) 31.5b (0.72) 32.7a (0.76) <0.001
Milk fat, % 4.03b (0.064) 4.27a (0.068) 4.20ab (0.084) <0.001
Milk protein,4 % 3.30a (0.030) 3.24b (0.031) 3.18b (0.035) 0.028
Milk fat:protein ratio5 1.22b (0.018) 1.33a (0.019) 1.32a (0.025) <0.001
SCC, 1,000 cells/mL 72.0a (6.71) 73.4a (7.13) 65.8a (7.56) 0.51
Urea, mg/dL 23.8a (1.08) 23.3a (1.10) 23.7a (1.20) 0.69
Lactose, % 4.84a (0.012) 4.81a (0.013) 4.82a (0.016) 0.12
Blood protein, g/L 71.0a (0.45) 71.3a (0.46) 71.5a (0.53) 0.41
Albumin, g/L 36.1b (0.24) 36.3ab (0.25) 36.6a (0.28) 0.037
Bilirubin,4 µmol/L 0.83c (0.060) 1.38b (0.068) 1.90a (0.093) <0.001
Aspartate aminotransferase,4 U/L 80.4b (1.76) 86.3a (1.90) 87.9a (2.44) <0.001
Gamma-glutamyl transferase, U/L 19.7a (0.35) 20.0a (0.37) 20.3a (0.44) 0.31
Glutamate dehydrogenase,4 U/L 9.38a (0.456) 10.10a (0.508) 10.21a (0.602) <0.001
Creatine kinase, U/L 177a (8.1) 196a (10.1) 204a (14.3) 0.12
Blood BHB,5 mmol/L 0.761b (0.032) 0.847a (0.033) 0.771ab (0.041) <0.001
Blood nonesterified fatty acids,4,5 mmol/L 0.256c (0.014) 0.507b (0.015) 0.889a (0.021) <0.001
Cortisol, ng/mL 18.1b (1.35) 16.5b (1.31) 23.3a (2.28) <0.001
Rumen contractions, no./2 min 2.01a (0.020) 2.03a (0.023) 1.99a (0.031) 0.46
Rumen fill6 3.19a (0.054) 3.02b (0.057) 2.92b (0.070) <0.001
Back fat,4 mm 12.2a (0.40) 12.0a (0.40) 12.4a (0.44) <0.001
DIM = 5 13.1b (0.49) 14.1a (0.48) 15.1a (0.56)  
Milk production reduction, kg 0.013a (0.003) 0.011a (0.003) 0.010a (0.005) 0.77
Change in back fat, mm −0.32b (0.143) −1.02a (0.184) −0.87ab (0.244) 0.007
a–cMeans within a row with different superscripts differ (P < 0.05).
1Multiple comparisons among PMAS classification are adjusted using Tukey’s honestly significant difference method. The data set originated 
from 312 cows and 26 Bavarian herds sampled 5 to 50 DIM (n = 790).
2PMAS classification = degree of agreement with expected PMAS indicators in comparison with other clusters.
3Duplicate cluster–cow combinations removed due to a lack in variance per cow (n = 478).
4Significant interaction (P < 0.05).
5These variables were used as input variables for the cluster analysis and are therefore expected to be significantly associated among clusters.
6The description of the scoring system is available in the Appendix. Theoretical range = 1–5.
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(Whitaker, 2004; McArt et al., 2013). When measured 
during the postpartum period, the NEFA cut-off value 
used to predict negative outcomes is >0.7 mmol/L 
(Whitaker, 2004; McArt et al., 2013). The separation 
values we determined for these data [NEFA <0.39 (95% 
CI: 0.360–0.410) mmol/L to identify low PMAS ob-
servations and ≥0.7 (95% CI: 0.650–0.775) mmol/L to 
identify high PMAS observations) were similar to those 
values used to predict negative health outcomes later 
during lactation.

Cao et al. (2017) suggested NEFA values greater 
than 0.82 mmol/L as the cut-off for diagnosing cows 
with BHB greater than 1.2 mmol/L and clinical symp-
toms such as anorexia and a reduction in milk yield. 
Considering that Cao et al. (2017) examined Holsteins 
exclusively and used a case definition of cows with BHB 

greater than 1.2 mmol/L and clinical symptoms, their 
reported cut-off values for NEFA were surprisingly 
similar to the high PMAS separation value determined 
in our study that examined predominantly Simmentals. 
However, 0.82 mmol/L is not included in our separation 
value’s confidence intervals of 0.650 to 0.775 mmol/L. 
In addition to differences in breed and case definitions, 
the difference in NEFA separation values between Cao 
et al. (2017) and our study could be due to the differ-
ence in ability to identify subtle indications of PMAS 
of the individual performing the exam.

Outlook

The number of rumen contractions was not signifi-
cantly associated with the clusters in our study. This 

Figure 1. Biplot of the principal component analysis results by cluster (C) number and assigned poor metabolic adaptation syndrome 
(PMAS) classification. PC = principal component; var. = variance; NEFA = nonesterified fatty acids; FPR = milk fat:protein ratio. PMAS 
classification refers to the degree of agreement with expected PMAS indicators in comparison with other clusters. The data set originated from 
312 cows and 26 Bavarian herds sampled 5 to 50 DIM (n = 790). Color version available online.
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finding was surprising and could be caused by sev-
eral factors, including large individual variation among 
cows, differences in time between feeding and sampling, 
and differences in nutrition. The most likely reason for 
the lack of detectable difference in rumen contractions 
among clusters is short intervals of measurements of 2 
min as described by Dirksen (1979) versus 5 min used 
by Issi et al. (2016) used when describing a significant 
difference in rumen contractions. Reduced milk pro-
duction was not significantly associated with PMAS 

classifications in our study, although it was an expected 
indication of PMAS (Ghanem et al., 2016). The lack of 
an association between PMAS and reductions in milk 
production in our study may be due to fluctuations in 
milk production that were not detected during weekly 
visits or because the differences in milk production were 
not adjusted for the expected milk production of each 
cow. To better characterize the clusters, future studies 
should count the number of rumen contractions for at 
least 5 min and record milk production every day to 
improve the ability to detect reduced milk production.

Our study was limited by the fact that we did not 
include observations from cows experiencing negative 
health conditions other than PMAS. It is possible that 
other health events could also cause elevated NEFA, 
in which case the NEFA values from these cows could 
affect the accuracy of the chosen separation values to 
identify PMAS cows. In addition, this study was unable 
to determine the possible effect of previous health events 
or concurrent health events on PMAS classification. In 
our final data set, all cows were Simmental cows except 
3, and these data were only from automatic milking 
system herds. Thus, it is possible that our findings are 
particular to this breed and milking system. In this 
analysis we did not consider feed intake; time between 
feeding and sampling of cows; or previous treatments, 
interventions, and health events because these data 
were not available in the provided data set. These miss-
ing variables would have been useful to characterize 
the clusters in more detail and could have a significant 
influence on cluster classification.

It is necessary to further investigate the effects of 
genetics on the development of PMAS as well as the 
various physiological mechanisms by which cows com-
pensate for NEB to develop selection criteria against 
cows that are predisposed to developing PMAS. The 
most appropriate management strategy may vary de-
pending on the physiological compensation mechanism. 
Our resulting NEFA separation values are similar to 
those determined for Holsteins with BHB greater than 
1.2 mmol/L and clinical symptoms in conventional 
milking settings, but follow-up analyses are required 
to determine whether these separation values should 
be adjusted further to account for additional variables 
such as location, DIM, breed, milking system, and 
season. Further adjustments may also be necessary 
to differentiate PMAS from other health conditions. 
The selection of separation values should result in a 
balance between the need for high sensitivity or high 
specificity or both. Finally, future studies are needed to 
validate these findings in different populations, breeds, 
seasons, and locations. Because NEFA is expensive to 
measure, future studies could also evaluate milk Fouri-

Figure 2. Classification performance measures (accuracy, sensitiv-
ity, and specificity) for classifying low poor metabolic adaptation syn-
drome (PMAS) and intermediate PMAS observations by nonesterified 
fatty acid (NEFA) value. The box surrounds values that have overlap-
ping confidence intervals with the separation value that has greatest 
accuracy. The data set originated from 312 cows and 26 Bavarian 
herds sampled 5 to 50 DIM (n = 790). Error bars indicate 95% CI.

Figure 3. Classification performance measures (accuracy, sensitiv-
ity, and specificity) for classifying intermediate poor metabolic adapta-
tion syndrome (PMAS) and high PMAS observations by nonesterified 
fatty acid (NEFA) values. The box surrounds separation values that 
have overlapping confidence intervals with the point that has greatest 
accuracy. Error bars indicate 95% CI. The data set originated from 
312 cows and 26 Bavarian herds sampled 5 to 50 DIM (n = 790).
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er-transform infrared spectroscopy data for its ability 
to distinguish PMAS classes. This would allow routine 
in-line measurements to be used for PMAS prediction. 
Beyond individual cow detection, these separation val-
ues should be tested at the herd detection level as well 
to determine a herd prevalence alarm level.

CONCLUSIONS

A cluster analysis was able to differentiate groups 
of cattle in terms of NEB compensation mechanisms 
and PMAS classifications: low, intermediate, and high. 
Nonesterified fatty acids were the best indicator of 
PMAS classifications for these data, and separation 
values were selected at <0.39 (95% CI: 0.360–0.410) 
mmol/L to identify low PMAS observations and ≥0.7 
(95% CI: 0.650–0.775) mmol/L to identify high PMAS 
observations. Future prospective studies are needed to 
validate these findings and to evaluate other possible 
predictors for metabolic health, such as milk Fourier-
transform infrared data from milk. The aim of future 
studies would be to build a prediction model for PMAS 
to alert producers of cows needing attention in addition 
to helping evaluate on-farm metabolic health manage-
ment (e.g., transition cow management, nutrition).
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APPENDIX

Table A1. Description of the rumen fill scoring system from Zaaijer and Noordhuizen (2003)1

Rumen fill  
score  Description

1 The para lumbar fossa2 cavitates more than a hand’s width behind the last rib and a hand’s width inside under the 
transversal processes.

2 The para lumbar fossa cavitates a hand’s width behind the last rib and to a lesser extent inside under the transversal 
processes.

3 The para lumbar fossa cavitates less than a hand’s width behind the last rib and falls about a hand’s width vertically 
downward from the transversal processes and then bulges out.

4 The para lumbar fossa skin covers the area behind the last rib and arches immediately outside below the transversal 
processes due to an extended rumen.

5 The rumen is quite distended and almost obliterates the fossa; the last rib and the transversal processes are not visible.
1The rumen fill scoring system was developed and described by Zaaijer and Noordhuizen (2003). Scoring was performed when standing at the 
left hind side of the cow. Refer to Zaaijer and Noordhuizen (2003) for more information and example photographs.
2The para lumbar fossa is between the last rib, the transversal processes, and the hip bone.
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