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Abstract. In this article, we introduce the Stata implementation of a flow-based
cluster algorithm, flowbca, written in Mata. The main purpose of flowbca is to
identify clusters based on relational data of flows. We illustrate the command by
providing multiple examples of applications from the research fields of economic
geography, industrial input–output analysis, and social network analysis.
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1 Introduction
In this article, we introduce the Stata implementation of a flow-based cluster algorithm,
flowbca, written in Mata.1 A flow variable registers the total change of the variable
from one entity to another entity during a specific period of time. The entity can be a
region, firm, or person. During the process of clustering, two entities will be grouped
according to the size of the bilateral flows. Currently, flow-based cluster algorithms
available in Stata focus on visualizing social networks (for example, Corten [2011] and
Miura [2012]). However, these algorithms lack the ability to flexibly aggregate units
into clusters based on relational data of flows. The main motivation to write flowbca is
that there is a need in many statistical applications—and in research fields other than
social network analysis—for an algorithm to flexibly aggregate nonoverlapping units
into clusters. This is specifically because it provides a choice of how to operate clusters
in empirical analyses and allows a researcher to compare alternative sets of clusters.

1. This article is based on a chapter in the dissertation of Meekes (2019).

c© 2018 StataCorp LLC st0535
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Given the increasing availability and use of relational data of various types of flows,
flowbca can be used in a variety of research fields. For example, the field of economic
geography uses flows to cluster regional units into regional clusters of economic activ-
ity (Coombes, Green, and Openshaw 1986; Brezzi et al. 2012).2 Alternatively, indus-
trial input–output analysis is based on trade linkages that register the flows of goods
that are produced in one production chain and used as input in another production
chain (Leontief 1986; Timmer et al. 2015). Finally, social network analysis detects
communities (Fortunato 2010) and defines flow networks (Ford and Fulkerson 1962;
Beguerisse-Dı́az et al. 2014) in graphs as connected groups based on the strength of
flows between nodes.

flowbca is the implementation in Stata of a so-called agglomerative hierarchical
clustering algorithm (Fortunato 2010) to define clusters based on relational data of flows,
which has been used in the aforementioned research fields. The key difference between
flowbca and other agglomerative hierarchical clustering algorithms currently available
in Stata is the focus on flow-based clustering instead of distance-based clustering.3 In
general terms, the flow-based cluster algorithm behind flowbca can be described as
follows: It starts from a set of K disjoint units. The algorithm aggregates two units
into one, while considering the bilateral flows between the units. Clusters are defined
by iteratively repeating this procedure. In each iteration of the algorithm, the decision
criterion for aggregating two units into one is based on an optimization function selecting
the maximum flow out of all bilateral flows. The source unit from which the largest
flow starts is aggregated to the destination unit.

The algorithm is flexible in various aspects. First, the optimization function can be
based on two definitions of flows—directed and undirected. The former refers to the
maximum of the single directed flows that are flowing from one unit to another; the
latter denotes the maximum of the sum of two bilateral flows. Second, the optimization
function can be based on absolute flows and relative flows, which are computed by
taking each absolute flow relative to the unit-specific total of outgoing flows. Third, the
algorithm allows for flexibility in the stopping criterion by allowing for five optional ex
ante user choices different from the default one. Using different options, the researcher
can thus create different sets of clusters.

After the algorithm has been terminated, the researcher could evaluate the choice of
optimization function and stopping criterion by analyzing the level of self-containment
of the set of clusters. The level of self-containment is approximated by the average of the
internal relative flows. A higher average of the internal relative flows means there is a
stronger connectivity within each cluster and a weaker connectivity to outside clusters.

2. Global regional clusters of economic activity are defined using trade flows (Smith and White 1992),
foreign direct investment flows (Bathelt and Li 2014), or multinational firms relocation flows
(Chen and Moore 2010). Within-country regional clusters such as local labor markets or local
housing markets can be defined using commuting flows from place of residence to place of work,
job-to-job turnover flows, household migration flows, or job search flows (for example, Duranton
[2015]).

3. Distance-based clustering uses the distance between a pair of units as a measure of similarity.
Similar units are grouped into the same cluster, and dissimilar units are grouped into separate
clusters.
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2 The flow-based cluster algorithm

2.1 The algorithm

The main inputs of the algorithm are a K-dimensional square matrix that contains the
absolute flows between K different units. Effectively, each row represents a different
source unit, and each column represents a different destination unit.

The algorithm consists of the following five steps, which are provided given the
default options of the algorithm that will be described in Section 3.

Step 1: the absolute flows betweenK different units are rewritten as aK-dimensional
square matrix (that is, an adjacency matrix in graph theory) of absolute flows F(K),

F(K) =




f11 f12 · · · f1K
f21 f22 · · · f2K
...

...
. . .

...
fK1 fK2 · · · fKK




where fij (i6=j) represents the flow in absolute term from source unit i to destination
unit j. Flows fii are defined as the internal absolute flows.

Step 2: the matrix F(K) is rewritten in terms of relative flows as a K-dimensional
square matrix G(K). Relative flows are computed by taking each absolute flow relative
to the unit-specific total of outgoing flows. G(K) can be expressed as

G(K) =




g11 g12 · · · g1K
g21 g22 · · · g2K
...

...
. . .

...
gK1 gK2 · · · gKK




where

gij = fij/

K∑

t=1

fit i, j = 1, 2, . . . ,K

Note that the matrix is row-normalized.

Step 3: the optimization function selects the arguments of the maximum directed
relative flow from one unit to another, for i6=j, of all K × (K − 1) pairs of i and j,

(r, s) = argmax
i,j
i6=j

gij

where units r and s are defined as the source unit and destination unit, respectively.
If grs = 0 or K = 1, the default stopping criterion of the procedure is met, and the
algorithm is terminated.

Step 4: source unit r will be aggregated to destination unit s. The core of the cluster
is defined as the receiving unit, that is, the destination unit s. To be able to adjust
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matrix F(K), the algorithm specifies a K× (K−1)-dimensional matrix C(K), which can
be expressed as

C(K) = (e1, e2, . . . , er−1, er + es, er+1, . . . , es−1, es+1, . . . , eK)

where ei represents the ith unit column vector. For the sake of convenience in the
exposition of this algorithm, matrix C(K) is based on the assumption that the identifier
value of unit r is larger than the identifier value of unit s.

Step 5: the absolute flows to and from units r and s will be added. The new matrix
F(K−1) can be expressed as

F(K−1) = (C(K))TF(K)C(K)

where T refers to the transpose operator. F(K−1) is now a square matrix of dimension
(K − 1). The algorithm continues with step 1, starting with F(K−1) as an input.

After the stopping criterion of step 3 has been met, the algorithm is terminated and
K∗ clusters are returned. The matrix of absolute flows between the K∗ clusters, F(K∗),
equals

F(K∗) = CTF(K)C

where matrix C is a matrix product of the matrices C(K) . . .C(K∗), which can be
expressed as C = C(K)C(K−1)C(K−2) . . .C(K∗).

2.2 Stopping criteria

In step 3, the stopping criterion of the algorithm is defined as grs = 0 or K = 1. The
algorithm allows for five alternative stopping criteria, and each of them is a modification
of the stopping criterion mentioned in step 3.

First, the researcher could specify a flow threshold, q, that represents the minimum
level of interaction at which a source unit is aggregated to a destination unit. The
algorithm is terminated in step 3 if grs < q.

Second, the researcher could specify a minimum number of clusters, k. The algorithm
is terminated in step 3 if the number of units have reduced to this minimum, that is, if
k = K∗.

Third, the researcher could specify a minimum average of the internal relative flows,
la. The average of the internal relative flows, La, is defined as equal to the sum of the
internal relative flows, gii, relative to the number of clusters, K∗:

La =
1

K∗

K∗∑

i=1

gii (1)

The algorithm is terminated in step 3 if la ≤ La.

Fourth, the researcher could specify a minimum weighted average of the internal
relative flows, lw. The weighted average of the internal relative flows, Lw, is defined as
equal to the sum of the internal absolute flows relative to the sum of all absolute flows,



568 flowbca: A flow-based cluster algorithm in Stata

Lw =
1

N

K∗∑

i=1

fii (2)

for which the sum of all absolute flows equals N =
∑K∗

i=1

∑K∗

j=1 fij . The algorithm is
terminated in step 3 if lw ≤ Lw.

Finally, the researcher could impose a minimum internal relative flow lm that all the
clusters must satisfy. The minimum of the internal relative flows Lm is defined by

Lm = min
i

gii (3)

The algorithm is terminated in step 3 if lm ≤ Lm.

2.3 An alternative optimization function

The algorithm provides two different optimization functions, which are based either on
the directed or on the undirected flows approach. The optimization function based on
the directed flows selects arg max gij , considering the maximum of the directed flows
from one unit to another. In contrast, the optimization function based on the undirected
flows approach selects arg max gij + gji, considering the maximum of the sum of two
bilateral flows, which can be expressed as

(r, s) = argmax
i,j
i6=j

gij + gji

Using the undirected flows approach, the algorithm is terminated if grs + gsr = 0 or
K = 1. Otherwise, the procedure will continue with step 4 of the algorithm. Note that
the new cluster gets the identification number of the unit with the largest incoming
flow, which represents the core of the new cluster.

2.4 Some caveats

In step 3, argmax gij might hold for multiple pairs of units i, j. Consequently, the pair
r, s will not be unique. The following rules are imposed to close the algorithm:

1. If there are two or more source units r, for example, r1 and r2, that both have
the maximum flow to the same destination unit s, r1 is aggregated to s if r1 has
the highest incoming flow from the other source unit or units r.

2. If source unit r has identical flows to two or more units s, for example, s1 and s2,
r is aggregated to s1 if s1 has the highest incoming flow from the other destination
unit or units s.

3. If both r and s are not unique, for example, there are two pairs r1,s1 and r2,s2,
the algorithm aggregates r1 to s1 if s1 has the highest incoming flow from the
other destination unit or units s.
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4. For the iterations where a unique pair is still not defined, the algorithm picks one
pair r, s of all pairs that correspond to the maximum flow.

3 The flowbca command

3.1 Syntax

flowbca varname varlist
[
, q(#) k(#) la(fraction) lw(fraction) lm(fraction)

opt f(#) save k
]

3.2 Description

flowbca implements the algorithm that is discussed in section 2 and performs it in
Mata. The main inputs for flowbca are the variables listed in varname and varlist .
varname contains one variable representing the source unit identifier. This variable
should be numerical because string variables are ignored by the flowbca command.
varlist contains a set of variables with one variable for each distinct destination unit
that represents the absolute flows from the source units to the destination unit.

Effectively, the destination unit variables represent the columns of a K-dimensional
square matrix of flows between the K units. For example, the value of the first obser-
vation of a destination unit variable represents the absolute flow from the first source
unit to the corresponding destination unit. The source and destination units should be
numbered such that if they are sorted and ordered in a sequential order, the diagonal
elements of the K-dimensional square matrix represent the internal absolute flows. If
the flow data of the researcher are available only in a K×3-dimensional matrix in which
there are three columns that represent the source unit identifier, destination unit iden-
tifier, and absolute flows between the units, respectively, the data should be reshaped
by the user into a K-dimensional square matrix.

3.3 Options

q(#) sets the flow threshold. To set a relative flow threshold, specify # as a fraction.
To set an absolute threshold, specify # as an integer number. If the threshold is
higher than the maximum of all flows, the stopping criterion of the procedure has
been met, and the algorithm is terminated. The default is q(0).

k(#) specifies the number of distinct clusters the algorithm should define. The default
is k(1).

la(fraction) specifies the minimum average of the internal relative flows. If the fraction
is lower than or equal to the average of the internal relative flows, the stopping
criterion of the procedure is met. The default is no minimum average of the internal
relative flows.
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lw(fraction) specifies the minimum weighted average of the internal relative flows. If
the fraction is lower than or equal to the weighted average of the internal relative
flows, the stopping criterion of the procedure is met. The default is no minimum
weighted average of the internal relative flows.

lm(fraction) specifies the minimum internal relative flow. If the fraction is smaller than
or equal to the minimum value of the internal relative flows, the stopping criterion
of the procedure is met. The default is no minimum internal relative flow.

opt f(#) specifies the optimization function. Four optimization functions can be cho-
sen. The default is opt f(1), which implements the directed relative flows approach.
The other functions are opt f(2), which implements the undirected relative flows
approach; opt f(3), which implements the directed absolute flows approach; and
opt f(4), which implements the undirected absolute flows approach.

save k saves the cluster setk datasets (see below). For each k, the dataset contains
the absolute flows between the remaining k units (that is, the matrix F(K) for each k).
To save these datasets, specify save k.

3.4 Output

flowbca saves three datasets.4

1. cluster set contains variables that characterize the defined clusters, including
variables that represent the cluster identifier (clusterid), the cluster-specific in-
ternal relative flow (internal), the average of the internal relative flows (La), the
weighted average of the internal relative flows (Lw), the minimum of the internal
relative flows (Lm), the cluster-specific total value of outgoing flows (rowflows),
the total value of all flows (N), and a set of variables that represents the flows
among all clusters (destinationunit).

2. unit set contains variables that provide information on each starting unit, includ-
ing variables that represent the source unit identifier (sourceunit), the cluster to
which the unit is aggregated (clusterid), the relative flow at which the source
unit is aggregated to a destination unit (g), the number of distinct clusters that are
remaining after aggregating the source unit (round), and a 0/1 indicator variable
that equals 1 if the unit is the core of a cluster and 0 otherwise (core).

3. cluster setk contains the source unit identifier variable (sourceunit) and one
variable for each destination unit representing the absolute flow (destination-
unit). If the researcher uses the option save k, then the cluster setk datasets
will be saved.

4. We suggest that the researcher creates a dataset that consists of the variable sourceunit and
a variable that represents the source unit labels. This dataset could be merged to the datasets
cluster set and unit set.
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4 Examples

4.1 Example 1: Within-country regional clusters based on commut-
ing flows

In the first example of a statistical application, a researcher uses flowbca to construct
regional clusters based on individuals’ commuting flows from municipality of residence
to municipality of work. The researcher aims to compare the levels of self-containment
of 40 NUTS-3 (nomenclature territorial units for statistics; in French, nomenclature des
unités territoriales statistiques) areas and 12 provinces to the levels of self-containment
of 40 and 12 clusters defined using flowbca, respectively. Note that a higher level of
self-containment means there is a stronger connectivity within each regional cluster and
a weaker connectivity to outside regional clusters. That is, clusters that are relatively
self-contained are characterized by relatively many individuals who both live and work
in the identical cluster. The Dutch NUTS-3 areas offer an interesting point of comparison,
because they were defined in 1971 based on journey-to-work and place-of-work statistics
that reflected the employment outcomes and commuting behavior of the Dutch popula-
tion. Moreover, in research on European countries, NUTS-3 areas are often used as the
regional classification to operate regional clusters (for example, Ciccone [2002]).

For this example, aggregate data on 7,131,000 commuting flows in 2014 are used
at the municipality level, retrieved from the CBS StatLine open databank of Statistics
Netherlands (CBS Statline 2018).5 The algorithm starts from a set of 398 municipalities
(K).6 Note that this example uses option k() of flowbca because the researcher aims to
define a specific number of clusters. The optimization function is based on the directed
relative flows approach. The directed flows approach is used because commuting flows
are naturally directed in that they flow from one unit to another. Relative flows are
preferred to absolute flows because relative flows function as weights to account for the
relative importance of a unit that allows smaller source units to be able to aggregate to
bigger destination units. To visualize the defined clusters, we use the Stata commands
mergepoly (Picard and Stepner 2012) and spmap (Pisati 2007).

Before we discuss the results, we illustrate the main steps of the specific code used
to create figures 1a and 1b.

/* A loop is used to define 40 and 12 regional clusters
(fig. 1b and 2b, respectively) */
local numbers 40 12
local a=1
foreach numbs of local numbers {

/* Open the dataset that contains commuting flows across the Dutch
municipalities, retrieved from Statistics Netherlands CBS Statline. */
use cbs_comm_flow, clear

5. Note that the researcher could also exploit microdata to construct clusters. For instance, subgroup-
specific clusters could be defined using subgroup-specific flows (Farmer and Fotheringham 2011).

6. Note that we remove five municipalities that represent small Wadden islands in the northern part
of the Netherlands because they would be defined as small self-contained clusters that artificially
increase the average of the internal relative flows (La).
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/* Drop Wadden Islands that are isolated municipalities */
drop if homemun==13
drop if homemun==294
drop if homemun==322
drop if homemun==323
drop if homemun==353
drop workmun13 workmun294 workmun322 workmun323 workmun353

/* Apply flowbca. "homemun" is the source unit identifier;
"workmun*" are the destination unit identifiers */
flowbca homemun workmun*, k(`numbs´)

/* Get the summary statistics of the La, Lw, Lm variables */
display as text "Values of La, Lw, Lm for figure `a´b"
summarize La Lw Lm

/* The following syntax lines are specified to merge the cluster labels
(names of the regions) to the cluster_set dataset and the unit_set dataset
(see footnote 4 in the paper) */
rename clusterid homemun
merge 1:1 homemun using ex1label
keep if _merge==3
drop _merge
order label
compress
rename homemun clusterid
save cluster_set_fig`a´b, replace

use unit_set, clear
rename sourceunit homemun
merge 1:1 homemun using ex1label
keep if _merge==3
drop _merge
order label
compress
rename homemun sourceunit
save unit_set_fig`a´b, replace

/* Open the shape boundary database file "ex1nldb", which was generated using
the ESRI shapefile of the Netherlands */
use ex1nldb, clear

/* Drop nonexisting regional units referred to by "GM9999", and remove water
referred to by WATER=="JA" */
drop if GM_CODE=="GM9999"
drop if WATER=="JA"
rename GM_NAAM label

/* Create an identifier */
sort label
generate ID=_n
order ID
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/* Merge "ex1nldb" to the codings dataset "ex1id" */
merge 1:1 ID using ex1id
drop if _merge!=3
drop _merge
rename homemun sourceunit

/* Merge the dataset to "unit_set_fig`a´b" that includes the cluster
identifier */
merge 1:1 sourceunit using "unit_set_fig`a´b"

/* Note: The Wadden Islands are deleted, because they were not included in
the clustering process */
drop if _merge!=3
drop _merge
save ex1part1, replace

/* Generate a dataset "ex1pointcoord" that contains the point coordinates of
the cores of the clusters that are returned by the algorithm */
use ex1part1, clear
keep if core==1
keep clusterid x_centroid y_centroid
save ex1pointcoord, replace

/* mergepoly: The mergepoly command is used to merge adjacent polygons from a
shape boundary file; see http://fmwww.bc.edu/RePEc/bocode/m/mergepoly.html */
/* We use the coordinate file "ex1nlcoord" to merge the polygons of the units
that are in the same cluster (given by the variable "clusterid") */
use ex1part1, clear
mergepoly id_shape using ex1nlcoord, coordinates(ex1nlcoord2) replace ///
by(clusterid)

/* The output is the "ex1nlcoord2" dataset, which contains the coordinates
of each cluster. This dataset will be used to draw the thick border of the
cluster in the map below */

/* Now draw the map with spmap */
use ex1part1, clear
spmap clusterid using ex1nlcoord, id(id_shape) clmethod(unique) ///
osize(thin) fcolor(Greys2) legenda(off) polygon(data("ex1nlcoord2") ///
osize(thick ..) by(_ID)) point(data("ex1pointcoord") ///
x(x_centroid) y(y_centroid) by(clusterid) size(medium) ocolor(white ..))
graph export "figure`a´b_clusters.eps", replace
graph export "figure`a´b_clusters.png", replace width(5000)
local a=`a´+1
}
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Figure 1 shows that the weighted average of the internal relative flows (Lw) of the
40 defined regional clusters (see figure 1b) is higher than the weighted average of the
NUTS-3 areas (see figure 1a). This means there are more individuals who live and work
in their defined regional cluster (about 80.5%) than in their NUTS-3 area (about 74.3%).

(a) NUTS-3 areas. La = 0.699; Lw = 0.743;
Lm = 0.462; K∗ = 40; K = 40

(b) 40 clusters. La = 0.695; Lw = 0.805;
Lm = 0.385; K∗ = 40; K = 398

Figure 1. NUTS-3 areas and 40 defined clusters. Notes: A commuting flow registers the
number of workers who commute from a municipality of residence to a municipality of
work. The NUTS-3 cores (black dots with a white circle) are defined as the municipality
with the highest number of residents. The algorithm returns the cores of the defined
regional clusters. Each distinct cluster is surrounded by a thick border and highlighted
by a different shade of gray. Note that the shade of a cluster does not provide any
further information. The algorithm returns La, Lw, and Lm, which refer to the average
of the internal relative flows (1), the population-weighted average of the internal relative
flows (2), and the minimum of the internal relative flows (3), respectively. K∗ and K
refer to the number of defined regional clusters and the number of distinct starting
units, respectively.
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Figure 2 shows that the average of the internal relative flows (La), the weighted
average of the internal relative flows (Lw), and the minimum of the internal relative
flows (Lm) are higher in the case of the 12 defined clusters than of the 12 predefined
administrative provincial areas. All in all, this example shows that flowbca can be used
to define meaningful regional clusters that are characterized by a relatively high level
of self-containment.

(a) Provincial areas. La = 0.833; Lw = 0.866;
Lm = 0.570; K∗ = 12; K = 12

(b) Twelve clusters. La = 0.869; Lw = 0.901;
Lm = 0.776; K∗ = 12; K = 398

Figure 2. Provinces and 12 defined clusters. Notes: A commuting flow registers the
number of workers who commute from a municipality of residence to a municipality
of work. The provincial cores (black dots with a white circle) are the capital cities.
The algorithm returns the cores of the defined regional clusters. Each distinct cluster
is surrounded by a thick border and highlighted by a different shade of gray. Note
that the shade of a cluster does not provide any further information. The algorithm
returns La, Lw, and Lm, which refer to the average of the internal relative flows (1),
the population-weighted average of the internal relative flows (2), and the minimum of
the internal relative flows (3), respectively. K∗ and K refer to the number of defined
regional clusters and the number of distinct starting units, respectively.
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4.2 Example 2: Global regional clusters based on national trade flows

In the second example, a researcher uses flowbca to construct global regional clusters
based on trade flows that are defined as the size of the annual trade from an exporting to
an importing country. The researcher aims to examine how interrelated countries are in
terms of trade and whether this relatedness changed over time. The researcher defines
global clusters of economic activity for the years 1995 and 2011, given a minimum flow
threshold equal to 5%.

For this example, we use the World Input–Output Database (WIOD) (Dietzenbacher
et al. 2013). This dataset consists of data on the trade flows between 40 countries in
the period 1995–2011. The algorithm starts from a set of 40 countries (K). Note that
this exercise uses the option q() of flowbca. The optimization function is based on the
directed relative flows approach.

We compare the set of clusters in 1995 and 2011 to examine the change in global
trade clusters over time. Figure 3 shows, given the flow threshold of 5%, that the
number of distinct global clusters (K∗) decreases from 19 to 10 over the period 1995–
2011. Consistent with globalization, the decrease in the number of defined clusters
suggests that the trade flows within countries decreased relative to the trade flows
between countries. Another observation is that the size of the two clusters in which
China and Germany is the core, respectively, became larger over time.
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(a) Global trade clusters in 1995. La = 0.920; Lw = 0.943; Lm = 0.854; K∗ = 19; K = 40

(b) Global trade clusters in 2011. La = 0.938; Lw = 0.947; Lm = 0.898; K∗ = 10; K = 40

Figure 3. Global clusters based on trade flows. Notes: A trade flow registers the size
of annual trade from an exporting country to an importing country. The algorithm
returns the cores of the defined clusters (black dots with a white circle). Each distinct
cluster is highlighted by a different shade of gray. Note that the shade of a cluster does
not provide any further information. Global clusters were defined based on trade flows
expressed in millions of dollars between countries from the 1995 and 2011 WIOD data.
The flow threshold q was equal to 5%. Trade flows between countries were computed
by aggregating all within-country flows. Nine countries with zero or negative flows were
removed. The algorithm returns La, Lw, and Lm, which refer to the average of the
internal relative flows (1), the population-weighted average of the internal relative flows
(2), and the minimum of the internal relative flows (3), respectively. K∗ and K refer to
the number of defined global clusters and the number of starting countries, respectively.
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4.3 Example 3: A social network based on friendship ties

In the third example, a researcher uses flowbca to detect groups of prison inmates based
on friendship ties. A friendship tie could be considered as a binary flow variable from
one inmate to another, which is one in case of a friendship. If two inmates indicate a
friendship with each other, the ties will flow in both directions. The researcher aims to
detect groups of inmates in which each group should have a minimum internal relative
flow of at least 50%. The minimum internal relative flow of 50% means that, in each
group, at least 50% of the inmates’ friendship ties should be with inmates in their own
group.

For this example, the Gagnon and MacRae prison friendship dataset was used
(MacRae 1960). The level of interaction between inmates is approximated by multiple
0/1 indicator variables that represent friendship ties, which equal 1 if a given “source”
inmate indicates a friendship with a given “destination” inmate and 0 otherwise. The
algorithm starts from a set of 67 inmates (K). All inmates could indicate as few or
as many friendship ties as desired. Inmates could not indicate a friendship with them-
selves. Note that this example uses the option lm() of flowbca. Relative flows were
used to have the relative importance of each tie.

Before we discuss the results, we illustrate the main steps of the specific code used
to construct table 1.
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/* Directed relative flows approach */
use ex3_prison, clear

/* Apply flowbca */
flowbca sourceunit destinationunit*, lm(.5) opt_f(1)

/* The option lm(fraction) is used to specify the minimum internal relative
flow. If the fraction is smaller than or equal to the minimum value, the
algorithm is terminated */
/* The option opt_f() is specified to use the directed relative flows
approach */

/* Drop the inmate (number 35) who is isolated */
drop if internal==.
drop destinationunit35

/* Get the summary statistics of the La, Lw, Lm variables */
summarize La Lw Lm
save cluster_set_lm05f1_table1, replace

use unit_set, clear

/* Generate the number of inmates in each cluster */
bysort clusterid: gen n=_N
tabulate n if core==1 & n!=1

/* Undirected relative flows approach */
use ex3_prison, clear

/* Apply flowbca */
flowbca sourceunit destinationunit*, lm(.5) opt_f(2)

/* The option lm(fraction) is used to specify the minimum internal relative
flow. If the fraction is smaller than or equal to the minimum value, the
algorithm is terminated */
/* The option opt_f() is specified to use the undirected relative flows
approach */

/* Drop the inmates (numbers 19, 25, 26, and 35) who are isolated */
drop if internal==.
drop destinationunit19 destinationunit25 destinationunit26 destinationunit35

/* Get the summary statistics of the La, Lw, Lm variables */
summarize La Lw Lm
save cluster_set_lm05f2_table1, replace

use unit_set, clear

/* Generate the number of inmates in each cluster */
bysort clusterid: gen n=_N
tabulate n if core==1 & n!=1
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Table 1 provides information about the groups of inmates that were detected using
flowbca for both the directed and undirected flows approach, respectively. The results
show that the directed flows approach leads to fewer and bigger groups of inmates
compared with the undirected flows approach. Another observation is that there are
more isolated inmates if the optimization function is based on the undirected flows
approach. Effectively, the undirected flows approach puts more weight on the situation
where two inmates indicate each other as friend and leads to more sparse groups.

Table 1. Number and size of the detected groups of inmates

Directed flows approach Undirected flows approach
Number of groups
for a given size

Size (in # of in-
mates)

Number of groups
for a given size

Size (in # of in-
mates)

1 38 1 11
1 12 1 9
1 7 1 7
1 5 1 6
1 4 3 5

2 4
1 3
2 2

La = 0.847 La = 0.689
Lw = 0.846 Lw = 0.676
Lm = 0.758 Lm = 0.5
K∗ = 5 K∗ = 12
K = 67 K = 67

note: The connected groups of inmates are based on friendship ties between inmates from the Gagnon
and MacRae prison dataset. A friendship tie registers a friendship as a flow from one inmate to another.
The minimum internal relative flow, lm, which each group should satisfy, was set equal to 50%. The
raw prison dataset contains 67 inmates. No inmate was disconnected (that is, the situation where an
inmate did not specify or was specified as a friend by another inmate). However, one inmate and four
inmates were detected as isolated using the directed and undirected flows approach, respectively. The
isolated inmates were removed. The algorithm returns La, Lw, and Lm, which refer to the average of
the internal relative flows (1), the population-weighted average of the internal relative flows (2), and
the minimum of the internal relative flows (3), respectively. K∗ and K refer to the number of defined
regional clusters and the number of distinct starting units, respectively.

4.4 Example 4: Industrial clusters based on input–output flows

The final example is a case where a researcher uses flowbca to define five U.S. industrial
clusters based on input–output flows of goods between U.S. industries. A flow of goods
registers the size of the goods delivered by the industry of input to the industry of
output. The researcher examines whether the relatedness between industries changed
over time by comparing the set of industrial clusters in 1995 with the set of clusters
in 2011. The WIOD was used to define U.S. industrial clusters in the years 1995 and
2011. The algorithm starts from a set of 35 industries (K). Note that this exercise
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uses option k() of flowbca. The optimization function is based on the directed relative
flows approach.

Table 2 presents the results of example 4. The sectors “Construction” and “Pub-
lic Administration and Defence; Compulsory Social Security” are the largest industrial
clusters in 1995 and 2011, respectively. Hence, in 2011, the industry “Public Adminis-
tration and Defence; Compulsory Social Security” uses relatively more goods that are
produced in other production chains than the industry “Construction”. Interestingly,
flowbca defines the industries “Food, Beverages and Tobacco”, “Textiles and Textile
Products”, and “Transport Equipment” as the core of a cluster in both 1995 and 2011,
which suggests that these clusters have been relatively self-contained over time.

Table 2. Industrial clusters based on U.S. input–output flows

1995 2011
Core of cluster Size (in #

of units)
Core of cluster Size (in #

of units)
Construction 28 Public Administration and

Defence; Compulsory So-
cial Security

30

Food, Beverages and To-
bacco

3 Food, Beverages and To-
bacco

2

Textiles and Textile Prod-
ucts

2 Chemicals and Chemical
Products

1

Chemicals and Chemical
Products

1 Basic Metals and Fabri-
cated Metal

1

Transport Equipment 1 Transport Equipment 1
La = 0.602 La = 0.567
Lw = 0.828 Lw = 0.837
Lm = 0.335 Lm = 0.287
K∗ = 5 K∗ = 5
K = 35 K = 35

note: U.S. industrial clusters based on U.S. input–output flows of goods expressed in millions of
dollars between 35 ISIC industries from the WIOD data. The minimum number of clusters k() was set
equal to five. The algorithm returns La, Lw, and Lm, which refer to the average of the internal relative
flows (1), the population-weighted average of the internal relative flows (2), and the minimum of the
internal relative flows (3), respectively. K∗ and K refer to the number of defined regional clusters and
the number of distinct starting units, respectively.

As table 2 shows, the largest cluster is composed of many units and the other clusters
are composed of few units. Example 4 highlights the main limitation of flowbca, which
is that the algorithm defines one relatively big cluster that is composed of many units,
if the network is not sparse enough and thus not composed of multiple subnetworks.
For example, consider the case that a researcher aims to define clusters using random
flows between units. It is likely that in each iteration, a source unit is aggregated to
the identical destination unit; the destination unit represents a relatively big cluster
because of the aggregations in the earlier iterations.
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All in all, to define meaningful clusters, the network should be sparse enough, for
example, by distance (in the case of within-country regional clusters), input–output
flows of goods (in the case of industrial clusters), or social interaction (in the case of
social network analysis). Otherwise, the algorithm will define one relatively big cluster
and several distinct clusters of few units. Note that the use of more disaggregated units
in the starting set of units would improve the accuracy of the cluster algorithm because
more detailed flow data are used.

5 Concluding remarks

In this article, we have introduced and illustrated the flowbca command, which can
be used to define clusters based on relational data of flows between disjoint units. We
provided four examples of statistical applications in a wide range of research fields to
illustrate flowbca cluster identification capabilities. Given the increasing availability of
relational data of various types of flows, flowbca can be used in a variety of research
fields. flowbca is flexible because it allows for various optimization functions and
stopping criteria. The command is accessible for the researcher, which will hopefully
lead to a further development of the algorithm. Overall, the command is robust, user
friendly, and well able to define clusters that are characterized by a high level of self-
containment.
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