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Abstract. Much research on structured argumentation aims to satisfy the rational-
ity postulates of direct and indirect consistency and strict (deductive) closure. How-
ever, examples like the lottery paradox indicate that it is sometimes rational to ac-
cept sets of propositions that are indirectly inconsistent or not deductively closed.
This paper proposes a variant of the ASPIC+ framework that violates indirect con-
sistency and full strict closure but satisfies direct consistency and restricted forms
of strict closure and indirect consistency.
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1. Introduction

Much current work on structured argumentation (e.g. [6,9,2]) concerns the so-called ra-
tionality postulates of [1]. The idea is that argument extensions [4] should be closed un-
der subarguments and that the sets of conclusions of all arguments in an extension should
be directly consistent (no formulas that negate each other should be in the set), closed
under strict (deductive) inference and indirectly consistent (the strict closure should be
directly consistent). Most work on these postulates simply assumes that they should be
satisfied, but examples like the lottery paradox [7] suggest that it may sometimes be
rational to jointly accept indirectly inconsistent propositions or not to accept deductive
consequences of acceptable propositions.

Imagine a fair lottery with one million tickets and just one prize. If the principle
is accepted that it is rational to accept a proposition if its truth is highly probable, then
for each ticket Ti it is rational to accept that Ti will not win while at the same time it
is rational to accept that exactly one ticket will win. If we also accept that everything
that deductively follows from a set of rationally acceptable propositions, then we have
two rationally acceptable propositions that contradict each other: we can join all indi-
vidual propositions ¬Ti into a big conjunction ¬T1 ∧ . . . ∧ ¬T1,000,000 with one million
conjuncts, which contradicts the certain fact that exactly one ticket will win.

The problem does not only arise in precisely defined probabilistic settings (cf. [11]).
First, non-statistical examples of the lottery paradox can easily be imagined. For exam-
ple, for each arbitrary part of a complex machine we can rationally accept that it will not
malfunction but at the same time we know that some part will at some point in time mal-
function. Moreover, the problem arises in any model of ’fallible’ rational acceptance. Ra-
tional acceptance is usually fallible, either because one starts from uncertain premises or
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because one applies defeasible inferences. Now whenever a deductive inference is made
from at least two ‘fallible’ pieces of information, the deductive inference can be said
to aggregate the degrees of fallibility of the individual elements to which it is applied.
This in turn means that the deductive inference may be weaker than either of these ele-
ments, so that a successful attack on the deductive inference does not necessarily imply
a successful attack on one of the fallible elements to which it was applied.

In discussions of the lottery paradox several positions have been defended. for ex-
ample, Pollock [10] argued that sets of rationally acceptable propositions should always
be deductively closed. Moreover, in the lottery paradox he argued that for no ticket is it
rational to accept that it will not win. However, this position is not quite self-evident: if
propositions cannot be accepted even if their truth is highly probable, then many proposi-
tions that seem clearly acceptable would not formally come out as such. Others (includ-
ing Kyburg [7]) reject the conjunction principle for rational acceptance, motivated by the
fact that according to probability theory a conjunction of two highly probable proposi-
tions need not be highly probable. However, this also has its issues, since people often
conjoin their beliefs, and regarding this as always irrational seems too strong. Therefore
intermediate positions have also been considered. For example, Makinson [8] argues that
(in the lottery example) conjunctions ¬Ti ∧ . . .¬Tj are rationally acceptable for up to a
particular (not too large) number of conjuncts. And [3] argue that examples like the lot-
tery paradox are exceptional cases where strict closure fails since their underlying proba-
bility structure is uniform: no particular event is typical and randomness prevails. In this
paper we want to explore whether such an intermediate position can be formalised in an
argumentation setting. In doing so, we will make two assumptions.

First, problems like these do not arise when rational acceptance is seen as a matter of
degree. In epistemology there is a debate whether rational acceptance is always a matter
of degree or whether it makes sense to speak of full (though still possibly defeasible) ac-
ceptance [5]. Taking a stance in this debate goes beyond the scope of this paper but since
the notion of full acceptance is in epistemology often defended, it makes sense to explore
its consequences in an argumentation setting. This holds the more since most formal and
computational models of argument model non-gradual notions of full acceptance.

Second, Pollock [10] also argued that what can be rationally accepted in the lottery
paradox is that it is highly probable that it will win. At first sight, this approach would
seem attractive, until one realises that if it is applied to the lottery example, it should be
applied to many other examples of defeasible reasoning, since many of those arguably
have an underlying probabilistic justification. So why require in the lottery example that
the probability of a statement is expressed in the object language while not requiring this
for, for instance, ‘If P then usually Q’ and ’P ’ defeasibly imply ‘Q’? Accordingly, in
this paper we will make a second assumption that is often adopted in formal and compu-
tational models of argument, namely, that the probability of statements is not expressed
in the logical object language of a system but in its metalanguage, in the nonmonotonic-
ity of its consequence notion. Just as the assumption that full acceptance is possible, this
assumption is debatable, but both assumptions are widely adopted, which justifies this
paper’s aim to explore their logical consequences.

Summarising, the purpose of this paper is to formally investigate the relevance of
examples like the lottery paradox for models of argumentation that model non-gradual
notions of full acceptance and that express the probability of statements in the metalan-
guage in the nonmonotonicity of their consequence notion. In particular, we will explore
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how the intermediate position can be formalised that conclusions of deductive inferences
from fallibly acceptable propositions can but need not be rationally acceptable. We will
argue that under the adopted assumptions the rationality postulate of direct consistency
should be retained but that the postulates of indirect consistency and strict closure have
to be weakened in general (although they may apply in special cases). We will carry
out the investigations in terms of the ASPIC+ framework, motivated by its generality:
as shown earlier [12,9] it can be instantiated in many different ways and some of these
ways capture other models of structured argumentation as special cases.

2. The ASPIC+ framework

ASPIC+ generates abstract argumentation frameworks in the sense of [4]. Formally, an
abstract argumentation framework (AF) is a pair (A,D), where A is a set of argu-
ments and D ⊆ A×A is a binary relation of defeat. We say that A strictly defeats B if
A defeats B while B does not defeat A. A semantics for AFs returns sets of arguments
called extensions, which are subsets of A with particular properties:

Definition 1 Let (A,D) be an AF. For any X ∈ A, X is acceptable w.r.t. some S ⊆ A iff
∀Y s.t. (Y,X) ∈ D implies ∃Z ∈ S s.t. (Z, Y ) ∈ D. Let S ⊆ A be conflict free, i.e., there
are no A,B in S such that (A,B) ∈ D. Then S is: an admissible set iff X ∈ S implies
X is acceptable w.r.t. S; a complete extension iff X ∈ S whenever X is acceptable w.r.t.
S; a preferred extension iff it is a set inclusion maximal admissible set; the grounded
extension iff it is the set inclusion minimal complete extension; a stable extension iff it
is conflict-free and ∀Y /∈ S, ∃X ∈ S s.t. (X,Y ) ∈ D.
For T ∈ {complete, preferred, grounded, stable}, X is sceptically or credulously justified
under the T semantics if X belongs to all, respectively at least one, T extension.

We next summarise ASPIC+ as defined in [9]. It defines the notion of an abstract
argumentation system as a structure consisting of a logical language L with negation,
two sets Rs and Rd of strict and defeasible inference rules, and a naming convention n
in L for defeasible rules in order to talk about the applicability of defeasible rules in L.

Definition 2 [Argumentation systems] An argumentation system is a triple AS =
(L,R, n) where:

• L is a logical language with a unary negation connective ¬.
• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the

form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are meta-
variables ranging over wff in L), such that Rs ∩Rd = ∅.

• n is a partial function from Rd to L.

We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ. Note that − is not a connective in L
but a function symbol in the metalanguage of L.

ASPIC+ leaves the choice of inference rules free. If desired, the strict rules can be based
on a given deductive logic L by letting ϕ1, . . . , ϕn → ϕ ∈ Rs iff ϕ1, . . . , ϕn �L ϕ.
However, for simplicity this paper’s examples will not encode full logics in Rs.

H. Prakken / Rethinking the Rationality Postulates for Argumentation-Based Inference 421



Example 1 An example argumentation system is with L = {p,¬p, q,¬q, r,¬r, s,¬s, t,
¬t, r1, r2,¬r1,¬r2}, Rs = {p, r → s;¬s → ¬r1}, Rd = {q ⇒ r; t ⇒ ¬s} where
n(q ⇒ r) = r1 and n(t ⇒ ¬s) = r2.

Definition 3 [Consistency] For any S ⊆ L, let the closure of S under strict rules, de-
noted ClRs(S), be the smallest set containing S and the consequent of any strict rule in
Rs whose antecedents are in ClRs(S). Then a set S ⊆ L is directly consistent iff � ψ, ϕ
∈ S such that ψ = −ϕ, and indirectly consistent iff ClRs

(S) is directly consistent.

Example 2 In our example argumentation system, an example of a directly inconsistent
set is {p,¬p} and an example of an indirectly inconsistent set is {p, r,¬s}.

Definition 4 [Knowledge bases] A knowledge base in an AS = (L,R, n) is a set K ⊆
L consisting of two disjoint subsets Kn (the axioms) and Kp (the ordinary premises).

Arguments can be constructed from knowledge bases by applying inference rules.
In what follows, for a given argument the function Prem returns all its premises, Conc
returns its conclusion, Sub returns all its sub-arguments and DefRules and TopRule

return, respectively, all defeasible rules and the last rule applied in the argument.

Definition 5 [Arguments] An argument A on the basis of a knowledge base K in an
argumentation system (L,R, n) is:

1. ϕ if ϕ ∈K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; DefRules(A)
= ∅; TopRule(A) = undefined.

2. A1, . . . An → ψ if A1, . . . , An are arguments such that Conc(A1), . . . , Conc(An)
→ ψ ∈ Rs.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1) ∪
. . . ∪ Sub(An) ∪ {A}; DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An);
TopRule(A) = Conc(A1), . . . , Conc(An) → ψ.

3. A1, . . . An ⇒ ψ if A1, . . . , An are arguments such that Conc(A1), . . . , Conc(An)
⇒ ψ ∈ Rd.
Prem(A), Conc(A) and Sub(A) are defined as in (2) while DefRules(A) =
DefRules(A1)∪ . . .∪ DefRules(An)∪ {Conc(A1), . . . , Conc(An) ⇒ ψ} and
TopRule(A) = Conc(A1), . . . , Conc(An) ⇒ ψ.

For any argument A, Premn(A) = Prem(A) ∩ Kn and Premp(A) = Prem(A) ∩ Kp.
An argument A is infallible if DefRules(A) = ∅ and Prem(A) ⊆ Kn; otherwise it is
fallible. For any set S of arguments, Conc(S) = {ϕ | ϕ = Conc(A) for some A ∈ S}.
We write S � ϕ if there exists a strict argument for ϕ with all premises taken from S.

Example 3 If our example argumentation system is combined with a knowledge base
with Kn = {p} and Kp = {q, t}, then the following arguments can be constructed, of
which only A1 is infallible:

A1 = p A4 = A2 ⇒ r A7 = A5 → ¬r1
A2 = q A5 = A3 ⇒ ¬s
A3 = t A6 = A1, A4 → s

Arguments can be attacked in three ways: on an application of a defeasible rule, on
the conclusion of such an application or on an ordinary premise.
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Definition 6 [Attack] An argument A attacks an argument B iff A undercuts or rebuts
or undermines B, where:

• A undercuts B (on B′) iff Conc(A) = −n(r) and B′ ∈ Sub(B) such that B′’s
top rule r is defeasible.

• A rebuts B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the form
B′′

1 , . . . , B
′′
n ⇒ ϕ.

• A undermines B (on ϕ) iff Conc(A) = −ϕ for some ϕ ∈ Prem(B) ∩ Kp.

Example 4 In our running example A6 rebuts A5 and A7 on A5. Note that A5 does not
rebut A6 since A6 has a strict top rule. Furthermore, A7 undercuts A4 and A6 on A4.

Argumentation systems plus knowledge bases induce structured argumentation frame-
works.

Definition 7 [Structured Argumentation Frameworks] Let AT be an argumentation
theory (AS,K). A structured argumentation framework (SAF) defined by AT , is a triple
〈A, C, � 〉 where A is the set of all finite arguments constructed from K in AS, �
is an ordering on A, and (X,Y ) ∈ C iff X attacks Y . A c-structured argumentation
framework (c-SAF) is defined likewise except that A is the set of all finite arguments
constructed from K with indirectly consistent set of premises.

The notion of defeat can then be defined as follows (A ≺ B is defined as usual as A � B
and B �� A and A ≈ B as A � B and B � A).

Definition 8 [Defeat] A defeats B iff either A undercuts B; or A rebuts or undermines
B on B′ and A ⊀ B′.

Example 5 In our running example A6 defeats A5 unless A6 ≺ A5. Furthermore, re-
gardless of the argument ordering, A7 defeats A4 (and thus A6).

Abstract argumentation frameworks are then generated from (c-)SAFs as follows:

Definition 9 [Argumentation frameworks] An abstract argumentation framework
(AF) corresponding to a (c-)SAF = 〈A, C, � 〉 is a pair (A, D) such that D is the defeat
relation on A determined by (c-)SAF.

A nonmonotonic consequence notion can then be defined as follows. Let T ∈
{complete, preferred, grounded, stable} and let L be from the AT defining (c)− SAF .
A wff ϕ ∈ L is sceptically T -justified in (c−)SAF if ϕ is the conclusion of a sceptically
T -justified argument, and credulously T -justified in (c−)SAF if ϕ is not sceptically
T -justified and is the conclusion of a credulously T -justified argument.

[9] prove that for so-called ‘well-defined’ argumentation theories with so-called
‘reasonable’ argument orderings the extensions induced by Definition 9 satisfy all four
rationality postulates of the rationality postulates of [1]. These and some related notions
are defined as follows.

Definition 10 [Well defined (c-)SAFs] Let AT = (AS,K) be an argumentation theory,
where AS = (L,R, n). We say that AT is:
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• closed under contraposition iff for all S ⊆ L, all ϕ ∈ L and all ψ ∈ S: if S � ϕ,
then S \ {ψ} ∪ {ϕ′} � ψ′ for all ϕ′ such that ϕ′ = −ϕ and all ψ′ such that
ψ′ = −ψ.

• closed under transposition iff if ϕ1, . . . , ϕn → ψ ∈ Rs, then for i = 1 . . . n,
ϕ1, ϕi−1, ψ

′, ϕi+1, . . . , ϕn → ϕ′
i ∈ Rs for all ϕ′

i such that ϕ′
i = −ϕi and all ψ′

such that ψ′ = −ψ.
• axiom consistent iff Kn is indirectly consistent.

If a (c-)SAF is defined by an AT that is axiom consistent and closed under contraposition
or transposition, then the SAF is said to be well defined.

Henceforth, any (c-)SAF is assumed to be well defined.

Example 6 The argumentation theory in our running example is axiom consistent since
{p} is indirectly consistent. It can be made closed under contraposition or transposition
by adding p,¬s → ¬r and r,¬s → ¬p and r1 → s to Rs.

We now define strict continuations of arguments slightly differently than in [9].1

Definition 11 [Strict continuations] The set of strict continuations of any set of argu-
ments from A is the smallest set satisfying the following conditions:

1. Any argument A is a strict continuation of {A}.
2. If A1, . . . , An and S1, . . . , Sn are sets of arguments such that all Ai are a

strict continuation of Si and all of B1, . . . , Bn are infallible arguments, then
A1, . . . , An, B1, . . . , Bn → ϕ is a strict continuation of S1 ∪ . . . ∪ Sn.

Example 7 In our running example all arguments are strict continuations of themselves
while A6 is a strict continuation of {A4} and A7 is a strict continuation of A5.

Definition 12 [Reasonable Argument Orderings] An argument ordering � is reason-
able iff:

1. i) ∀A,B, if A is infallible and B is fallible, then B ≺ A;
ii) ∀A,B, if B is infallible then B ⊀ A;
iii) ∀A,A′, B such that A′ is a strict continuation of {A}, if A ⊀ B then A′ ⊀ B,
and if B ⊀ A then B ⊀ A′ (i.e., applying strict rules to a set of arguments of
which at most one is fallible does not weaken, resp. strengthen, arguments).

2. Let {C1, . . . , Cn} be a finite subset of A, and for i = 1 . . . n, let C+\i be some
strict continuation of {C1, . . . , Ci−1, Ci+1, . . . , Cn}. Then it is not the case that:
∀i, C+\i ≺ Ci.

Example 8 In our running example, Conditions 1(i,ii) make that A1 ⊀ A1 and Ai ≺ A1

for all i such that 1 < i ≤ 7. Suppose we further have A5 ⊀ A6. Then by 1(iii) we also
have A7 ⊀ A6. Suppose we also have A2 ⊀ A7; then by 1(iii) we also have A2 ⊀ A5.
To illustrate Condition (2), let us temporarily move p from Kn to Kp and suppose Rs is
closed under transposition. Then the following new arguments can be constructed:

A8 = A1, A5 → ¬r A9 = A4, A5 → ¬p
1The new definition is arguably simpler but does not affect the proofs of [9].
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Note that A6 strictly continues {A1, A4}, A8 strictly continues {A1, A5} and A9 strictly
continues{A4, A5}. Then we cannot have all of A6 ≺ A5 and A8 ≺ A4 and A9 ≺ A1.

Finally, in some proofs below the notion of a maximum fallible subargument is used. The
following definition improves the one of [9], which does not satisfy Lemma 11 below.

Definition 13 [Maximal fallible subarguments] For any argument A, the set M(A) of
maximal fallible subarguments of A is inductively defined as:

1. If A ∈ Kn, then M(A) = ∅;
2. If A ∈ Kp or A has a defeasible top rule, then M(A) = {A};
3. otherwise, i.e., if A is of the form A1, . . . , An → ϕ, then M(A) = M(A1) ∪

. . . ∪M(An).

Example 9 In our running example we have that M(A1) = ∅, M(A2) = {A2},
M(A3) = {A3}, M(A4) = M(A6) = {A4}, M(A5) = M(A7) = {A5}.

3. Changing the ASPIC+ framework

We now reconsider the rationality postulates of [1] in light of our discussion in Section 1
and then propose a modified version of ASPIC+. Our proposal applies to both sceptical
and credulous justification (cf. Definition 1), since an extension can be seen as a set of
arguments that a rational agent could accept. We will discuss the rationality postulates
as applying to single extensions, but note that if they are satisfied for single extensions,
they are easily provable for the intersection of all extensions (cf. [1,9]).

We first discuss the consistency and strict-closure postulates2. Direct consistency is
not put into question by the lottery paradox or similar examples: it seems plainly irra-
tional to simultaneously accept two propositions that negate each other. However, for
strict closure and indirect consistency things are different. As discussed in Section 1, if a
deductive inference is applied to at least two fallible subarguments, then it aggregates the
‘amounts’ of fallibility of its subarguments. This in turn means that the argument apply-
ing the deductive inference may be less preferred than either of these subarguments, so a
successful attack on it does not imply a successful attack on one of these subarguments.
Note that this line of reasoning does not apply to cases where a deductive inference is
applied to at most one fallible element: then the amount of fallibility of the new argument
is exactly the same as the amount of fallibility of the single fallible argument to which
the deductive inference is applied. So we want to weaken the demand of strict closure to
those subsets of an extension that contain at most one fallible argument. Combined with
the wish to retain direct consistency, this implies a wish to restrict indirect consistency
in the same way as strict closure.

We next discuss the changes in ASPIC+. Consider the following modelling of the
lottery paradox. Let L be a propositional language built from the set of atoms {Ti | 1 ≤
i ≤ 1, 000, 000}. Then let X denote a well-formed formula X1 � . . . �X1,000,000 where
� is exclusive or and where each Xi is of one of the following forms:

2For reasons of space, we do not formally list the postulates of [1] and leave the formulation of the new
postulates implicit in the formal results of Section 4.
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• If i = 1 then Xi = T1 ∧ ¬T2 ∧ . . . ∧ ¬Tn

• If i = n then Xi = ¬T1 ∧ ¬T2 ∧ . . . ∧ ¬Tn−1 ∧ Tn

• Otherwise Xi = ¬T1 ∧ . . . ∧ ¬Ti−1 ∧ Ti ∧ ¬Tn+1 ∧ . . . ∧ ¬Tn

Next we choose Kp = {¬Ti | 1 ≤ i ≤ 1, 000, 000}, Kn = {X}, Rs as consisting of all
propositionally valid inferences from finite sets and Rd = ∅.

We want to formalise an account of the paradox in which for each individual ticket
the statement that it will not win is sceptically justified, in which the statement that
exactly one ticket will win is sceptically justified and in which the justification status of
conjunctions of statements that a ticket will not win depends on the size of the conjuncts.
In this section we only discuss the first two demands; the last one will be discussed
in Section 5. Our analysis does not depend on the choice of semantics. The following
arguments are relevant for any i such that 1 ≤ i ≤ 1, 000, 000.

¬Ti and ¬T1, . . . ,¬Ti−1,¬Ti+1, . . . ,¬T1,000,000, X → Ti (call it Ai)

This requires for all i that Ai ≺ ¬Ti, to prevent Ai from defeating ¬Ti. This in turn
requires that Condition (2) of Definition 12 of reasonable argument orderings is dropped,
since it excludes such an argument ordering. On the other hand, Condition (1) of Defini-
tion 12 can be retained. In particular, Condition (1.iii) captures that applying a strict rule
to the conclusion of a single argument A to obtain an argument A′ does not change the
‘preferedness’ of A′ compared to A. This is reasonable in general, since A and A′ have
exactly the same set of fallible elements (ordinary premises and/or defeasible inferences).

Finally, we need to allow rebutting attacks on strict-rule applications applied to at
least two fallible subarguments, since otherwise Ai is not defeated and both Ai and ¬Ti

are justified, which violates direct consistency. However, such rebuttals should not be
allowed on strict rules applied to just one fallible argument, since then strict closure
and indirect consistency do for preferred and stable semantics not even hold for strict
inferences from at most one fallible subargument. A counterexample is Rd = Kn = ∅,
Rs = {b → ¬m,m → ¬b} and Kp = {b,m}. Then {b,m} is an admissible set [1].

Based on this analysis, ASPIC+ is now adapted as follows. First, the definition of
rebutting attack in Definition 6 is replaced with the following definition.3

Definition 14 [Semi-restricted rebut] A rebuts argument B (on B′) iff for some B′ ∈
Sub(B) it holds that Conc(A) = −ϕ and either:

1. B′ is of the form B1, . . . , Bn ⇒ ϕ; or
2. B′ is of the form B1, . . . , Bn → ϕ and n ≥ 2 and at least two of B1, . . . , Bn are

fallible.

Example 10 In our running example A5 does still not rebut A6 since A6 applies its strict
top rule to just one fallible subargument. However, if p is moved from Kn to Kp, then
A5 does rebut A6.

Definition 8 of defeat then directly applies to the modified framework. Finally, argu-
ment orderings are from now on assumed to be weakly reasonable in that they satisfy
Condition (1) of Definition 12.

3[1,2] investigate similar notions of rebutting attack. However, they allow rebuttals on strict rules applied to
only one fallible argument and do not investigate weakened versions of the rationality postulates.

H. Prakken / Rethinking the Rationality Postulates for Argumentation-Based Inference426



4. The new rationality postulates verified

We now verify that the changed ASPIC+ framework satisfies [1]’s postulates of closure
under subarguments and direct consistency plus the new postulates of ‘restricted’ strict
closure and ‘restricted’ indirect consistency. The results and proofs are based on those
of [9] but reformulated or adapted when needed. For ease of comparison the original
numbering of [9] is retained. In fact, for c-SAFs the results can only be proven under the
assumption that an argument’s premises joined with Kn is consistent. Accordingly, the
notion of a c-SAF is redefined as follows:

Definition 15 [c-Structured Argumentation Frameworks redefined] Let AT =
(AS,K) be an argumentation theory. A c-structured argumentation framework (c-SAF)
defined by AT , is a triple 〈A, C, � 〉 where A is the set of all finite arguments constructed
from K in AS such that for all A ∈ A it holds that Prem(A)∪Kn is indirectly consistent,
� is an ordering on A, and (X,Y ) ∈ C iff X attacks Y .

Well-defined structured argumentation frameworks for ASPIC+ with semi-restricted re-
but and a weakly reasonable argument ordering are below denoted with (c−)SAF sw ,
where c− SAF sw’s are defined as in Definition 15.

Lemma 11 For any argument A: Conc(M(A)) ∪ Premn(A) � Conc(A).

PROOF. By induction on the structure of arguments. The result is obvious if A ∈ K
or TopRule(A) ∈ Rd. If TopRule(A) ∈ Rs, then by the induction hypothesis
Conc(Ai) ∈ ClRs(Conc(M(Ai)) ∪ Premn(Ai)) for all Ai (1 ≤ i ≤ n). Since
Premn(A) = Premn(A1) ∪ . . . ∪ Premn(An), the result follows. QED

Proposition 8 For any argument A and fallible argument B that have contradictory con-
clusions: (1) A defeats B; or (2) some strict continuation A+ of A defeats B.

PROOF. If B has no strict top rule or a top rule applied to at least two fallible arguments,
then clearly A defeats B. Otherwise, consider first systems closed under contraposition
(Def. 10). By Lemma 11 it holds that Conc(M(B)) ∪ Premn(B) � Conc(B). By con-
traposition, and since Conc(A) and Conc(B) contradict each other and M(B) = {B′},
we have that Premn(B) ∪ Conc(A) � ϕ for some ϕ such that ϕ = −Conc(B′). Hence,
one can construct a strict continuation A+ of A that concludes ϕ. Since by construction
of M(B) either B′ is an ordinary premise or ends with a defeasible inference, A+ either
undermines or rebuts B′. But then A+ also undermines or rebuts B.
For systems closed under transposition the existence of argument A+ is proven by
straightforward generalisation of Lemma 6 of [1]. Then the proof is completed as above.
In the case of c-SAFs, it must also be shown that Prem(A+) ∪ Kn is indirectly consis-
tent, which follows given Prem(A+) ⊆ Prem(A) ∪ Premn(B) and Premn(B) ⊆ Kn,
and Prem(A) ∪ Kn is indirectly consistent by assumption.

2) Since A+ is a strict extension of A and B is a strict extension of B′ and A �� B, we
have A+ �� B′ by Condition (1c) of Definition 12, so A+ defeats B′ and B. QED

Lemma 37 Let (A, C, �) be a (c−)SAF sw . Let A ∈ A be a strict continuation of S =
{A1, . . . , An} ⊆ A such that at most one member of S is fallible, and for i = 1 . . . n, Ai

is acceptable w.r.t. an admissible set E ⊆ A. Then A is acceptable w.r.t. E.
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PROOF. Let B be any argument defeating A. By Def. 6 of attack and Def. 14 of semi-
restricted rebut, B attacks A by undercutting or rebutting on defeasible rules in A or
undermining on an ordinary premise in A. Hence, by definition of strict continuations
(Def. 11), it must be that B attacks A iff B attacks Ai for the unique fallible Ai ∈
{A1, . . . , An}. Either:

1) B undercuts Ai, and so by Def. 8, B defeats Ai, or:
2) B does not undercut Ai. Suppose B ≺ A′

i. This contradicts B defeats A. Hence, B
defeats Ai.

We have shown that if B defeats A then B defeats some Ai ∈ S. By assumption of
Ai acceptable w.r.t. E and E being admissible, ∃C ∈ E s.t. C defeats B. Hence, A is
acceptable w.r.t. E. QED

Proposition 9 Let (A, C, �) be a c − SAF sw . If A1, . . . , An are acceptable w.r.t. some
admissible set E ⊆ A and at most one of A1, . . . , An is fallible, then

⋃n
i=1 Prem(Ai) ∪

Kn is indirectly consistent.

PROOF. Suppose for contradiction otherwise and let S be any minimally indirectly in-
consistent subset of

⋃n
i=1 Prem(Ai). Then for all ϕ ∈ S, S\{ϕ} � ϕ′ for all ϕ′ such that

ϕ′ = −ϕ and S\{ϕ} is indirectly consistent. Since at most one of A1, . . . , An is fallible,
we thus have for some Ai the set of ordinary premises S = {ϕ1, . . . , ϕm} ⊆ Prem(Ai)
(that must be non-empty given that Kn is indirectly consistent by assumption of axiom
consistency (Def. 10)), that S is consistent but S∪Kn is inconsistent. But this contradicts
the fact that Prem(Ai) ∪ Kn is indirectly consistent. QED

Theorem 12 [Sub-argument Closure] Let Δ = (A, C,�) be a (c-)SAF and E a complete
extension of Δ. Then for all A ∈ E: if A′ ∈ Sub(A) then A′ ∈ E.

PROOF. As in [9]. QED

Theorem 13 [Restricted closure under Strict Rules] Let Δ = (A, C,�) be a (c−)SAF sw

and E a complete extension of Δ and let S ⊆ E be such that at most one element of S
is fallible. Then Conc(S) = ClRs(Conc(S)).

PROOF. It suffices to show that any strict continuation X of S is in E. By Lemma 37, any
such X is acceptable w.r.t. E. By Proposition 10 of [9], E ∪{X} is conflict free. Hence,
since E is complete, X ∈ E. Note that if Δ is a c-SAF, then Proposition 9 guarantees
that Prem(X) ∪ Kn is indirectly consistent. QED

Theorem 14 [Direct Consistency] Let Δ = (A, C,�) be a (c−)SAF sw and E a complete
extension of Δ. Then {Conc(A)|A ∈ E} is directly consistent.

PROOF. We show that if A,B ∈ E, Conc(A) = −Conc(B), a contradiction results.
1. A is infallible, and: 1.1 if B is infallible, then this contradicts the assumption that Kn

is consistent. 1.2 if B is fallible, and 1.2.1 B is an ordinary premise or has a defeasible
top rule or has a strict top rule applied to at least two fallible subarguments, then A de-
feats B contradicting E is conflict free, or 1.2.2 B has a strict top rule applied to at most
one fallible subargument (see 3 below).
2. A is fallible, and: 2.1 if B is infallible then either 2.1.1 A is an ordinary premise or has
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a defeasible top rule or has a strict top rule applied to at least two fallible subarguments,
in which case B defeats A, contradicting E is conflict free, or 2.1.2 A has a strict top rule
applied to at most one fallible subargument (see 3 below); 2.2 if B is fallible and 2.2.1

B is an ordinary premise or has a defeasible top rule or has a strict top rule applied to at
least two fallible subarguments, then either A defeats B or B defeats A, contradicting E
is conflict free, or 2.2.2 B has a strict top rule applied to at most one fallible subargument
(see 3 below).
3. Each of 1.2.2, 2.1.2 and 2.2.2 describes the case where X,Y ∈ E, Conc(X) =
−Conc(Y ), Y is fallible and has a strict top rule applied to at most one fallible subargu-
ment. In the case that Δ is a c-SAF, since X,Y ∈ E, then X,Y are acceptable w.r.t. E,
and so by Proposition 9, Prem(A) ∪ Prem(B) ∪ Kn is indirectly consistent. By Propo-
sition 8 there is a strict continuation X+ of X that defeats Y . By Lemma 37 X+ is ac-
ceptable w.r.t. E, and by Proposition 10 of [9], E ∪ {X+} is conflict free, contradicting
X+ defeats Y . QED

Then Theorem 15 follows from Theorems 13 and 14.

Theorem 15 [Restricted Indirect Consistency] Let Δ = (A, C,�) be a (c−)SAF sw and
E a complete extension of Δ and let S ⊆ E be such that at most one element of S is
fallible. Then Conc(S) is indirectly consistent.

5. Conclusion

We first verify that the new variant of ASPIC+is a middle ground between the extremes
of Pollock and Kyburg in that whether a deductive consequence of multiple rationally
acceptable propositions is also rationally acceptable depends on the specific example.
The crucial element here is the argument ordering. Recall the modelling in Section 3
of the lottery paradox and assume that arguments have a numerical fallibility degree f ,
being the number of ordinary premises that they use. Next we define a ‘bandwidth’ for
strict argument preference, by letting for any pair of fallible arguments A and B, A ≺ B
iff f(A) − f(B) > n for some natural number n. More sophisticated argument order-
ings may be possible but this one suffices to illustrate our point. Now if, for example,
n = 600, 000 and adopting preferred semantics for illustration, then all arguments for
conjunctions ¬Ti ∧ . . . ∧ ¬Tj with fewer than 200,000 conjuncts strictly defeat their
rebutting counterarguments and are thus in all preferred extensions, the arguments for
conjunctions between 200, 000 and 800, 000 conjuncts defeat and are defeated by their
rebutting counterarguments so are in some but not all preferred extensions, while the ar-
guments with more than 800, 000 conjuncts are strictly defeated by their rebutting coun-
terarguments so are not in any preferred extension.

We next conclude. In this paper we presented an argumentation-based notion of
fallible rational acceptance according to which one can sometimes rationally accept sets
of propositions that are indirectly inconsistent or not strictly closed. We proposed new
rationality postulates capturing this idea and proposed a variant of ASPIC+ that satisfies
the new postulates while not satisfying their original versions. While we illustrated these
ideas with a purely probabilistic example, the basic intuition is more general, being that
an argument formed by strictly extending more than one fallible subargument has more
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fallibility than each of the combined arguments alone. Therefore, the relevance of this
paper is not confined to discussions of the lottery paradox but extends to any application
of argumentation in which arguments can have multiple fallible elements.

Our approach captures the intermediate position that deductive inferences from mul-
tiple fallibly acceptable propositions can but need not be acceptable. The argumentation
approach here provided a fresh logical perspective compared to other logical approaches.
First, the truth-preserving nature of deductive inference rules is respected by allowing
their application inside arguments as strict rules. A key observation here is that preser-
vation of truth does not imply preservation of rational acceptability, since truth and ra-
tional acceptability are different things. A virtue of an argumentation approach is that it
can naturally model this distinction, since the strict-closure postulate does not capture
preservation of truth but preservation of rational acceptability. Second, argumentation
can make a natural distinction between cases where strict closure and indirect consis-
tency do and do not hold, since if an argument that applies a deductive inference to fal-
lible subarguments is not rebutted on this inference or if none of its rebuttals are strong
enough to defeat it, then this argument can still be acceptable. The notion of an argument
ordering is crucial here, since it can make fine-grained distinctions between cases where
applications of deductive inferences are and are not strong enough to survive attack.

Having said so, it remains to be investigated how argument orderings can be defined
in principled ways. For example, can they help in modelling argumentation-based coun-
terparts of [8]’s “lossy” inference rules, or [3]’s “big-step probabilities” (their attempt to
distinguish between cases with and without uniform underlying probability structures)?
Such investigations could shed further light on the relation between argumentation-based
and other logical modellings of reasoning with uncertain information.
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