
Chapter 3
Basic Ideas to Approach Metastability
in Probabilistic Cellular Automata

Emilio N.M. Cirillo, Francesca R. Nardi and Cristian Spitoni

Abstract Cellular Automata are discrete-time dynamical systems on a spatially
extended discrete space, which provide paradigmatic examples of nonlinear phe-
nomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata, are
discrete-time Markov chains on lattice with finite single-cell states whose distin-
guishing feature is the parallel character of the updating rule. We review the some of
the results obtained about themetastable behavior of ProbabilisticCellularAutomata,
andwe try to point out difficulties and peculiarities with respect to standard Statistical
Mechanics Lattice models.

3.1 Introduction

Cellular Automata are discrete-time dynamical systems on a spatially extended dis-
crete space. They are well known for being easy to implement and for exhibiting
a rich and complex nonlinear behavior as emphasized for instance in [22] for Cel-
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lular Automata on one-dimensional lattice. For the general theory of deterministic
Cellular Automata, we refer to the recent paper [12] and references therein

Probabilistic Cellular Automata (PCA) are Cellular Automata straightforward
generalization where the updating rule is stochastic. They are used as models in a
wide range of applications. Froma theoretic perspective, themain challenges concern
the nonergodicity of these dynamics for an infinite collection of interacting cells.

Strong relations exist betweenPCAand thegeneral equilibriumstatisticalmechan-
ics framework [14, 21]. Important issues are related to the interplay between disor-
dered global states and ordered phases (emergence of organized global states, phase
transition) [19]. Although PCA initial interest arose in the framework of Statistical
Physics, in the recent literature many different applications of PCA have been pro-
posed. In particular, it is notable to remark that a natural context in which the PCA
main ideas are of interest is that of evolutionary games [20].

In this paper, we shall consider a particular class of PCA, called reversible PCA,
which are reversible with respect to a Gibbs-like measure defined via a translation
invariant multi-body potential. In this framework, we shall pose the problem of
metastability and show its peculiarities in the PCA world.

Metastable states are ubiquitous in nature and are characterized by the following
phenomenological properties: (i) The system exhibits a single phase different from
the equilibrium predicted by thermodynamics. The system obeys the usual laws of
thermodynamics if small variations of the thermodynamical parameters (pressure,
temperature, . . .) are considered. (ii) If the system is isolated, the equilibrium state
is reached after a very large random time; the lifetime of the metastable state is
practically infinite. The exit from the metastable state can be made easier by forcing
the appearance large fluctuations of the stable state (droplets of liquid inside the
super-cooled vapor, . . .). (iii) The exit from the metastable phase is irreversible.

The problem of the rigorous mathematical description of metastable states has
long history which started in the 70s, blew up in the 90s, and is still an important topic
of mathematical literature. Different theories have been proposed and developed, and
the pertaining literature is huge.We refer the interested reader to themonograph [18].
In this paper, we shall focus on the study of metastability in the framework of PCA.

In [1, 5, 8, 9, 16], the metastable behavior of a certain class of reversible PCA has
been analyzed. In this framework, it has been pointed out the remarkable interest of
a particular reversible PCA (see Sect. 3.3) characterized by the fact that the updating
rule of a cell depends on the status of the five cells forming a cross centered at the
cell itself. In this model, the future state of the spin at a given cell depends also on
the present value of such a spin. This effect will be called self-interaction, and its
weight in the updating rule will be called self-interaction intensity.

The paper is organized as follows. In Sect. 3.2, we introduce reversible Probabilis-
tic Cellular Automata and discuss some general properties. In Sect. 3.3, we introduce
the model that will be studied in this paper, namely the nearest neighbor and the cross
PCA, and discuss its Hamiltonian. In Sect. 3.4, we pose the problem of metastability
in the framework of Probabilistic Cellular Automata and describe the main ingre-
dients that are necessary for a full description of this phenomenon. In Sect. 3.5, we
finally state our results.
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3.2 Reversible Probabilistic Cellular Automata

We shall first briefly recall the definition of Probabilistic Cellular Automata and then
introduce the so-called Reversible Probabilistic Cellular Automata.

Let Λ ⊂ Z
d be a finite cube with periodic boundary conditions. Associate with

each site i ∈ Λ (also called cell) the state variable σi ∈ X0, where X0 is a finite
single-site space and denote by X := XΛ

0 the state space. Any σ ∈ X is called a state
or configuration of the system.

We introduce the shift Θi on the torus, for any i ∈ Λ, defined as the map Θi :
X → X shifting a configuration in X so that the site i is mapped onto the origin 0,
more precisely such that (see Fig. 3.1)

(Θiσ) j = σi+ j . (3.1)

The configuration σ at site j shifted by i is equal to the configuration at site i + j .
For example, (see Fig. 3.1) set j = 0, then the value of the spin at the origin 0 will
be mapped onto site i .

We consider a probability distribution fσ : X0 → [0, 1] depending on the state
σ restricted to I ⊂ Λ. A Probabilistic Cellular Automata are the Markov chain
σ(0),σ(1), . . . ,σ(t) on X with transition matrix

p(σ, η) =
∏

i∈Λ

fΘiσ(ηi ) (3.2)

for σ, η ∈ X . We remark that f depends on Θiσ only via the neighborhood i + I .
Note that the character of the evolution is local and parallel: The probability that the
spin at the site i assumes at time t + 1 the value s ∈ X0 depends on the value of the
state variables at time t (parallel evolution) associated only with the sites in i + I
(locality).

A class of reversible PCA can be obtained by choosing X = {−1,+1}Λ, and
probability distribution

Fig. 3.1 Schematic
representation of the action
of the shift Θi defined in
(3.1)

Λ 0

I

i

i + I
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fσ(s) = 1

2

{
1 + s tanh

[
β
( ∑

j∈Λ

k( j)σ j + h
)]}

(3.3)

for all s ∈ {−1,+1} where T ≡ 1/β > 0 and h ∈ R are called temperature and
magnetic field. The function k : Z2 → R is such that its support1 is a subset ofΛ and
k( j) = k( j ′) whenever j, j ′ ∈ Λ are symmetric with respect to the origin. With the
notation introduced above, the set I is the support of the function k. We shall denote
by pβ,h the corresponding transition matrix defined by (3.2).

Recall thatΛ is a finite torus, namely periodic boundary conditions are considered
throughout this paper. It is not difficult to prove [10, 13] that the above-specified PCA
dynamics is reversible with respect to the finite-volume Gibbs-like measure

μβ,h(σ) = 1

Zβ,h
e−βGβ,h(σ) (3.4)

with Hamiltonian

Gβ,h(σ) = −h
∑

i∈Λ

σi − 1

β

∑

i∈Λ

log cosh
[
β
( ∑

j∈Λ

k( j − i)σ j + h
)]

(3.5)

and partition function Zβ,h = ∑
η∈X exp{−βGβ,h(η)}. In other words, in this case

the detailed balance equation

pβ,h(σ, η)e−βGβ,h(σ) = e−βGβ,h(η) pβ,h(η,σ) (3.6)

is satisfied thus the probability measure μβ,h is stationary for the PCA.
Note that different reversible PCA models can be specified by choosing different

functions k. In particular, the support I of such a function can be varied. In the
next section, we shall introduce two common choices, the nearest neighbor PCA [5]
obtained by choosing the support of k as the set of the four sites neighboring the
origin and the cross PCA [9] obtained by choosing the support of k as the set made
of the origin and its four neighboring sites (see Fig. 3.2).

The stationary measure μβ,h introduced above looks like a finite-volume Gibbs
measure with Hamiltonian Gβ,h(σ) (see (3.5)). It is worth noting that Gβ,h cannot
be thought as a proper statistical mechanics Hamiltonian since it depends on the
temperature 1/β. On the other hand, the low-temperature behavior of the stationary
measure of the PCA can be guessed by looking at the energy function

Hh(σ) = lim
β→∞

Gβ,h(σ) = −h
∑

i∈Λ

σi −
∑

i∈Λ

∣∣∣
∑

j∈Λ

k( j − i)σ j + h
∣∣∣ (3.7)

1Recall that, by definition, the support of the function k is the subset of Λ where the function k is
different from zero.
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0 0

Fig. 3.2 Schematic representation of the nearest neighbor (left) and cross (right) models

The absolute minima of the function Hh are called ground states of the stationary
measure for the reversible PCA.

3.3 The Tuned Cross PCA

We consider, now, a particular example of reversible PCA. More precisely, we set
k( j) = 0 if j is neither the origin nor one of its nearest neighbors, i.e., it is not in
the five-site cross centered at the origin, k(0) = κ ∈ [0, 1], and k( j) = 1 if j is one
of the four nearest neighbors of the origin; we shall denote by J the set of nearest
neighbors of the origin. With such a choice, we have that

fσ(s) = 1

2

{
1 + s tanh

[
β
(
κσ0 +

∑

j∈J

σ j + h
)]}

= 1

1 + e−2βs(κσ0+∑
j∈J σ j+h)

(3.8)

We shall call this model the tuned cross PCA. The self-interaction intensity κ tunes
between the nearest neighbor (κ = 0) and the cross (κ = 1) PCA.

Note that for this model, the Hamiltonian Gβ,h defining the stationary Gibbs-like
measure is given by

Gβ,h(σ) = −h
∑

i∈Λ

σi − 1

β, h

∑

i∈Λ

log cosh
[
β
(
κσi +

∑

j∈i+J

σ j + h
)]

(3.9)

while the corresponding energy function, see (3.7), is

Hh(σ) = −h
∑

i∈Λ

σi −
∑

i∈Λ

∣∣∣κσi +
∑

j∈i+J

σ j + h
∣∣∣ (3.10)

In Statistical Mechanics Lattice systems, the energy of a configuration is usually
written in terms of coupling constants. We could write the expansion of the energy
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Fig. 3.3 Schematic
representation of the
coupling constants: from the
left to the right and from the
top to the bottom the
couplings J., J〈〈〈〉〉〉, J〈〈〉〉, J
,
and J♦ are depicted

Hh in (3.10), but, for the sake of simplicity, we consider the nearest neighbor PCA
[5], namely we set κ = 0. We get

Hh(σ) = −J.

∑

x∈Λ

σ(x) − J〈〈〉〉

∑

〈〈xy〉〉
σ(x)σ(y) − J〈〈〈〉〉〉

∑

〈〈〈xy〉〉〉
σ(x)σ(y)

−J


∑


xyz

σ(x)σ(y)σ(z) − J♦

∑

♦xywz

σ(x)σ(y)σ(w)σ(z)

where the meaning of the symbols ·, 〈〈〉〉, 〈〈〈〉〉〉 
, and ♦ is illustrated in Fig. 3.3
and the corresponding coupling constants are

J. = 5

2
h, J〈〈〉〉 = 1 − 1

4
h, J〈〈〈〉〉〉 = 1

2
− 1

8
h, J
 = −1

8
h, and J♦ = −1

2
+ 3

8
h

It is interesting to note that the coupling constant J♦ is negative (antiferromagnetic
coupling), and this will give a physical meaning to the appearance of checkerboard
configurations in the study of metastability for the nearest neighbor PCA.

The coupling constants can be computed by using [4, Eqs. (6) and (7)] (see also
[11, Eqs. (3.1) and (3.2)] and [7]). More precisely, given f : {−1,+1}V → R, with
V ⊂ Z

2 finite, we have that for any σ ∈ {−1,+1}V

f (σ) =
∑

I⊂V

CI

∏

i∈I
σi (3.11)

with the coefficients CI ’s given by

CI = 1

2|V |
∑

σ∈{−1,+1}V
f (σ)

∏

i∈I
σi (3.12)

We refer to [6] for the details. We note that in that paper, the couplings have been
computed for a more general model than the one discussed here.

Now, we jump back to the tuned cross PCA and we discuss the structure of the
ground states, that is to say, we study the global minima of the energy function Hh
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given in (3.10). Such a function can be rewritten as

Hh(σ) =
∑

i∈Λ

Hh,i (σ)

with

Hh,i (σ) = −
[1
5
h
(
σi +

∑

j∈i+J

σ j

)
+

∣∣∣κσi +
∑

j∈i+J

σ j + h
∣∣∣
]

(3.13)

We also note that

Hh(σ) = H−h(−σ) (3.14)

for any h ∈ R and σ ∈ X , where −σ denotes the configuration obtained by flipping
the sign of all the spins of σ. By (3.14), we can bound our discussion to the case
h ≥ 0 and deduce a posteriori the structure of the ground states for h < 0.

The natural candidates to be ground states are the following configurations: u ∈ X
such that u(i) = +1 for all i ∈ Λ, d ∈ X such that d(i) = +1 for all i ∈ Λ, ce, and co
with ce the checkerboard configuration with pluses on the even sub-lattice of Λ and
minuses on its complement, while co is the corresponding spin-flipped configuration.
Indeed, we can prove that the structure of the zero-temperature phase diagram is that
depicted in Fig. 3.4.

Case h > 0 and k0 ≥ 0. The minimum of Hh,i is attained at the cross configuration
having all the spins equal to plus one. Hence, the unique absolute minimum of Hh

is the state u.

Case h = 0 and k0 > 0. The minimum of

H0,i (σ) = −
∣∣∣κσi +

∑

j∈i+J

σ j

∣∣∣

Fig. 3.4 Zero-temperature phase diagram of the stationary measure of the tuned cross PCA. On
the thick lines, the ground states of the adjacent regions coexist. At the origin, the listed four ground
states coexist
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is attained at the cross configuration having all the spins equal to plus one or all equal
to minus one. Hence, the set of ground states is made of the two configurations u
and d.

Case h = 0 and k0 = 0. The minimum of H0,i is attained at the cross configuration
having all the spins equal to plus one or all equal to minus one on the neighbors of
the center and with the spin at the center which can be, in any case, either plus or
minus. Hence, the set of ground states is made of the four configurations u, d, ce,
and co.

Case h < 0. The set of ground states can be easily discussed as for h > 0 by using
the property (3.14).

3.4 Main Ingredients for Metastability

At κ > 0, the zero-temperature phase diagram in Fig. 3.4 is very similar to that of the
standard Ising model, which is the prototype for the description of phase transitions
in Statistical Mechanics. So we expect that even in the case of the tuned cross PCA,
the equilibrium behavior could be described as follows: (i) At positive magnetic field
h, there exist a unique phase with positive magnetization2; (ii) the same it is true at
negative h but with negative magnetization; (iii) at h = 0, the equilibrium behavior
is more complicated: There exists a critical value of the temperature such that at
temperatures larger than such a value there exists a unique phase with zero magneti-
zation, while at temperatures smaller than the critical one there exists two equilibrium
measures with opposite not zero magnetization, called the residual magnetization.

This scenario has proven to be true in the case of the two-dimensional standard
Ising model, but in the context of the tuned cross PCA, the problem is much more
difficult due to the complicated structure of the energy function (3.9). The validity
of such a scenario has been checked via a mean-field computation in [6].

From now on, for technical reasons, we shall assume that the magnetic field
satisfies the following conditions

0 < h < 4 and h = κ, 2 − κ, 2 + κ, 4 − κ, 4 + κ (3.15)

Since h > 0, the equilibrium is characterized by positivemagnetization. The question
is: Is it possible to investigate the possibility of the existence of metastable states? In
other words, is it possible to show that there exist not equilibrium phases in which
the system is trapped in the sense described in the introduction (see Sect. 3.1)?

This question has a very long history: In some sense, it arosewith the van derWaals
theory of liquid–vapor transition and began to find some mathematically rigorous
answer only in the 80s. We just quote [17] for the pathwise approach and [2] for

2By exploiting the translational invariance of the model, it is possible to define the magnetization
as the mean value of the spin at the origin against the Gibbs-like equilibrium measure μβ,h .
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the potential theoretic one, and we refer to [18] for the full story and for complete
references.

According to the rigorous theories of metastability, the problem has to be
approached from a dynamical point of view. Namely, we shall consider the evo-
lution of the tuned cross PCA started at the initial configuration ζ ∈ X and study the
random variable

τ ζ
u := inf{t > 0, σ(t) = u} (3.16)

called the first hitting time to u. The state ζ will be calledmetastable or not depending
on the properties of the random variable τ

ζ
u in the zero-temperature limit3 (β → ∞).

In the framework of different approaches to metastability, different definitions of
metastable states have been given, but they are all related to the properties of the
hitting time τ

ζ
u . In particular, it has to happen that the mean value of τ

ζ
u has to be

large, say diverging exponentially fast with β → ∞.
As remarked above, for h > 0 small, natural candidates to be metastable states

for the tuned cross PCA are the configurations d, ce, and co. But, imagine to start
the chain at d: Why should such a state be metastable? Why should the chain take
a very long time to hit the “stable” state u? The analogous question posed in the
framework of the two-dimensional Ising model with Metropolis dynamics has an
immediate qualitative answer: In order to reach u starting from d, the system has to
perform, spin by spin, a sequence of changes against the energy drift. Indeed, plus
spins have to be created in the starting sea of minuses, and those transitions have a
positive energy cost if the magnetic field is small enough, indeed the interaction is
ferromagnetic and pairs of neighboring opposite spins have to be created.

But in the case of the tuned cross PCA, recall (3.10) and recall we assumed h < 4,
see (3.15), the starting d and the final u configurations have energy

Hh(d) = −|Λ|(4 + κ − 2h) and Hh(u) = −|Λ|(4 + κ + 2h)

So that Hh(d) > Hh(u), as it is obvious since u is the ground state. Moreover, the
dynamics is allowed to jump in a single step from d to u by reversing all the spins
of the system. A naive (wrong) conclusion would be that d cannot be metastable
because the jump from d to u can be performed in a single step by decreasing the
energy.

The conclusion is wrong because in reversible PCA the probability to perform a
jump is not controlled simply by the difference of energies of the two configurations
involved in the jump. Indeed, in the example discussed above, recall (3.2) and (3.8),
and we have that

pβ,h(d,u) =
[ 1

1 + e2β(4+κ−h)

]|Λ| β→∞∼ e−2|Λ|β(4+κ−h)

3The regime outlined in this paper, i.e., finite state space and temperature tending to zero, is usually
called theWentzel–Friedlin regime. Different limits can be considered, for instance, volume tending
to infinity.
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which proves that the direct jump from d to u is depressed in probability when β is
large.

This very simple remark shows that the behavior of the PCAcannot be analyzed by
simply considering the energy difference between configurations. It is quite evident
that a suitable cost function has to be introduced.

From (3.15), the local field κσ0 + ∑
j∈J σ j + h appearing in (3.8) is different

from zero. Thus, for β → ∞,

pβ,h(σ, η) →
⎧
⎨

⎩
1 if η(i)

[
κσi +

∑

j∈i+J

σ j + h
]

> 0 ∀i ∈ Λ

0 otherwise

where we have used (3.2). Hence, given σ, there exists a unique configuration η such
that pβ,h(σ, η) → 1 for β → ∞ and this configuration is the one such that η(i) is
aligned with the local field κσi + ∑

j∈i+J σ j + h for any i ∈ Λ. Such a unique con-
figurationwill be called the downhill image ofσ. This property explainswell inwhich
sense PCA are the probabilistic generalization of deterministic Cellular Automata:
Indeed, in such models each configuration is changed deterministically into a unique
image configuration. This property is recovered in probability in reversible PCA in
the limit β → ∞.

We now remark that if η is different from the downhill image of σ, we have that
pβ,h(σ, η) decays exponentially with rate

Δh(σ, η) = − lim
β→∞

1

β
log pβ,h(σ, η) =

∑

i∈Λ:
η(i)[κσi+

∑
j∈i+J σ j+h]<0

2
∣∣∣κσi +

∑

j∈i+J

σ j + h
∣∣∣ (3.17)

Note that if η is the downhill image of σ, then Δh(σ, η) = 0. More precisely, we
have

e−βΔh(σ,η)−βγ(β) ≤ pβ,h(σ, η) ≤ e−βΔh(σ,η)+βγ(β)

with γ(β) → 0 for β → ∞. This property is known in the literature as the Wentzel
and Friedlin condition.

Since from (3.6) and (3.17), it follows that the following reversibility condition

Hh(σ) + Δh(σ, η) = Hh(η) + Δh(η,σ) (3.18)

is satisfied for any σ, η ∈ X ; we have that the function Δh(σ, η) can be interpreted
as the energy cost that must be paid in the transition σ → η.

We are now ready to give a precise definition ofmetastable states in the framework
of reversible Probabilistic Cellular Automata. We shall follow the approach in [15]
which is based on the analysis of the energy landscape of the system. Note that in
our setup, the energy landscape is not only given by the energy function Hh , but it
is also decorated by the energy cost function Δh . It is important to remark that, for
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Fig. 3.5 Graphic
representation of the
definition of height of a path

the sake of clearness, we shall give the definition having in mind the specific case
we are considering, namely the tuned cross PCA with 0 < h < κ, but the definition
we shall can give can be easily generalized to the broad context of reversible PCA.

A sequence of configurations ω = {ω1, . . . ,ωn}, with ωi ∈ X for i = 1, . . . , n, is
called path. The height of the path ω is defined as

Φω = max
i=1,...,n−1

[Hh(ωi ) + Δh(ωi ,ωi+1)] (3.19)

see Fig. 3.5 for a graphic illustration.
Given two sets of configurations A, A′ ⊂ X , the communication height Φ(A, A′)

between A, A′ is defined as

Φ(A, A′) = min
ω:A→A′ Φω (3.20)

where the minimum is taken on the set of paths starting in A and ending in A′. Given
σ ∈ X , we define the stability level of σ as

Vσ = Φ(σ, {states with energy smaller than σ}) − Hh(σ) (3.21)

That is to say, Vσ is the height of the most convenient path that one has to follow in
order to decrease the energy starting from σ.

Finally, we define the maximal stability level as the largest among the stability
levels, i.e.,

Γm = max
σ∈X\{u} Vσ > 0 (3.22)

and the set of metastable states

Xm = {η ∈ X \ {u} : Vη = Γm} (3.23)
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This definition of metastable states is particularly nice, since it is based only on
the properties of the energy landscape. In other words, in order to find the metastable
states of the tuned cross PCA, one “just” has to solve some variational problems on
the energy landscape of the model. This is, unfortunately, a very difficult task that
has been addressed mainly in [5, 8].

Why is this definition of metastable states satisfying? Because, given ζ ∈ Xm,
for the chain started at ζ, we can prove properties of the random variable τ

ζ
u

characterizing ζ as a metastable state in the physical sense outlined in the intro-
duction. Indeed, if we let Pσ and Eσ , respectively, the probability and the average
computed along the trajectories of the tuned cross PCA started at σ ∈ X , we can
state the following theorem.

Theorem Let ζ ∈ Xm. For any ε > 0 we have that

lim
β→∞

Pζ(e
β(Γm−ε) < τ ζ

u < eβ(Γm+ε)) = 1

Moreover,

lim
β→∞

1

β
logEζ [τ ζ

u ] = Γm

This theorem has been proven in [15] in the framework of Statistical Mechanics
Lattice systems with Metropolis dynamics. Its generalization to the PCA case has
been discussed in [8].

The physical content of the two statements in the theorem is that the first hitting
time of the chain started at a metastable state ζ ∈ Xm is of order exp{βΓm}. The
first of the two statements ensures this convergence in probability and the second in
mean.

It is important to remark that it is possible to give amore detailed description of the
behavior of the chain started at a metastable state. In particular, it can be typically
proven a nucleation property, that is to say, one can prove that before touching
the stable state u the chain has to visit “necessarily” an intermediate configuration
corresponding to a “critical” droplet of the stable phase (plus one) plunged in the sea
of the metastable one. By necessarily, above, we mean with probability one in the
limit β → ∞. For a wide description of the results that can be proven, we refer the
interested reader, for instance, to [15, 18].

3.5 Metastable Behavior of the Tuned Cross PCA

The metastable behavior of the tuned cross PCA has been studied extensively in [5]
(nearest neighbor PCA, i.e., κ = 0), [1, 8] (cross PCA, i.e., κ = 1), and [9] (tuned
cross PCA with 0 < κ < 1). In the extreme cases, i.e., κ = 0 and κ = 1, rigorous
results were proved, while in the case 0 < κ < 1 only heuristic arguments have been
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Fig. 3.6 Graphical description of Γm for the cross PCA

provided. In this section, we shall review briefly the main results referring the reader
to the quoted papers for details. We shall always assume that h satisfies (3.15) and
2/h not integer; moreover, we note that the result listed below are proven forΛ large
enough depending on h.

In the cross case (κ = 1), it has been proven [8] that the metastable state is
unique, and more precisely, with the notation introduced above, it has been shown
that Xm = {d}. Moreover, it has also been proven that the maximal stability level is
given by

Γm = Hh(p�c,1
) + Δh(p�c,1

,p�c,2
) − Hh(d)

β→∞∼ 16

h
(3.24)

where4 �c = �2/h� + 1 is called critical length, p�c,1
is a configuration characterized

by a �c × (�c − 1) rectangular droplet of plus spins in the sea ofminuseswith a single-
site protuberance attached to one of the two longest sides of the rectangle, and p�c,2

is a configuration characterized by a �c × (�c − 1) rectangular droplet of plus spins
in the sea of minuses with a two-site protuberance attached to one of the two longest
sides of the rectangle (see Fig. 3.6).

Once the model dependent problems have been solved and the metastable state
found, the properties of such a state are provided by the general theorem stated
in Sect. 3.4. We just want to comment that the peculiar expression of the maximal
stability level that, we recall, gives the exponential asymptotic of the mean exit time
has a deep physical meaning. Indeed, it is also proven that during the escape from the
metastable state d to the stable one u, the chain visits with probability tending to one
in the limit β → ∞ the configuration p�c,1

and, starting from such a configuration,
it performs the jump to p�c,2

. From the physical point of view, this property means
that the escape from the metastable state is achieved via the nucleation of the critical
droplet p�c,2

.
In the nearest neighbor case (κ = 0) it has been proven [5] that the set ofmetastable

states is Xm = {d, ce, co}. It is important to note that the two states ce and co are
essentially the same metastable state; indeed, it can be easily seen that ce is the
downhill image of co and vice versa. So that, when the system is trapped in such a
metastable state, it flip-flops between these two configurations. Moreover, it has also

4Given a real r we denote by �r� its integer part, namely the largest integer smaller than r .
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Fig. 3.7 Graphical description of Γm for the nearest neighbor PCA

been proven that the maximal stability level is given by

Γm = Hh(c�c) + Δh(c�c , c�c,1) − Hh(d)
β→∞∼ 8

h
(3.25)

where �c = �2/h� + 1 is called critical length, c�c is a configuration characterized
by a �c × (�c − 1) rectangular checkerboard droplet in the sea of minuses, and p�c,1

is a configuration characterized by a �c × (�c − 1) rectangular checkerboard droplet
in the sea of minuses with a single-site plus protuberance attached to one of the two
longest sides of the rectangle (see Fig. 3.7). It is worth noting that, comparing (3.24)
and (3.25), the exit from the metastable state is much slower in the case of the cross
PCA with respect to the nearest neighbor one.

Even in this case, the properties of the metastable states are an immediate con-
sequence of the theorem stated above. But also for the nearest neighbor PCA, the
nucleation property is proven: During the transition, during the escape from the
metastable state d to the stable one u, the chain visits with probability tending to one
in the limit β → ∞ the configuration c�c and, starting from such a configuration,
it performs the jump to c�c,1 . From the physical point of view, this property means
that the escape from the metastable state is achieved via the nucleation of the critical
checkerboard droplet c�c .

Moreover, in the nearest neighbor case, it has been proven that during the escape
from d to u, the system has also to visit the checkerboard metastable states {ce, co}.
Starting from such a metastable state, the system performs the final escape to u with
an exit time controlled by the same maximal stability level Γm (3.25).

Finally, we just mention the heuristic results discussed in [9] for the tuned cross
PCA with 0 < κ < 1. There is one single metastable state, i.e., Xm = {d}, but,
depending on the ration κ/h, the system exhibits different escaping mechanisms.
In particular, for h < 2κ the systems perform a direct transition from d to u, whereas
for 2κ < h the system “necessarily” visits the not metastable checkerboard state
before touching u. In [9], it has been pointed out the analogies between the behavior
of the tuned cross PCA and the Blume–Capel model [3]. The metastable character
of the two models is very similar with the role of the self-interaction parameter κ
played by that of the chemical potential in the Blume–Capel model.
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