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Largest and Smallest Area Triangles on a Given Set of Imprecise Points
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Abstract

In this paper we study the following problem: we are
given a set of imprecise points modeled as parallel
line segments, and we wish to place three points in
different regions such that the resulting triangle has
the largest or smallest possible area. We first present
some facts about this problem, then we show that for
a given set of line segments of equal length the largest
possible area triangle can be found in O(n logn) time,
and for line segments of arbitrary length the problem
can be solved in O(n2) time. We also show that the
smallest possible area triangle for a set of arbitrary
length line segments can be found in O(n2) time.

1 Introduction

In this paper we study a traditional problem in com-
putational geometry in an imprecise context. Let P

be a set of points. We wish to find a sequence of
k points in P such that if we connect them into a
polygon Q, Q has specific attributes, e.g., Q has the
largest or smallest possible area or perimeter, or Q is
an empty k-gon, etc. Of course for a given set P such
a k-gon does not necessarily exist, for k > 3.

1.1 Related Work

Numerous papers studied such problems previously.
Dobkin and Snyder [5] presented a linear time algo-
rithm for finding the largest area triangle inscribed in
a convex polygon.
Boyce et al. [3] presented a dynamic programming

algorithm for finding the largest possible area and
perimeter convex k-gon on a given set of n points
in O(kn log n + n log2 n) time. Aggarwal et al. [2]
improved their result to O(kn+ n log n).
Due to more applicability, there are more stud-

ies concerned with the problem of finding the mini-
mum possible area and perimeter k-gon. Dobkin et

al. [4] presented an O(k2n log n + k5n) time algo-
rithm for finding minimum perimeter k-gons. Their
algorithm was improved upon by Aggarwal et al. to
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Figure 1: The largest possible area triangle for a set
of line segments.

O(n log n + k4n) time [1]. Eppstein et al. [7] stud-
ied three problems: finding the smallest possible k-
gon, finding the smallest empty k-gon, and finding the
smallest possible convex polygon on exactly k points,
where the smallest means the smallest possible area or
perimeter. They presented a dynamic programming
approach with O(kn3) time and O(kn2) space, that
can also solve the maximization version of the prob-
lem as well as some other related problems. After-
wards, Eppstein [8] presented an algorithm for mini-
mum area k-gon problem that runs inO(n2 log n) time
and O(n log n) space for constant values of k.

1.2 Problem Definition

We are given a set L = {L1, L2, . . . , Ln} of imprecise
points modeled as parallel line segments, that is, every
segment Li contains exactly one point Pi ∈ Li. This
gives a point set P = {P1, P2, . . . , Pn}, and we want
to find the largest area or smallest area triangle in P ,
Tmax and Tmin. But because L is a set of imprecise
points, we do not know where P is and what could
be the possible values of the area. But there should
be a lower bound and an upper bound and we are in-
terested in computing these values. So, in this paper
we compute the largest possible area of Tmax and the
smallest possible area of Tmin. We named these prob-
lemsMaxMaxArea andMinMinArea, respectively. An
illustration of these problems can be seen in Figure 1.
In this example, the solution of MinMinArea is zero,
as we can find three collinear points.

1.3 Results

We show that

• MaxMaxArea can be solved in O(n log n) time
and O(n2) time, respectively, for a given set of
equal length and arbitrary length parallel line
segments, and
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Figure 2: (a) The maximum area true triangle selects
its vertices from the endpoints of regions, but not nec-
essarily on the convex hull. (b) Maximum area convex
hull does not contain maximum area triangle.

• MinMinArea can be solved in O(n2) time.

2 Preliminaries

In this section we first present related previous results
that may be applicable to our problem, and then dis-
cuss some difficulties that occur when dealing with
imprecise points.
Boyce et al. [3] defined a rooted polygon as a poly-

gon with one of its vertices fixed at a given point.
In the context of imprecise points, we define the root

as a given point in a specific region. In this case we
throw out the remainder of the root’s region and try
to find the other vertices of the k-gon in the other
n − 1 remaining regions, and a rooted polygon will
be a polygon with one of its vertices fixed at a given
point in a specific region. Boyce et al. [5] showed that
the rooted largest area triangle can be found in linear
time. They showed that the largest area k-gon only
uses points on the convex hull (if there exist at least k
points on the convex hull); also Löffler and van Krev-
eld [9] proved that the maximum area convex polygon
always selects its vertices from the endpoints of the
line segments, so one may think that the maximum
area triangle selects its vertices from the endpoints of
regions on the convex hull. But that it is not the case,
as can be seen in Figure 2(a).
Also unlike in the precise context, the largest area

triangle is not inscribed in the largest possible convex
hull of the given set of imprecise points, as illustrated
in Figure 2(b).
This problem is more complicated for larger values

of k, as illustrated in Figure 3(a); even for k=4, we
cannot find the area of the largest strictly convex k-
gon, as the angle at a approaches π and we can enlarge
the area of the convex 4-gon arbitrarily.

3 Maximum Area Triangle

In the following we first define some notation
that we will use in subsequent sections. Let
Z be the set of all endpoints of L, Z =

Figure 3: (a)The maximum area convex 4-gon con-
structed on a set consists of one imprecise and three
fixed points, where the inner angle at a approaches π.
(b)The largest area true triangle selects at least two
vertices from the vertices of C0.

{L1
−, L1

+, L2
−, L2

+, . . . , Ln
−, Ln

+}, where Li
+ de-

notes the upper endpoint of Li, and Li
− denotes the

lower endpoint of Li. We define C0 = CH(Z) as the
convex hull of Z, and C1 = CH(Z \ C0). By true

triangle we mean a triangle constructed on three dif-
ferent regions. We assume the segments to be oriented
vertically.

Observation 1 If at most two separate regions ap-
pear on C0, there is an optimal solution to the Max-
MaxArea problem, such that all the vertices are cho-
sen at endpoints of the line segments, and the two
regions which appear on C0, always appear on the
largest possible area true triangle.

In this case, the largest possible area true triangle can
be found in O(n) time. From now on assume more
than two different regions appear on C0.

3.1 Stable Triangle

Dobkin and Snyder [5] defined a stable triangle ABC

as a triangle with the root A fixed, such that forward
advancement of either B or C along the convex hull
results in a smaller area, and proved the Pentagon

lemma (see full version), that is needed for the correct-
ness proof of their algorithm. The area maximizing
triangle will be chosen from one of these stable trian-
gles. The idea of their algorithm is to start searching
from three consecutive vertices A,B and C on the
convex hull. They move C forward until the move-
ment reduces the area, and then move B forward, and
again move C, etc. If moving either of them would
reduce the area, the triangle is stable and, they move
A forward. When A returns to its starting position,
they stop the algorithm and report the largest area
stable triangle they found. This algorithm has linear
running time (see full version for details).
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In our imprecise context we define a stable triangle
in the same way, as a triangle such that forward ad-
vancement of either B or C results in a smaller area
triangle, but it can be a non-true triangle. So we
should be careful that not all the stable triangles are
non-true triangles, because then we do not find the
largest true triangle among them.
In the following we first show that if we have a

convex polygon with vertices from repeated regions
(each region appears on the convex hull at most two
times), we still can find the solution of MaxMaxArea
problem in linear time, then we use this result for
designing our algorithms.

4 Largest Area True Triangle

Let ABC be the initial triangle during the execution
of the algorithm. Without loss of generality we may
assume ABC is a true triangle (as we assume more
than two different regions appear on C0). So, the area
of ABC is the initial value of Tmax. We continue the
algorithm naturally, but our movements may result
in repeated regions. In full version we show what we
do when we encounter repeated regions, and analyse
all possible cases that cause a stable non-true trian-
gle. Also, we disscuss the stable true triangle that we
accept in each case.
Assume we are given a convex polygon S =

{s1, s2, . . . , sn}. Similar to the notation of [5], we
denote by α(sasbsc) the stable true triangle which
we found during a step of the algorithm, where we
started searching from sasbsc. For an arbitrary point
A = sa, define the A-rooted maximum true trian-
gle to be α(sasa+1sa+2). The following lemma states
that for the A + 1-rooted maximum true triangle, it
is unnecessary to begin with the collapsed triangle
sa+1sa+2sa+3. of the A-rooted maximum.

Lemma 1 If α(sasa+1sa+2) = (sasbsc), then
α(sa+1sa+2sa+3) = α(sa+1sbsc).

Lemma 2 Let S = {s1, s2, . . . , sn} be a convex poly-
gon, with vertices from repeated regions. There exist
an i (1 ≤ i ≤ n) such that an area maximizing true
triangle on si is the area maximizing true triangle in-
scribed in S.

Corollary 3 Let L be a set of imprecise points mod-
eled as a set of parallel line segments with arbitrary
length. The largest possible area true triangle which
selects its vertices from the vertices of C0 can be found
in O(n log n) time.

4.1 Equal Length Parallel Line Segments

From the previous section we understand that if we
prove that all the candidates points of the vertices

of the largest possible area true triangle appear on
C0, and we know that all the possible stable triangles
are true triangles, we can directly apply the existing
algorithm [5].

Lemma 4 Let L be a set of equal length parallel line
segments. The largest possible area true triangle se-
lects its vertices from the vertices on C0.

In case of equal length parallel line segments, when
all the upper (and lower) endpoints of the line seg-
ments are collinear together, the maximum possible
area triangle can be a non-true triangle. In this situ-
ation the largest possible area triangle would be con-
structed on the leftmost and rightmost line segments,
and the largest possible area true triangle can be
found in linear time. We can determine this situa-
tion in O(n) time.

Lemma 5 Let L be a set of equal length parallel line
segments, that is, all the lower (or upper) endpoints
are not collinear. The largest pssible area triangle is
always a true triangle.

Theorem 6 Let L be a set of imprecise points mod-
eled as a set of parallel line segments with equal
length. The solution of the problem MaxMaxArea
can be found in O(n log n) time.

4.2 Arbitrary Length Parallel Line Segments

For simplicity we assume general position, that is,
no two vertical line segments have the same x-
coordinates. As we saw above, the largest possible
area true triangle computed on a set of imprecise
points modeled as arbitrary length parallel line seg-
ments does not necessarily select its vertices on the
convex hull of the regions.

Lemma 7 Let L be a set of imprecise points modeled
as a set of parallel line segments with arbitrary length.
At least two vertices of the largest area true triangle
are located on C0 and at most one of its vertices is
located on C1.

4.2.1 Algorithm

Now we know the combinatorial structure of the
largest possible area true triangle: it can select all
of its vertices on C0, or it selects two neighbor ver-
tices on C0 and one vertex on C1, or it selects two
non-neighbor vertices on C0 and one vertex on C1.
The largest possible area true triangle is the largest
area true triangle among them. In the first case, the
largest area true triangle can be found in O(n log n)
time using Corollary 3. In the second case, we try all
the edges of C0 as the base of the triangle. The third
vertex can be found by doing a binary search on the
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Figure 4: (a) Selection of a point on C1 as the root
R. (b) For the case of diagonal quadrants, for a given
R ∈ C1 and a fixed point Vi in quadrant three, we
only need to look for the candidates of the largest area
true triangle in one direction, and from M1(Vi−1) and
M2(Vi−2) on C0.

boundary of C1. So in this case again we can find the
maximum area true triangle in O(n log n) time. In the
third case, assume each of the points of C1 to be the
origin point, R. For every point R ∈ C1 as the ori-
gin, we partition C0 into four quadrant convex chains,
so that the largest area true triangle should be con-
structed on R and two points on the other quadrants
(or only one quadrant), as illustrated in Figure 4(a).
If one or two consecutive quadrants include the other
vertices of the largest area true triangle, we can find
the largest area true triangle in O(n log n) time by
using Corollary 3. Suppose two other vertices are lo-
cated on diagonal quadrants. Let the cyclic ordering
of C0 be counterclockwise, and let V1 be the first ver-
tex of quadrant three in the cyclic ordering of C0. We
first find the two candidates points in quadrant one
for constructing the largest possible area true trian-
gle on R and V1, M1(V1) and M2(V1). For finding
M1(V2) and M2(V2), we just need to start looking
from M1(V1) and M2(V1), etc (see Figure 4(b)). In
this case, we can find the largest possible area true
triangle in O(n2) time (see full version for more de-
tails).

Theorem 8 Let L be a set of imprecise points mod-
eled as a set of parallel line segments with arbitrary
length. The solution of the problem MaxMaxArea
can be found in O(n2) time.

5 Smallest Area True Triangle

In this problem, if we find three collinear points on
three different input regions, the smallest area trian-
gle would have zero area. We can understand this
situation in O(n2) time. And we cannot hope to do it
faster as the problem is 3SUM-hard. In the following
we assume that MinMinArea has a non-zero solution.

Lemma 9 Let L be a set of imprecise points modeled
as a set of parallel line segments. Suppose there is
no zero-area triangle in L. The smallest area true
triangle selects its vertices on the endpoints of the
line segments.

We use the idea of the algorithm presented in [6] that
solves the problem in dual space and on an arrange-
ment of lines. As their duality preserves the vertical
distances and is order preserving, the minimum area
triangle on each vertex in dual space, can be con-
structed on a line that is located exactly above or be-
low the vertex. In our problem, we need to continue
looking in at most two neighbouring faces, when we
encounter to repeated regions (see full version for de-
tails).

Theorem 10 Let L be a set of imprecise points mod-
eled as parallel line segments. The solution of the
problem MinMinArea can be found in O(n2) time.
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