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Abstract
One of the challenges of brain network analysis is to directly compare network organization

between subjects, irrespective of the number or strength of connections. In this study, we used

minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections)

analysis to characterize the human brain network to create an empirical reference network. Such a

reference network could be used as a null model of connections that form the backbone structure

of the human brain. We analyzed the MST in three diffusion-weighted imaging datasets of healthy

adults. The MST of the group mean connectivity matrix was used as the empirical null-model. The

MST of individual subjects matched this reference MST for a mean 58%–88% of connections,

depending on the analysis pipeline. Hub nodes in the MST matched with previously reported loca-

tions of hub regions, including the so-called rich club nodes (a subset of high-degree, highly

interconnected nodes). Although most brain network studies have focused primarily on cortical

connections, cortical–subcortical connections were consistently present in the MST across sub-

jects. Brain network efficiency was higher when these connections were included in the analysis,

suggesting that these tracts may be utilized as the major neural communication routes. Finally, we

confirmed that MST characteristics index the effects of brain aging. We conclude that the MST

provides an elegant and straightforward approach to analyze structural brain networks, and to test

network topological features of individual subjects in comparison to empirical null models.
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1 | INTRODUCTION

The human brain is a complex network and its structural organization is

closely related to its function. Network analysis has increased our

understanding of the brain, including the genetic basis of connection

formation, the effects of maturation and aging on neural network orga-

nization, and the correlates of high level cognitive processing (Bullmore

and Sporns, 2009; Bullmore and Sporns, 2012; Fornito, Zalesky, &

Bullmore, 2016). In network studies, the brain is analyzed as a set of

nodes (gray matter regions) and their connections. The connections can

be structural, such as white matter tracts, functional, for example, rep-

resenting synchronized activity between populations of neurons, or

theoretical, based on correlations in characteristics such as cortical

thickness or gene expression. One of the key characteristics of human

brain networks is the presence of so-called hub nodes, which are cen-

tral brain regions with a relative high number of connections (Gong

et al., 2009; van den Heuvel and Sporns, 2011). A general backbone of

cortico-cortical highways has been described in the healthy human

brain using graph theoretical analysis of diffusion weighted imaging

tractography, which includes connections between a subset of hub

nodes, the so-called rich club (Hagmann et al., 2008; van den Heuvel,

Kahn, Goni, & Sporns, 2012). Mounting evidence suggests that struc-

tural brain networks, particularly their backbone, are altered in neuro-

logical and psychiatric disorders, and heterogeneity in these alterations

is evident between diseases (Bullmore and Sporns, 2009; Crossley

et al., 2014; Stam, 2014).

Although our knowledge of brain networks is rapidly growing, sev-

eral methodological issues remain unresolved. One of these issues is

the lack of a reference network, which describes the topology of a

“standard” human brain; such a reference network is lacking even if

scanning and preprocessing conditions are fixed (Fornito, Zalesky, &

Breakspear, 2013; Stam et al., 2014). A reference could be useful to

compare results of different studies and of different populations, pro-

vided that the preprocessing pipeline, node and edge definitions are

similar. A reference network could also serve as a null-model to charac-

terize network alterations in individual subjects, and to develop theo-

retical models of altered connectivity patterns during maturation or

due to disease (Fornito et al., 2013). Although an “average” brain

network has been described, the use of this network as a reference to

study differences in specific conditions has been hindered by another

major issue in brain network studies, namely the so-called “thresholding

problem.” The thresholding problem refers to the large effect of trivial

characteristics of the network on conventional graph measures, such as

the number and strength of the connections (van Wijk, Stam, & Daf-

fertshofer, 2010). The problem can be illustrated as follows: let’s con-

sider two networks A and B, where the number of connections in

network A is twice the number of connections in network B. We now

wish to compare the efficiency of both networks, using the shortest

path length between the two most remote nodes in the network. In

this comparison, network A is likely to be more efficient than network

B in an absolute sense, simply because there are more connections in

network A. However, if we were to normalize or correct for the greater

number of connections in network A, the efficiency of both networks

might be comparable. Therefore, an absolute difference in efficiency

does not necessarily imply that the topological organization of the con-

nections is also more efficient in one of the networks (Stam et al.,

2014; van Wijk et al., 2010). Proportional thresholding is frequently

applied to weighted connectivity matrices to overcome this problem

and yield networks that are matched in terms of total number of con-

nections; network characteristics are then based on this thresholded

network containing a subset of strong connections. However, this

approach affects the graph properties in an unpredictable manner,

because the impact of setting a threshold varies, depending on the

underlying network topology (Stam et al., 2014; van den Heuvel et al.,

2017; van Wijk et al., 2010). Handling of the thresholding problem is

likely to be one of the reasons that empirical studies have reported

contradictory findings, for example of both increased and decreased

characteristic shortest path length in patients with Alzheimer’s Disease

(Fornito et al., 2013; Tijms et al., 2013). Decreased shortest path

lengths in the presence of an overall reduction in connectivity strength

in a patient group may be due to the inclusion of spurious long-

distance connections in patients due to the use of a more lenient pro-

portional threshold.

We propose to study the backbone structure of the brain network

by mapping a mathematically defined subset of connections known as

the minimum spanning tree (MST; Figure 1; Kruskal, 1956; Wang,

FIGURE 1 The concept of the minimum spanning tree. Three minimum spanning tree network types. (a) shows a path tree, where every
node except the two end nodes or leafs (red) is connected to its two neighbors (low leaf number), but it takes a lot of steps to reach the
other end of the network (high diameter). (c) shows a star tree, which consists of a central node (high betweenness centrality, in green) that
is connected to all other nodes (high degree), which are all leaf nodes. This network is highly efficient (low diameter), but may result in an
overload of information flow through the central hub node. (b) represents a hierarchical tree, which is a possible intermediate between the
two extremes [Color figure can be viewed at wileyonlinelibrary.com]
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Hernandez, & Van Mieghem, 2008). The MST is a subnetwork contain-

ing the strongest connections from the set of all available weighted

connections. It connects all the nodes in the network without forming

cycles or loops. The MST is unaffected by the thresholding problem

provided that the ranking of edge weights remains unaltered, while its

characteristics can be interpreted along the lines of conventional graph

measures (Stam et al., 2014; Tewarie, van Dellen, Hillebrand, & Stam,

2015). Importantly, the MST is a unique subset of connections pro-

vided that all connection weights are unique, which makes it possible

to create an empirical reference network of the connections in a

healthy human brain. Recent studies have shown that MST analysis

can be used to capture network alterations due to aging and disease in

both functional and structural imaging data (Boersma et al., 2010; Otte

et al., 2015; van Dellen et al., 2014, 2015).

The topology of a network depends not only on the definition of

connections, but also on the definition of nodes, in this case the brain

regions that are considered to be part of the connectome (Zalesky

et al., 2010). It remains unclear how brain network analysis may be

influenced by the use of atlases to define cortical regions, or the exclu-

sion of subcortical brain regions.

In the present work, we studied whether MST analysis could be

used to define a reference or standard backbone of the human connec-

tome. Structural brain networks were reconstructed in three datasets

of healthy adults using diffusion weighted imaging both including and

excluding subcortical regions. We defined a reference MST based on

the average weighted connectivity matrix of each population of healthy

subjects, and we tested the variance in overlap with this reference net-

work for individual subjects. We studied the effect of using different

scanners at 1.5 T and 3 T, the effect of different scanning sites, and

processing pipelines. The topology of a network depends not only on

the definition of connections, but also on the definition of nodes (Zale-

sky et al., 2010). We therefore studied the effects of using different

brain atlases for node definitions, and the exclusion of subcortical brain

regions. To investigate biological relevance in healthy adults, we aimed

to replicate previous findings on the relation between MST topology

and age and gender. Finally, we tested whether the MST captured key

aspects of structural network organization of the human brain, includ-

ing the consistent presence of core connections across subjects, and

the location of hub nodes and rich club nodes.

2 | METHODS

2.1 | Dataset 1 (Netherlands dataset)

2.1.1 | Subjects

Data of 46 healthy subjects were analyzed. The population consisted

of 19 males and 27 females (41% and 59%, respectively), with a mean

age of 39 years (Standard Deviation (SD) 14 years, range 20–65).

Thirty-three (72%) subjects were right-handed and 13 (28%) were non-

right-handed. Subjects were recruited as control subjects for a study in

the department of psychiatry at the University Medical Center Utrecht

via a website (www.verkenuwgeest.nl.) Inclusion criteria were: (a) no

current or past psychiatric disorders; (b) no chronic somatic disorder; (c)

absence of alcohol or drug abuse for at least 3 months. See de Weijer

et al. (2013) for a detailed description of the inclusion procedure.

2.1.2 | Image acquisition

MRI scans were acquired on a 3 T Philips Achieva with an eight-

channel SENSE head-coil as previously reported in (de Weijer et al.,

2013). Two sets of Diffusion Weighted Imaging scans and a T1-

weighted scan for anatomical reference were collected from each par-

ticipant. Two sets of transverse DWI scans were obtained to increase

the signal-to-noise ratio, using the following parameters: a single shot

EPI-DTI scan consisting of 30 diffusion weighted scans (b51000s/

mm2) with noncolinear gradient directions and an average of five diffu-

sion unweighted scans (b50 s mm2), TR/TE57,035/68 ms,

FOV5240 mm, matrix 128 3 128, 75 slices with 2 mm thickness, no

gap, SENSE factor53, EPI factor535. The second set was identical to

the first but acquired with reversed k-space readout (anterior direction)

to allow correction of geometric EPI distortions in the image-

processing step. The diffusion-weighted scans were used for recon-

struction of the fiber tracts. The parameters for the T1-weighted scan

were: TR/TE59.87/4.6 ms, flip angle588, FOV 224 3 160 3 168,

matrix5256 3 256, slice thickness 1 mm (no gap).

2.1.3 | Image processing

The T1-weighted image was used for anatomical reference and for net-

work node definition. Brain regions (network nodes) were selected auto-

matically using the FreeSurfer segmentation pipeline (V5.1; http://surfer.

nmr.mgh.harvard.edu) (Fischl et al., 2004). The brain was divided into 82

distinct anatomical regions of the Desikan-Killiany Atlas using an auto-

mated segmentation procedure, consisting of 14 subcortical structures,

and a parcellation of the neocortex into 68 regions. An individual mask

was created containing all 82 regions for each subject. This mask was

registered to the diffusion tensor weighted data set using a six-

parameter rigid body transformation with nearest-neighbor interpolation.

Preprocessing of the diffusion-weighted scans was performed with

the diffusion toolbox of Andersson and Skare (2002) and Andersson,

Skare, and Ashburner (2003) using an in-house developed software

pipeline (Mandl et al., 2010). A distortion map was calculated based on

five averaged b50 images and applied to the two sets of 30 direction-

weighted images to correct for susceptibility artifacts. This resulted in a

corrected DWI set consisting of a single b50 image and 30 corrected

weighted images, thereby avoiding the need for nonlinear registration

approaches to the T1-weighted images (Andersson et al., 2003). The

DWI set was corrected for eddy-current distortions and small head

movements by realigning all scans to the diffusion-unweighted image

(Andersson and Skare, 2002). The diffusion tensors where obtained

using M-estimators to limit the influence of possible outliers (Chang,

Jones, & Pierpaoli, 2005).

Tracts were reconstructed in native space. All possible tracts in the

brain were reconstructed individually using the diffusion weighted

images with an in-house implementation of the fiber assignment by

continuous tracking (FACT) algorithm (Mandl et al., 2010) with the fol-

lowing parameter settings: 8 seed points per voxel, stopping criteria:

minimum voxel fractional anisotropy50.1 or tract angle between

VAN DELLEN ET AL. | 2457

http://www.verkenuwgeest.nl
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


streamline steps>458, and maximum average angle with neighboring

voxels5458. After tractography was completed, all fibers shorter than

10 mm were discarded, as they were deemed spurious. Finally, all

remaining fibers were linearly extended by 5 mm in the orientation

prior to termination to maximize the probability of penetration into the

grey matter. The presence of a white matter connection between two

grey matter regions was determined by labeling each streamline with

the grey matter areas it touched based on the anatomical segmentation

mask. The number of streamlines (NOS) was summed between all pos-

sible node pairs and represented in an 82 3 82 structural connectivity

matrix Mnos.

2.1.4 | Network reconstruction

Further analyses were performed using Matlab (The Mathworks,Inc.,

Natick, MA, United States), and the brain connectivity toolbox (https://

sites.google.com/site/bctnet). Networks were reconstructed for corti-

cal and subcortical ROIs (N582), and for cortical ROIs only (N568).

Several methods for connection estimation based tractography data

have been proposed (Jones and Leemans, 2011). We used the number

of streamlines to calculate the structural connectivity matrix M1. How-

ever, network reconstruction based on the number of streamlines for

segmented regions may be affected by the size of a region of interest

(ROI), as regions with a bigger surface may have a higher probability of

being adjacent to a streamline (Fornito et al., 2013; van den Heuvel

and Sporns, 2011). We therefore also computed a structural connectiv-

ity matrix, where the number of streamlines was weighted by regional

volume (Mvolume_weighted_nos), and one where the FA values were used

as edge weights MFA (van den Heuvel and Sporns, 2011).

To quantify how MST characteristics may be influenced by con-

nection definitions, we calculated correlations between nodal MST

properties and ROI volume and surface, and estimated the MST edge

length based on the Euclidean distance between the centroid voxel of

each ROI.

2.2 | Dataset 2 (Australia dataset)

Participant data were obtained from the Australian Schizophrenia

Research Bank (ASRB), which is an Australian resource and storage facil-

ity of medical research data collected across 5 Australian states and ter-

ritories. Exclusion criteria included any organic brain disorder, history of

brain trauma followed by a long period of amnesia (>24 h), mental

retardation (full-scale IQ<70), movement disorders, current drug or

alcohol dependence, a personal or family history of psychosis or bipolar

I disorder, and electroconvulsive therapy in the past 6 months.

Participants were English speaking, predominately of European

ancestry and aged between 18 and 65 years (Loughland et al., 2010). For

this study, participants with both a diffusion-weighted imaging (DWI)

and structural magnetic resonance imaging scan (sMRI) scan that was

processed using Freesurfer were selected. This comprised 197 healthy

controls (99 male). All participants provided informed consent for the

analysis of their stored data. Study procedures were approved by the

Melbourne Health Human Research Ethics Committee. Data use was

granted through a variation of ASRB Access Agreement P49 (Zalesky).

2.2.1 | Image acquisition

T1-weighted magnetic resonance imaging scans (sMRI) and diffusion-

weighted imaging (DWI) scans were acquired in each participant with a

Siemens Avanto 1.5-T system (Siemens, Erlangen, Germany) across five

different sites in Australia. The same acquisition sequences for T1-

weighted and DWI scans was used across all sites. Full details related

to sequence parameters have been described elsewhere (Klauser et al.,

2017).

2.2.2 | Image processing

The imaging data were preprocessed with the FMRIB Software Library

(FSL; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). In brief,

preprocessing involved eddy correction for motion and gradient-

induced currents using affine registration to the first volume. The

resulting transformation was inverted and applied to the automated

anatomical atlas (AAL; Tzourio-Mazoyer et al., 2002).

Automated whole-brain fiber tracking was performed in native dif-

fusion space for each individual to generate streamlines tracing out the

trajectories of all major cortico-cortical and cortico-subcortical fiber

bundles. For each subject, five thousand streamlines were seeded from

randomly positioned coordinates comprising each brain region of the

AAL-90 atlas. Each streamline was propagated using the second-order

integration over fiber orientation distributions (iFOD2) probabilistic

tractography algorithm (Tournier, Calamante, & Connelly, 2010).

Streamlines were guided by fiber orientations inferred using spherical

deconvolution with a maximum harmonic order (lmax) of 4 (Tournier,

Calamante, & Connelly, 2007). Propagation was terminated if either a

minimum angle threshold of 458 was violated or the streamline propa-

gated beyond the white matter mask. The strength of a connection

(connectivity) between a pair of brain regions was defined by the NOS.

These steps were performed using the MRtrix package (Tournier, Cala-

mante, & Connelly, 2012) and Matlab.

2.2.3 | Validation connectivity matrix

We compared the overlap of cortical connections in the MST of the

Netherlands dataset to a reference MST based on a publicly available

connectivity matrix from the International Consortion for Brain Imaging

(ICBM) dataset (http://umcd.humanconnectomeproject.org). All DTI

images in this sample were downloaded from the ICBM database (Maz-

ziotta et al., 2001).

Data consisted of 138 healthy adults (72 female, 66 male), age

range 18–90 years old, (mean 43.7, SD 15.2), obtained using a 1.5 T

Siemens system, 30 diffusion directions, b51000 s/mm2, voxel

size52.5 mm3 DTI images were preprocessed for eddy correction and

tensor estimation using the FSL Diffusion Toolbox (https://fsl.fmrib.ox.

ac.uk/fsl/fslwiki/FDT). The probability distribution of fiber directions in

each voxel was estimated using BEDPOSTX (Behrens, Berg, Jbabdi,

Rushworth, & Woolrich, 2007) allowing two crossing fibers within each

voxel. The dyads for the first and second vectors of diffusion direction

within each voxel were used for as the input for deterministic tractog-

raphy, using the fiber assignment by continuous tracking (FACT) algo-

rithm in Diffusion Toolkit (http://trackvis.org/dtk). Whole brain

tractography was carried out, propagating fibers from each voxel with
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a maximum turn angle of 508. Fibers were smoothed using a spline fil-

ter and all fibers<5 mm were excluded. MP-RAGE scans had a voxel

size51 mm3. Five repeat scans per subject were input into the Free-

surfer pipeline where they were parcellated using the recon-all program

into 68 cortical regions of the Desikan-Killiany Atlas (Desikan et al.,

2006) and their corresponding subcortical white matter counterparts.

The MP-RAGE scan was registered to the eddy-corrected DTI B0

image with FSL FLIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) using

an affine transformation with 7 degrees of freedom. The resultant

transformation matrix was used to register the 68 gray and white corti-

cal parcellations to DTI space. We then counted number of fibers that

originated in one given region and terminated in another, repeating this

process between all pairs of regions. These raw fiber counts were then

scaled by the mean volume of each pair of regions in order to obtain

the fiber density count, the value used to populate the subject’s con-

nectivity matrix. Finally, these 68 3 68 matrices were averaged across

subjects to obtain the group-level structural connectivity matrix. The

MST was calculated from this group average connectivity matrix and

will be referred to as MSTICBM.

2.2.4 | Minimum spanning tree analysis

The connectivity matrices were analyzed as weighted graphs using

NOS as edge weights. Each region of the atlas was considered a node

and all connections between any pair of ROIs were considered as

edges. We used MST analysis to characterize network topology from

the connectivity matrices using Kruskal’s algorithm (Kruskal, 1956).

This procedure starts with ranking all connection weights from lowest

weight to highest weight. Since we are interested in the strongest con-

nections, we ranked all connections from highest to lowest weight (for-

mally, our procedure therefore reconstructs the maximum spanning

tree). We start by disconnecting all nodes, and add the connection with

the highest weight. Next, the connection with the second highest

weight is added and this procedure is repeated until all nodes are con-

nected. If adding a new connection results in a cycle or loop, this con-

nection is discarded, and the next connection ranked by weight is

selected.

The resulting MST is a subgraph of the underlying network, which

connects all nodes such that the connections with minimum cost are

included, but without forming loops (Wang et al., 2008). The MST is

unique, provided that the connection weights are also unique. We

applied this procedure to reconstruct the tree containing the connec-

tions with the maximum number of fibers, resulting in an MST for each

subject containing a fixed number of 82 nodes and 81 links. In this

way, it is guaranteed that no differences between connection density

or strength are present between subjects. The full analysis pipeline is

visualized in Figure 2.

The weighted connectivity matrix was transformed into an

unweighted MST (i.e., binary graph containing edge weights of 0 and 1

only; all MST edges were set to 1), which was used to further charac-

terize network topology. A reference MST (MSTref) was calculated

FIGURE 2 Analysis pipeline. Data analysis pipeline. The brain was parcellated in cortical and subcortical regions of interest (ROIs). Connections
were estimated with DTI tractography and connection strength was based on the number of streamlines or fractional anisotropy. The minimum
spanning tree of each subject was reconstructed from this structural connectivity matrix. In addition, a mean connectivity matrix of all subjects
was calculated, and the minimum spanning tree of this connectivity matrix was used as a reference network. Networks of individual subjects
were then compared to this reference matrix [Color figure can be viewed at wileyonlinelibrary.com]
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based on the average connectivity matrix of all subjects. In this average

matrix, connections were given the streamline count averaged over all

subjects. The similarity between the MST of each individual subject

(MSTsubject) and MSTref was quantified by calculating the fraction of

edges that was present in both MSTs (MSToverlap; ranging between 0

(no matching edges) and 1 (exact match) (Lee, Kim, & Jung, 2006). The

use of an average matrix for construction of the MSTref may potentially

be biased by outliers when connections in the MST are absent in only

a few subjects (de Reus and van den Heuvel, 2013). We therefore also

calculated the occurrence matrix of all possible connections in the MST

of individual subjects (sum MSTsubject). For a pair of regions, the occur-

rence matrix indicates the number of subjects with an MST that has a

connection between those regions. The MST of this occurrence

matrix was computed, the MSToccurrence, and the overlap between

MSToccurrence and MSTref was used to estimate the effect of outliers.

Several characteristics of the MST of each subject and of MSTref were

calculated to quantify network topology: diameter, leaf fraction, tree

hierarchy and kappa, and maximum nodal degree and betweenness

centrality (Boersma et al., 2012; Tewarie et al., 2015). Nodal character-

istics betweenness centrality and degree were analyzed to describe the

role of specific ROIs in the network. A detailed description and defini-

tions of these measures are given in Table 1.

The overlap between hub nodes and rich club nodes was ana-

lyzed. Hub nodes were defined as nodes with an MST degree or

MST betweenness centrality of at least 1 standard deviation above

the mean for the MST, or nodes with a degree of M11 SD in the

full, unweighted connectivity matrix (corresponding to a degree

k>13 in our dataset) (van den Heuvel and Sporns 2011). We estab-

lished the presence of rich club architecture in our dataset for indi-

vidual subjects with a degree ranging from k514 to k518. Rich

club analyses were performed on the unweighted network; edges

were binarized and were considered present for edge weights>0.

TABLE 1 Concepts and terminology

Characteristic Definition Interpretation Formula

Degree Number of links for a given node Measure of regional importance.
Nodes with a high degree may be
considered “hubs,” i.e., crucial re-
gions on the functional brain net-
work

ki5
X

j2N
aij

N is the number of nodes

Betweenness
centrality (BC)

BC of a node u is defined as the number of
shortest paths between any two nodes i and j
in the network that are passing u, divided by
the total number of shortest paths. BC ranges
between 0 (leaf node) and 1 (central node in a
star-like network). The BC of the tree was
characterized by the BCmax, i.e., the BC of the
node with the highest BC in the tree.

Nodes with a high BC are considered
“hub nodes” not based on their
number of connections, but on their
importance for global communica-
tion in the network. Maximum BC
describes the importance of the
most central node, which is a
measure of central network
organization.

BCi5
1

ðn21Þðn22Þ
X

h; j 2 N

h 6¼ j; h 6¼ i; 6¼ i

qðiÞ
hj

qhj

qhj is the number of shortest paths
between h and j, and qhj(i) is the num-
ber of shortest paths between h and j
that pass through i.

Diameter Characterizes the largest distance between any
two nodes, normalized for the total number
of connections: D5 d/M.

Measure of the efficiency of global
network organization. In a network
with a low diameter, information is
efficiently processed between re-
mote brain regions.

D5d=M
M is the total number of links or
maximum possible leaf number

Leaffraction Measure based on the leaf number, which is
defined as the number of nodes that have
only one connection. It ranges between 2 (a
line-topology; such a tree is called a path) and
a maximum value M5 n21 (with n the
number of nodes) (a star-like topology). Leaf
fraction is the leaf number divided by the
maximum possible leaf number: Lf5 L/M.

Measure of global network topology
that describes to what extent the
network has a central organization.
When the leaf fraction is high,
communication is largely dependent
on hub nodes.

Lf5L=M

Degree
divergence (j)

Measure of the broadness of the degree
distribution.

Related to resilience against attacks of
complex networks. Higher values of
kappa reflect a broader degree
distribution, and higher vulnerability
for targeted attacks.

j5 hk2i
hki

Tree hierarchy Characterizes a hypothesized optimal topology
of efficient organization while preventing
information overload of central nodes

For a line-like topology Th 5 0, for a
star-like topology Th 5 0.5, and for
trees with a configuration between
these 2 extreme situations, Th can
have values of Th ! 1.

Th5
1

2mBCmax

Overlap The fraction of links that two MSTs (MSTx and
MSTy) have in common. This value can range
between 0 and 1.

Overlap5MSTx\MSTy
M

MST measures and their definitions (Boersma et al., 2012; Tewarie et al., 2014b).
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The rich club coefficient / of the full, unweighted matrix of each

individual subject was calculated and normalized by comparison to

/random, which was defined as the average rich club coefficient of

100 randomized networks with preserved degree distribution (van

den Heuvel and Sporns 2011). We found a mean /normalized51.05

for k514; /normalized51.13 for k518; and /normalized51.05–1.13

for k 15–17; rich club architecture is considered to be present for

/>1. We followed van den Heuvel and Sporns in our definition of

rich club nodes: a group mean unweighted connectivity matrix was

calculated and edges were included when present in >75% of the

subjects. Rich club nodes were nodes with a degree of mean11 SD

(van den Heuvel & Sporns, 2011).

FIGURE 3 MST of the human brain (The Netherlands dataset). Visualization of the MST in the Netherlands dataset (group average). The
left figure shows the MST for cortical and subcortical regions, the right figure shows cortical regions only [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 MST characteristics

Measure Reference
Individual
subjects

Reference
(cortical
network)

Individual
subjects
(cortical network)

Wilcoxon signed
ranks test
(p value)

Utrecht dataset

Diameter 0.18 0.20 (0.03) 0.29 0.28 (0.04) 25.90 (<.001)*

Leaf fraction 0.47 0.50 (0.04) 0.40 0.44 (0.04) 25.65 (<.001)*

Kappa 2.74 2.92 (0.18) 2.55 2.66 (0.16) 25.64 (<.001)*

Tree hierarchy 0.33 0.28 (0.04) 0.27 0.26 (0.04) 23.75 (<.001)*

BCmax 0.71 0.68 (0.05) 0.75 0.66 (0.04) 22.29 (.021)*

Degreemax 0.07 0.09 (0.02) 0.07 0.09 (0.02) 21.27 (.206)

Australia dataset

Diameter 0.36 0.375 (0.05) 0.39 0.411 (0.05) 211.021 (<.001)*

Leaf fraction 0.26 0.259 (0.03) 0.24 0.264 (0.03) 24.06 (<.001)*

Kappa 2.25 2.260 (0.04) 2.23 2.264 (0.04) 23.45 (.001)*

Tree Hierarchy 0.19 0.205 (0.03) 0.18 0.208 (0.03) 22.70 (.005)*

BCmax 0.68 0.642 (0.04) 0.69 0.646 (0.04) 20.94 (0.344)

Degreemax 0.04 0.045 (0.004) 0.05 0.052 (0.004) 213.39 (<.001)*

MST characteristics for the full network and the cortical subnetwork. Measures are described for the reference network MSTref based on the mean net-
work of all subjects, and for individual subjects mean (standard deviation). Wilcoxon signed rank tests were used to compare network characteristics of
individual subjects for networks based on cortical and subcortical connections versus cortical connections only. Asterisks mark significant tests after
false discovery rate correction for multiple testing.
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2.3 | Statistical analysis

Statistical analyses were performed in IBM SPSS Statistics 22 and R

statistics. MST characteristics were compared between networks

based cortical and subcortical nodes versus cortical nodes only using

Wilcoxon signed ranks tests. As the correlations with multiple MST

characteristics were tested, false discovery rate correction was per-

formed to correct for increased probability of type I errors due to

multiple testing.

Following the approach described by Otte et al. (2015), we

used a linear mixed model to determine MST changes across adult-

hood. Linear or quadratic age effects were explored using fixed fac-

tors of age or age2 and sex. Akaike’s information criterion was used

to determine the model of best fit. For quadratic aging effects,

2000 bootstrap fits were performed to determine peak age and

95% confidence intervals.

3 | RESULTS

3.1 | Minimum spanning tree characteristics

An MSTref based on all 46 adult healthy subjects in the Netherlands

dataset is shown in Figure 3. Network characteristics are presented in

Table 2. We calculated which percentage of connections was the same

(i.e., overlapped) for individual subjects compared to MSTref. The MST

of individual subjects matched the reference MST for a mean 58.1% of

connections (standard deviation (SD) 4.9%) when both cortical and sub-

cortical regions were included, and 58.6% of connections (SD 4.7%) for

cortical regions only. The network including subcortical regions had a

significantly shorter diameter, lower leaf fraction, and higher kappa,

tree hierarchy, and maximum betweenness centrality.

We then tested the between-subject variation of individual con-

nections that are part of the MST. Figure 4 shows the MST connec-

tions weighted by the number of subjects where they were part of the

MST (connections are shown when present in >25% of subjects).

Figure 4 illustrates that the presence of MST connections varied across

subjects. The most stable connections (i.e., connections that were part

of the MST in at least 75% of subjects) are shown in Figure 5.

The connections that were most frequently part of the MST in

individual subjects were the same connections that were part of

the MSTref, based on the group average connectivity matrix. To quan-

tify this overlap, we calculated a second group average MST. In this

MSToccurrence, not the group-averaged number of streamlines was used

to define connection strength, but the percentage of subjects where

each connection was part of the MST of the individual subject. This

MSToccurrence fully matched MSTref, that is, all connections were exactly

the same.

Using FA values instead of the number of streamlines as edge

weights led to a different topology of the MST (Supporting Informa-

tion, Figure S1). The group average MST based on MFA showed

27.16% connection overlap with MNOS for the network including

subcortical connections, and 24.69% for cortical connections only. The

mean overlap of individual subjects with the reference MSTFA was

18.94% (SD 4.8%). Again, including subcortical connections resulted in

a significantly lower diameter of the MST (p<0.001; see Supporting

Information, Table S1 for network characteristics of the MST based on

FA connection weights). MNOS was used for further analysis, as this

network was the most stable backbone across subjects.

3.2 | Nodal characteristics

The degree distribution and betweenness centrality distribution across

nodes is plotted in Figure 6. When subcortical regions were included in

the analysis, hub nodes based on degree (mean11 SD) (11 in total)

were the bilateral thalamus, putamen and insula, the left hippocampus,

and the right caudate nucleus, superior and inferior parietal cortex, and

precentral gyrus. Hub nodes based on betweenness centrality (again

11 in total) were the bilateral thalamus and precentral gyrus, left hippo-

campus, entorhinal cortex, parahippocampal area,temporal pole and

insula, and the right putamen, and superior parietal cortex. The overlap

FIGURE 4 Intersubject variability of MST connections.
Visualization of the occurrence of connections in the MST
(MST occurrence) across subjects. Thickness of connections is higher
for connections that were part of the MST in more subjects.
Connections present in at least 25% of subjects are shown for
clearness. The MST based on this occurrence matrix is the same as
the reference MST based on the group averaged connectivity
matrix, indicating that the reference is unaffected by outliers [Color
figure can be viewed at wileyonlinelibrary.com]
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with the rich club is visualized in Figure 7. 6/11 hub nodes in the MST

overlapped with the rich club, while some others were in line with pre-

vious rich club definitions in literature (e.g., bilateral thalamus and left

hippocampus). However, the definition of hubs based on the MST also

showed differences with previous literature, for example, the precu-

neus was not identified as a hub in MST. 8/81 MST connections were

rich club connections, 25/81 feeder connections, and 48/81 local con-

nections. When the network was based on cortical regions only, the

nodal degree remained relatively unchanged, but nodal betweenness

centrality of most nodes increased (Figure 8), especially in the right

hemisphere.

3.3 | ROI volume and distance effects

ROI volume was positively correlated with nodal degree (q50.48;

p<0.001) and nodal betweenness centrality (q50.42; p<0.001). An

MSTref based on number of streamlines corrected for ROI volume

showed 80.5% overlap with the (ROI volume uncorrected) MSTref, indi-

cating that 19.5% of connections are possibly influenced by ROI vol-

ume (for a visualization, see Supporting Information, Figure S2).

Overlap with the reference network for the volume corrected MST

was 60.2%, SD 3.6%.

Second, we calculated the Euclidian distance between the centroid

voxel of each ROI as a measure of physical distance. We then plotted

the occurrence of connections in the MST and the original network as

a function of distance (Figure 9). The distribution of MST connections

differed from the distribution of the full connectivity matrix (Kolmo-

gorov-Smirnov test50.3560; p<0.001). The MST connections were

found to be a subset of relatively short connections of the full connec-

tivity matrix (mean Euclidean distances 25.6 and 40.8, respectively;

Mann–Whitney U5212; p<0.001).

3.4 | Replication datasets

To characterize reproducibility between different datasets and scan-

ners, we calculated the overlap for cortical connections with a refer-

ence network based on an entirely different dataset, MSTICBM. In the

Netherlands dataset, we found a mean overlap with MSTICBM for

46.5% of connections (SD 4.8%) for individual subjects, and 58.21% of

connections for the group mean MST.

The reproducibility of the MST reference network was also

validated in a replication dataset. The dataset contained scans of 197

subjects obtained at five scanning sites across Australia. The scans

were obtained with the same scanner and analyzed with the same

processing pipeline. Main differences with the Netherlands dataset

were the use of a 1.5 T scanner, using different scanning protocols and

preprocessing pipelines, and use of the AAL atlas instead of the

Desikan-Killiany Atlas. In the Australia dataset, MST connection overlap

of individual subjects with a reference MST based on their

group-averaged connectivity matrix was 88.68%. Table 3 shows the

stability of the MST for different scanning sites. The connection

overlap for the group averaged MST of each scanning site was

91.01%–97.75%, suggesting that scanning site did not significantly

affect MST topology.

In the Australia dataset, the diameter was again shorter when sub-

cortical nodes were included in the network as compared to the

FIGURE 5 Most stable MST connections. Twenty connections were present in at least 75% of subjects [Color figure can be viewed at
wileyonlinelibrary.com]
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cortical network only (Supporting Information, Figure S3). However,

the other MST metrics showed a different pattern of effects of inclu-

sion of subcortical nodes for the Netherlands dataset and the Australia

dataset (Table 2). For example, including subcortical regions in the net-

work led to a lower leaf fraction in the Australia dataset, but a higher

leaf fraction in the Netherlands dataset.

FIGURE 6 Node characteristics. Ranked nodal MST betweenness centrality and degree. Values represent group-averaged means for each
node [Color figure can be viewed at wileyonlinelibrary.com]
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3.5 | Age and sex

Aging effects on the MST are shown in Table 4. Scatterplots showing

the relation between age, age2, and MST characteristics are shown in

the Appendix: results are shown for networks using the number of

streamlines as edge weights and including both cortical and subcortical

networks in both datasets for the whole population (Supporting Infor-

mation, Figure S4), and for males and females separately (Supporting

Information, Figure S5). In addition, results are shown for networks

based on cortical nodes only (Supporting Information, Figures S6 and

S7), and for the networks using the number of streamlines or FA as

edge weights (Supporting Information, Figure S8; Netherlands data

only). Kappa (a measure characterizing the homogeneity of the degree

distribution in the MST) robustly correlated with ageing effects across

datasets and different definitions of edges and nodes. Cortical network

topology in the Australia datasets was correlated with age2 for several

characteristics, while these effects were not significantly present for

networks including subcortical structures. No significant gender effects

were found for any of the global MST properties. Matrices representing

reference MSTs for age groups 18–25, 25–35, 35–55, and 55–65 years

from the Australia dataset were made available as Supporting Informa-

tion. Spatial layouts of the MST of the Netherlands and Australia data-

sets are provided in Supporting Information, Figures S9 and S10,

respectively.

4 | DISCUSSION

We proposed to use MST analysis to define a reference network or

standard backbone of the network of the human connectome. Using a

reference network based on a group average connectivity matrix of

healthy adults, we found a mean MST connection overlap of 58.1%–

88.7% for individual subjects, depending on the used atlas, scanner and

processing steps, and we demonstrated the reproducibility of this over-

lap in two large independent validation data sets. This indicates that

the majority of MST connections are similar in healthy adults, but indi-

vidual connections may vary between subjects. We recently showed

that MST characteristics reflect properties of the underlying network

(Tewarie et al., 2015), and here we tested whether the MST could be

used to characterize some key anatomical aspects of the human con-

nectome. MST hubs showed overlap with regions described in litera-

ture as hub nodes and rich club nodes in conventional graph analysis

(Gong et al., 2009; van den Heuvel and Sporns, 2011).

Two recent studies showed that the MST can be used to capture

biologically relevant characteristics of the human brain. Otte et al.

(2015) showed that MST characteristics are sensitive to aging effects,

which was replicated in the present work. A recent study in patients

with psychotic symptoms showed that MST analysis is a viable method

to directly compare structural brain networks of different populations,

and to capture psychosis-related alterations in brain network topology

(van Dellen et al., 2015). MST analysis has also proven useful in several

empirical studies on functional brain networks, showing a less inte-

grated network in patients with neurological and psychiatric disorders

including schizophrenia, epilepsy, Parkinson’s disease, and multiple scle-

rosis (Stam, 2014).

The MST is able to characterize fundamental network properties

while it remains unaffected by possible group differences in edge

density or strength. In addition, the use of a reference network

could also be useful for network comparison between groups, and

to characterize deviations in network topology in individual subjects.

Provided that similar preprocessing steps are used, the MST of indi-

vidual subjects could be compared directly to the reference MST

described in this study (the reference MST matrix is provided as

Supporting Information).

Network specificity is another important advantage of the MST.

Specificity is more desirable than sensitivity when characterizing topo-

logical properties of brain networks (Zalesky et al., 2016). The MST

ensures high specificity because of the relatively sparse network repre-

sentation that is achieved. For example, the MST for a 100-node net-

work has a connection density of 2%, whereas brain networks are

typically analyzed at substantially higher connection densities (e.g.,

10%–50%). Therefore, due to the higher specificity of the MST, topo-

logical properties are less likely to be influenced by the spurious con-

nections identified with many fiber tracking methods.

FIGURE 7 Overlap between the MST and the rich club. Rich club nodes are marked red [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Effects of inclusion of subcortical regions on nodal characteristics. Effects of exclusion of subcortical regions on MST
betweenness centrality and degree of cortical nodes. Color bars represent delta scores obtained by subtracting the value for the cortical
MST from the value of the MST including subcortical regions. While the degree of cortical nodes remains relatively unaffected, the
betweenness centrality is lower when subcortical regions are taken into account [Color figure can be viewed at wileyonlinelibrary.com]
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The MST is acyclic by definition and may therefore not be able to

fully capture network characteristics that depend on motifs and (inter-

hemispheric) symmetry of connections. Other solutions have been pro-

posed for the thresholding problem, such as selection of connections

that are consistently present across subjects at the group level (Rob-

erts, Perry, Roberts, Mitchell, & Breakspear, 2017). Such approaches

may be appropriate when aiming to map to connectome in more detail

on a group level, and take into account cyclic aspects of the network,

which are by definition discarded in the MST. Rather, the MST can be

used to capture a backbone of the network that reflects global charac-

teristics of organization of the full network, including hierarchical clus-

tering and average local clustering (Tewarie et al., 2015; Yu et al.,

2015). We speculate that the MST of the connectome reflects the

most important highways for information processing in the human

brain. This communication likely propagates along the shortest paths

between nodes or detours from these paths in the structural network

(Go~ni et al., 2014; Stam et al., 2015). Numerous studies on the organi-

zation of the human connectome have reported the presence of a com-

munication backbone between cortical brain regions, consisting of a

parieto-occipital core and a high number of “rich club” connections

between hubs (Gong et al., 2009; Hagmann et al., 2008; Tewarie et al.,

2014; van den Heuvel et al., 2012; van den Heuvel and Sporns, 2011).

We found that MST analysis is in accordance with these reports, but

also that subcortical–cortical connections increase the efficiency of

cortico-cortical connectivity. As we have shown in previous work, MST

hub nodes are pivotal for lowering the MST diameter and therefore

network efficiency (Tewarie et al., 2015). This is in line with the

description of the rich club, which also found subcortical connections

to be hub nodes in our study, namely, the thalamus, putamen, and hip-

pocampus (van den Heuvel and Sporns, 2011). Bell and Shine recently

illustrated the importance of the thalamus and basal ganglia as part of a

core circuit facilitating large-scale integration of functional connectivity

(Bell & Shine, 2016). In this study, subcortical connections were

amongst the MST connections that were most consistently present

across subjects, and these connections significantly increased the effi-

ciency of the network. Subcortical hub regions thus play a central role

in efficient communication between (cortical) brain regions, resulting in

a more star-like (i.e., more integrated) MST topology. Taken together,

our findings illustrate that nodal definitions may have a large impact on

the graph characteristics, and suggest that subcortical regions should

be included in brain network analysis.

We aimed to further establish the biological relevance of the MST,

and therefore used our data to replicate previous analyses on the rela-

tion between MST topology and age and gender. We found no gender

effects on MST topology, which is in line with previous work (Otte

et al., 2015). Several correlations between age and MST characteristics

were found, especially kappa, and especially when cortical nodes only

were considered. The global pattern that emerges from our analysis as

well as previous work is that the resilience of the network to targeted

attack is higher and stable during adulthood as compared to late ado-

lescence and older age (Otte et al., 2015). While previous studies found

an inverted U shape of network efficiency across the lifespan, this was

not replicated with the MST approach. This finding is in line with a

FIGURE 9 Euclidean distance plots. Euclidean distance between

brain regions in general (nodal distance), the Euclidean length of
tractography connections (full connectivity matrix), and the subset of
connections that form the MST (minimum spanning tree). The figure
illustrates that the edges that form the MST are relatively short
connections [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Dataset 3 was obtained at five scanning sites in Australia, using the same scanner and processing pipeline at each site, and was
based on the AAL atlas containing 90 cortical and subcortical regions

% overlap Average Sydney Melbourne Perth Newcastle Brisbane

Average (N 5 197) 88.68 96.63 95.51 96.63 96.63 94.68

Sydney (N 5 38) 96.63 89.47 92.13 95.51 95.51 93.26

Melbourne (N 5 79) 95.51 92.13 88.42 96.63 96.63 92.13

Perth (N 5 29) 96.63 95.51 96.63 89.22 97.75 91.01

Newcastle (N 5 18) 96.63 95.51 96.63 97.75 88.51 91.01

Brisbane (N 5 33) 94.68 93.26 92.13 91.01 91.01 87.98

The table shows the percentage of MST connections that overlap between scanning sites. The MST for each site was based on the group averaged
connectivity matrix of all subjects scanned on that site. The column “Average” shows the overlap with the MST based on the connectivity matrices of
all subjects from the five sites. The diagonal in the table shows the mean overlap for individual subjects with the reference MST based on the group
average connectivity matrix (N5 197).
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TABLE 4 Aging effects

Age Age 3 Age

Dataset Nodal definition
Edge
definition Metric

Regression
coefficient

CI
(2.5%)

CI
(97.5%)

Age
change

CI
(2.5%)

CI
(97.5%)

Australia Cortex nos bcmax - - - - - -

Australia Cortex nos diameter - - - 48.8 42.5 61.0

Australia Cortex nos eccrange - - - 48.8 41.9 61.1

Australia Cortex nos kappaa - - - 35.8 28.3 40.6

Australia Cortex nos leafb - - - 35.8 2.9 39.6

Australia Cortex nos tha - - - 38.0 32.0 42.7

Australia Cortex and subcortex nos bcmax - - - - - -

Australia Cortex and subcortex nos diameter - - - - - -

Australia Cortex and subcortex nos eccrange - - - - - -

Australia Cortex and subcortex nos kappa - - - 40.2 34.1 46.6

Australia Cortex and subcortex nos leaf - - - 40.1 34.6 45.8

Australia Cortex and subcortex nos th - - - 40.4 34.7 48.2

Netherlands Cortex nos bcmax 0.067 20.017 0.150 - - -

Netherlands Cortex nos diameter - - - - - -

Netherlands Cortex nos eccrange - - - - - -

Netherlands Cortex nos kappab 0.518 0.215 0.821 - - -

Netherlands Cortex nos leaf - - - 48.7 42.3 60.8

Netherlands Cortex nos th - - - - - -

Netherlands Cortex and subcortex nos bcmax - - - - - -

Netherlands Cortex and subcortex nos diameter - - - - - -

Netherlands Cortex and subcortex nos eccrange - - - - - -

Netherlands Cortex and subcortex nos kappaa 0.370 0.013 0.727 - - -

Netherlands Cortex and subcortex nos leaf - - - - - -

Netherlands Cortex and subcortex nos th - - - - - -

Netherlands Cortex fa bcmax 0.098 0.003 0.194 - - -

Netherlands Cortex fa diameter - - - - - -

Netherlands Cortex fa eccrange - - - - - -

Netherlands Cortex fa kappaa - - - 45.9 41.2 54.2

Netherlands Cortex fa leaf - - - - - -

Netherlands Cortex fa th - - - - - -

Netherlands Cortex and subcortex fa bcmax - - - - - -

Netherlands Cortex and subcortex fa diameter 20.041 20.092 0.010 - - -

Netherlands Cortex and subcortex fa eccrange - - - - - -

Netherlands Cortex and subcortex fa kappa 0.237 20.094 0.568 - - -

Netherlands Cortex and subcortex fa leaf - - - - - -

Netherlands Cortex and subcortex fa th - - - - - -

ap<0.05.
bp<0.01.
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recent study by Otte et al. (2015), who described how cortical MST

characteristics based on diffusion imaging change across the lifespan.

This study together with our analysis suggests that structural brain net-

work efficiency changes across the lifespan may be explained by global

changes in connection density rather than topological reorganization.

In our replication dataset of 197 subjects using the AAL atlas, we also

found that including subcortical regions in the network increased net-

work efficiency, while we found weaker correlations between MST

topology and age. We conclude that not only the edge definition, but

also atlas and node definition determine the sensitivity of MST charac-

teristics to capture biologically relevant correlates. Possibly, aging

affects the topology of cortico–cortical connections stronger that corti-

cal–subcortical connections. Alternatively, the accuracy of characteriza-

tion of cortical–subcortical connections may differ from cortico–

cortical connections, as these connections are more centrally localized

and potentially have a shorter physical distance.

Brain network analysis based on diffusion tensor imaging data

comes with several methodological limitations, which may also affect

the MST (Fornito et al., 2013). We found highly similar MST topologies

(�90% the same connections) for groups of subjects scanned with the

same scanner at different sites. However, the use of different scanners

and preprocessing methods can affect the connectivity matrix and

therefore also the topology of the (reference) MST. This was shown by

the considerably lower overlap of the group averaged MST based on

the Netherlands dataset compared to the ICBM dataset, using the

same atlas. The tractography algorithm and the definition of nodes and

edge weights may all affect graph properties (Bastiani, Shah, Goebel, &

Roebroeck, 2012; Fornito et al., 2013). Using FA instead of NOS for

edge weights resulted in a different MST and lower overlap between

subjects. The interpretation of NOS or FA in terms of connection

strength is not straightforward (Jones, Kn€osche, & Turner, 2013); we

conclude that the ranking of edge weights is more stable across sub-

jects for NOS compared to FA. The atlas that is applied may also affect

the MST connection similarity between subjects: the MST consisted of

around 88% of the same connections in the Australia dataset using the

AAL atlas, while this was 58.1% for the Netherlands dataset using the

DK atlas. Importantly, opposite correlations between MST characteris-

tics and age were found for the different datasets. These findings indi-

cate that the processing pipeline and definition of nodes and edges

may have a large impact on the biological interpretation of network

characteristics that is not resolved by strict definitions of network

topology that take the thresholding problem into account.

The MST is solely dependent on the rank of the link weights of the

strongest network connections, and MST analysis may therefore be

less sensitive to small differences in the signal-to-noise ratio between

subjects. This procedure, however, may overestimate volume effects

on the number of streamlines, and indeed, we found that ROI surface

or volume correlated with MST characteristics. Correction for ROI vol-

ume effects affected �20% of connections in the MST. Secondly, long

distance connections are more likely to be disturbed by random errors

during fiber tracking and the number of streamlines between distant

regions may therefore be underestimated. We found that the MST

contains a subset of connections with a relatively short physical

distance. The physical distance between ROIs was based on the Euclid-

ean distance between the centroid voxel of each ROI, and it should be

considered that the relatively short distance between subcortical

regions might partially explain their stable occurrence in the MST.

Steiner graphs may be used in future work to investigate the role of

subcortical regions in more detail. A third potential bias when using

streamline tractography is that different types of artefacts during

acquisition, preprocessing and analysis may introduce distance depend-

ent errors (Fornito et al., 2013). The effects of ROI volume, distance

between nodes and basic settings for fiber tracking may interact in a

complex (and unknown) manner. We therefore focused on the connec-

tivity matrix based on the number of streamlines uncorrected for ROI

volume for our main analyses. It is currently impossible to determine to

what extent these correlations reflect bias of MST analysis. The MST

will become a more accurate estimation of the backbone structure of

the brain network with advances in fiber imaging techniques.

In conclusion, we have used MST analysis to define a reference or

standard backbone network of the human connectome. We proposed

a reference MST that may be used to directly quantify altered network

topology in individual subjects and different populations. MST analysis

is a feasible method to characterize structural brain networks that is

unaffected by edge density effects. Finally, our findings provide evi-

dence that connections between cortical and subcortical regions glob-

ally shape the backbone structure human brain, and should be included

in structural brain network studies.

ACKNOWLEDGMENTS

The authors thank M.P. van den Heuvel and R. van Lutterveld for

useful discussions and helpful comments on the manuscript, and A.

de Weijer for his help collecting the data of the Netherlands dataset.

This study used samples and data from the Australian Schizophrenia

Research Bank (ASRB), funded by National Health and Medical

Research Council (NHMRC) Enabling Grant (386500) held by V.

Carr, U. Schall, R. Scott, A. Jablensky, B. Mowry, P. Michie, S. Catts,

F. Henskens, and C. Pantelis (Chief Investigators), and the Pratt

Foundation, Ramsay Health Care, the Viertel Charitable Foundation,

and the Schizophrenia Research Institute, using an infrastructure

grant from the NSW Ministry of Health. Edwin van Dellen is sup-

ported by the UMC Utrecht clinical research talent fellowship and

the Van Leersum Grant of the Royal Dutch Academy of Sciences.

The authors have no conflict of interest to declare. Andrew Zalesky

was supported by a NHMRC Career Development Fellowship

(GNT1047648).

ORCID

Edwin van Dellen http://orcid.org/0000-0003-1828-5959

Ren�e C.W. Mandl http://orcid.org/0000-0003-1907-0159

REFERENCES

Andersson, J. L., & Skare, S. (2002). A model-based method for retro-

spective correction of geometric distortions in diffusion-weighted

EPI. NeuroImage, 16(1), 177–199.

VAN DELLEN ET AL. | 2469

http://orcid.org/0000-0003-1828-5959
http://orcid.org/0000-0003-1907-0159


Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct sus-

ceptibility distortions in spin-echo echo-planar images: Application to

diffusion tensor imaging. NeuroImage, 20(2), 870–888.

Bastiani, M., Shah, N. J., Goebel, R., & Roebroeck, A. (2012). Human

cortical connectome reconstruction from diffusion weighted MRI:

The effect of tractography algorithm. NeuroImage, 62(3), 1732–
1749.

Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F., & Woolrich, M.

W. (2007). Probabilistic diffusion tractography with multiple fibre ori-

entations: What can we gain? NeuroImage, 34(1), 144–155.

Bell, P. T., & Shine, J. M. (2016). Subcortical contributions to large-scale

network communication. Neurosci Biobehav Rev, 71, 313–322.

Boersma, M., Smit, D. J., Boomsma, D. I., de Geus, E. J., Delemarre-van

der Waal, H. A., & Stam, C. J. (2010). Network analysis of resting

state EEG in the developing young brain: Structure comes with matu-

ration. Human Brain Mapping, 32, 413–425.

Boersma, M., Smit, D. J., Boomsma, D. I., Geus, E. J., Delemarre-van de Waal,

H. A., & Stam, C. (2012). Growing trees in child brains: Graph theoretical

analysis of EEG derived minimum spanning tree in 5 and 7 year old chil-

dren reflects brain maturation. Brain Connectivity, 3(1), 50–60.

Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theo-

retical analysis of structural and functional systems. Nature Reviews.

Neuroscience, 10(3), 186–198.

Bullmore, E., & Sporns, O. (2012). The economy of brain network organi-

zation. Nature Reviews. Neuroscience, 13(5), 336–349.

Chang, L. C., Jones, D. K., & Pierpaoli, C. (2005). RESTORE: Robust esti-

mation of tensors by outlier rejection. Magnetic Resonance in Medi-

cine, 53(5), 1088–1095.

Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P.,

& Bullmore, E. T. (2014). The hubs of the human connectome are

generally implicated in the anatomy of brain disorders. Brain, 137(8),

2382–2395.

de Reus, M. A., & van den Heuvel, M. P. (2013). Estimating false posi-

tives and negatives in brain networks. NeuroImage, 70, 402–409.

de Weijer, A. D., Neggers, S. F., Diederen, K. M., Mandl, R. C., Kahn, R.

S., Hulshoff Pol, H. E., & Sommer, I. E. (2013). Aberrations in the

arcuate fasciculus are associated with auditory verbal hallucinations

in psychotic and in non-psychotic individuals. Human Brain Mapping,

34, 626–634.

Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C.,

Blacker, D., . . . Killiany, R. J. (2006). An automated labeling system

for subdividing the human cerebral cortex on MRI scans into gyral

based regions of interest. NeuroImage, 31(3), 968–980.

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., S�egonne, F., Salat,

D. H., . . . Kennedy, D. (2004). Automatically parcellating the human

cerebral cortex. Cerebral Cortex (New York, N.Y.: 1991), 14(1), 11–22.

Fornito, A., Zalesky, A., & Breakspear, M. (2013). Graph analysis of the

human connectome: Promise, progress, and pitfalls. NeuroImage, 80,

426–444.

Fornito, A., Zalesky, A., & Bullmore, E. (2016). Fundamentals of brain net-

work analysis. Academic Press.

Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., &

Beaulieu, C. (2009). Mapping anatomical connectivity patterns of

human cerebral cortex using in vivo diffusion tensor imaging tractog-

raphy. Cerebral Cortex (New York, N.Y.: 1991), 19, 524–536.

Go~ni, J., van den Heuvel, M. P., Avena-Koenigsberger, A., de Mendizabal,

N. V., Betzel, R. F., Griffa, A., . . . Sporns, O. (2014). Resting-brain

functional connectivity predicted by analytic measures of network

communication. Proceedings of the National Academy of Sciences, 111

(2), 833–838.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J.,

Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of

human cerebral cortex. PLoS Biology, 6(7), e159.

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., &

Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790.

Jones, D. K., & Leemans, A. (2011). Diffusion tensor imaging. Methods in

Molecular Biology (Clifton, N.J.), 711, 127–144.

Jones, D. K., Kn€osche, T. R., & Turner, R. (2013). White matter integrity,

fiber count, and other fallacies: The do's and don'ts of diffusion MRI.

NeuroImage, 73, 239–254.

Klauser, P., Baker, S. T., Cropley, V. L., Bousman, C., Fornito, A., Cocchi,

L., . . . Henskens, F. (2017). White matter disruptions in schizophrenia

are spatially widespread and topologically converge on brain network

hubs. Schizophrenia Bulletin, 43, 425–435.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and

the traveling salesman problem. Proceedings of the American Mathe-

matical Society, 7(1), 48–50.

Lee, U., Kim, S., & Jung, K. Y. (2006). Classification of epilepsy types

through global network analysis of scalp electroencephalograms.

Physical Review E, 73(4), 041920.

Loughland, C., Draganic, D., McCabe, K., Richards, J., Nasir, A., Allen, J.,

. . . Michie, P. (2010). Australian Schizophrenia Research Bank: A

database of comprehensive clinical, endophenotypic and genetic data

for aetiological studies of schizophrenia. Australian & New Zealand

Journal of Psychiatry, 44, 1029–1035.

Mandl, R. C., Schnack, H. G., Luigjes, J., van den Heuvel, M. P., Cahn, W.,

Kahn, R. S., & Pol, H. E. H. (2010). Tract-based analysis of magnetiza-

tion transfer ratio and diffusion tensor imaging of the frontal and

frontotemporal connections in schizophrenia. Schizophrenia Bulletin,

36(4), 778–787.

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., . . .

Mazoyer, B. (2001). A probabilistic atlas and reference system for the

human brain: International Consortium for Brain Mapping (ICBM).

Philosophical Transactions of the Royal Society of London Series B, 356,

1293–1322.

Otte, W. M., van Diessen, E., Paul, S., Ramaswamy, R., Rallabandi, V. S.,

Stam, C. J., & Roy, P. K. (2015). Aging alterations in whole-brain net-

works during adulthood mapped with the minimum spanning tree

indices: The interplay of density, connectivity cost and life-time tra-

jectory. NeuroImage, 109, 171–189.

Roberts, J. A., Perry, A., Roberts, G., Mitchell, P. B., & Breakspear, M.

(2017). Consistency-based thresholding of the human connectome.

NeuroImage, 145(Pt A), 118–129.

Stam, C., van Straaten, E., Van Dellen, E., Tewarie, P., Gong, G., Hille-

brand, A., . . . Van Mieghem, P. (2015). The relation between struc-

tural and functional connectivity patterns in complex brain networks.

International Journal of Psychophysiology, 103, 149–160.

Stam, C. J. (2014). Modern network science of neurological disorders.

Nature Reviews. Neuroscience, 15(10), 683–695.

Stam, C. J., Tewarie, P., Van Dellen, E., van Straaten, E. C., Hillebrand, A.,

& Van Mieghem, P. (2014). The trees and the forest: Characterization

of complex brain networks with minimum spanning trees. Interna-

tional Journal of Psychophysiology, 92(3), 129–138.

Tewarie, P., Hillebrand, A., van Dellen, E., Schoonheim, M. M., Barkhof,

F., Polman, C. H., . . . Stam, C. J. (2014). Structural degree predicts

functional network connectivity: A multimodal resting-state fMRI and

MEG study. NeuroImage, 97, 296–307.

Tewarie, P., van Dellen, E., Hillebrand, A., & Stam, C. J. (2015). The mini-

mum spanning tree: An unbiased method for brain network analysis.

NeuroImage, 104, 177–188.

2470 | VAN DELLEN ET AL.



Tijms, B. M., Wink, A. M., de Haan, W., van der Flier, W. M., Stam, C. J.,

Scheltens, P., & Barkhof, F. (2013). Alzheimer’s disease: Connecting

findings from graph theoretical studies of brain networks. Neurobiol-

ogy of Aging, 34(8), 2023–2036.

Tournier, J., Calamante, F., & Connelly, A. (2010). Improved probabilistic

streamlines tractography by 2nd order integration over fibre orienta-

tion distributions. Proceedings of the International Society for Magnetic

Resonance in Medicine, 18, 1670.

Tournier, J., Calamante, F., & Connelly, A. (2012). MRtrix: Diffusion trac-

tography in crossing fiber regions. International Journal of Imaging Sys-

tems and Technology, 22(1), 53–66.

Tournier, J.-D., Calamante, F., & Connelly, A. (2007). Robust determina-

tion of the fibre orientation distribution in diffusion MRI: Non-

negativity constrained super-resolved spherical deconvolution. Neuro-

Image, 35(4), 1459–1472.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard,

O., Delcroix, N., . . . Joliot, M. (2002). Automated anatomical labeling

of activations in SPM using a macroscopic anatomical parcellation of

the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

van Dellen, E., Bohlken, M. M., Draaisma, L., Tewarie, P. K., van Lutter-

veld, R., Mandl, R., . . . Sommer, I. E. (2015). Structural brain network

disturbances in the psychosis spectrum. Schizophrenia Bulletin, 42,

782–789.

van Dellen, E., Douw, L., Hillebrand, A., de Witt Hamer, P. C., Baayen, J.

C., Heimans, J. J., . . . Stam, C. J. (2014). Epilepsy surgery outcome

and functional network alterations in longitudinal MEG: A minimum

spanning tree analysis. NeuroImage, 86, 354–363.

van den Heuvel, M. P., de Lange, S. C., Zalesky, A., Seguin, C., Yeo, B. T.,

& Schmidt, R. (2017). Proportional thresholding in resting-state fMRI

functional connectivity networks and consequences for patient-

control connectome studies: Issues and recommendations. Neuro-

Image, 152, 437–449.

van den Heuvel, M. P., Kahn, R. S., Goni, J., & Sporns, O. (2012). High-

cost, high-capacity backbone for global brain communication.

Proceedings of the National Academy of Sciences of the United States

of America, 109(28), 11372–11377.

van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the

human connectome. Journal of Neuroscience, 31(44), 15775–15786.

van Wijk, B. C., Stam, C. J., & Daffertshofer, A. (2010). Comparing brain

networks of different size and connectivity density using graph

theory. PLoS One, 5, e13701.

Wang, H., Hernandez, J. M., & Van Mieghem, P. (2008). Betweenness

centrality in a weighted network. Physical Review E, 77(4),

046105.

Yu, M., Hillebrand, A., Tewarie, P., Meier, J., van Dijk, B., Van Mieghem,

P., & Stam, C. J. (2015). Hierarchical clustering in minimum spanning

trees. Chaos (Woodbury, N.Y.), 25, 023107.

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., van den Heuvel, M. P., &

Breakspear, M. (2016). Connectome sensitivity or specificity: Which

is more important? NeuroImage, 142, 407–420.

Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Y€ucel, M., Pantelis, C.,

& Bullmore, E. T. (2010). Whole-brain anatomical networks: Does the

choice of nodes matter? NeuroImage, 50(3), 970–983.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: van Dellen E, Sommer IE, Bohlken MM,

et al. Minimum spanning tree analysis of the human connec-

tome. Hum Brain Mapp. 2018;39:2455–2471. https://doi.org/

10.1002/hbm.24014

VAN DELLEN ET AL. | 2471

https://doi.org/10.1002/hbm.24014
https://doi.org/10.1002/hbm.24014

