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Investigation of common, low-frequency and rare
genome-wide variation in anorexia nervosa
LM Huckins1,2,228, K Hatzikotoulas1,228, L Southam1, LM Thornton3, J Steinberg1, F Aguilera-McKay1, J Treasure4, U Schmidt4,
C Gunasinghe4,5, A Romero4,5, C Curtis4,5, D Rhodes4,5, J Moens4,5, G Kalsi4,5, D Dempster4,5, R Leung4,5, A Keohane4,5, R Burghardt6,
S Ehrlich7,8, J Hebebrand9, A Hinney9, A Ludolph10, E Walton11,12, P Deloukas1, A Hofman13, A Palotie14,15, P Palta15, FJA van Rooij13,
K Stirrups1, R Adan16, C Boni17, R Cone18, G Dedoussis19, E van Furth20, F Gonidakis21, P Gorwood17, J Hudson22, J Kaprio15, M Kas23,
A Keski-Rahonen24, K Kiezebrink25, G-P Knudsen26, MCT Slof-Op ’t Landt20, M Maj27, AM Monteleone27, P Monteleone28, AH Raevuori24,
T Reichborn-Kjennerud29, F Tozzi30, A Tsitsika31, A van Elburg32, Eating Disorder Working Group of the Psychiatric Genomics
Consortium229, DA Collier33, PF Sullivan34,35, G Breen36, CM Bulik3,35,230 and E Zeggini1,230

Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and
persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We
performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin
and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare
variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings
reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML
(P= 9.89 × 10− 6), and rs7700147, an intergenic variant (P= 2.93 × 10− 5). No low-frequency variant associations were identified at
genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes,
suggesting that there may be no AN loci in this genomic search space with large effect sizes.
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INTRODUCTION
Family studies of anorexia nervosa (AN) have consistently shown
that first-degree relatives of AN sufferers have an increased risk of
AN, compared with relatives of unaffected individuals.1–4 Twin
studies have estimated the heritability of AN at 56%,5 with the

majority of remaining variance in liability attributed to non-shared
environmental factors (38%).5

Three genome-wide association studies (GWAS) of AN have
been conducted to date. The first comprised 1033 AN cases
collected as part of the Price Foundation Genetic Study of
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Anorexia Nervosa and 3733 pediatric controls from the Children’s
Hospital of Philadelphia.6 This study focused on common variation
and identified 11 suggestive variants (Po1 × 10− 5). None reached
genome-wide significance in the primary analysis, although one
variant (rs4479806) approached genome-wide significance in an
associated secondary analysis. The second study (comprising 2907
cases and 14 860 controls) was carried out by the Genetic
Consortium for AN, as part of the Wellcome Trust Case Control
Consortium 3 (WTCCC3) effort.7 This study identified two
suggestively associated variants (Po1 × 10− 5). Notably, signals
at Po1 × 10− 5 were significantly more likely to have the same
direction of effect in the replication as in the discovery cohorts
(P= 4× 10− 6), which implies that true signals exist within this data
set, but that the study was underpowered for detection. Recently,
a third study-meta-analyzed samples from both of these studies,
as well as some novel cases, comprising a total of 3495 cases and
10 982 controls. To our knowledge, this study identified the first
genome-wide significant locus for AN (index variant rs4622308,
P= 4.3 × 10− 9).8

Both previous studies focused on common variation. Here, we
conducted, to our knowledge, the first association study that also
considered low frequency (minor allele frequency (MAF)o5%)
and rare exonic variants in addition to common variation.

MATERIALS AND METHODS
Sample collections
We conducted a GWAS across nine discovery data sets (the majority
overlapping with Genetic Consortium for AN, as part of the Wellcome Trust
Case Control Consortium 3 (WTCCC3/WTCCC3 samples), resulting in a total
of 2158 cases and 15 485 ancestrally matched controls (Table 1 and
Figure 1). All AN cases were female. AN diagnosis was made via
semistructured or structured interview, or population assessment
strategy using Diagnostic and Statistical Manual of Mental Disorders
(DSM)-IV criteria for AN. The amenorrhea criterion was not applied, as this
has been shown not to be diagnostically relevant9 and has since been
dropped from DSM-5.10,11 All cases met criteria for lifetime AN.
Exclusion criteria included confounding medical diagnoses, for example,

psychotic conditions, developmental delay or medical or neurological
conditions causing weight loss.
Ancestry-matched controls were selected for each AN case set. Both

male and female controls were used (Table 1). These were obtained either
from existing collaborations, or through genotyping repository (dbGaP)
access. Each site obtained ethical approval from the local ethics
committee, and all participants provided written informed consent in
accordance with the Declaration of Helsinki.

Table 1. Final numbers of cases and controls after QC

Population (abbreviation) Cases Controls (% female) Control source AN population prevalence

Germany (DE) 664 2701 (51.8) Pre-existing study 0.93% (11)
Finland (FIN) 136 5082 (54.7) Pre-existing study 2.2% (12)
France (FR) 215 208 (75.5) Pre-existing study 0.93% (11)
Greece (GR) 78 408 (58.1) In-house —

Italy (ITA) 103 48 (100) In-house 1.3% (13)
Netherlands (NL) 290 3071 (49.7) In-house; pre-existing study 1.3% (14)
Norway (NO) 80 94 (100) In-house 3.0% (15)
UK 217 3000 (56.7) Pre-existing studya 0.64% (16)
USA 375 873 (50.6) Obtained from dbGaP 0.9% (17)
Total 2158 15 485

Abbreviations: AN, anorexia nervosa; QC, quality control. aIn all, 3000 UK controls were randomly selected from the 9828 samples, genotyped as part of the UK
household longitudinal survey. The UK Household Longitudinal Study is led by the Institute for Social and Economic Research at the University of Essex and
funded by the Economic and Social Research Council. The survey was conducted by NatCen and the genome-wide scan data were analyzed and deposited by
the Wellcome Trust Sanger Institute. Information on how to access the data can be found on the Understanding Society website https://www.
understandingsociety.ac.uk/.
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Figure 1. Geographical distribution of samples across Europe. (a)
Distribution of cases across Europe; 375 USA cases are not shown in
this diagram. (b) Distribution of controls across Europe; 873 USA
controls are not shown in this diagram.
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Population prevalence of AN in these populations ranged from 0.4 to 3%
(refs 12–18; Table 1).

Genotyping
Cases were genotyped on either the ‘Infinium HumanCoreExome-12
BeadChip Kit (Illumina, San Diego, CA, USA),19 or the ‘Infinium
HumanCoreExome-24 BeadChip Kit (Illumina),20 at the Wellcome Trust
Sanger Institute. Where possible, controls were selected from existing
studies with matching genotyping platforms to cases. Three control
cohorts had been genotyped on the ‘Infinium HumanExome-12 BeadChip
Kit’ (Table 1). To ameliorate potential confounding due to chip effects,21

chip-type quality control (QC) was carried out, and ~ 14 000 single-
nucleotide polymorphisms (SNPs) removed.

Quality control
Genotypes were called using the GenCall22 and Zcall23 algorithms. At each
of these genotype-calling stages, QC was performed for each population
and for cases and controls separately (Supplementary Table 1). The final
number of SNPs included in the analyses is given in Table 2.

Controlling for population stratification
In order to account for population stratification, a principal components
analysis was carried out for each cohort separately using the smartpca
software.24

Population outliers were identified by merging each population with
central European 1000 Genomes data.25

Variance explained by each PC was plotted for each population. In order
to be both conservative and consistent across populations, the first 10
principal components were included as covariates in the association
testing.

Association testing
Unbalanced case–control ratios can lead to anticonservative P-value
estimates.26 This study includes a number of unbalanced strata (Table 1).
The likelihood ratio test has been shown to have low type-I error rate
across both balanced and unbalanced cohorts,26 and was chosen as the
association test for this study.
A lower cutoff of minor allele count of 5 and MAF of 0.1% was used.

Association testing was performed for each cohort separately using
SNPtest.27 In the cohorts with mixed sex controls (all except Italy and
Norway), sex was also included as a covariate.
The standard genome-wide significance threshold of P⩽ 5× 10− 8 was

applied.

Meta-analysis
Summary statistics across cohort were meta-analyzed using an inverse
variance-based test in METAL.28 In order to test the heterogeneity of the
results, Cochran’s Q and the I2 statistic were computed.

Assigning variants to genes
Variants identified associated at P⩽ 1× 10− 4 were assigned to genes using
Ensembl (release 83; Ensembl Genome Browser).29,30 For each variant, all
predicted consequences (for example, missense, non-synonymous, and so
on) and associated gene transcripts were downloaded and compared. Each
variant was associated with only one predicted consequence and one
Ensembl gene ID (Ensembl Genome Browser).29

Cluster plot checking
Cluster plots were created for all SNPs reaching P⩽ 1 × 10− 4 in any analysis
(cohort-specific or meta-analysis) using ScatterShot.31 SNPs were visually
inspected for each cohort, and for cases and controls separately. In
instances where multiple cohorts were merged (for example, UK cases),
cluster plots were checked separately for each original cohort.

Burden testing
The potential aggregation of rare variants in cases compared with controls
was investigated using a gene-based approach. Burden tests were carried
out using the Zeggini–Morris burden test32 as implemented in rvtests
(Rvtests - Genome Analysis Wiki).
All SNPs with MAF between 0.1 and 5% were included; similar to the

single-point analysis, a lower bound of minor allele count = 5 was used. A
list of genes and locations was obtained from the UCSC genome browser
(Table Browser: www.genome.ucsc.edu). All genes with at least two
qualifying variants in at least two populations were used, resulting in a
total of 9083 genes.
Burden tests were carried out for each population individually, and the

results meta-analyzed using Stouffer’s method, weighted according to
effective sample size.33

The genome-wide significance threshold for burden testing is computed
in a similar manner to that for single-point analysis, using Bonferroni
correction for the number of genes tested. This results in a genome-wide
significance threshold of 5.5 × 10− 6.

Pathway analysis
One of the key motivations of studying complex psychiatric disorders such
as AN is the desire to unearth biological pathways underlying disease
development. Pathway analysis was performed using summary statistics
from the meta-analysis for the full data set.
Four pathway databases were used: the Kyoto Encyclopedia of Genes

and Genomes (KEGG),34,35 the Reactome pathway database (REACTOME),36

PANTHER pathway (PANTHER)37,38 and the Gene Ontology database
(GO).39,40 These were curated to remove redundancy, resulting in a total
set of 1836 pathways.
The analysis was run once on a merged set of 235 KEGG,34,35

REACTOME36 and PANTHER37,38 pathways, and once for the 1601 GO
pathways.39,40

Pathway analysis was carried out using MAGMA.41 MAGMA was selected
for its ability to deal robustly with linkage disequilibrium (LD) between
markers, correct for gene length and deal accurately with rare variants. To
our knowledge, MAGMA was first used to annotate SNPs to genes. This
analysis was repeated twice. In the first analysis, variants were assigned
only to the gene they were in, resulting in 68.73% of the variants being
assigned to 13 400 genes. In the second analysis, variants were assigned
allowing a 20 kb window in both directions from the gene. This procedure
included 75.44% of variants across 18 118 genes.
SNP P-values were used to create gene scores. The European panel of

the 1000 Genomes project was used as a reference set to estimate LD
between SNPs. The analysis also requires the sample size of the study to be
specified; because of the unbalanced nature of the study, the effective
sample sizes were given here.
Gene P-values were calculated using MAGMA.41 The top 10% of SNPs

per gene were used. Significance was defined using a false discovery rate
of 5%.42

There is a risk when assigning SNPs to genes using MAGMA that some
highly associated SNP might be assigned to multiple overlapping genes,
and thus distort pathway results. SNP–gene assignments were checked for
all pathways that reached false discovery rate-corrected significance. No
instances of SNPs being assigned to multiple genes were found across
these pathways.

Table 2. Final number of SNPs per population

Population Final number of SNPs

DE 234 736
FR 524 954
FIN 524 786
GR 517 910
ITA 522 430
NL 229 136
NO 513 082
UK 510 200
USA 235 975

Abbreviations: DE, Germany; FIN, Finland; FR, France; GR, Greece; ITA, Italy;
NL, Netherlands; NO, Norway; SNP, single-nucleotide polymorphism.

Low-frequency and rare variation in anorexia nervosa
LM Huckins et al

1171

Molecular Psychiatry (2018), 1169 – 1180

http://www.genome.ucsc.edu


Replication
SNPs reaching Po1× 10− 4 in the discovery stage were prioritized for
replication. In total, 16 SNPs were selected.
Replication was carried out using two data sets: one existing in silico data

set and one set for de novo genotyping. The in silico data set came from an
existing GWAS of AN,7 genotyped on the Illumina HumanHap610 platform.
This data set included 1033 cases and 3733 controls. All cases included in
this study were female. Controls were both male and female. The de novo
replication cohort consisted of 266 self-volunteered female UK cases,
collected through the charity Charlotte’s Helix (www.charlotteshelix.net).
All participants were adults and had been diagnosed with AN by their
clinician. In addition, all participants completed an online questionnaire
based on the Structured Clinical Interview43 for the Diagnostic and
Statistical Manual of Mental Disorders-IV Module H. The Structured Clinical
Interview has been used extensively in epidemiological investigations. The
Structured Clinical Interview eating disorder module was modified to
capture information on lifetime history of eating disorders including AN,
and includes questions on body mass index, age of onset, and experience
of eating disorders. DNA from the saliva samples was extracted using
standard protocols and was quantified using pico-green. Samples were
genotyped on the Infinium HumanExome 12 Beadchip, genotypes were
called using GenCall and Zcall algorithms and stringent QC was performed
pre- and post-call. In all, 1500 ancestry-matched controls (55% female)
were obtained from the UK Household Longitudinal Study.
De novo genotyping was performed using the iPLEX Assay and the

MassARRAY System (Agena Bioscience, San Diego, CA, USA) (formerly
Sequenom). Sample and SNP QC were carried out within each replication
data set, using an 80% sample call rate and a 90% SNP call rate threshold,
and a Hardy–Weinberg equilibrium threshold of 10− 4. Five samples and
one SNP were removed using these criteria.
Post-QC, 15 SNPs and 261 de novo cases remained. The de novo

replication analysis therefore included 15 SNPs, 261 cases and 1500
controls. Genotypes for 12/16 SNPs were available in the in silico
replication cohort, across 1033 in silico cases and 3733 controls.

Expression analysis
Gene expression data were obtained from the Genotype-Tissue Expression
(GTex project) web portal, data release version 6 (dbGap Accession
phs000424.v6.p1).44–46

Power
The sample sizes used in this study are small in the context of other
psychiatric phenotypes. Power to identify genome-wide significant signals
was calculated using Quanto.47,48 This study is adequately powered to
detect low-frequency alleles with large effect sizes and common alleles
with substantial effect sizes (80% power to detect common alleles with
odds ratio (OR)41.5; low-frequency alleles with OR42, Supplementary
Figure 1).

Data availability
Genotypes of European cases included in this study are publicly available
through the European Genome-Phenome Archive (EGA), under accession
number EGAS00001000913, data set EGAD00010001043, with the excep-
tion of German and Dutch genotypes. Genotypes for cases from the United
States of America may be obtained through dbGaP. Summary statistics are
available for download from the PGC website (https://www.med.unc.edu/
pgc/results-and-downloads).

RESULTS
GWAS and replication meta-analyses
Association testing was performed separately for each of the nine
discovery cohorts within this study (2158 cases, 15 485 controls),
and the results were meta-analyzed. No inflation was seen in the QQ
plot (Figure 2b). Six variants were identified with Po1×10−5, and
nine additional variants with Po1×10−4 (Figure 2a and Supple-
mentary Table 5). Of these, one variant approached genome-wide
significance (exm860538/rs199965409, P=9.97×10−8), although
this variant is polymorphic only in the Finnish population within
these data sets, in the Exome Aggregation Consortium49 and in the

1000 Genomes project panel data.25 Variants with Po1×10− 4

were taken forward for replication.
In total, 16 independent variants were selected for follow-up in

one in silico cohort (1033 cases, 3733 controls) and one de novo
genotyping cohort (261 cases, 15 000 controls). Of these, five were
low frequency (MAF ~ 1%) and 11 were common frequency
variants.
Twelve signals passed QC and were polymorphic in the de novo

genotyping cohort, of which four were nominally significant
(Supplementary Table 6; Po0.05, minimum P= 0.001). Eight of
twelve SNPs had the same direction of effect as in the discovery
GWAS, including three of the four nominally significant variants.
Ten of the sixteen variants were present in the in silico cohort, of

which six had the same direction of effect as in the discovery
cohort, and one of these six was associated with P= 0.02
(Supplementary Table 7).

Figure 2. Results from discovery-phase meta-analyses. (a) Manhat-
tan plot for meta-analyzed P-values, across all nine populations.
(b) QQ plot (λ= 0.94).
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On the basis of the number of SNPs taken forward for replication,
we would not expect to see any variants reaching Po0.05 by chance.
We also see a higher concordance in direction of effect between
discovery and replication cohorts (7/10 in the in silico analysis, 8/12 in
the de novo analysis) than might be expected by chance; however,
the number of SNPs tested was too small to achieve statistical
significance (P=0.17, P=0.19, one-sided binomial test).
Five SNPs had the same direction of effect across the meta-

analyzed discovery cohort and both replication cohorts. No SNPs
reached genome-wide significance in the final global meta-
analysis. Two variants were associated with the same direction of
effect across discovery and replication cohorts, and reached
Po0.05 in at least one replication cohort (Table 3).

rs10791286 was associated with risk for AN across all discovery
and replication cohorts (Figure 3a, global P= 9.89 × 10− 6, OR
0.84, 95% confidence interval 0.78–0.91). It resides in intron one of
the opioid-binding protein/cell adhesion molecule-like (OPCML)
gene. Data from the CommonMind Consortium project indicate
that this variant is an eQTL for OPCML in the dorsolateral
prefrontal cortex, and is associated with reduced expression
(P= 0.014 after correction for multiple testing).50 OPCML has a role
in opioid-binding and opioid receptor function51,52 and is
expressed in a range of neuronal tissues, primarily the cerebellum
and cerebellar hemispheres.44–46 OPCML has previous associations
with body mass index,53 waist–hip ratio,54 visceral fat distri-
bution55 and alcohol dependence,56 among other phenotypes.

Table 3. Global meta-analysis results

Chr Pos Id Associated
gene

EA NEA EAF OR OR_95L OR_95U P Het_chisq N_st (discovery/
replication)

2 195032811 kgp3754622
(rs75245228)

— a g 0.052 0.81 0.69 0.96 0.016 12.739 8 (6/2)

11 133096498 rs10791286 OPCML a g 0.33 0.84 0.78 0.91 9.40× 10− 6 4.228 8 (6/2)
10 53754335 rs1904050 PRKG1 a g 0.20 0.87 0.79 0.95 0.0018 15.033 7 (5/2)
11 125655014 rs536968 PATE3 a g 0.12 0.88 0.79 0.98 0.023 12.082 8 (6/2)
10 122659625 exm860538

(rs199965409)
WDR11 a g o0.01 10.42 4.40 24.69 9.97× 10− 8 0 1 (1/0)

4 157167891 rs7700147 ANKRD50 t c 0.21 1.20 1.10 1.30 2.79× 10− 5 9.093 8 (6/2)
6 34826040 exm540361

(rs200155060)
UHRF1BP1 a g o0.01 0.18 0.08 0.37 6.47× 10− 6 0 1 (1/0)

6 147840595 rs669830 SAMD5 t g 0.26 1.11 1.01 1.21 0.029 13.174 5 (3/2)
21 47963149 rs11701571 DIP2A a g 0.24 1.11 1.02 1.21 0.011 12.185 6 (4/2)
7 49620107 rs10264162 VWC2 t g 0.43 0.91 0.84 0.97 0.0068 23.105 8 (6/2)
1 197404688 exm134618

(rs142090517)
CRB1 a g o0.01 11.97 4.24 33.81 2.76× 10− 6 0 1 (1/0)

3 150748151 rs1703802 CLRN1-AS1 t g 0.12 0.84 0.75 0.93 0.00085 7.007 8 (6/2)
17 31082572 exm1310689

(rs145290255)
MYO1D t c 0.0011 0.02 0.00 0.10 1.74× 10− 6 0.276 2 (1/1)

4 80949829 exm-rs4333130 ANTRX2 t c 0.38 0.89 0.83 0.94 7.14× 10− 5 7.526 10 (8/2)
4 26482021 rs2854030 CCKAR t c 0.31 0.88 0.78 0.98 0.021 23.181 8 (6/2)

Abbreviations: CHR, chromosome; EA, effect allele; EAF, effect allele frequency; I2, measure of heterogeneity; NEA, non-effect allele; N_st, number of
contributing studies; OR, odds ratio; OR_ 95L, lower 95% confidence interval; OR_95U, upper 95% confidence interval; P, P-value; POS, position in hg18. Gene
names given are best-redicted consequence from ensembl,24,25 where none is available; the nearest gene is given instead in bold.

Figure 3. Odds ratios for two notable single-nucleotide polymorphisms (SNPs) across discovery and replication cohorts. (a) rs10791286 and (b)
rs7700147.
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The variant itself has no previously reported associations in any
phenotype.
rs7700147 was associated with AN across all discovery and

replication cohorts (global P= 2.93 × 10− 5, OR 1.2, 95% confidence
interval: 1.1, 1.3; Figure 3b). It is an intergenic variant and has no
previous associations.

Burden testing
Burden testing allows the contribution of multiple low-frequency
variants to be aggregated across discrete units (for example,
genes). Three genes were identified with Po1 × 10− 4, although
none reached genome-wide significance (Table 4). A further five
genes reached Po1 × 10− 4, but passed inclusion thresholds in
one population only (Table 4), and as such are likely to be false-
positives.
FAM96A has previously been associated with low-density

lipoprotein levels and cholesterol57 and is primarily expressed in
the liver, lymphocytes and adrenal gland.44–46 KIF7 has no
previous phenotype associations and has generally low expression
across a wide range of tissues.44–46 C6orf10 has previous
associations with visceral fat55 and childhood obesity,58 as well
as a number of autoimmune disorders.59–64 C6orf10 is expressed in
testes44–46 (see Discussion).

Biological pathways associated with AN
Allowing a 20 kb window for SNP to gene assignment identified
two pathways significant at qo0.05: ‘Phospholipase activator’ and
‘GTP-rho binding’ (Table 5).
Using the strictest assignment method of SNPs to genes for the

full data set, no pathways were significant after multiple-testing
correction. The highest ranking pathway was ‘Calcium ion import’
(q-value = 0.069).

DISCUSSION
To our knowledge, this work constitutes the first examination of
low frequency (o1% MAF) and rare exonic variation in AN in the
context of a genome-wide scan. No low frequency or rare variant
replicating associations were identified, although this study was

well-powered to detect low-frequency variants with large effect
sizes (Supplementary Figure 1). Although polymorphic only in the
Finnish population, rs199965409 approached genome-wide sig-
nificance. It is a non-synonymous variant with a MAF of 0.5% in
the Finnish population.65,66 The variant is within the WDR11 gene,
which is associated with hypogonadotropic hypogonadism 14
with or without anosmia.67–69 The clinical features of the disease,
such as delayed sexual maturation,68,70,71 suggest that it may
be misdiagnosed or comorbid with AN, which may explain its
association in the analysis.
Two notable, but common-frequency, signals were identified

with consistent direction of effect across discovery and replication
cohorts (rs10791286 and rs7700147). These variants had been
removed from the first Genetic Consortium for AN, as part of the
Wellcome Trust Case Control Consortium 3 (WTCCC3) AN GWAS
because of poor cluster plots; therefore, we were not able to
compare effect sizes between studies. Burden tests to investigate
an aggregation of rare variants within genes rendered three
potentially interesting genes, which require further replication.
Studying rare variation presents a range of challenges. The

sample sizes required to identify rare variants with modest effect
sizes are substantially larger than for common variants. Further,
the MAF spectra seen across trans-European populations differ
more for rare variants than for common variants, especially when
considering genetically distant populations such as Finland
and Italy.25 This can reduce the power to detect a signal and
achieve replication. There are also many technical challenges to
consider when conducting a rare variant study; for example, the
inflation seen in association tests at low minor allele count26

and the increased error rate of calling algorithms when applied to
rare variants22,23,72 We mitigated against the latter challenge by
comprehensively examining cluster plots of 410 000 variants that
surpassed a P-value threshold of Po1 × 10− 4 in any analysis.
Of the genes potentially implicated through the single-point

and burden test analyses, three have associations with metabolic
and anthropometric phenotypes (OPCML, C6orf10 and FAM96a).
OPCML has previously been associated with waist-to-hip ratio,
while C6orf10 has associations with childhood obesity.58 FAM96A
has been shown to be associated with metabolic phenotypes such
as low-density lipoprotein and cholesterol levels. The associations
of these three genes with metabolic and obesity-related
phenotypes may indicate some roles for metabolic processes in
AN development, although pathway analysis did not corroborate
this observation. A growing body of evidence suggests involve-
ment of metabolic processes in AN development, including
appetite-satiety pathways, gut motility and gastric-emptying
times.73–79 For example, application of the LD Score regression
method revealed significant negative genetic correlations
between AN and body mass index, insulin, glucose, and lipid
phenotypes and significant positive genetic correlations between
AN and HDL cholesterol phenotypes.1,80

Notably, C6orf10 has been previously associated with childhood
obesity.58 This finding is particularly interesting for a number of
reasons. First, appetite and satiety dysregulation have been shown
to be central to the development of childhood obesity.81,82 In
particular, reduced satiety responsiveness (experiencing an urge
to eat despite internal ‘full’ signals) and heightened responsive-
ness to food have a role in increased adiposity. Aberrant responses
to satiety signals and reduced responsiveness to food are also
operative in AN, suggesting shared biological dysregulation
between the two conditions.83,84 Children with increased adiposity
are at higher risk of eating disorders85 as they are more likely to
engage in high-risk behaviors such as repeated and excessive
dieting and erratic or overly rigid eating patterns.85–89 These
children are also at higher risk of being bullied about their weight,
which may increase weight and shape concerns, body dissatisfac-
tion and a host of related risk factors for AN development.85–92

Table 4. Burden test results

Genes P-value Populations

KIF7 7.85 × 10− 5 DE, FIN, NL, UK, USA
FAM96A 6.82 × 10− 5 GR, UK
C6orf10 8.32 × 10− 5 DE, FIN, FR, GR, ITA, NL, NO, UK USA
ATP2C1 6.03 × 10− 9 ITA
SPINK6 6.03 × 10− 9 ITA
RP11-550C4.6 6.03 × 10− 9 ITA
C15orf57 6.03 × 10− 9 ITA
C11orf68 1.75 × 10− 10 NL

Abbreviations: DE, Germany; FIN, Finland; FR, France; GR, Greece; ITA, Italy;
NL, Netherlands; NO, Norway.

Table 5. Pathway analysis results for full data set

Window Pathway Identifier P-value q-value

± 20 kb Phospholipase activator GO:0016004 6.6 × 10− 6 0.011
GTP-rho binding GO:0017049 1.9 × 10− 5 0.03

0 Calcium ion import GO:0070509 4.3 × 10− 5 0.069

Abbreviation: GO, Gene Ontology database.

Low-frequency and rare variation in anorexia nervosa
LM Huckins et al

1174

Molecular Psychiatry (2018), 1169 – 1180



The most significant pathway analysis association was with
phospholipase activator pathways, which act to catalyze the
hydrolysis of glycerophospholipids (GO:0016004 phospholipase
activator activity). Phospholipase has a central role in the
serotonin-triggered metabolism of arachidonic acid in the
brain,93–95 which is a common target for antidepressants94,95 such
as lithium, carbamazepine (Tegretol), valproate and lamotrigine
(Lamictal).96 These antidepressants have been shown to have
varying efficacy in treating AN.97–99 Lithium has been used in
treatment of AN (with varying success),97–99 while carbamazepine
and valproate have been successfully used in individuals with
complex comorbid eating disorder phenotypes.100–104 Finally,
lamotrigine has been shown to significantly improve eating
disorder and mood symptoms in individuals with binge-eating
and purging behaviors.105

The second pathway identified as significantly associated with
AN was GTP-rho binding. This pathway has a role in brain
development, and is regulated by autism-susceptibility candidate
gene 2 (AUTS2).106 This finding is consistent with the comorbidity
between AN and autism.107 Moreover, individuals with AN may be
socially withdrawn107 and exhibit elevated levels of autistic traits
associated with lower social functioning.107–109 AUTS2 has also been
well studied as a candidate gene for alcohol abuse,110 which is
commonly comorbid with eating disorders.111 There is also a well-
established link between GTP-rho activation and cognition.112 Mice
with altered expression of genes regulating Rho-GTPases have been
shown to have altered exploratory and anxiety-related behavior,
decreased sociability and memory formation, and decreased body
weight, among others.112 These findings are in line with some of
the comorbidities and intermediate phenotypes noted in AN, for
example, the high comorbidity with anxiety-related disorders.113

There is substantial evidence for the involvement of chromatin-
modulating genes in the development of autism,114–119

schizophrenia120–124 and body mass index changes.114 Given the
comorbidity of these disorders with AN, and the potential overlap
with autism indicated in the pathway analysis results, we tested
for enrichment of chromatin-modulating genes in these results.
We obtained a list of 340 genes involved in modifying chromatin
accessibility and/or modifying histone marks from existing
literature; of these, 30 reached nominal significance in our burden
test, substantially more than expected by chance (binomial test,
P= 0.0026). Moreover, one of the variants identified in the global
meta-analysis (exm540361) lays near a gene included in this list
(UHRF1BP1). Together, these results may indicate a role for
chromatin-modifying genes in AN, although more work will be
needed to investigate this further.
A number of limitations should be borne in mind when

evaluating these results. First, the sample size of this study is small.
Psychiatric disorders in general require very large sample sizes in
order to identify reliable genome-wide significant signals.125 The
current study was powered to detect common variants with
substantial OR, and rare variants conferring substantial increases
in disease risk (OR42). To our knowledge, this was the first time a
study has specifically investigated the role of rare variation in AN,
and the lack of low-frequency replicating findings may indicate
that little advancements may be made in this particular genomic
search space.
We did not see any overlap between the pathways identified

here and those identified in the recent PGC pathway analysis;126

however, this may reflect the relatively small sample size of this
study, as well as different pathway analysis methodologies used.
In this study we only examined female AN cases of European

origin. It has been suggested that the genetics underlying AN
development may be easier to assess in an all-male study,3 as
there may be a greater genetic risk required to induce trait
expression. The higher relative risk in male subjects may also
reflect this.3 To date, this has not been possible because of the
lower prevalence of the disorder in men, resulting in substantially

smaller sample sizes. Moreover, if AN is heterogeneous between
populations, in order to fully understand the genetic etiology of
the disorder, it will be necessary to expand collection to include
more diverse samples. Efforts are already underway in a number
of Asian populations such as Taiwan, Japan, Korea and China, as
well as some South American populations such as Argentina and
Brazil.
A caveat to this study is that controls were not screened for AN,

and that both male and female controls were used. Given the
population prevalence of AN across population of European
descent, ~ 80 female and ~ 10 male controls would be expected to
have AN diagnoses. Given the low rate of treatment seeking in
AN,127 it would not be possible to confidently screen population-
based or previously existing control cohorts for AN.
The underlying biological etiology of AN is complex and has not

been elucidated yet. Here we have identified a number of variants
that warrant follow-up in larger sample sizes, and which point to a
role for metabolic, appetite-related and obesity-related effects, in
line with a growing body of evidence for metabolic involvement
in AN development. Substantially increased sample sizes and
detailed phenotyping to reduce heterogeneity will be necessary to
empower the characterization of the genetic architecture of AN.
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