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—— Abstract

We revisit the classical polygonal line simplification problem and study it using the Hausdorff
distance and Fréchet distance. Interestingly, no previous authors studied line simplification under
these measures in its pure form, namely: for a given £ > 0, choose a minimum size subsequence
of the vertices of the input such that the Hausdorff or Fréchet distance between the input and
output polylines is at most €.

We analyze how the well-known Douglas-Peucker and Imai-Iri simplification algorithms per-
form compared to the optimum possible, also in the situation where the algorithms are given a
considerably larger error threshold than e. Furthermore, we show that computing an optimal
simplification using the undirected Hausdorff distance is NP-hard. The same holds when using
the directed Hausdorff distance from the input to the output polyline, whereas the reverse can be
computed in polynomial time. Finally, to compute the optimal simplification from a polygonal
line consisting of n vertices under the Fréchet distance, we give an O(kn®) time algorithm that
requires O(kn?) space, where k is the output complexity of the simplification.
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On Optimal Polyline Simplification Using the Hausdorff and Fréchet Distance

1 Introduction

Line simplification (a.k.a. polygonal approximation) is one of the oldest and best studied
applied topics in computational geometry. It was and still is studied, for example, in the
context of computer graphics (after image to vector conversion), in Geographic Information
Science, and in shape analysis. Among the well-known algorithms, the ones by Douglas and
Peucker [11] and by Imai and Iri [18] hold a special place and are frequently implemented
and cited. Both algorithms start with a polygonal line (henceforth polyline) as the input,
specified by a sequence of points (p1,...,ps), and compute a subsequence starting with p;
and ending with p,,, representing a new, simplified polyline. Both algorithms take a constant
€ > 0 and guarantee that the output is within € from the input.

The Douglas-Peucker algorithm [11] is a simple and effective recursive procedure that
keeps on adding vertices from the input polyline until the computed polyline lies within a
prespecified distance €. The procedure is a heuristic in several ways: it does not minimize
the number of vertices in the output (although it performs well in practice) and it runs in
O(n?) time in the worst case (although in practice it appears more like O(nlogn) time).
Hershberger and Snoeyink [17] overcame the worst-case running time bound by providing
a worst-case O(nlogn) time algorithm using techniques from computational geometry, in
particular a type of dynamic convex hull.

The Imai-Iri algorithm [18] takes a different approach. It computes for every link p;p;
with i < j whether the sequence of vertices (p;1,...,pj—1) that lie in between in the input
lie within distance ¢ to the segment p;p;. In this case p;p; is a valid link that may be used
in the output. The graph G that has all vertices p1, ..., p, as nodes and all valid links as
edges can then be constructed, and a minimum link path from p; to p,, represents an optimal
simplification. Brute-force, this algorithm runs in O(n?) time, but with the implementation
of Chan and Chin [8] or Melkman and O’Rourke [21] it can be done in O(n?) time.

There are many more results in line simplification. Different error measures can be used [6],
self-intersections may be avoided [10], line simplification can be studied in the streaming
model [1], it can be studied for 3-dimensional polylines [5], angle constraints may be put on
consecutive segments [9], there are versions that do not output a subset of the input points but
other well-chosen points [16], it can be incorporated in subdivision simplification [12, 13, 16],
and so on and so forth. Some optimization versions are NP-hard [12, 16]. It is beyond the
scope of this paper to review the very extensive literature on line simplification.

Among the distance measures for two shapes that are used in computational geometry,
the Hausdorff distance and the Fréchet distance are probably the most well-known. They are
both bottleneck measures, meaning that the distance is typically determined by a small subset
of the input like a single pair of points (and the distances are not aggregated over the whole
shapes). The Fréchet distance is considered a better distance measure, but it is considerably
more difficult to compute because it requires us to optimize over all parametrizations of the
two shapes. The Hausdorff distance between two simple polylines with n and m vertices can
be computed in O((n + m)log(n + m)) time [3]. Their Fréchet distance can be computed in
O(nmlog(n +m)) time [4].

Now, the Imai-Iri algorithm is considered an optimal line simplification algorithm, because
it minimizes the number of vertices in the output, given the restriction that the output must
be a subsequence of the input. But for what measure? It is not optimal for the Hausdorff
distance, because there are simple examples where a simplification with fewer vertices can be
given that still have Hausdorff distance at most € between input and output. This comes
from the fact that the algorithm uses the Hausdorff distance between a link p;p; and the
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sub-polyline (p;, ..., p;). This is more local than the Hausdorff distance requires, and is more
a Fréchet-type of criterion. But the line simplification produced by the Imai-Iri algorithm
is also not optimal for the Fréchet distance. In particular, the input and output do not
necessarily lie within Fréchet distance €, because links are evaluated on their Hausdorff
distance only.

The latter issue could easily be remedied: to accept links, we require the Fréchet distance
between any link p;p; and the sub-polyline (p;, ..., p;) to be at most € [2, 15]. This guarantees
that the Fréchet distance between the input and the output is at most €. However, it does
not yield the optimal simplification within Fréchet distance . Because of the nature of
the Imai-Iri algorithm, it requires us to match a vertex p; in the input to the vertex p;
in the output in the parametrizations, if p; is used in the output. This restriction on the

parametrizations considered limits the simplification in unnecessary ways. Agarwal et al.

[2] refer to a simplification that uses the normal (unrestricted) Fréchet distance with error
threshold € as a weak e-simplification under the Fréchet distance.* They show that the
Imai-Iri algorithm using the Fréchet distance gives a simplification with no more vertices
than an optimal weak (e/4)-simplification under the Fréchet distance, where the latter need
not use the input vertices.

The discussion begs the following questions: How much worse do the known algorithms
and their variations perform in theory, when compared to the optimal Hausdorff and Fréchet
simplifications? What if the optimal Hausdorff and Fréchet simplifications use a smaller
value than €? As mentioned, Agarwal et al. [2] give a partial answer. How efficiently can the
optimal Hausdorff simplification and the optimal Fréchet simplification be computed (when
using the input vertices)?

Organization and results. In Section 2 we explain the Douglas-Peucker algorithm and
its Fréchet variation; the Imai-Iri algorithm has been explained already. We also show
with a small example that the optimal Hausdorff simplification has fewer vertices than the
Douglas-Peucker output and the Imai-Iri output, and that the same holds true for the optimal
Fréchet simplification with respect to the Fréchet variants.

In Section 3 we will analyze the four algorithms and their performance with respect to

an optimal Hausdorff simplification or an optimal Fréchet simplification more extensively.

In particular, we address the question how many more vertices the four algorithms need,
and whether this remains the case when we use a larger value of £ but still compare to the
optimization algorithms that use €.

In Section 4 we consider both the directed and undirected Hausdorff distance to compute
the optimal simplification. We show that only the simplification under the directed Hausdorff
distance from the output to the input polyline can be computed in polynomial time, while
the rest is NP-hard to compute. In Section 5 we show that the problem can be solved in
polynomial time for the Fréchet distance.

Table 1 Algorithmic results.

Douglas-Peucker | Imai-Iri Optimal
Hausdorff distance | O(nlogn) [17] | O(n?) 8] NP-hard (this paper)
Fréchet distance O(n?) (easy) O(n®) [15] | O(kn®) (this paper)

4 Weak refers to the situation that the vertices of the simplification can lie anywhere.
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2 Preliminaries

The line simplification problem takes a maximum allowed error £ and a polyline P defined by
a sequence of points (pi, ..., pn), and computes a polyline @ defined by (g1, ..., qx) and the
error is at most €. Commonly the sequence of points defining @) is a subsequence of points
defining P, and furthermore, ¢; = p; and ¢ = p,. There are many ways to measure the
distance or error of a simplification. The most common measure is a distance, denoted by ¢,
like the Hausdorff distance or the Fréchet distance (we assume these distance measures are
known). Note that the Fréchet distance is symmetric, whereas the Hausdorff distance has a
symmetric and an asymmmetric version (the distance from the input to the simplification).

The Douglas-Peucker algorithm for polyline simplification is a simple recursive procedure
that works as follows. Let the line segment p1p, be the first simplification. If all points of P
lie within distance ¢ from this line segment, then we have found our simplification. Otherwise,
let p; be the furthest point from pip,, add it to the simplification, and recursively simplify
the polylines (p1,...,ps) and (py,...,pn). Then merge their simplifications (remove the
duplicate pf). It is easy to see that the algorithm runs in O(n?) time, and also that one
can expect a much better performance in practice. It is also straightforward to verify that
polyline P has Hausdorff distance (symmetric and asymmetric) at most € to the output. We
denote this simplification by DPg (P, ¢), and will leave out the arguments P and/or ¢ if they
are understood.

We can modify the algorithm to guarantee a Fréchet distance between P and its simplific-
ation of at most ¢ by testing whether the Fréchet distance between P and its simplification
is at most €. If not, we still choose the most distant point ps to be added to the simplific-
ation (other choices are possible). This modification does not change the efficiency of the
Douglas-Peucker algorithm asymptotically as the Fréchet distance between a line segment
and a polyline can be determined in linear time. We denote this simplification by DPg(P,¢).

We have already described the Imai-Iri algorithm in the previous section. We refer to the
resulting simplification as IIy (P, ¢). It has a Hausdorff distance (symmetric and asymmetric)
of at most € and never has more vertices than DPp (P, ¢). Similar to the Douglas-Peucker
algorithm, the Imai-Iri algorithm can be modified for the Fréchet distance, leading to a
simplification denoted by IIr(P,¢).

We will denote the optimal simplification using the Hausdorff distance by OPTy (P, ¢),
and the optimal simplification using the Fréchet distance by OPTg(P,¢). In the case of
Hausdorff distance, we require P to be within ¢ of its simplification, so we use the directed
Hausdorff distance.

The example in Figure 1 shows that DPg(P) and IIg(P) — which are both equal to P
itself — may use more vertices than OPTy (P) = (p1,ps, ps, 7). Similarly, the example in
Figure 2 shows that DPp and IIr may use more vertices than OPTp.

D7 (" pe Ps
D2 * D3 /
pPa ! \

P1 '\\ ps D5

Figure 1 Simplifications IIy (same as input, left) and OPTg (in blue, right) for an example.
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Figure 2 Simplifications IIr (same as input, left) and OPTF (in blue, right) for an example.

3 Approximation quality of Douglas-Peucker and Imai-Iri
simplification

The examples of the previous section not only show that IIy and IIr (and DPy and DPp)
use more vertices than OPTy and OPTp, respectively, they show that this is still the case
if we run IT with a larger value than ¢. To let IIy use as few vertices as OPTy, we must
use 2¢ instead of € when the example is stretched horizontally. For the Fréchet distance, the
enlargement factor needed in the example approaches v/2 if we put p; far to the left. In
this section we analyze how the approximation enlargement factor relates to the number
of vertices in the Douglas-Peucker and Imai-Iri simplifications and the optimal ones. The
interest in such results stems from the fact that the Douglas-Peucker and Imai-Iri algorithms
are considerably more efficient than the computation of OPTy and OPTp.

3.1 Hausdorff distance

To show that ITy (and DPpy by consequence) may use many more vertices than OPTy, even
if we enlarge ¢, we give a construction where this occurs. Imagine three regions with diameter
€ at the vertices of a sufficiently large equilateral triangle. We construct a polyline P where
D1, D5, P9, - - - are in one region, po, Py, Pe, - - . are in the second region, and the remaining
vertices are in the third region, see Figure 3. Let n be such that p, is in the third region.
An optimal simplification is (p1, p;, pn) Where ¢ is any even number between 1 and n. Since
the only valid links are the ones connecting two consecutive vertices of P, Il is P itself. If
the triangle is large enough with respect to ¢, this remains true even if we give the Imai-Iri
algorithm a much larger error threshold than e.

» Theorem 1. For any ¢ > 1, there exists a polyline P with n vertices and an € > 0 such
that I (P, ce) has n vertices and OPTy(P,e) has 3 vertices.

Note that the example applies both to the directed and the undirected Hausdorff distance.

Pn—2""D1 p3° “Pn Pn2""m p3 - "Pn

Figure 3 The Douglas-Peucker and Imai-Iri algorithms may not be able to simplify at all, whereas
the optimal simplification using the Hausdorff distance has just three vertices (in blue, right).
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P2 D4 Pn—5
"\ ," Pn-3 pri—2
P Pn-1 pn‘
b3 Pn—4a

Figure 4 Left: a polyline on which the Fréchet version of the Douglas-Peucker algorithm performs
poorly and the output polyline contains n vertices. Right: the optimal simplification contains four
vertices (in blue).

3.2 Fréchet distance

Our results are somewhat different for the Fréchet distance; we need to make a distinction
between DPr and Ilp.

Douglas-Peucker. We construct an example that shows that DPr may have many more
vertices than OPTFp, even if we enlarge the error threshold. It is illustrated in Figure 4.
Vertex po is placed slightly higher than py4, ps, . . . so that it will be added first by the Fréchet
version of the Douglas-Peucker algorithm. Eventually all vertices will be chosen. OPTp
has only four vertices. Since the zigzag p,_s3,...,p, can be arbitrarily much larger than
the height of the vertical zigzag pi,...,pn—_4, the situation remains if we make the error
threshold arbitrarily much larger.

» Theorem 2. For any c > 1, there exists a polyline P with n vertices and an € > 0 such
that DPp (P, ce) has n vertices and OPTr(P,e) has 4 vertices.

Remark. One could argue that the choice of adding the furthest vertex is not suitable when
using the Fréchet distance, because we may not be adding the vertex (or vertices) that are
to “blame” for the high Fréchet distance. However, finding the vertex that improves the
Fréchet distance most is computationally expensive, defeating the purpose of this simple
algorithm. Furthermore, we can observe that also in the Hausdorff version, the Douglas-
Peucker algorithm does not choose the vertex that improves the Hausdorff distance most (it
may even increase when adding an extra vertex).

Imai-lIri. Finally we compare the Fréchet version of the Imai-Iri algorithm to the optimal
Fréchet distance simplification. Our main construction has ten vertices placed in such a way
that ITr has all ten vertices, while OPTr has only eight of them, see Figures 5 and 6.

It is easy to see that under the Fréchet distance, IIr = OPTy for the previous construction
in Figure 4. We give another input polyline P in Figure 6 to show that IIp also does not
approximate OPTg even if Il is allowed to use € that is larger by a constant factor.

We can append multiple copies of this construction together with a suitable connection
in between. This way we obtain:

» Theorem 3. There exist constants c; > 1, co > 1, a polyline P with n vertices, and an
€ > 0 such that |IIp(P, ci€)| > c2| OPTr (P, €)|.

By the aforementioned result of Agarwal et al. [2], we know that the theorem is not true
for ¢; > 4.
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P1o
Po
b5 K e Pe
. p1 D4
: D2
b3

Figure 5 The Imai-Iri simplification will have all vertices because the only valid links with a
Fréchet distance at most € are the ones connecting two consecutive vertices in the polyline.

™

P1" py p3 pg

P

Figure 6 The optimal simplification can skip p2 and ps; in the parametrizations witnessing the
Fréchet distance, OPTF “stays two vertices behind” on the input until the end. Right, the free
space diagram of P and OPTF.

4  Algorithmic complexity of the Hausdorff distance

The results in the previous section show that both the Douglas-Peucker and the Imai-
Iri algorithm do not produce an optimal polyline that minimizes the Hausdorff or Fréchet
distance, or even approximate them within any constant factor. Naturally, this leads us to the
following question: Is it possible to compute the optimal Hausdorff or Fréchet simplification
in polynomial time?

In this section, we present a construction which proves that under the Hausdorff distance,
computing the optimal simplified polyline is NP-hard.

4.1 Undirected Hausdorff distance

We first consider the undirected (or bidirectional) Hausdorff distance; that is, we require
both the maximum distance from the initial polyline P to the simplified polyline @) and the
maximum distance from @ to P to be at most ¢.

» Theorem 4. Given a polyline P = (p1,pa,...,pn) and a value €, the problem of computing
a minimum length subsequence Q of P such that the undirected Hausdorff distance between
P and QQ is at most € is NP-hard.

We prove the theorem with a reduction from Hamiltonian cycle in segment intersection
graphs. It is well-known that Hamiltonian cycle is NP-complete in planar graphs [14], and by
Chalopin and Gongalves’ proof [7] of Scheinerman’s conjecture [22] that the planar graphs

56:7
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Figure 7 The construction: A is the arrangement of a set of segments S. We build an input path
P that “paints” over S completely, and we are looking for an output path @ that corresponds to a
Hamiltonian cycle. In this case, there is no Hamiltonian cycle, and the path gets stuck.

are included in the segment intersections graphs it follows that Hamiltonian cycle in segment
intersections graphs is NP-complete.

Let S be a set of n line segments in the plane, and assume all intersections are proper (if
not, extend the segments slightly). Let G be its intersection graph (i.e. G has a vertex for
every segment in .S, and two vertices in G are connected by an edge when their corresponding
segments intersect). We assume that G is connected; otherwise, clearly there is no Hamiltonian
cycle in G.

We first construct an initial polyline P as follows. (Figure 7 illustrates the construction.)
Let A be the arrangement of S, let p be some endpoint of a segment in S, and let 7w be
any path on A that starts and finishes at p and visits all vertices and edges of A (clearly, ©
may reuse vertices and edges). Then P is simply 3n + 1 copies of 7 appended to each other.
Consequently, the order of vertices in @ now must follow the order of these copies. We now
set € to a sufficiently small value.

Now, an output polyline @ with Hausdorff distance at most € to P must also visit all
vertices and edges of A, and stay close to A. If ¢ is sufficiently small, there will be no benefit
for @Q to ever leave A.

» Lemma 5. A solution Q of length 3n+1 exists if and only if G admits a Hamiltonian cycle.

Proof. Clearly, any simplification @) will need to visit the 2n endpoints of the segments in S,
and since it starts and ends at the same point p, will need to have length at least 2n + 1.
Furthermore, @) will need to have at least two internal vertices on every segment s € S: once
to enter the segment and once to leave it (note that we cannot enter or leave a segment at an
endpoint since all intersections are proper intersections). This means the minimum number
of vertices possible for @ is 3n + 1.

Now, if G admits a Hamiltonian cycle, it is easy to construct a simplification with 3n + 1
vertices as follows. We start at p and collect the other endpoint of the segment s; of which p
is an endpoint. Then we follow the Hamiltonian cycle to segment ss; by definition s;s2 is an
edge in G so their corresponding segments intersect, and we use the intersection point to
leave s1 and enter so. We proceed in this fashion until we reach s,,, which intersects s1, and
finally return to p.

On the other hand, any solution with 3n 4 1 vertices must necessarily be of this form and
therefore imply a Hamiltonian cycle: in order to have only 3 vertices per segment the vertex
at which we leave s; must coincide with the vertex at which we enter some other segment,
which we call so, and we must continue until we visited all segments and return to p. <
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4.2 Directed Hausdorff distance: P — Q

We now shift our attention to the directed Hausdorff distance from P to @): we require the

maximum distance from P to @ to be at most &, but Q may have a larger distance to P.

The previous reduction does not seem to work because there is always a Hamiltonian Cycle
of length 2n for this measure. Therefore, we prove the NP-hardness differently.

The idea is to reduce from COVERING POINTS BY LINES, which is known to be both
NP-hard [20] and APX-hard [19]: given a set S of points in R?, find the minimum number of
lines needed to cover the points. The complete proof is explained in full detail in [23]; here
we give the main part of the construction.

Let S = {s1,...,8,} be an instance of the COVERING POINTS By LINES problem. We fix
e based on S and present the construction of a polyline connecting a sequence of m = poly(n)
points: P = (p1,pa2, ..., pm) such that for every 1 < i < n, we have s; = p; for some 1 < j < m.
The idea is to force the simplification ) to cover all points in P except those in S, such that
in order for the final simplification to cover all points, we only need to collect the points
in S using as few line segments as possible. To this end, we will place a number of forced
points F' C P, where a point f is forced whenever its distance to any line through any pair of
points in P is larger than . Since Q must be defined by a subset of points in P, we will
never cover f unless we choose f to be a vertex of (). Figure 8 shows this idea. On the other
hand, we need to place points that allow us to freely draw every line through two or more
points in .S. We create two point sets L and R to the left and right of S, such that for every
line through two of more points in S, there are a point in L and a point in R on that line.
Finally, we need to build additional scaffolding around the construction to connect and cover
the points in L and R. Figure 9 shows the idea.

The construction has three parts with different purposes:

1. a sub-polyline that contains S}

N

a sub-polyline that contains L and R; and
3. two disconnected sub-polylines which share the same purpose: to guarantee that all
vertices in the previous sub-polyline are themselves covered by Q.

First, we assume that every point in S has a unique z-coordinate; if this is not the case,
we rotate S until it is.> We also assume that every line through at least two points of S has
a slope between —1 and +1; if this is not the case, we vertically scale S until it is. Now, we
fix € to be smaller than half the minimum difference between any two z-coordinates of points
in S, and smaller than the distance from any line through two points in S to any other point
in S not on the line.

We place n + 1 forced points fi, fa, ..., fn, fnt+1 such that the z-coordinate of f; lies
between the z-coordinates of s;_; and s; and the points lie alternatingly above and below
S; we place them such that the distance of the line segment f;f; 11 to s; is %5 and the
distance of fifi+1 to s;_1 is larger than . Next, we place two auxiliary points ¢ and
t; on f;fi+1 such that the distance of each point to s; is 2¢; refer to Figure 8. Then
let 71 = (f1,t5, 81,17, fo,ty, 82,15, f3, ..., far1) be a polyline connecting all points in the
construction; 7 will be part of the input segment P.

The idea here is that all forced points must appear on @, and if only the forced points
appear on @, everything in the construction will be covered ezcept the points in S (and some
arbitrarily short stubs of edges connecting them to the auxiliary points). Of course, we could

5 Note that, by nature of the COVERING POINTS By LINES problem, we cannot assume S is in general
position; however, a rotation for which all z-coordinates are unique always exists.
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uf U1
ot |u ug] vy
,,,1
I Ry
S92 HZ
Ly . . . T
S1
L2 L 53 T3
l2 5
'3
f2
Figure 8 Example of 71 where n = 3. Figure 9 Construction to allow the lines
For a given &, the (simplified) polyline that can be used to cover the points of S. To
f1, f2, f3, fa covers the gray area but not the ensure the order of vertices in @), we create
blue points s1, s2, s3. copies of L and R. Then, @ can use them
alternatingly.

choose to include more points in 77 in @ to collect some points of S already. However, this
would cost an additional three vertices per collected point (note that using fewer than three,
we would miss an auxiliary point instead), and in the remainder of the construction we will
make sure that it is cheaper to collect the points in S separately later.

The second part of the construction serves to allow shortcuts that have the role of the
lines in the COVERING POINTS BY LINES problem. Since we only need the O(n?) lines that
cover at least two points, this part of the construction has O(n?) vertices in P. An indication
of this construction is given in Figure 9; further details are in [23].

» Theorem 6. Given a polyline P = (p1,pa,...,pn) and a value €, the problem of computing
a minimum length subsequence QQ of P such that the directed Hausdorff distance from P to
Q is at most € is NP-hard.

4.3 Directed Hausdorff distance: Q — P

Finally, we finish this section with a note on the reverse problem: we want to only bound the
directed Hausdorff distance from @ to P (we want the output segment to stay close to the
input segment, but we do not need to be close to all parts of the input). This problem seems
more esoteric but we include it for completeness. In this case, a polynomial time algorithm
(reminiscent of Imai-Iri) optimally solves the problem.

» Theorem 7. Given a polyline P = (p1,pa,...,pn) and a value €, the problem of computing
a minimum length subsequence Q of P such that the directed Hausdorff distance from @ to
P is at most € can be solved in polynomial time.

Proof. We compute the region with distance € from P explicitly. For every link we compute if
it lies within that region, and if so, add it as an edge to a graph. Then we find a minimum link
path in this graph. For a possibly self-intersecting polyline as the input a simple algorithm
takes O(n*) time (faster is possible). <
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D5 D5 /\p5
b1 b1t p1!
P12 P12 P12

Figure 10 An example where the farthest-reaching simplification up to ps4 using 2 links is not
part of any solution that uses ps4. Left: the input curve P in black, with circles of radius € around all
vertices in light gray. Middle: A 2-link simplification of (p1, p2, p3, p4) that reaches up to a point on
Paps (in yellow) which can be extended to a 4-link simplification of P. Right: A 2-link simplification
of (p1, p2, ps, pa) that reaches point r on Psps (in pink) which does not allow simplification.

5 Algorithmic complexity of the Fréchet distance

In this section, we show that for a given polyline P = (p1,pa,...,pn) and an error ¢, the
optimal simplification @ = OPTg(P, ) can be computed in polynomial time using a dynamic
programming approach.

5.1 Observations

Note that a link p;p; in @ is not necessarily within Fréchet distance € to the sub-polyline
(Di, Pit1, -, ;) (for example, pips in Figure 2). Furthermore, a (sequence of) link(s) in @
could be mapped to an arbitrary subcurve of P, not necessarily starting or ending at a vertex
of P. For example, in Figure 6, the sub-polyline (p1, p4, ps, ps) has Fréchet distance € to a
sub-polyline of P that starts at p; but ends somewhere between ps and ps. At this point, one
might imagine a dynamic programming algorithm which stores, for each vertex p; and value
k, the point p(i, k) on P which is the farthest along P such that there exists a simplification
of the part of P up to p; using k links that has Fréchet distance at most € to the part of P
up to p(i, k). However, the following lemma shows that even this does not yield optimality;
its proof is the example in Figure 10.

» Lemma 8. There exists a polyline P = (p1,...,p12) and an optimal e-Fréchet-simplification

that has to use py, Q = (p1, P2, P4, D5, P12) using 4 links, with the following properties:
There exists a partial simplification R = (p1,p3,p4) of (p1,--.,p4) and a point r on Dspg
such that the Fréchet distance between R and the subcurve of P up to r is < ¢, but
there exists no partial simplification S of (p4,...,p12) that is within Fréchet distance € to
the subcurve of P starting at r that uses fewer than 7 links.

5.2 A dynamic programming algorithm

Lemma 8 shows that storing a single data point for each vertex and value of k is not sufficient
to ensure that we find an optimal solution. Instead, we argue that if we maintain the set
of all points at P that can be “reached” by a simplification up to each vertex, then we can
make dynamic programming work. We now make this precise and argue that the complexity
of these sets of reachable points is never worse than linear.
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First, we define 7, a parameterization of P as a continuous mapping: = : [0,1] — R?
where 7(0) = p; and 7(1) = p,. We also write PJs,t] for 0 < s <t < 1 to be the subcurve of
P starting at m(s) and ending at 7(t), also writing P[t] = PJ0, ] for short.

We say that a point m(t) can be reached by a (k,4)-simplification for 0 < k < i < n if
there exists a simplification of (p1,...,p;) using k links which has Fréchet distance at most
e to P[t]. We let p(k,i,t) = true in this case, and false otherwise. With slight abuse of
notation we also say that t itself is reachable, and that an interval I is reachable if all ¢t € T
are reachable (by a (k,)-simplification).

» Obervation 9. A point 7(t) can be reached by a (k,i)-simplification if and only if there
exist a 0 < h <i and a 0 < s <t such that w(s) can be reached by a (k — 1, h)-simplification
and the segment Dpp; has Fréchet distance at most € to P[s,t].

Proof. Follows directly from the definition of the Fréchet distance. |

Observation 9 immediately suggests a dynamic programming algorithm: for every k and ¢
we store a subdivision of [0, 1] into intervals where p is true and intervals where p is false, and
we calculate the subdivisions for increasing values of k. We simply iterate over all possible
values of h, calculate which intervals can be reached using a simplification via h, and then
take the union over all those intervals. For this, the only unclear part is how to calculate
these intervals.

We argue that, for any given k and 4, there are at most n — 1 reachable intervals on [0, 1],
each contained in an edge of P. Indeed, every (k,4)-reachable point m(¢) must have distance
at most € to p;, and since the edge e of P that 7(t) lies on intersects the disk of radius &
centered at p; in a line segment, every point on this segment is also (k,)-reachable. We
denote the farthest point on e which is (k,i)-reachable by .

Furthermore, we argue that for each edge of P, we only need to take the farthest reachable
point into account during our dynamic programming algorithm.

» Lemma 10. If k, h, i, s, and t exist such that p(k — 1, h,s) = p(k,i,t) = true, and Dpp;
has Fréchet distance < ¢ to P[s,t], then Dpp; also has Fréchet distance < ¢ to P[3,1)].

Proof. By the above argument, P[s, §] is a line segment that lies completely within distance
¢ from py,, and P[t,#] is a line segment that lies completely within distance € from p;.
We are given that the Fréchet distance between ppp; and P(s,t] is at most ¢; this means
a mapping f : [s,t] — DPpp; exists such that |w(x) — f(z)] < e. Let ¢ = f(s’). Then
Ipr, — 7(8)| < e and |g — w(8)| < &, so the line segment prq lies fully within distance e from §.
Therefore, we can define a new e-Fréchet mapping between P[3,] and pp; which maps
3 to the segment Dpq, the curve P[§,¢] to the segment gp; (following the mapping given by

f), and the segment 7(¢)7(£) to the point p;. <

Now, we can compute the optimal simplification by maintaining a k x n x n table storing
p(k,i,%), and calculate each value by looking up n? values for the previous value of k, and
testing in linear time for each combination whether the Fréchet distance between the new
link and P[3,] is within € or not.

» Theorem 11. Given a polyline P = (p1,...,pn) and a value €, we can compute the optimal
polyline simplification of P that has Fréchet distance at most € to P in O(kn®) time and
O(kn?) space, where k is the output complexity of the optimal simplification.
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6 Conclusions

In this paper, we analyzed well-known polygonal line simplification algorithms, the Douglas-
Peucker and the Imai-Iri algorithm, under both the Hausdorff and the Fréchet distance. Both
algorithms are not optimal when considering these measures. We studied the relation between
the number of vertices in the resulting simplified polyline from both algorithms and the
enlargement factor needed to approximate the optimal solution. For the Hausdorff distance,
we presented a polyline where the optimal simplification uses only a constant number of
vertices while the solution from both algorithms is the same as the input polyline, even if
we enlarge € by any constant factor. We obtain the same result for the Douglas-Peucker
algorithm under the Fréchet distance. For the Imai-Iri algorithm, such a result does not exist
but we have shown that we will need a constant factor more vertices if we enlarge the error
threshold by some small constant, for certain polylines.

Next, we investigated the algorithmic problem of computing the optimal simplification
using the Hausdorff and the Fréchet distance. For the directed and undirected Hausdorff
distance, we gave NP hardness proofs. Interestingly, the optimal simplification in the other
direction (from output to input) is solvable in polynomial time. Finally, we showed how
to compute the optimal simplification under the Fréchet distance in polynomial time. Our
algorithm is based on the dynamic programming method and runs in O(kn®) time and
requires O(kn?) space.

A number of challenging open problems remain. First, we would like to show NP-hardness
of computing an optimal simplification using the Hausdorff distance when the simplification
may not have self-intersections. Second, we are interested in the computational status of
the optimal simplification under the Hausdorff distance and the Fréchet distance when the
simplification need not use the vertices of the input. Third, it is possible that the efficiency
of our algorithm for computing an optimal simplification with Fréchet distance at most ¢
can be improved. Fourth, we may consider optimal polyline simplifications using the weak
Fréchet distance.
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