
The Veterinary Journal 241 (2018) 42–51
Invited review

Treating canine Cushing’s syndrome: Current options and future
prospects

K. Sanders, H.S. Kooistra, S. Galac*
Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands

A R T I C L E I N F O

Article history:
Accepted 25 September 2018

Keywords:
Cushing’s syndrome
Dog
Hypercortisolism
Pharmacotherapy
Treatment

A B S T R A C T

Naturally occurring hypercortisolism, also known as Cushing’s syndrome, is a common endocrine
disorder in dogs that can be caused by an adenocorticotrophic hormone (ACTH)-producing pituitary
adenoma (pituitary-dependent hypercortisolism, PDH; 80–85% of cases), or by an adrenocortical tumor
(ACT; 15–20% of cases). To determine the optimal treatment strategy, differentiating between these two
main causes is essential. Good treatment options are surgical removal of the causal tumor, i.e.
hypophysectomy for PDH and adrenalectomy for an ACT, or radiotherapy in cases with PDH. Because
these options are not without risks, not widely available and not suitable for every patient,
pharmacotherapy is often used. In cases with PDH, the steroidogenesis inhibitor trilostane is most
often used. In cases with an ACT, either trilostane or the adrenocorticolytic drug mitotane can be used.
Although mostly effective, both treatments have disadvantages. This review discusses the current
treatment options for canine hypercortisolism, and considers their mechanism of action, efficacy, adverse
effects, and effect on survival. In addition, developments in both adrenal-targeting and pituitary-
targeting drugs that have the potential to become future treatment options are discussed, as a more
selective and preferably also tumor-targeted approach could have many advantages for both PDH and
ACTs.
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Introduction

Hypercortisolism, often referred to as Cushing’s syndrome, was
firstdescribedbytheneurosurgeonHarveyCushingin1932(Cushing,
1969), and is characterized by chronically increased circulating
glucocorticoids. Hypercortisolism canbe either iatrogenic, caused by
glucocorticoidadministration,oroccurnaturally,causedbyexcessive
endogenous cortisol production (Galac et al., 2010a).

Naturally occurring hypercortisolism is a common endocrine
disorder in dogs, with an incidence of 1–2 cases per 1000 dogs per
year (Willeberg and Priester, 1982; O’Neill et al., 2016). In 80–85%
of cases, the condition is caused by an adenocorticotrophic
hormone (ACTH)-secreting pituitary adenoma (pituitary-depen-
dent hypercortisolism; PDH). In the remaining 15–20%, it is most
often caused by a cortisol-secreting adrenocortical tumor (ACT),
which is classified as an adrenocortical carcinoma in the majority
of cases (Labelle et al., 2004; Galac et al., 2010a). Rare causes of
hypercortisolism in dogs include ectopic ACTH syndrome (Galac
et al., 2005) and food-dependent hypercortisolism (Galac et al.,
2008).
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Diagnosis

The diagnosis of hypercortisolism should be based mainly on
the dog’s medical history and clinical signs. Hypercortisolism
usually occurs in middle-aged to older dogs (Kooistra and Galac,
2012; O’Neill et al., 2016). The most common clinical signs include
polyuria, polydipsia, polyphagia, central obesity, hepatomegaly,
panting, muscle atrophy, progressive bilateral alopecia, and
systemic hypertension. Other clinical signs include hyperpigmen-
tation, calcinosis cutis and insulin-resistant diabetes mellitus
(Galac et al., 2010a; Behrend et al., 2013; O’Neill et al., 2016).
Additionally, the pituitary tumor or ACT can induce mass-
occupying effects. In cases with a large pituitary tumor, these
effects include neurological signs such as anorexia, lethargy, and
altered behavior. In cases with an ACT, these effects develop
secondary to metastases or invasion of the ACT into the
phrenicoabdominal vein or caudal vena cava (Galac et al., 2010a;
Behrend et al., 2013).

When there is clinical suspicion of hypercortisolism, the results
of a complete blood count (CBC), serum biochemistry panel,
urinalysis and blood pressure measurement may further support
the diagnosis. Abnormalities that can be found in these tests
include the presence of a stress leukogram, increased serum
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alkaline phosphatase (ALP) activity, and low urine specific gravity.
None of these findings are pathognomonic, but can be supportive
of hypercortisolism (Behrend et al., 2013).

Endocrine tests should be used to further confirm the suspicion
of hypercortisolism. It is important to only test for hyper-
cortisolism in dogs with a high degree of clinical suspicion to
decrease the chance of false-positive results (Gilor and Graves,
2011). The recommended screening tests are the low-dose
dexamethasone suppression test or the urinary corticoid:creati-
nine ratio (UCCR). The UCCR can also be combined with the high-
dose dexamethasone suppression test (HDDST). When the hyper-
cortisolism is suppressible (>50%) by dexamethasone the dog is
diagnosed with PDH. When the hypercortisolism is non-suppress-
ible, further differentiation requires measurement of plasma ACTH
concentration and/or diagnostic imaging. A CT or MRI scan is
preferred to determine the size and contour of the pituitary and
adrenal glands, and in case of an ACT also to detect vascular
invasion and to screen for metastases (Galac et al., 2010a; Kooistra
and Galac, 2012; Behrend et al., 2013). Moreover, pituitary tumors
and ACTs can coexist (Greco et al., 1999; Beatrice et al., 2018),
which could be missed without complete imaging. Differentiating
between the two main causes of hypercortisolism is essential
when choosing the optimal treatment strategy (Behrend et al.,
2013).

Comparative pathobiology

Many similarities exist between hypercortisolism in dogs and
humans, including the clinical signs, diagnostics, and medical care
(De Bruin et al., 2009; Kooistra et al., 2009). Consequently, new
insights in human hypercortisolism can advance the understand-
ing of and treatment for canine hypercortisolism, and vice versa. In
this review we will therefore not only focus on current treatment
options for canine hypercortisolism, but also on advancements in
the treatment of human hypercortisolism. Additionally, we discuss
promising drugs that might develop into future treatment options.

Therapy

The goals of treating canine hypercortisolism would optimally
be to eliminate the source of either ACTH or autonomous cortisol
excess, to achieve normocortisolism, to eliminate the clinical signs,
to reduce long-term complications and mortality, and to improve
the quality of life. Surgical removal of the causal tumor or
radiotherapy are currently the only treatment options that have
the potential to eliminate the source of either ACTH or autonomous
cortisol excess. However, these options are not without risks, not
widely available and not appropriate for every patient. Pharmaco-
therapy is a commonly used treatment that aims to eliminate the
clinical signs of the condition. A combination therapy of medical
treatment with radiotherapy is also possible (Galac et al., 2010a;
Pérez-Alenza and Melián, 2016).

Without treatment, dogs with PDH have a median survival time
of 359 days (95% confidence interval (CI), 271–829) (Kent et al.,
2007) to 506 days (95% CI, 292–564) (Nagata et al., 2017). There are
no data on the survival of dogs with an ACT without treatment.

Surgery

Hypophysectomy
Hypophysectomy in dogs is performed using a transsphenoidal

approach where the entire pituitary gland is removed (Meij, 2001;
Meij et al., 2002). In a recent study with a large cohort of 306 dogs
with PDH that underwent hypophysectomy (van Rijn et al., 2016),
91% of the dogs were alive after 4 weeks, of which remission was
confirmed in 92%. Of the dogs that were in remission, disease
recurrence was observed in 27%. The median survival time was
781 days (range, 0–3808 days) and the median disease-free
interval of the dogs that were in remission was 951 days (range,
31–3808 days).

Replacement therapy after hypophysectomy consists of life-
long administration of glucocorticoids and thyroxine, and tempo-
rary administration of desmopressin, a synthetic vasopressin
analogue (Meij, 2001; Hanson et al., 2005; Galac et al., 2010a). The
main complications of hypophysectomy are perioperative death,
transient mild postoperative hypernatremia, transient reduction
or cessation of tear production, prolonged or permanent diabetes
insipidus, and recurrence of hypercortisolism (Meij, 2001; Meij
et al., 2002).

Factors that negatively influence the prognosis include a high
pituitary height/brain area (P/B) value, old age, high preoperative
circulating ACTH concentration, and high pre- and postoperative
UCCRs (Hanson et al., 2007; van Rijn et al., 2015, 2016). Although a
high P/B value is a negative prognostic indicator, hypophysectomy
remains a good treatment option also for large pituitary tumors
(Fracassi et al., 2014; van Rijn et al., 2016). The main limitation of
hypophysectomy is that it is available only in large veterinary
centers with an established team of experienced surgeon(s),
anesthetist(s), critical care specialist(s) and endocrinologist(s),
with consequently high initial costs (Pérez-Alenza and Melián,
2016).

Adrenalectomy
Adrenalectomy is recommended for dogs with uni- or bilateral

ACT. Adrenalectomies were traditionally performed as ventral or
paracostal open laparotomies. Perioperative mortality rates were
quite high in initial studies (Scavelli et al., 1986), but improved in
later studies (van Sluijs et al., 1995; Anderson et al., 2001; Kyles
et al., 2003; Schwartz et al., 2008; Massari et al., 2011) and are as
low as 6–8% in most recent studies (Lang et al., 2011; Mayhew et al.,
2014). Adrenalectomy can also be performed laparoscopically.
Laparoscopic adrenalectomy has been used in human medicine
since the early 1990s and has recently been gaining interest and
shown to have benefits in veterinary medicine as well (Naan et al.,
2013; Mayhew et al., 2014).

Reported median survival times for dogs undergoing adrenal-
ectomy range from 778 days (range, 1–1593) (Anderson et al.,
2001) to 953 days (range, 0–1941) (Massari et al., 2011). When dogs
survive the perioperative period, the long-term survival is good
(Anderson et al., 2001; Lang et al., 2011). The main complications
that can occur include minor to severe hemorrhage, hypotension,
tachycardia and peri-operative death (van Sluijs et al., 1995; Lang
et al., 2011; Massari et al., 2011; Mayhew et al., 2014). The tumor
capsule can rupture, possibly more often in laparoscopic than in
open adrenalectomies, but does not commonly lead to tumor
regrowth (Mayhew et al., 2014). The main complications that can
occur postoperatively include pancreatitis and thromboembolism
(van Sluijs et al., 1995; Anderson et al., 2001; Mayhew et al., 2014).
The reported hypercortisolism recurrence rate varies between 12%
(Anderson et al., 2001) and 30% (van Sluijs et al., 1995), which can
be either because of regrowth of the ACT or metastases.

Adrenalectomy is not recommended in patients that have
metastases or extensive vascular invasion, which is why thorough
presurgical diagnostic imaging is imperative. Vascular invasion
does not necessarily exclude patients from undergoing adrenalec-
tomy, since some studies indicate that tumor invasion in the caudal
vena cava does not affect perioperative mortality (Kyles et al.,
2003; Lang et al., 2011), and techniques to remove the tumor
thrombus have improved (Mayhew et al., 2018). However, when
the vascular invasion is extensive, in particular when the tumor
invasion in the vena cava extends beyond the hepatic hilus, the
perioperative mortality rates can increase (Barrera et al., 2013).
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Interestingly, when patients with vascular invasion survive the
perioperative period, their long-term survival is not worse than
that of patients without vascular invasion (Lang et al., 2011; Barrera
et al., 2013).

Radiotherapy

Pituitary radiotherapy
Radiotherapy (RT) can be useful to decrease tumor size and

reduce neurological signs in large pituitary tumors (Kent et al.,
2007; Herrtage and Ramsey, 2012; Pérez-Alenza and Melián, 2016).
Usually, a total dose of 36–48 Gy is administered in 3–4 Gy
fractions, which requires the dog to be under anesthesia on
approximately twelve occasions. The tumor size decreases after RT
in most cases, but the time to effect and whether it diminishes the
clinical signs of hypercortisolism can vary considerably between
patients (Goossens et al., 1998; de Fornel et al., 2007; Kent et al.,
2007; Sawada et al., 2018). Temporary or permanent additional
pharmacotherapy may therefore be required to manage hyper-
cortisolism. Adverse effects that can occur after RT are pituitary
hemorrhage and otitis media (Sawada et al., 2018). The median
(�SD) survival time was 539 days (�51) in one study (de Fornel
et al., 2007), and was not reached in a study with a median follow-
up time of 702 days (range, 27–1927) (Kent et al., 2007).

In humans with PDH, radiotherapy is currently primarily
applied as single-session, focused stereotactic radiosurgery (SRS)
using a Gamma Knife, where image-guided precisely-targeted
radiation is applied at high-dose fractions. The use of SRS is well
tolerated in humans and may also result in shorter response times
than conventional RT (Mehta et al., 2017). The same technique has
recently been applied to dogs with pituitary tumors and showed
promising results (Mariani et al., 2015; Zwingenberger et al., 2016).

Adrenal radiotherapy
Information on the use of RT in canine ACTs is limited: only one

study on RT in canine ACTs has been published so far (Dolera et al.,
2016), in which nine dogs with ACTs with vascular invasion were
enrolled. The ACTs showed progressive shrinkage in varying
degrees in all dogs, consistent with a partial response (Dolera et al.,
2016). More research is required to determine the efficacy of RT in
dogs with ACTs.

In humans, RT is sometimes used for postoperative treatment of
adrenocortical carcinomas (ACCs). Although earlier publications
reported that human ACCs are resistant to RT, more recent studies
show that RT can improve local tumor control (Fassnacht et al.,
2006; Sabolch et al., 2011, 2015). Postoperative RT could potentially
be useful for canine ACTs, particularly in patients where additional
prognostic tools indicate a high risk of recurrence.

Pharmacotherapy – adrenal-targeting drugs

Pharmacotherapy is often used to control the clinical signs of
hypercortisolism. Trilostane is the drug of choice for dogs with
PDH, and in case of an ACT either trilostane or mitotane can be
used.

Trilostane
Trilostane is a synthetic steroid analogue that competitively

inhibits the steroidogenic enzyme 3β-hydroxysteroid dehydroge-
nase (3βHSD) (Potts et al., 1978), which is required for the
production of all classes of adrenocortical hormones (Fig. 1).
Trilostane therefore inhibits both cortisol production, which
results in a loss of negative feedback and a compensatory increase
in plasma ACTH concentration (Witt and Neiger, 2004), and
aldosterone production, which causes a compensatory increase in
plasma renin activity (Galac et al., 2010b; Reid et al., 2014).
Additionally, trilostane possibly also inhibits other enzymes in the
steroidogenesis cascade, such as 11β-hydroxylase (CYP11B1)
(Sieber-Ruckstuhl et al., 2006, 2008).

Trilostane is registered for the medical management of both
canine PDH and cortisol-producing ACTs, but most studies on the
use of trilostane have been performed in dogs with PDH. Trilostane
is absorbed rapidly from the gastrointestinal tract. Because
administration with food significantly increases the rate and
extent of absorption, trilostane should always be given with food
(Ramsey, 2010).

There is a marked variation in the optimal trilostane dose, and
the current recommendations are to start with much lower
dosages than originally recommended by the manufacturer, which
can be equally effective but induce fewer adverse effects than
higher dosages (Feldman, 2011; Feldman and Kass, 2012; Cho et al.,
2013). Larger dogs generally need a lower dose per kg body weight
than smaller dogs (Feldman and Kass, 2012). Because the duration
of cortisol suppression is less than 12 h in most dogs, administrat-
ing trilostane twice daily can improve the clinical response while
keeping the total daily dose relatively low, and significantly
reducing the adverse effects (Bell et al., 2006; Vaughan et al., 2008;
Feldman, 2011; Arenas et al., 2013; King and Morton, 2017). The
authors of this review advise to start treatment for PDH with an
initial dose of 0.5–1 mg/kg twice daily. If twice daily treatment is
undesirable for financial or practical reasons, the initial dose
should be 1–2 mg/kg once daily.

Within weeks, an adequate dose of trilostane can increase the
dog’s activity and reduce polyuria, polydipsia and polyphagia.
More time is needed to observe notable improvements on the skin
and hair coat, which can take months. The hair coat can sometimes
initially appear to worsen, due to shedding of telogen hairs and dry
skin scales (Pérez-Alenza and Melián, 2016).

Trilostane is usually well tolerated, but the main adverse effect
that can occur is transient hypocortisolism (shortage of gluco-
corticoids), possibly combined with or followed by complete
hypoadrenocorticism (shortage of both glucocorticoids and
mineralocorticoids). A recent study reported that the chance of
a dog having at least one episode of clinical hypocortisolism within
the first 2 years of trilostane treatment is approximately 15% (King
and Morton, 2017). In most dogs, the adverse effects resolve once
trilostane treatment is withdrawn. In such cases continuation of
treatment with a lower dose is recommended when clinical signs
of hypercortisolism recur. However, in some dogs, the hypoa-
drenocorticism can be permanent, which is possibly the result of
adrenal necrosis, and can be fatal in severe cases (Chapman et al.,
2004; Ramsey et al., 2008; King and Morton, 2017). One study
found at postmortem examinations that adrenal necrosis was
present in four out of six dogs with PDH that were treated with
trilostane (Reusch et al., 2007). Subsequent studies suggested that
it is not trilostane but rather the increased ACTH production
resulting from a loss of negative feedback that causes this adrenal
necrosis (Galac et al., 2010b; Burkhardt et al., 2011). The reported
median survival times of dogs with PDH treated with trilostane
range from 662 days (range, 8–1971) (Barker et al., 2005) to
852 days (range, 2–3210) (Fracassi et al., 2015).

For successful management of PDH with trilostane, frequent
monitoring is essential. In the last decade efforts have been made
to identify the best method to monitor trilostane therapy. In all
methods, evaluation of the clinical signs is the first step. The
preferred monitoring method is the use of the ACTH-stimulation
test, which monitors the adrenal glands’ reserve capacity to secrete
cortisol (Neiger et al., 2002; Ruckstuhl et al., 2002). The timing of
the ACTH-stimulation test is crucial since this influences the
results (Bonadio et al., 2014), and the recommendation is to
coincide the test with the maximal trilostane action (2–4 h after
trilostane administration) (Griebsch et al., 2014). Despite its



Fig. 1. Schematic overview of the site of action of steroidogenesis inhibitors. StAR, steroidogenic acute regulatory protein; CYP11A1, cytochrome P450 cholesterol side-chain
cleavage enzyme; 3βHSD, 3β-hydroxysteroid dehydrogenase; CYP17, 17α-hydroxylase/17,20-lyase; CYP21, 21-hydroxylase; CYP11B1, 11β-hydroxylase.
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widespread use, the ACTH stimulation test has never been
validated as a monitoring tool for trilostane therapy, and there
are some concerns regarding the variation in results depending on
the timing of the test and whether this reflects clinical control
(Midence et al., 2015; MacFarlane et al., 2016). Moreover,
tetracosactide (synthetic ACTH [1–24]) is not easily available in
all countries. A recently proposed alternative method is to measure
the pre-pill cortisol (Pre-Vetoryl Cortisol; PVC) concentration and
compare it to the clinical signs reported by owners. The PVC was
found to better reflect the clinical control than the ACTH
stimulation test (MacFarlane et al., 2016). However, even dogs
with excellent clinical control can have insufficient adrenocortical
reserve capacity, which can become clinically relevant when they
face stress situations (King and Morton, 2017). The PVC approach is
not comparable to the principle of the ACTH stimulation test: it is
not a measure of the adrenocortical reserve and will therefore not
reflect the safety of trilostane therapy. The applicability of this
alternative method will have to be determined in future studies.

In dogs with PDH, trilostane effectively controls the clinical
signs of glucocorticoid excess but does not directly affect the
growth of the pituitary tumor. This is irrelevant initially in dogs
with non-enlarged pituitary glands (i.e. P/B value � 0.31 mm/mm2

(van Rijn et al., 2016)), but the pituitary tumor might grow over
time. In healthy dogs, the P/B value has been shown to significantly
increase following trilostane therapy (Teshima et al., 2009), but
this has not been studied in dogs with PDH. Nonetheless, especially
in younger dogs, a control CT or MRI scan after 1 year of treatment
could be considered to re-evaluate the pituitary size.

In dogs with a cortisol-secreting ACT it is important to
remember that while these tumors are mostly malignant,
trilostane will only reduce the clinical signs and not affect the
growth or possible metastases of the ACT. Palliative treatment with
trilostane has been shown to be effective in controlling clinical
signs (Eastwood et al., 2003; Benchekroun et al., 2008; Galac et al.,
2010a). The reported median survival times of dogs with ACTs
treated with trilostane range from 353 days (95% CI, 95–528)
(Helm et al., 2011) to 427 days (range, 101–1678) (Arenas et al.,
2014). Although there is no scientific data available to support this,
it is the authors’ experience that dogs with an ACT can be more
sensitive to trilostane treatment, which is why the authors advise
to start the treatment with a relatively low initial dose of 0.5 mg/kg
twice daily.

Mitotane
Mitotane (o,p’-DDD) is an adrenocorticolytic agent that leads to

progressive adrenocortical necrosis and atrophy. Mitotane also
inhibits the steroidogenic enzymes cytochrome P450 cholesterol
side-chain cleavage enzyme (CYP11A1) and CYP11B1 (Fig.1), which
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contributes to inhibition of cortisol synthesis (Young et al., 1973;
Veytsman et al., 2009), and induces other cytochrome P450
enzymes such as cytochrome P450 enzyme 3A4 (CYP3A4), which
leads to increased metabolic clearance of glucocorticoids (Kroiss
et al., 2011).

Although mitotane has been used to treat hypercortisolism for
decades, the exact mechanism of action was poorly understood. A
recent study found that one of its mechanisms of action is
inhibition of sterol-O-acyl-transferase 1 (SOAT1), an enzyme that
catalyzes the conversion of free cholesterol to cholesterol esters.
Inhibition of this conversion increases the amount of free
cholesterol in the cell, which can lead to endoplasmic reticulum
stress and, subsequently, cell apoptosis (Sbiera et al., 2015).
Interestingly, the dog is much more sensitive to mitotane than
other species (Martz and Straw, 1980), which makes the dog an
interesting candidate to further elucidate the mechanism of action.

The use of mitotane for the treatment of canine PDH has largely
been replaced by that of trilostane (Galac et al., 2010a). This is
mostly because trilostane is just as effective, is safer to handle and
has been associated with fewer adverse effects than mitotane
(Clemente et al., 2007; Ramsey, 2010). However, in case of an ACT,
treatment with mitotane is still a good option because it has the
added advantage that it can destroy ACT cells.

Because the goal of mitotane therapy in cases with an ACT is not
only to reduce cortisol production but also to destroy as many
neoplastic cells as possible, a non-selective protocol that affects the
entire adrenal cortex should be considered (Kintzer and Peterson,
1997; Galac et al., 2010a). This treatment protocol consists of 50 to
75 mg/kg mitotane per day: daily for 5 days and then every other
day over 40 days. For dogs of small breeds, a higher dose of up to
100 mg/kg may be required. Each daily dose should be divided into
three or four portions (Rijnberk and Belshaw, 1988; Galac et al.,
2010a). For sufficient absorption, mitotane should be given with
food (Watson et al., 1987). Substitution therapy starts at the third
day and consists of daily glucocorticoids (e.g. 2 mg/kg cortisone
acetate), mineralocorticoids (e.g. 0.0125 mg/kg fludrocortisone
acetate) and salt (0.1 g/kg sodium chloride), all divided in at least
two portions (Galac et al., 2010a). After the initial course of
mitotane has been administered, the glucocorticoid dose is
reduced (e.g. 0.5–1 mg/kg cortisone acetate), but doubled for
one or two days in the event of injury, severe physical stress, or
anesthesia. To prevent recurrence, mitotane should be adminis-
tered at the initially daily dose once weekly for at least 6 months, or
even lifelong (Galac et al., 2010a).

Adverse effects of mitotane include anorexia, lethargy, weak-
ness and diarrhea (Kintzer and Peterson, 1997). If the dog develops
adverse effects, the mitotane treatment has to be temporarily
discontinued, but not the substitution therapy. If these adverse
effects are ignored and the owner continues to give mitotane, this
can result in a potentially fatal hypoadrenocorticoid crisis
(particularly if they continue to vomit or refuse substitution
therapy). When the owner is given clear instructions this rarely
occurs and the mitotane administration can usually be resumed
after a few days (Galac et al., 2010a). Due to the cytotoxicity of
mitotane, it should not be used when there are young children or
pregnant women in the household (Galac et al., 2010a).

To evaluate whether the ACT has been completely destroyed,
the UCCR can be measured in morning urine after the initial course
of mitotane (i.e. after day 45) and every 6 months thereafter. Prior
to morning urine collection for this UCCR measurement, the
evening doses of glucocorticoids and mineralocorticoids should be
withheld. Complete destruction of the ACT results in very low or
even undetectable UCCRs. In addition to UCCR measurements,
regular blood sodium and potassium measurements are required,
which help to regulate the dose of mineralocorticoids that are
administered (Galac et al., 2010a). The reported median survival
times of dogs with ACTs treated with mitotane range from 102 days
(95% CI, 43–277) (Helm et al., 2011) to 476 days (range, 61–1129)
(Arenas et al., 2014) and did not differ significantly from the
survival times for dogs treated with trilostane in both studies.
However, these studies did not use the mitotane protocol as
described herein (aimed at complete adrenocortical destruction),
which might give different results.

In humans, mitotane is used in patients with nonresectable
ACCs, and as adjuvant therapy after surgical resection of an ACC,
especially in patients with a high recurrence risk. In the patients
with nonresectable ACCs, and in the patients with local or
metastatic recurrence, approximately 25–30% responds to mito-
tane treatment (Sbiera et al., 2015; Creemers et al., 2016). Since
mitotane was shown to be a SOAT1 inhibitor, the degree of
response could depend on SOAT1 expression. Indeed, Sbiera et al.
(2015) showed that human ACCs with high SOAT1 expression
responded better to mitotane treatment than those with low
SOAT1 expression (Sbiera et al., 2015). A chemotherapy protocol
where mitotane was combined with etoposide, doxorubicin and
cisplatin seemed to give the best results in terms of progression-
free survival times (Fassnacht et al., 2012). Prognostic indicators
such as Steroidogenic factor-1 (SF-1) expression (Galac et al., 2014)
(see below) could be helpful, as well as determination of the SOAT1
expression, to select dogs with a high recurrence risk that might
benefit from adjuvant mitotane therapy following adrenalectomy.
Although more research is required, the SOAT1 expression might
provide insight into whether the ACT or its metastases will respond
to mitotane.

Ketoconazole
Ketoconazole is a synthetic imidazole derivative which was

originally developed as an antifungal agent. Ketoconazole inhibits
multiple cytochrome P450 enzymes, including CYP11A1, 17α-
hydroxylase/17,20-lyase (CYP17) and CYP11B1 (Fig. 1) (Creemers
et al., 2015), thereby resulting in inhibition of cortisol production.
Ketoconazole has been used for the treatment of hypercortisolism
in dogs, but the percentage of non-responders was relatively large
(approximately 25%) and it caused more adverse effects than
trilostane (Galac et al., 2010a; Herrtage and Ramsey, 2012).

Levoketoconazole is an enantiomer of ketoconazole that has
been purified from racemic ketoconazole, and has been reported to
be a more potent inhibitor of cortisol production with reduced
hepatotoxicity as compared to ketoconazole in vitro and in vivo in
humans (Fleseriu and Castinetti, 2016; Ciato et al., 2017). It is
currently under development in a phase III clinical trial in humans
(Fleseriu and Castinetti, 2016; Ciato et al., 2017).

Future prospects – adrenal-targeting drugs

The main downsides of current medical adrenal-targeting
treatment options include low selectivity for the glucocorticoid
pathway, the possibility of overdosage, and occurrence of
disruptive changes in the adrenal cortex, which necessitate careful
dosing schemes and regular check-ups. In this section we provide
an overview of interesting candidates that might prove to have
superior selectivity, effectivity and/or tolerability when compared
to currently available treatment options.

Melanocortin 2 receptor antagonists
The melanocortin 2 receptor (MC2R) is the receptor for ACTH

and is expressed only in the adrenal cortex. It is a member of the
melanocortin receptor subfamily of type 1 Gsα-protein-coupled
receptors, and is highly selective for ACTH (Mountjoy et al.,1992). A
selective antagonist of the MC2R could therefore have great
potential in the medical treatment of PDH, since it would directly
block the excessive ACTH stimulation without having other (intra-
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adrenal) effects. The selectivity of an MC2R antagonist for the
MC2R is crucial, since inadvertently antagonizing or agonizing any
of the other melanocortin receptors could result in multiple
adverse effects (Clark et al., 2016; Ghaddhab et al., 2017). A recent
study showed that two ACTH analogs, GPS1573 and GPS1574, are
potent antagonists of the MC2R in vitro. However, these peptides
also had some agonistic and/or antagonistic effects on other
melanocortin receptors, and subsequent studies in rats showed
disappointing results in vivo (Bouw et al., 2014; Nensey et al.,
2016). Further developments might eventually generate a selective
MC2R antagonist that could be used as a medical treatment option
in dogs with PDH.

Abiraterone acetate
Recently, we showed that CYP17 is the only steroidogenic

enzyme that is required for cortisol but not for aldosterone
production in dogs (Sanders et al., 2016). Selective inhibition of
CYP17 could therefore be an interesting treatment approach in
hypercortisolism, since this would inhibit the production of
cortisol but not that of aldosterone. One known CYP17 inhibitor
is abiraterone acetate (Fig. 1), which is approved in the USA for use
in human patients with castration-resistant prostate cancer to
inhibit androgen (precursor) production by the adrenal glands
(Gomez et al., 2015). Abiraterone acetate also inadvertently
induced hypocortisolism in these patients (Vasaitis et al., 2011).
We are currently in the process of testing the effects of abiraterone
acetate on canine adrenocortical cells in vitro, and have so far
obtained promising results on inhibition of cortisol production (De
Wit et al., 2018).

Steroidogenic factor-1 (SF-1) inverse agonists
Steroidogenic factor-1 is an orphan nuclear receptor that

regulates adrenal development, growth, and steroidogenesis
(Schimmer and White, 2010). ACTH stimulates the transcriptional
activity of SF-1, which increases the transcription of genes that
encode steroidogenic enzymes (Chen et al., 2005). Increased SF-1
activity is therefore an important characteristic in dogs with PDH.
Moreover, earlier work by our group showed that SF-1 mRNA
expression was significantly higher in ACTs of dogs in which the
hypercortisolism recurred within 2.5 years after adrenalectomy,
than in ACTs of dogs without recurrence (Galac et al., 2014). We
recently showed that one SF-1 inverse agonist compound,
compound #31, is an effective inhibitor of cortisol production
and SF-1 target gene expression in canine adrenocortical cells in
vitro (Sanders et al., 2018). Inhibition of SF-1 activity therefore
shows much promise as a possible future treatment approach in
both PDH and ACTs.

Sterol-o-acyl-transferase 1 inhibitors
As mentioned previously, one recently discovered mechanism

of action of mitotane is that it inhibits SOAT1 and thereby increases
the amount of free cholesterol, which is toxic for the cell. More
selective SOAT1 inhibitors that have the same adrenocorticolytic
effects as mitotane but with fewer off-target adverse effects could
possibly be interesting for a targeted treatment approach in dogs
with non-operable or metastasized ACTs. In the early 1990s,
researchers described that ATR-101, a SOAT1 inhibitor, potently
induced selective adrenocorticolysis in healthy beagle dogs
(Dominick et al., 1993). ATR-101 recently regained interest and
is currently being studied as a possible future treatment for
humans with ACCs (Naing et al., 2015; LaPensee et al., 2016; Burns
and Kerppola, 2017). Because the effect of ATR-101 is particularly
apparent in dogs (Kroiss and Fassnacht, 2016), this could be an
interesting treatment approach in dogs with ACCs.
Pharmacotherapy – pituitary-targeting drugs

Medical management of PDH would ideally target the pituitary
tumor. Because dopamine (DA) and somatostatin (SST) both have
inhibitory functions in the pituitary gland, the main focus in
research on pituitary-targeting drugs are three receptor subtypes:
DA receptor subtype 2 (DRD2), and SST receptors subtype 2 (SSTR2)
and subtype 5 (SSTR5). In canine corticotroph adenomas, the
receptor subtype that is mainly expressed is SSTR2, while DRD2
and particularly SSTR5 are expressed at much lower levels (De
Bruin et al., 2008). When comparing treatments between dogs and
humans, it’s important to realize that this distribution is somewhat
different in human corticotroph adenomas, where the main
receptors are SSTR5 and DRD2 (De Bruin et al., 2008). There are
currently no pituitary-targeted drugs that are registered for use in
canine PDH.

Cabergoline
Cabergoline is a DA agonist that binds to the DRD2. In line with

the moderate DRD2 expression in canine corticotroph adenomas,
canine corticotroph cells responded only modestly to cabergoline
in vitro (De Bruin et al., 2008). However, in vivo experiments
showed that 43% of dogs with PDH responded well to treatment
with cabergoline, with fewer clinical signs, smaller pituitary
adenomas and lower UCCRs (Castillo et al., 2008). This observed
difference in efficacy could possibly be explained by the different
durations of treatment (De Bruin et al., 2008).

Pasireotide
Pasireotide (SOM230) is a multiligand SST analog that binds to

the SST receptors 1, 2, 3 and 5 (Weckbecker et al., 2002). In 20 dogs
with PDH, pasireotide decreased the plasma ACTH concentration
and improved the clinical signs, while no severe adverse effects
were observed (Castillo et al., 2011). In a recent study, pasireotide
was administered to dogs with macroadenomas that were also
treated with trilostane or mitotane. The pituitary tumor volume
decreased in six out of nine dogs, and increased in the remaining
three, while no neurologic signs or grossly apparent adverse effects
were observed (Lottati and Bruyette, 2018). In humans, the efficacy
of pasireotide has been demonstrated, and it has been approved
both in Europe and in the USA for the second-line treatment of
patients with PDH when surgery has failed or is not an option
(Colao et al., 2012; Simeoli et al., 2015). Due to their expression
profile, a SST analog that has higher affinity for the SST2 than
pasireotide could prove to be more effective in dogs, as also
demonstrated during in vitro experiments (De Bruin et al., 2008).

Octreotide
Octreotide is a SST analog that binds to SSTR2 with high affinity,

and to SSTR3 and SSTR5 with moderate affinity (Cuevas-Ramos and
Fleseriu, 2014). In line with the high SSTR2 expression in canine
corticotroph adenomas, octreotide significantly inhibited ACTH
release in canine corticotroph cells in vitro, and did so more
effectively than either pasireotide or cabergoline (De Bruin et al.,
2008). In humans, octreotide can cause gastrointestinal side
effects, but this is less well documented for dogs. For other
indications such as insulinoma, octreotide is sometimes used as
adjunctive treatment to inhibit insulin secretion. However, its
short duration time after subcutaneous injection limits its use
(Robben et al., 2006; Plumb, 2011). Recently, a new technology has
been developed that increases the absorption of drug molecules
through transient opening of the tight junctions of the gut
epithelium, which can achieve therapeutic octreotide levels after
oral ingestion in humans (Biermasz, 2017). An advantage of oral
octreotide could be the lack of injection-related side effects, but
there is a need for a strict twice daily fasted dosing regimen in
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humans (Biermasz, 2017). Due to the high SSTR2 expression in
canine corticotroph tumors, the availability of oral octreotide
treatment could be an interesting treatment approach for dogs
with PDH.

Dopamine/somatostatin chimeras
Although the effectivity of individual DA or SST analogs has

been proven in the treatment of human pituitary adenomas, a
considerable percentage of patients respond poorly or not at all to
these treatments. An interesting new approach that is currently
being developed is the use of DA/SST chimeras, which can cause
SST and DA receptors to heterodimerize and generate a more
effective hybrid receptor (Jaquet et al., 2005). This treatment
approach seems very promising, and developments to produce an
effective SSTR2/SSTR5/DRD2 chimera are ongoing (Culler, 2011;
Ibáñez-Costa et al., 2017).

Retinoic acid
To produce ACTH, the precursor molecule proopiomelanocortin

(POMC) is cleaved into multiple peptide hormones. The gene
expression of POMC is regulated by many factors, including the
transcription factors AP-1 and Nur77. Retinoic acid is an agent that
regulates multiple cellular processes, including reducing the
binding of these transcription factors to their DNA binding sites,
ultimately inhibiting ACTH secretion. In 22 dogs treated with
retinoic acid, investigators reported a decreased plasma ACTH
concentration, decreased UCCR, resolved clinical signs, and
decreased pituitary size (Castillo et al., 2006). In humans, adverse
effects such as teratogenicity, mucocutaneous toxicity, defects in
liver function and severe photosensitivity have been reported,
which might be reduced by limiting the exposure to light (Ciato
et al., 2017). A recent study showed that 9-cis RA, an active isomer
of retinoic acid, activates the DRD2 promoter and thereby
sensitizes pituitary adenomas for dopaminergic treatments (Occhi
et al., 2014). Additionally, a synthetic retinoid analog named
bexarotene has been reported to induce hypopituitarism (Atmaca
et al., 2014; Occhi et al., 2014), and a phase I and II clinical trial has
been initiated in humans.1

Conclusions

Differentiating between PDH and a cortisol-secreting ACT is
essential when choosing the optimal treatment strategy. Surgical
removal of the causal tumor is a good option in both cases, or
radiotherapy in case of PDH, since these are currently the only
treatment options with the potential to eliminate the source of
either ACTH or autonomous cortisol excess. However, these
options are not without risk, not generally available and not
suitable for every patient. Pharmacotherapy is therefore often
used, with trilostane advised in dogs with PDH, and either
trilostane or mitotane in dogs with an ACT. Interesting new drugs
are currently being developed and have great potential as future
treatment options for canine hypercortisolism. A more selective
and preferably also tumor-targeted approach could have many
advantages for both PDH and ACTs.
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