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ABSTRACT
Cities can be considered as engines of the knowledge-based
economy, because they are the primary sites of knowledge
production activities that subsequently shape the rate and
direction of technological change and economic growth. Patents
provide rich information to analyse the knowledge specialization
of specific places, such as technological details and information
on inventors and entities involved. The technology codes
attributed at the level of individual patent documents can be
used to indicate the diversity and scope of the knowledge claims
underlying a specific invention. In this study we introduce tools
for portfolio analysis in terms of patents that provide insights into
the technological specialization of cities. The mapping and
analysis of patent portfolios of cities exploits data derived from
the Unites States Patent and Trademark Office (USPTO) and
dedicated tools (at https://leydesdorff.net/software/patents/). The
results allow policy makers and other stakeholders to identify
promising areas of further knowledge development, including
smart specialization strategies.
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1. Introduction

Cities with their dense mixtures of people and economic activities can be considered as
prominent locations of knowledge production and innovation (Bairoch, 1988; Betten-
court, Lobo, Helbing, Kühnert, & West, 2007; Carlino, Chatterjee, & Hunt, 2007;
Jacobs, 1969). While there has been significant attention for the process of knowledge pro-
duction in regional and national innovation systems (Feldman & Kogler, 2010), with some
exceptions little consideration has been given to the knowledge produced at specific places
(Kogler, Essletzbichler, & Rigby, 2017; Kogler, Rigby, & Tucker, 2013). This is a pressing
issue because technological knowledge production is unevenly distributed over space
(Florida, 2005), and many cities struggle to replicate the levels of productivity and innova-
tiveness achieved in leading regions. It is difficult for policy-makers to decide how to invest
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limited resources across the range of leading-edge technologies, especially in cities that are
not at the forefront of any specific fields (Heimeriks & Balland, 2016).

The present study addresses the question of whether it is possible to empirically specify
the unique characteristics of the patent portfolios of cities in terms of technological proxi-
mity, distance, and related variety. In pursuit of this objective, we introduce a new instru-
ment for the purpose of mapping and analysing patent portfolios of cities using data
contained in patent documents issues by the Unites States Patent and Trademark Office
(USPTO), which are freely available online at http://patft.uspto.gov/netahtml/PTO/
search-adv.htm, and based on routines available at https://leydesdorff.net/software/
patents/. The primary aim is to compare the specialization patterns of inventive activities
in different cities.

The starting point of this analysis is the idea that the dynamics of technological knowl-
edge are path- and place-dependent (Heimeriks & Boschma, 2014; Kogler, 2017a), and
that the current technological portfolio of a city influences the capacity to develop new
technologies (Kogler et al., 2013, 2017 Kogler & Whittle, 2018). The choice for cities as
units of analysis is only one among possible applications of the suggested approach, but
this focus is most relevant from the perspective of territorial innovation studies. Over
the past decades investigations in the geography of innovation have produced a number
of commonly accepted stylized facts (Feldman & Kogler, 2010). Nevertheless, one can’t
help to observe a certain proliferation of concepts without sufficient attention to the
specific operationalization, and the measurement thereof, in this line of inquiry.

We argue that the barrier between qualitative theorizing and quantitative data mining
in the geography of innovation, or innovation studies more generally, can be overcome by
adding statistics to the visualizations of extensive data (Breschi & Malerba, 2001). On the
one hand, the expectation is that data and statistics will provide an opportunity to test
theoretically informed hypotheses regarding the technological evolution of regional econ-
omies (Boschma, Balland, & Kogler, 2015; Boschma, Heimeriks, & Balland, 2014; Kogler,
2017a; Kogler et al., 2013), or the diffusion of novel products and processes (Feldman,
Kogler, & Rigby, 2015). On the other hand, it is also anticipated that the proposed
approach will enable analysts to formulate empirically informed hypotheses based on
data-rich arguments.

Bibliographic databases such as the patents at USPTO and elsewhere, or databases of
scientific publications such as at Google Scholar or the Science Citation Index, provide
‘extensive’ but also ‘raw’ data that enable us to test hypotheses more effectively than pre-
viously. However, theoretical notions have to be reformulated with reference to the
measurement before one can profit from the potential in these data. These bibliometric
databases provide the analyst with two main dimensions (Narin, 1976; Small &
Garfield, 1985): (i) geographical information in the address field (of authors/inventors
or applicants). This address information can be aggregated and reorganized in terms of
nations, regions, and cities. The second dimension (ii) reflects the intellectual organization
of knowledge domains as indicated in groupings of documents on the basis of classifi-
cations. Authors, inventors, and groups of them integrate these two structural dimensions
into socio-cognitive actions that one can study in the context of networks of co-authorship
or co-invention.

In other words, the data enable us to differentiate between geographical, cognitive, and
social maps (Rotolo, Rafols, Hopkins, & Leydesdorff, 2017). Accordingly, concepts of
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proximity, distance, and related variety can be distinguished in these various dimensions
(Frenken, Hardeman, & Hoekman, 2009). While the geographical dimension can be over-
laid onto existing maps (such as Google maps), the intellectual organization is not natu-
rally given so that maps in this dimension have to be carefully constructed. In this study we
use the map of aggregated citation relations among 630 International Patent Classes (IPC)
indexed at the USPTO as a baseline for patent portfolio evaluation (Leydesdorff, Kushnir,
& Rafols, 2014). Subsequently, it will be possible to address the central research question,
i.e. how are the patents developed by inventors in specific cities distributed in terms of
their technological classes? We measure (i) the diversity of portfolios (Rafols & Meyer,
2010; Stirling, 2007; Zhang, Rousseau, & Glänzel, 2016) and (ii) routines are provided
to store sets of distributions as vectors in a data matrix that can be used for statistical
analysis (for example, in software packages like SPSS or similar). Furthermore, (iii)
input files are generated for the visualization of the portfolios as patent maps using VOS-
viewer (Van Eck & Waltman, 2010).

The following section offers a brief overview of some of the relevant literature concern-
ing the production and distribution of knowledge in space. Section 3 introduces the data
and methods that will be employed in Section 4 that is dedicated to the analysis of results.
The final section will provide concluding remarks, perspectives for further research in this
line of inquiry, as well as policy recommendations.

2. The knowledge production process and spatial patterns of
specialization

It has long been recognized that the accumulation of knowledge is central to economic
performance (Nelson & Winter, 1982; Romer, 1994; Schumpeter, 1943). In recent years,
the importance of knowledge production has further increased due to the process of econ-
omic globalization, the ease of transmitting codified information across geographical space
through the internet, globalization and outsourcing of corporate R&D, an increase in
international collaborations, and the increasing mobility of researchers (Alkemade, Hei-
meriks, Schoen, Villard, & Laurens, 2015; David & Foray, 2002; Heimeriks & Vasileiadou,
2008).

Nevertheless, rather than observing patterns of long-term convergence in terms of the
socio-economic structure of places, and in particular their technological competencies, we
observe that cities have their own, unique knowledge base (Kogler et al., 2013). Cities
specialize because existing skills, infrastructures and institutions facilitate the cumulative
and path-dependent character of technological knowledge production (Heimeriks &
Boschma, 2014; Martin & Sunley, 2006). The opportunities to diversify into new fields
are to a large extent dependent on the existing portfolio of related technological knowledge
(Boschma, Balland, & Kogler, 2015; Kogler, Essletzbichler, & Rigby, 2017; Rigby, 2015).
New technologies evolve from the recombination of already existing building blocks of
adjacent technologies (Arthur, 2007). Consequently, new technological developments
are characterized by a path-dependent process of branching; new knowledge is developed
from existing knowledge, skills, and infrastructures in relation to global developments
(Boschma, 2017; Kogler, 2017b). From this perspective, the diversity of the technological
knowledge base can be considered an important indicator of the innovative potential of a
city. Portfolio analysis can help us to understand the technological capabilities and options
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of a city under study. This not only concerns potential ‘smart specialization strategies’
(Foray, David, & Hall, 2009, 2011; McCann & Ortega-Argilés, 2015; Morgan, 2015), but
also potential avenues for entering new economic activities, i.e. ‘smart diversification strat-
egies’ (Kogler, 2015).

Cities, and in particular large cities and metropolitan areas, have increasingly been con-
sidered as the engines of transition towards a knowledge-based economy (Florida, 2002).
Because density in general spurs innovation by bringing people and ideas together and
enabling them to combine and recombine in new ways, cities with their dense mixtures
of people and economic activities are considered the prominent locations of innovation
(Camagni, 1999; Hall, 1998; Mellander & Florida, 2016). In other words, proximity
increases the circulation not only of goods and people, but of ideas as well (Jacobs,
1969; Nomaler, Frenken, & Heimeriks, 2014). Consequently, especially metropoles can
be expected to benefit from the diversity of human and institutional resources to yield
greater output in terms of technological developments, and thus they are of particular
interest in the context of the present study (Bettencourt et al., 2007; Glaeser, 2011).

Over the past decades a number of concepts were introduced that focus on analysing
local knowledge as a source of regional competitive advantages (Cooke & Leydesdorff,
2006), including ‘regional innovation systems’ (Asheim, Isaksen, Moodysson, & Sotarauta,
2012; Braczyk, Cooke, & Heidenreich, 1998) and ‘the learning region’ (Morgan, 1997),
while only recently theoretical and empirical advances in evolutionary economic geogra-
phy have addressed questions regarding the rate and direction of knowledge production,
and how this might translate into regional economic wealth (Boschma & Martin, 2010;
Kogler, 2017a). In this regard portfolio analysis utilizing patent data can provide insights
into the specialization of countries, cities, or knowledge-producing organizations such as
universities and firms (for a recent literature review, see Rafols, Porter, & Leydesdorff,
2010; Wallace & Rafols, 2015; Zhang, Rousseau, & Glänzel, 2011).

Patents provide legal records of novel, nontrivial, and economic valuable ideas that help
drive regional innovation and economic growth. A patent prevents an inventor’s valuable
idea from being commercially implemented by a business rival without penalty. Patents
are essential for avoiding market failure that is likely to occur in the absence of intellectual
property rights due to the positive externalities generated by novel products and processes,
and knowledge in general; in essence they can be considered as vital instruments in the
quest for technological development (Greenhalgh & Rogers, 2010). On the other hand,
patents are only one of many knowledge indicators and do not represent all sectors in
the economy equally (Kogler, 2016).

The purpose of this paper is two-fold. First, a methodology and instrument for
mapping and analysing patent portfolios is introduced. Subsequently, the theoretical
objective is to understand the specialization patterns of inventive activities at the city
level. From a policy perspective, portfolio analyses should inform policy makers in their
mission to make best use of the existing technological strengths of cities. To the best of
our knowledge, the results will for the first time provide the opportunity for the compari-
son of cities’ individual knowledge spaces along various measures and dimensions. Fur-
thermore, the suggested approach offers measures of technological distance that should
further the understanding of the adjacent possibilities, i.e. the prospect of developing
new capabilities in unoccupied knowledge domains that are adjacent to existing ones in
the local knowledge space (Kogler et al., 2013).
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3. Data and methods

3.1. Data

The disadvantages of patents as overall measures of economic and inventive activity are
well known (Archibugi & Pianta, 1996; Griliches, 1990; OECD, 2009; Pavitt, 1985;
Scherer, 1984). There is a strong variation in the propensity to patent among economic
sectors; patenting is prevalent in what are considered high-tech or knowledge-intensive
industries, e.g. information and communication technologies, chemicals, pharmaceuticals,
and measuring and optical instruments (Kogler, 2016). Another limitation pertains to the
skewed distribution of the value of patents (Van Zeebroeck, 2011; Van Zeebroeck & Van
Pottelsberghe de la Potterie, 2011). Notwithstanding these limitations, patents can provide
important insights into the individuals and organizations actively engaged in inventive
activity in technologies where the protection of intellectual property is a key aspect
(Levin, Klevorick, Nelson, & Winter, 1987).

Patent databases are widely available online (Kim & Lee, 2015); for the present analysis
the freely accessible interface of the United States Patent and Trade Office (USPTO) is uti-
lized in order to download sets of patents in batch jobs on the basis of composed search
strings. Among the various databases, USPTO data can be considered the most appropri-
ate reflection of technological inventiveness across jurisdictions, and therefore these data
have been widely applied in cross-country studies (Fu & Yang, 2009; Johansson, Lööf, &
Savin, 2015).

We make use of the International Patent Classification (IPC) system. IPC was replaced
with the Cooperative Patent Classification by USPTO and the European Patent Organiz-
ation (EPO) on 1 January 2013. However, CPC classes are identical in the first four digits
to IPC.1 Our routines provide four and three-digit maps, but the analysis is pursued at the
four-digit level. At the four-digit level the IPC classification system contains 630 distinct
technology categories, and the map is based on citation patterns among the USPTO
patents grouped according to the IPC classes they are assigned to (cf. Leydesdorff,
Kogler, & Yan, 2017; Yan & Luo, 2017).

Given the explorative nature of this research, four cities in each of five different
countries were selected as examples. The objective behind this specific sample of cities
is to cover sufficient variety in different dimensions. France, for example, is a larger
country within the European Union with a centralized structure where Paris is the
primary metropolitan area. The Netherlands on the other hand is a smaller member
state where the urban hierarchy is not as pronounced. In the mix are also cities located
in China, Israel, and the U.S. The five countries and selected cities are listed in Table 1.

Patents issued in 2014 were downloaded, since at the time of the retrieval (October
2015), the year 2015 was not yet complete. We use the database of granted patents (at

Table 1. Retrieval rates for four cities in five countries.
China France Israel Netherlands USA

Beijing 2122 Paris 1336 Jerusalem 283 Amsterdam 253 Boston 874
Shanghai 1669 Marseille 13 TelAviv 876 Rotterdam 102 Atlanta 1166
Nanjing 192 Grenoble 422 Haifa 776 Eindhoven 884 Berkeley 854
Dalian 39 Toulouse 324 Beersheva* 55 Wageningen 43 Boulder 910

*The search string for Beersheva is: ‘(ic/Beersheva or ic/Beersheva) and icn/il and isd/2014$$’.
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http://patft.uspto.gov/netahtml/PTO/search-adv.htm) because this data is of higher
quality than patent applications (at http://appft.uspto.gov/netahtml/PTO/search-adv.
html). The application-grant lag distribution for USPTO patents shows that most
patents are granted within 3 years of their application (Hall, Jaffe, & Trajtenberg, 2001),
but significant outliers remain (Popp, Juhl, & Johnson, 2003).

The search string is as follows for non-American cities: ‘ic/amsterdam and icn/nl and
isd/2014$$’; or ‘ic/boston and is/ma and isd/2014$$’ using the state abbreviation instead of
the country name for cities in the United States. The retrieval is listed in Table 1. Note that
we did not limit the application dates backward.

The level of precision obtained from searching with city names is not controlled. Some
cities are administratively underbounded (e.g. Amsterdam, Rotterdam) and may have
suburbs that are not captured by the search while contributing to the metropolitan
labour market, whereas other cities are overbounded (e.g. Boulder, CO). In the USA,
Core Based Statistical Areas (CBSA) have been defined by the US Office of Management
and Budget (OMB). A CBSA is a group of adjacent areas that are socioeconomically close
to an urban centre. However, series of attempts at constructing a European counterpart to
the metropolitan region concept of the US are still short of results, which could be used for
the purpose of comparing the scientific base of large cities (Grossetti et al., 2014; Maiso-
nobe, Eckert, Grossetti, Jégou, & Milard, 2016).

The composition of CBSA in terms of counties can be found at http://www.uspto.gov/
web/offices/ac/ido/oeip/taf/cls_cbsa/cbsa_countyassoc.htm For the four cities in the U.S.
listed in Table 1, we explore also the effects of this alternative definition. The complete
search string for the CBSA ‘Boston-Cambridge-Quincy, MA-NH’, for example, is ‘(ic/
(Essex OR Middlesex OR Norfolk OR Plymouth OR Suffolk OR Boston OR Cambridge)
AND IS/MA) OR (ic/(Quincy OR Rockingham OR Strafford) AND IS/NH) AND ISD/
2014$$’. This search leads to a retrieval of 2265 records as against 874 patents for the orig-
inal search with only ‘Boston (MA)’ as city name (Table 2).

3.2. Methods

Dedicated routines were written which enable the user to download retrieved sets in
batches of 1000 patents. The routines generate files for the mapping as an overlay using
VOSviewer for the visualization (Van Eck & Waltman, 2010), and files for network analy-
sis and visualization using Pajek (de Nooy, Mrvar, & Batagelj, 2011). The various fields in
the USPTO records are parsed and then organized in a series of databases that can be

Table 2. Search strings and retrieval for four metropolitan regions in the USA.
City Search string for the Metropolitan Area (CBSA) Retrieval

Boston (ic/(Essex OR Middlesex OR Norfolk OR Plymouth OR Suffolk OR Boston OR Cambridge) AND IS/MA)
OR (ic/(Quincy OR Rockingham OR Strafford) AND IS/NH) AND ISD/2014$$

2265

Atlanta IS/GA and isd/2014$$ and ic/(Atlanta OR ‘Sandy Springs’ OR Marietta OR Barrow OR Bartow OR Butts
OR Carroll OR Cherokee OR Clayton OR Cobb OR Coweta OR Dawson OR DeKalb OR Douglas OR
Fayette OR Forsyth OR Fulton OR Gwinnett OR Haralson OR Heard OR Henry OR Jasper OR Lamar
OR Meriwether OR Newton OR Paulding OR Pickens OR Pike OR Rockdale OR Spalding OR Walton)

1526

Berkeley IS/CA and isd/2014$$ and ic/(‘San Francisco’ OR Oakland OR Fremont OR Alameda OR ‘Contra Costa’
OR Marin OR ‘San Mateo’)*

10,207

Boulder IS/CO and isd/2014$$ and ic/Boulder 910

*Addition of ‘OR Berkeley’ augments the retrieval with 534 patents to 10,741. Berkeley is part of the county Alameda in the
CBSA of San Francisco-Oakland-Fremont, CA.
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related using, for example, MS Access. The procedure is further specified in Appendix I
and the routines are available at http://www.leydesdorff.net/software/patents.

The routine generates additionally the files matrix.dbf and rao.dbf, which are incremen-
tally extended with rows and columns in each subsequent run. After each retrieval, a
column variable is added to the file matrix.dbf containing the distribution of the 630
CPC/IPC classes in the additional document set under study. This matrix can be read
into spreadsheet and statistical software applications, e.g. Microsoft’s Excel, SPSS, etc.,
for statistical analysis. Analogously, a row variable is added after each run to the file
rao.dbf containing diversity measures (see below) as variables. As noted, these files are
generated de novo if previously absent.

The routine ipc2cos.exe reads thefilematrix.dbf andproduces co-occurrence and cosine-
normalized matrices which can be used for further analysis in software packages such as
Pajek or UCInet (Borgatti, Everett, & Freeman, 2002). Normalization using the cosine
values (in ‘cosine.net’) brings the latent structure to the foreground,2 whereas visualizations
based on the non-normalized file (‘coocc.dat’) tend to show the relational variation.

3.3. Diversity; ‘related variety’

We are not only interested in the size of the patent portfolio of cities, but also in the diver-
sity contained within the portfolios. Diversity may refer to both the number of different
categories (e.g. technology classes) and the disparity among these categories. Rao-Stirling
diversity is a measure that takes into account both the variety and the disparity in a patent
portfolio under study across the IPC classes. In other words, the variety is considered as
ecologically related in terms of the categories (Frenken, Van Oort, & Verburg, 2007).

The resulting Rao-Stirling diversity is defined as follows (Rao, 1982; Stirling, 2007):

D =
∑

ij
pipjdij (1)

where dij is a distance or disparity measure between two categories i and j – categories are
in this case IPC classes – and pi is the proportion of patents assigned to each class i. As the
disparity measure, we use (1 – cosine) since the cosine values among all aggregated IPC is
used for constructing the base map of three and four digits. Jaffe (1986) proposed the
cosine between the vectors of classifications as a measure of ‘technological proximity’.

Zhang et al. (2016) argues that 2DS provides a true diversity measure that outperforms
Rao-Stirling diversity (Δ) because 2DS = 2.0 is twice as diverse as 2DS = 1.0. In their
Equation 6 (at p. 1260), however, these authors formulate:

2DS = 1
(1− D)

(2)

where Δ is the Rao-Stirling diversity. In other words, the transformation is monotonic and
the value of 2DS follows directly from that of the Rao-Stirling diversity using Equation (2).
This improvedmeasure varies fromzero to∞whenΔ varies fromzero to one. Bothmeasures
are provided for each unit of analysis in the file ‘rao.dbf’. Note that these are diversity
measures of each portfolio in terms of the composition of IPC classes at the four digit level.

In summary, the routines enable a comparison of sets (in our case, cities) within clusters
(for example, countries) or across cities and countries using multivariate analysis of the
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matrix, which is incrementally constructed during subsequent runs. This statistical analy-
sis will be the subject of the next section; but let us first focus on an example that shows
how a more descriptive approach using visualizations can provide non-obvious insights.
Note that visualization is not an analytical technique. However, it allows one to recognize
patterns which can then further be tested. In other words, visualizations serve the gener-
ation of hypotheses more than statistics which serve us for hypothesis testing.

4. Results

4.1. Comparisons among individual cities

Let us as a first example, zoom in on two French cities: Figure 1 shows a comparison
between Paris (Figure 1(A) at the top) and Toulouse (Figure 1(B) at the bottom) overlaid
on the global map of IPC. For similar illustrations of metropolitan knowledge spaces see

Figure 1. Overlays of patent portfolios for Paris (France) and Toulouse (France) in 2014. The map for
Paris can be web-started at http://www.vosviewer.com/vosviewer.php?map=https://www.leydesdorff.
net/software/patents/paris.txt&label_size_variation=0.3&scale=1.1; the one for Toulouse at http://
www.vosviewer.com/vosviewer.php?map=https://www.leydesdorff.net/software/patents/toulouse.
txt&label_size_variation=0.3&scale=1.1
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Kogler et al., 2013. As noted (in Table 1 above), 1336 USPTO patents were granted in 2014
to inventors with a Paris address, whereas this number was 324 for Toulouse. However,
one should keep in mind that Paris is underbounded as the centre of Île-de-France, a
larger metropolitan area made up of nine administrative departments (Paris, Essonne,
Hauts-de-Seine, Seine-Saint-Denis, Seine-et-Marne, Val-de-Marne, Val-d’Oise, and Yve-
lines).3 Figure 1(A) shows the typical pattern of patenting in a large-scale metropolitan
region across the map: 226 of the 630 classes are populated. For Toulouse, a significantly
smaller urban centre the number of classes occupied is just 110.

In both figures, a cluster of bio-medical patents can be found on the right side. This
cluster is found in almost all western cities and regions (Leydesdorff, Etzkowitz, &
Kushnir, 2016). In Toulouse, however, this cluster is disconnected from the largest com-
ponent of 86 patent classes representing various forms of engineering and related techno-
sciences. Figure 2 shows the network visualization of this component (extracted from the
set). In this local representation – no longer projected onto the global map of 630 cat-
egories – the airplane industry, which is of significant size in Toulouse due to the presence
of Airbus, is visible in a cluster of patents at the bottom-right, but is somewhat distant
from the other technology clusters in the city.

In Table 3, the patent portfolios of Paris and Toulouse are compared as local networks
of co-occurring classifications.4 Values for Toulouse are lower than for Paris in most cases;
but centralization is higher for Toulouse than Paris. The density of the network of Tou-
louse is almost twice as high when compared with Paris. In other words, the clustering
of technological knowledge as indicated by the classification codes found in patents gen-
erated by inventors residing in Toulouse is more concentrated when compared with Paris
where patents are more diverse and spread across the spectrum of IPC classes.

Figure 2. Largest component of 86 (among 110) patent classes with an inventor address in Toulouse,
France. The map can be web-started at http://www.vosviewer.com/vosviewer.php?map=https://www.
leydesdorff.net/software/patents/toul86.txt&network=https://www.leydesdorff.net/software/patents/
toul86n.txt&label_size_variation=0.3&scale=1.25&colored_lines&curved_lines&n_lines=10000;
threshold: cosine > 0.2.
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In summary, the analysis of the networks in Paris and Toulouse shows a clear distinc-
tion between a large metropole with a diverse technological knowledge base and a more
specialized medium-sized city. From a policy perspective, this raises the issue about
what strategies are available for these two locations pending further reflections.

For Toulouse, an obvious strategy seems to be to identify options for related diversifi-
cation (Boschma, 2017; Kogler, 2017b). Given its strong pattern of specialization, adjacent
technological opportunities can be identified. For Paris, its advantage lies in the diversity
of its technological knowledge base. In addition to expanding its many technological
strengths through related diversification, Paris seems well positioned to further develop
a comparative advantage in complex technological knowledge that requires a recombina-
tion of diverse technological building blocks at both the global and local levels (Fleming &
Sorenson, 2001).

4.2. Statistical analysis at the level of the set

In addition to network analysis of co-classifications, the routine enables us to compare
portfolios by considering patent classes as attributes to the cities. To this end a matrix
is incrementally constructed: in each run a variable is added. This variable has values
larger than zero for the classes which are attributed. For example, in the case of Paris
226 classes are used, and (630–226 =) 404 classes are empty. Unlike in the previous analy-
sis where the focus has been on the relations among patent classes, this matrix enables one
to analyse correlations between portfolios of cities. In contrast to the relational (network)
analysis, correlations span a vector-space in which one can distinguish densities or prin-
cipal components.

The matrix of 630 IPC classes versus 20 (five times four) cities can be used as input for
multi-variate analysis in a statistics programme such as SPSS. The portfolios of Paris and
Toulouse are correlated with Pearson r = .691 (p < .01); the Spearman rank-order corre-
lation ρ = .472 (p < .01). The lower value of the rank-order correlation indicates that the
portfolios have different foci more than suggested by the visuals. Note that the correlation
is partially caused by the large number of zeros. The rank-order correlation for the 83

Table 3. Network cohesion measures of the portfolios of Paris and Toulouse (using UCInet).
UCInet Network cohesion measures Paris Toulouse

1 Avg Degree 8.159 6.855
2 Indeg H-Index 24 16
3 Deg Centralization 0.138 0.17
4 Out-Central 0.138 0.168
5 In-Central 0.138 0.168
6 Density 0.036 0.063
7 Components 25 16
8 Component Ratio 0.107 0.138
9 Connectedness 0.744 0.613
10 Fragmentation 0.256 0.387
11 Closure 0.666 0.748
12 Avg Distance 4.184 4.032
13 SD Distance 1.761 2.098
14 Diameter 12 11
15 Breadth 0.775 0.786
16 Compactness 0.225 0.214
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classes attributed to both cities is .620 (p < .01); the cosine, a non-parametric equivalent of
the Pearson correlation (Ahlgren, Jarneving, & Rousseau, 2003), is 0.703.

Table 4 shows the result of discriminant analysis using the portfolios of cities as predic-
tors of the national origins. Since the latter is known ex ante, one can note that the stat-
istical prediction is perfect (100%) for the USA and China. France, Israel and the
Netherlands each contain one city with a profile that is sorted by the routine into the
Chinese group. These are respectively: Marseille, Beersheva, and Wageningen. Conse-
quently, the discrimination is not statistically significant; the Dutch cities, notably, enter-
tain portfolios which are close to the ones of China (Figure 3). Nevertheless, a national
character of the portfolios is weakly indicated. The USA is the outlier in Figure 3, but
this may be a consequence of using USPTO data.

Table 5 shows the results of factor analysis of the 20 cities as variables.5 Three factors
explain 78.3% of the variance. Factor 1 assembles the cities with a portfolio focusing on
engineering; factor 2 indicates a prevailing portfolio in the bio-medical domain,
whereas only Dalian (China) and Amsterdam (Netherlands) score highest on factor
3. This latter factor is more difficult to designate.

While Beijing has the highest loading on factor 1, Dalian has a very different pattern of
patenting. In order to further understand the difference between these two cities, one
could, for example, map Dalian versus Beijing analogously as we mapped Toulouse
versus Paris in Figure 1. The factor analysis thus suggests a way forward if one is particu-
larly interested in Chinese portfolios, or in evaluating differences amongst places
altogether.

4.3. A map of the 20 cities

The matrix of 20 cities versus 630 patent classes enables us also to make a distance matrix
using for example the cosine values between the vectors. The cosine is a similarity measure,
but (1 – cosine) provides us with a dissimilarity measure or distance. Feeding these dis-
tances into a visualization programme one can map and cluster the cities. In other
words, these distributions are normalized. By adding geo-codes to the cities, one would
also able to map the cities geographically (Leydesdorff & Bornmann, 2012).

Using VOSviewer for the clustering and the mapping, two types of portfolios are dis-
tinguished, as indicated with green and red in Figure 4. The divide can be characterized as

Table 4. Discriminant analysis of 20 cities in terms of 630 patent classes.
Classification resultsa

Country

Predicted group membership

TotalFrance Israel China USA Nether-lands

Original Count France 3 0 1 0 0 4
Israel 0 3 1 0 0 4
China 0 0 4 0 0 4
USA 0 0 0 4 0 4
Netherlands 0 0 1 0 3 4

% France 75.0 0.0 25.0 0.0 0.0 100.0
Israel 0.0 75.0 25.0 0.0 0.0 100.0
China 0.0 0.0 100.0 0.0 0.0 100.0
USA 0.0 0.0 0.0 100.0 0.0 100.0
Netherlands 0.0 0.0 25.0 0.0 75.0 100.0

a85.0% of original grouped cases correctly classified.
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American-Pacific versus American-Atlantic portfolios. Leydesdorff, Etzkowitz, et al.
(2016) found a similar divide when analysing university patents at the level of countries.
An alternative characterization, however, in terms of engineering versus bio-medicine
explains also why Toulouse, Grenoble, and Eindhoven are part of the red-coloured
cluster. The factor-analysis (Table 5) informs us that these cities are weakly loading on
the relevant factor 1. In this two-cluster solution, Dalian resides in the vicinity of

Figure 3. All-groups scatterplot of the twenty cities in four countries using canonical discriminant
functions.

Table 5. Varimax-rotated factor matrix of the patent portfolios of 20 cities.
Component

1 2 3

Beijing .923 .174 .107
Haifa .902 .291
Berkeley .884 .340
Tel Aviv .876 .377
Atlanta .858 .369
Boulder .818 .382
Shanghai .802 .358 .218
Nanjing .737 .370 .271
Grenoble .729 .135
Toulouse .662 .454
Eindhoven .613
Marseille .521 .500 .170
Wageningen .816
Boston .456 .811 .176
Paris .471 .810 .150
Rotterdam .223 .799
Beersheva .451 .779
Jerusalem .611 .731
Dalian .951
Amsterdam .244 .622 .634

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 5 iterations.
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Amsterdam and Marseille in the Atlantic cluster. Note that these two European cities
showed interfactorial complexity.

4.4. Related variety

In Table 6, we rank the 20 cities in terms of decreasing Rao-Stirling diversity, and
compare this with the portfolio analysis of these 20 cities using scientific publications
in the Web of Science provided in a previous study (Leydesdorff, Heimeriks, & Rotolo,
2016). As explained in the methods section, Rao-Stirling diversity can be considered as
a measure of ‘related variety’ (Castaldi, Frenken, & Los, 2015; Frenken et al., 2007).
The measure is also called ‘quadratic entropy’ or ‘ecological entropy’ (Izsák & Papp,
1995; Rao, 1982; Ricotta & Szeidl, 2006). The ecological distance (dij) between species i
and j is multiplied by their variety (pi * pj).

6 Variety which is ‘related’ – such as in an
ecological niche – is thus accounted for differently from variety which is ‘unrelated’.
Unlike Castaldi et al. (2015), this formulation does not require the definition of given cat-
egories, such as nested levels of the IPC, but only a distance measure such as (1 – cosine)
(Jaffe, 1989).

We use (1 – cosineij) as a measure of dissimilarity or distance in this case; the cosine is
provided between each two of the 630 IPC4 classes in a file at http://www.leydesdorff.net/
ipcmaps/cos_ipc4.dbf In Table 6, the resulting values are listed in rank order. In the right
half of the table, the values of Δ are provided from a previous study in which portfolios of
journals were analyzed for the same 20 cities (Leydesdorff, Heimeriks, et al., 2016, Table 3,
p. 746).

Figure 4. Cosine-normalized network among 20 cities; VOSviewer is used for the mapping and cluster-
ing. The map can be web-started at http://www.vosviewer.com/vosviewer.php?map=https://www.
leydesdorff.net/software/patents/cos_map.txt&network=https://www.leydesdorff.net/software/
patents/cos_net.txt&label_size_variation=0.3&scale=1.40&colored_lines&curved_lines&n_lines=
10000&line_size_variation=0.55.

2268 D. F. KOGLER ET AL.

http://www.leydesdorff.net/ipcmaps/cos_ipc4.dbf
http://www.leydesdorff.net/ipcmaps/cos_ipc4.dbf
http://www.vosviewer.com/vosviewer.php?map=https://www.leydesdorff.net/software/patents/cos_map.txt&network=https://www.leydesdorff.net/software/patents/cos_net.txt&label_size_variation=0.3&scale=1.40&colored_lines&curved_lines&n_lines=10000&line_size_variation=0.55
http://www.vosviewer.com/vosviewer.php?map=https://www.leydesdorff.net/software/patents/cos_map.txt&network=https://www.leydesdorff.net/software/patents/cos_net.txt&label_size_variation=0.3&scale=1.40&colored_lines&curved_lines&n_lines=10000&line_size_variation=0.55
http://www.vosviewer.com/vosviewer.php?map=https://www.leydesdorff.net/software/patents/cos_map.txt&network=https://www.leydesdorff.net/software/patents/cos_net.txt&label_size_variation=0.3&scale=1.40&colored_lines&curved_lines&n_lines=10000&line_size_variation=0.55
http://www.vosviewer.com/vosviewer.php?map=https://www.leydesdorff.net/software/patents/cos_map.txt&network=https://www.leydesdorff.net/software/patents/cos_net.txt&label_size_variation=0.3&scale=1.40&colored_lines&curved_lines&n_lines=10000&line_size_variation=0.55


The numbers of patents and publications (N in Table 6) are significantly correlated (r
= 0.753; p < 0.01). However, this correlation may be spurious: both numbers can be
expected to co-vary with size. The diversity, however, is negatively correlated (r =
−0.102; n.s.). In other words, patenting and publishing operate in two different selection
environments.7

For example, the Israeli cities Haifa, Beersheva, and Tel Aviv were ranked as the
highest on diversity in terms of journal publications (in WoS), but Haifa and Tel Aviv
are among the lowest in terms of diversity among the patents. In other words, these
cities contain knowledge-producing institutions (e.g. universities) which are prolific
and publish in a large number of fields. However, their patenting portfolios are
specific. The selection mechanisms for patents are very different from those for
publications.

4.5. Cities and metropolitan areas

In the following, we added the retrieval for the CBSA 14460, entitled ‘Boston-Cambridge-
Quincy, MA-NH’, to the retrieval for ‘Boston, MA’ as a separate variable. Figure 5 shows
the effect of this addition to the same set as used for Figure 4. As can be expected, the larger
region is more central than the city. However, the figures are virtually identical. Corre-
lations between the two portfolios (Boston as a city and as CBSA) as distributions of
patents over patent classes are large and highly significant: Pearson’s r = .984 (p < 0.01);
Spearman’s ρ = .835 (p < 0.01); cosine = 0.984. The factor analysis using Boston CBSA
instead of the city is virtually the same (Table 7; cf. Table 5). The number of patents in
the CBSA is almost three times larger than that for the city itself (Table 2 above).

Three factors explain 78.5% of the variance (vs. 78.3% in Table 5 above). In summary,
the structure of the matrix is not different; the vector for the city of Boston is structurally
similar to that of the CBSA of Boston, whereas the N of granted patents is almost three
times larger.

Table 6. Rao-Stirling diversity for 20 cities in USPTO and WoS, respectively.
USPTO (a) Rao Δ (b) N (c) WoS (d) Rao Δ (e) N (f)

SHANGHAI 0.8894 1669 Haifa 0.3277 3408
EINDHOVEN 0.8725 884 Beersheva 0.3138 1905
PARIS 0.8702 1336 Tel Aviv 0.3128 4206
ROTTERDAM 0.8684 102 Paris 0.3112 24,877
DALIAN 0.8653 39 Marseille 0.3081 5293
BOULDER 0.8637 910 Toulouse 0.3043 5899
TOULOUSE 0.8630 324 Jerusalem 0.2981 3414
AMSTERDAM 0.8557 253 Shanghai 0.2915 29,166
NANJING 0.8532 192 Atlanta 0.2846 14,296
GRENOBLE 0.8510 422 Eindhoven 0.2838 2554
BEERSHEVA 0.8458 55 Amsterdam 0.2737 13,451
BOSTON 0.8447 874 Berkeley 0.2719 8868
ATLANTA 0.8446 1166 Beijing 0.2621 58,032
BERKELEY 0.8215 854 Nanjing 0.2547 17,713
JERUSALEM 0.8116 283 Grenoble 0.2457 5564
BEIJING 0.8047 2122 Boulder 0.2216 5274
TEL AVIV 0.7748 876 Boston 0.2091 31,182
HAIFA 0.7578 776 Wageningen 0.2010 3178
MARSEILLE 0.7061 13 Dalian 0.2004 5023
WAGENINGEN 0.5426 43 Rotterdam 0.1932 5721
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Figure 5. Cosine-normalized network among 20 cities and the CBSA of Boston ; VOSviewer is used for
the clustering and mapping. The map can be web-started at http://www.vosviewer.com/vosviewer.
php?map=https://www.leydesdorff.net/software/patents/cos_map2.txt&network=https://www.
leydesdorff.net/software/patents/cos_net2.txt&label_size_variation=0.3&scale=1.40&colored_
lines&curved_lines&n_lines=1000&line_size_variation=0.55.

Table 7. Varimax-rotated factor matrix of the patent portfolios of the same 19 cities and the ‘CBSA
Boston-Cambridge-Quincy, MA-NH’ instead of ‘Boston, MA’ as a single city address.

Rotated Component Matrixa

Component

1 2 3

Beijing .921 .177 .107
Haifa .903 .286
Berkeley .885 .336
Tel-Aviv .877 .374
Atlanta .860 .362
Boulder .822 .372
Shanghai .802 .360 .217
Nanjing .737 .369 .273
Grenoble .727 .132
Toulouse .662 .456
Eindhoven .612
Marseille .525 .495 .171
Wageningen .823
Paris .474 .807 .152
Rotterdam .223 .802
CBSA Boston .544 .776 .170
Beersheva .455 .774
Jerusalem .614 .727
Dalian .952
Amsterdam .243 .622 .636

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
aRotation converged in 5 iterations.
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5. Discussion and concluding remarks

A number of recent studies have employed patent data, in particular patent classifi-
cations, for the development of metropolitan and regional knowledge spaces (Kogler
et al., 2013; 2017; Rigby, 2015). The primary focus in these inquiries is on the evolution
of regional knowledge spaces, while the analysis is based on measures derived from co-
occurrence matrices of IPC codes. In the present study, a similar approach has been
followed. The aim was to empirically specify the characteristics of patent portfolios of
cities in terms of technological proximity, distance, and related variety. For this
purpose, we first developed a new instrument for the mapping and analysis of patent
portfolios of cities. Secondly, an analytical framework was developed that allows for
the statistical comparison of knowledge space properties amongst entities – in this
case cities. This further step is highly relevant from a policy perspective: the prospect
of capturing, analysing, and comparing the technological knowledge competencies of
a specific city vis-à-vis other places provides the opportunity for policy-makers and
other stakeholders to identify the most promising avenues for deepening the local
knowledge base as well as where to invest limited resources, for further technological
upgrading (Heimeriks & Balland, 2016). The present approach provides important
insights to the Smart Specialization Strategies framework (Foray, 2015) that highlights
to the importance of relative strengths and capabilities present in a given locality as
a starting point for the development of more effective development pathways (Kogler
& Whittle, 2018).

The examples outlined above demonstrate that cities have different technological port-
folios. Given this variation, a ‘one size fits all’ policy at the national level to further develop
the technological knowledge base of cities can be counterproductive. Although the results
provide the opportunity for comparing peer cities, this information needs to be sup-
plemented with contextual information. This includes the cities’ particular strategies
and missions, qualitative information regarding the institutional similarities between
the cities in question, the relative location, but also the relative position in the hierarchy
of technological advancement. In this way, the suggested approach can be used as a
tool to benchmark a city in comparison to relevant peers, which in turn may help to ident-
ify relevant best-practices in well-performing cities that are otherwise comparable in terms
of their knowledge base and specialization patterns.

The results of the discriminant analysis indicated that national institutional settings are
an aspect of understanding the patent portfolio of cities. Frequently urban centres belong-
ing to the same country also display similar positions in the knowledge space. This is in
line with previous theoretical and qualitative case study insights emanating from the
national innovation systems literature (Lundvall, 1988; Nelson, 1993). However, these
results also connect to the arguments in the relevant literature that states that development
outcomes are place-specific due to the mainly path-dependent trajectories inherent to the
process of technological change (Kogler, 2017a; Martin & Sunley, 2006). In summary,
patent portfolios of cities can be expected to be both geographically tainted and historically
specific. Our methods may be less appropriate for the specification of disruptive forms of
technological renewal that may, among other things, lead to lock-in into patterns of tech-
nological decline.
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The idea that cities within the same national jurisdiction, i.e. the same national eco-
system of innovation, are predominantly located in close vicinity in the knowledge
space points to a degree of national rather than just place-specific path-dependency.
This in turn links back to the instance that countries frequently pursue a common national
science- and technology-policy approach that is then generically applied in a top-down
fashion to all localities within the territory, while in reality place-based specific policies
would require a bottom-up approach that takes into consideration the knowledge compe-
tencies that already exist, which consecutively would allow for identifying the most prom-
ising future local development pathways. From this perspective, measures of technological
distance create an understanding of the adjacent possibilities for further knowledge pro-
duction that is available for diversification (Boschma, 2017; Kogler, 2017b). Further, the
proposed approach and subsequent analysis presented above also outlines how relatedness
measures, based on the presence and connectedness of technology domains in a given
place, can be used to operationalize effective Smart Specialization Strategies based on
empirical evidence, something that is frequently missing in such actions (Kogler &
Whittle, 2018).

Notes

1. CPC contains new categories classified under ‘Y’ that span different sections of the IPC in
order to indicate new technological developments (Scheu et al., 2006; Veefkind, Hurtado-
Albir, Angelucci, Karachalios, & Thumm, 2012).

2. The cosine is similar to the Pearson correlation except that the distributions are not z-nor-
malized to the mean. Since the patent distributions are non-normal (but skewed), this
measure is more appropriate (Ahlgren et al., 2003).

3. Because of the diacritical characters searching with these names is difficult in the USPTO
search interface; we found one patent with ‘Essone’ in the address field, three with ‘Val-
de-Marne’, and seven with ‘Yvelines’, granted in 2014.

4. UCInet enables the user to generate these network statistics in a single pass.
5. We use the transposed matrix because factor scores are more difficult to read, while factor

scores do not vary between −1 and +1.
6. (pi * pj) is the Gini-Simpson index. The Gini-Simpson is equal to the complement to one of

the Herfindahl–Hirsch index or equivalently the Simpson index (Stirling, 2007).
7. We use Zhang et al.’s (2016) diversity measure (2DS) for estimating this correlation since

2DS = 1/1− D measures ‘true diversity’ with which one is allowed to calculate as a variable
at the ratio scale.
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Appendix I

Portfolio analysis and maps in terms of patent classes

1. Preparing input files
a. Download the following files from https://leydesdorff.net/software/patents/ into a single

folder:
. ipc.exe;
. ipc.dbf (with basis information about the classes);
. uspto1.exe (needed for the downloading of USPTO patents);
. cos_ipc3.dbf and cos_ipc4.dbf (needed for the computation of distances on the map);

b. Run ipc.exe.
2. Options within ipc.exe

a. The programme asks for a short name (≤ 10 characters) in each run. This name will be
used as the variable name in later parts of the routine;

b. The first option is to download the patents from USPTO at http://patft.uspto.gov/
netahtml/PTO/search-adv.htm; detailed instructions for the downloading can be found
at http://www.leydesdorff.net/ipcmaps;

c. USPTO has a maximum of 1000 records at a time; but one is allowed to follow-up batches;
after each download, save the files in another folder or as a zip file;

3. The incremental construction of the files matrix.dbf and rao.dbf
a. After each run, a column variable is added to the (local) file matrix.dbf containing the dis-

tribution of the 630 CPC/IPC classes in the document set under study. If the file matrix.dbf
is absent, it is generated de novo and the current run is considered as generating the first
variable; matrix.dbf can be read by Excel, SPSS, etc., for further (statistical) analysis;

b. Similarly, a row variable is added after each run to the file rao.dbf containing diversity
measures (explained in the article) as variables. This file is also de novo generated if pre-
viously absent. Distances are based on [1 – cos(x,y)] for each two distributions x and y;

c. The routine ipc2cos.exe reads the file matrix.dbf and produces cosine.net and coocc.dat as
(normalized) co-occurrence matrices that can be used in network analysis and visualiza-
tion programmes such as Pajek or UCInet.

4. Output files in each run
a. Two files (vos3.txt and vos4.txt) are generated for mapping the portfolio at the three- or

four-digit level of CPC/IPC, respectively, using VOSviewer; the distances and colours (cor-
responding to clusters) in the maps are based on the base-map (Leydesdorff et al., 2014);
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b. The further files ipc3.vec and ipc4.vec can be used as vectors in Pajek files . This allows for
layouts other than VOSviewer and for more detailed network analysis and statistics; the
files ipc3.cls and ipc4.cls are so-called cluster files which can be used in Pajek, among
other things, for the extraction of the local maps at the respective levels.

c. The various fields in the USPTO records are organized in a series of databases that can be
related (e.g. in MS Access) using the field ‘nr’.
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