
Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener

On the search for representative characteristics of PV systems: Data
collection and analysis of PV system azimuth, tilt, capacity, yield and
shading

Sven Killingera,b, David Lingforsc, Yves-Marie Saint-Drenand, Panagiotis Moraitise,
Wilfried van Sarke, Jamie Taylorf, Nicholas A. Engerera,1, Jamie M. Brighta,⁎

a Fenner School of Environment and Society, The Australian National University, 2601 Canberra, Australia
b Fraunhofer Institute for Solar Energy Systems ISE, 79100 Freiburg, Germany
c Department of Engineering Sciences, Uppsala University, Lgerhyddsvgen 1, 752 37 Uppsala, Sweden
dMINES ParisTech, PSL Research University, O.I.E. Centre Observation, Impacts, Energy, 06904 Sophia Antipolis, France
e Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC Utrecht, The Netherlands
f Sheffield Solar, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

A R T I C L E I N F O

Keywords:
PV system characteristics
Metadata
Shading
Data analysis

A B S T R A C T

Knowledge of PV system characteristics is needed in different regional PV modelling approaches. It is the aim of
this paper to provide that knowledge by a twofold method that focuses on (1) metadata (tilt and azimuth of
modules, installed capacity and specific annual yield) as well as (2) the impact of shading.

Metadata from 2,802,797 PV systems located in Europe, USA, Japan and Australia, representing a total ca-
pacity of 59 GWp (14.8% of installed capacity worldwide), is analysed. Visually striking interdependencies of the
installed capacity and the geographic location to the other parameters tilt, azimuth and specific annual yield
motivated a clustering on a country level and between systems sizes. For an eased future utilisation of the
analysed metadata, each parameter in a cluster was approximated by a distribution function. Results show strong
characteristics unique to each cluster, however, there are some commonalities across all clusters. Mean tilt
values were reported in a range between 16.1° (Australia) and 35.6° (Belgium), average specific annual yield
values occur between 786 kWh/kWp (Denmark) and 1426 kWh/kWp (USA South). The region with smallest
median capacity was the UK (2.94 kWp) and the largest was Germany (8.96 kWp). Almost all countries had a
mean azimuth angle facing the equator.

PV system shading was considered by deriving viewsheds for ≈48,000 buildings in Uppsala, Sweden (all
ranges of solar angles were explored). From these viewsheds, two empirical equations were derived related to
irradiance losses on roofs due to shading. The first expresses the loss of beam irradiance as a function of the solar
elevation angle. The second determines the view factor as a function of the roof tilt including the impact from
shading and can be used to estimate the losses of diffuse and reflected irradiance.

1. Introduction

With 402.5 GW of installed photovoltaic (PV) capacity globally
(IEA, 2018), the integration of the large amounts of energy generated
by the numerous distributed solar power systems into the electricity
supply system is an issue ever gaining in importance. Modelling of the
power generated by those decentralised solar systems is of utmost im-
portance for several issues ranging from energy trading to network flow
control. The estimation and forecast of PV power is made difficult by

the fact that only a minority of systems continuously report their gen-
eration and are publicly accessible.

Different strategies have been proposed to overcome the lack of
reporting (e.g. upscaling approaches or power simulations based on
satellite derived irradiance); an extensive literature overview is pro-
vided in Bright et al. (2017b). Within this paper, the estimation of the
aggregated power generated in a given region by a fleet of unknown PV
systems is referred to as regional PV power modelling. Knowledge of PV
system characteristics is required in the different regional PV modelling
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approaches to reconstruct the missing power measurements (Lorenz
et al., 2011; Saint-Drenan et al., 2016). Some studies assign simplified
assumptions of the PV system characteristics. This can result in over-
exaggerated grid impacts (Bright et al., 2017a). Unfortunately in most
cases, characteristics from PV systems are either unknown or only ac-
cessible for a small number of stakeholders (inverter manufacturers,
monitoring solutions providers, etc.). As a result, progress in the area of
regional PV power estimation or forecasting can be considered sub-
optimal as potential contributors like universities or small companies
are partially excluded from access to larger datasets of measurements or
metadata. This is still the case despite grid integration of solar energy
being considered a strategic societal issue. Therefore, it is the aim of
this paper to offer any stakeholders the possibility to develop activities
on this research field by collecting, analysing and disseminating me-
tadata on millions of PV systems installed worldwide. To begin, we
must establish which metadata are the most important.

Saint-Drenan (2015) carried out a sensitivity analysis and found
that the four most influential characteristics impacting PV output
generation are: (1) tilt angle and (2) azimuth angle of PV modules, (3)
installed capacity and (4) total efficiency (represented herein as the
specific annual yield). Furthermore, (5) shading is of crucial influence
on the PV power generation but is not accessible from PV system me-
tadata. The impact of shading can only be accessed with considerable
effort, e.g. simulations that consider digital elevation models (DEM)
including buildings, trees and other obstacles, by analysing PV power
profiles or even weekly performance ratios (see Paulescu et al. (2012),
Freitas et al. (2015), Lingfors et al. (2018), Tsafarakis et al. (2017) for
further reading). Due to its significant influence, a shading analysis
complements the focus of this study.

These five identified characteristics are the central focus of this
paper because of their general importance for regional PV modelling
approaches. The overall aim of this paper is to achieve a full reprodu-
cibility of the five characteristics so that they can be used in regional PV
power modelling applications such as nowcasting or forecasting, but
also in power simulations that are used for energy system analysis,
studying the grid impact, defining the PV power potential, etc.

1.1. Related work

The relevant literature for this research has three prominent cate-
gories: (1) metadata analysis with intention to improve regional PV
power simulations, (2) PV performance due to specific yield, and (3)
models that consider shading analysis.

Category 1: Examples of literature using metadata to improve re-
gional PV power simulations. Schubert (2012) provides a useful
guidebook for the simulation of PV power that sketches important parts
of the simulation chain and delivering assumptions for characteristics.
An overview of different characteristics of tilt, azimuth, the module and
installation type are given together with suggested weights. However,
these weights seem to be assumptions with no datasets being cited as an
empirical basis and so using these weights in PV simulations raise
questions of trust.

Datasets are used by Lorenz et al. (2011), who evaluated the re-
presentativeness of a set of reference PV systems to predict regional PV
power by analysing the orientation and module types of ≈ 8000 systems
in Germany. The authors note that their dataset seem to have a dis-
proportionate share of large PV systems and so do not fully represent a
larger portfolio.

The problem of poor representativeness was bypassed in Saint-
Drenan (2015) and Saint-Drenan et al. (2017) by feeding a PV model
with metadata statistics from a larger sample of PV systems as opposed
to a smaller and unrepresentative subset. They derived joint prob-
abilities of azimuth and tilt from 35,000 systems and clustered them by
their system size and geographic location. These empiric distributions
where then used to estimate the characteristics of all 1,500,000 PV
systems installed in Germany at that time. Saint-Drenan et al. (2018)

complemented their earlier research by reproducing it for more Eur-
opean countries using statistical distributions from 35,000 PV systems
in Germany and 20,000 in France. This demonstrates the significant
potential of generating representative statistical distributions with in-
tended use in regional PV power simulations.

Kühnert (2016, pp. 80-85) followed a similar approach and derived
statistical distributions for tilt and azimuth from ≈1300 PV systems in
Germany. Based on this portfolio, the author evaluated the re-
presentativeness should PV systems be clustered into different geo-
graphic regions and system sizes. The authors quantitatively derived
recommendations between the two extremes of (1) a portfolio covering
all PV systems and (2) a high number of subclasses with a very small
number of PV systems. From this, we observe that there must be a well
considered clustering approach in order to derive representative sub-
classes.

Killinger et al. (2017c) detailed a regional PV power upscaling ap-
proach which estimated the power of ≈2000 target PV systems based on
45 continuously measured PV systems in Freiburg, Germany. Whereas
the azimuth and tilt of the 45 measured systems were known in their
case, both parameters were derived through a geographic information
system (GIS) based approach for the target PV systems.

Furthermore, Pfenninger and Staffell (2016) use PV power mea-
surements and incorporate metadata from 1029 systems in 25 European
countries to derive empirical correction factors for PV power simula-
tions. A comparison between the analysed tilt and latitude showed an
trend towards steeper angles at higher latitudes, indicating that meta-
data might vary with the geographic location.

PV system metadata is thus used to successfully improve regional PV
power upscaling across Europe in Pfenninger and Staffell (2016),
Killinger et al. (2017c), Saint-Drenan (2015), Saint-Drenan et al. (2017,
2018) and Kühnert (2016). These works applied information of azi-
muth, tilt, installed capacity and the geographic location from PV sys-
tems to estimate the power output of a larger PV fleet for similar geo-
graphies and different countries. They stand as an powerful and
excellent example for how representative metadata distribution statis-
tics can be employed. It is these examples that guide the first usage of
our vast dataset towards deriving representative metadata distribu-
tions.

Category 2: Excerpts of literature that analyse the performance of
PV systems. Performance is more complex than just tilt and azimuth as
it is inherently influenced by other components, such as soiling and
meteorology.

Nordmann et al. (2014) found a positive correlation between spe-
cific annual yield and incoming irradiance, as well as an observed ne-
gative correlation between system performance and ambient tempera-
ture. Their data was obtained via web-scraping of Solar-Log (2914
systems in the Netherlands, Germany, Belgium, France and Italy) and
collected by participants of the IEA task (>60,000 systems in the USA).

Moraitis et al. (2015) observed an increasing yield with decreasing
latitude from ≈20,000 systems in Netherlands, Germany, Belgium,
France and Italy, also achieved using web-scraping techniques. We
therefore expect to observe geographical differences due to latitude and
climate.

Taylor (2015) explored the generation of 4369 distributed systems
in the UK to derive the performance ratio and degradation rate. To
allow reproducibility, the analysis of the performance ratio was en-
riched by approximating it with distribution functions. We intend to
extend this style of analysis to PV system metadata.

Leloux et al. (2012a) examined data from residential PV systems in
Belgium; Leloux et al. (2012b) focused on France. In Belgium, specific
annual yield was analysed for 158 systems in 2009 and normalised by a
factor which compared the incoming irradiance in this year to a 10 year
average. The mean value was 836 kWh/kWp. The same approach led to
a mean value of 1163 kWh/kWp for 1635 systems in 2010 in France.
Weibull distributions were used throughout both papers to approximate
the specific yield and performance indicators; Weibull distributions
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were selected for visual similarity and not for robustness of fit — we
aim to use a more statistically rigorous approach to distribution type
selection. Furthermore, a relative distribution was provided for com-
binations of tilt and azimuth. Additionally, the installed capacity was
analysed in France, showing a high number of systems with 3 kWp or
slightly less. The reason for this is due to tax credits being denied for
system sizes >3 kWp and a strongly increased VAT for such system sizes
(Leloux et al., 2012b). The legal framework can thus have a strong
influence on characteristics of PV systems. Further studies exist which
analyse the specific energy of PV systems. However, most of these
studies are limited to a particular region and less of them propose a
parametric approximation of the data studied.

Category 3 — the impact of shading in many articles is only con-
sidered in a highly simplified manner, e.g. by setting irradiance values
zero above a certain solar zenith angle (Lingfors and Widén, 2016),
restricting simulations and analyses to time steps with certain solar
zenith angles (Elsinga and van Sark, 2015; Elsinga et al., 2017; Jamaly
et al., 2013; Killinger et al., 2016; Saint-Drenan et al., 2017; Yang et al.,
2014; Bright et al., 2015), applying constant losses (Mainzer et al.,
2017) or assuming a linear decrease in the PV power values (Schubert,
2012). Several authors expect improvements in their results, when the
influence of shading is better represented (Bright et al., 2017a,b; Pareek
et al., 2017).

1.2. Contribution

Considering the lessons and outcomes of the different studies de-
scribed in our literature review, we see a clear need for the production
of a representative set of distributions to appropriately represent PV
system metadata. Currently, further advancements in regional PV
power models in the absence of significant knowledge of metadata is
hindered due to several reasons Firstly, implementation is hindered due
to lack of access to PV system datasets. Empirically derived distribu-
tions of these PV system parameters could replace this need, though
currently are only provided for performance indicators (Taylor, 2015)
and the specific annual yield (Leloux et al., 2012a). Secondly, with
exception of a few studies (e.g., Saint-Drenan et al. (2015)), the issue of
sample representativeness is often omitted. This is a major omission, for
example, a studied dataset including a majority of roof-mounted PV
system has to be generalised in order to represent a fleet of systems
encompassing a lot of rack-mounted PV systems. Thirdly, most of the
identified studies focused on particular PV system characteristics; an
integrated analysis encompassing all five key characteristics is required.
Furthermore, the influence of shading is in most articles excessively
simplified or more commonly excluded. Lastly, studies are mostly
limited to a specific country and it is currently difficult to make com-
parisons between countries to assess applicability. A holistic overview
of important parameters of metadata for multiple countries is clearly
missing.

The objective of this paper is to address the aforementioned lim-
itations by following the goals below:

1. To collect and process as many data sources as feasible of four
identified key metadata parameters (tilt, azimuth, installed capacity
and specific annual yield) for PV systems installed worldwide
(Section 2),

2. To explore the characteristics of these key parameters and their
associated interdependencies (Section 3.1),

3. To propose a clustering approach to allow representative general-
isation of our datasets (Section 3.2),

4. To provide an eased access to the characteristics of each key para-
meter by fitting distribution functions to the observed probabilities
(Section 4),

5. To propose a method that evaluates the impact of shading (Section
5.1) and which derives generalised findings for improved con-
sideration and implementation (Section 5.2).

The influence of meteorological conditions, panel degradation and
soiling are not considered within this research, beyond those losses that
are inherently and statically contained within the specific annual yield.
Whilst they are highly interesting topics and research avenues that
could be explored, we are more keenly interested in comparisons and
parametrisations of PV system metadata and reserve such topics for
future research, more ideas of which are presented in Section 6. A
summary of the paper is then given in Section 7. In the Appendix A, the
forms of the distributions used in this paper are defined and their fitted
variables provided.

2. Collection and processing of PV system metadata

An intensive effort has been conducted to identify, collect and
prepare good sources of PV system metadata. Some of the major
monitoring companies and inverter manufacturers have been con-
tacted. In parallel, free information on several solar portals have also
been used to gather our dataset either by downloading or web-scraping
techniques. Ultimately, we obtained a dataset containing 2,802,797 PV
systems located in Europe, USA, Japan and Australia, which represents
a total capacity of 59 GWp (14.8% of installed capacity worldwide).
Every system in our records reported an installed capacity. However,
the other parameters were not always reported. The systems in our
database that reported a valid tilt/azimuth only have a relative share
from the worldwide installed capacity of 1.7%. Geographic position
was almost as often reported as installed capacity and the relative share
is 14.5%. The specific annual yield has a relative share of 11%. Further
detail of the parameter shares and subsequent quality filtering are
found in Table A.5.

An overview of the regions covered by our study, the characteristics
of the datasets and their sources are provided in Table 1. For some
countries, data is derived from multiple sources. It shouldn’t be ruled
out that systems could be listed multiple times, leading to duplicates in
the analysis. Due to the nature of reporting, a single PV system may not
have the same metadata in different datasets and so it is accepted that
this is an inherent error. The inhomogeneous nature of the datasets
motivated us to apply some preprocessing operations to ensure that
only valid system measurements are considered in our analysis and all
datasets are in a consistent format. Some of these operations act as
quality filters. They were developed based on our empiric experiences
with the datasets and are shortly justified where presented.

Longitude and latitude: In cases where this information was not
provided, the geographical coordinates were derived from
OpenStreetMap using other given information such as the zip-code, city
name, state name, etc. Erroneous locations outside the specific region
are set NA. For confidentiality reasons geographic information was
provided separately from the other parameters in case of the 18,543
systems from Sheffield Solar. The derived longitude and latitude are not
required to be highly accurate to suit the needs of this paper as they are
purely used for trend analysis when studying rough relationships to
other parameters and for visualization purposes. The ability to allocate
a PV system to a specific country is certain in all cases.

Tilt and azimuth: Unfortunately, this important metadata is not
available from all sources. In case of Australia the provided data was
imprecise ( °45 steps in the azimuth) and thus estimated by the approach
described in Killinger et al. (2017b) and improved in Killinger et al.
(2017a) as the PV power data was available. As Australia is on the
southern hemisphere, azimuth angles were transformed to normalise
the angles expressed for both hemispheres. Within this paper, we con-
sider − °90 to be east, °90 to be west, with °0 representing south in the
Northern hemisphere and north in the Southern hemisphere. Multi-
array systems are not considered in this paper. In a few of the listed
datasets, an excessive amount of tilt values with °0 or °1 and azimuth
values of − °180 are reported. E.g. the Australian dataset reported 36%
of all systems having a tilt angle ⩽1°. Visual inspections based on aerial
images and results from the aforementioned parametrisation, however,
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showed that such small tilt angles were very rare and regularly in-
correctly reported. From previous work with various datasets, we know
that such boundary values are sometimes used as a default when data is
missing. As we have no quality control measures on the data, the va-
lidity of the data at these boundary values is in question and so are
removed from consideration. Tilt ⩽1° or > °89 and azimuth <− °179 or
> °179 are thus set NA.

Specific annual yield: There are many instances of systems re-
porting a specific annual yield of 0 kWh/kWp. Without further in-
formation from the datasets, it is not possible to distinguish whether
this is a default value for missing data or a valid measurement. We
expect that both cases regularly occur and so we must remove any input
of 0 kWh/kWp from our analysis. Furthermore, the specific yield of a
system is set NA if it was installed within the year of consideration to
ensure that a full year of generation is the basis for the annual yield. In
order to compensate annual meteorological fluctuations within a da-
taset of a country, all values within a year are divided by the ratio
between the mean value from all systems in this year and the average of
the mean values from all reported years. A similar approach is applied
in Leloux et al. (2012a). In datasets reporting a continuous time series,
the specific annual yield was derived by the summation of the nor-
malised PV power values. Only systems which have less than 10 days/
≈2.7% of missing time steps in their generation data are considered.
The vast minority of systems in the datasets reported specific annual
yield values that significantly exceed any meteorological potential. We
believe that such values are either erroneous reports of either yield or
the installed capacity, as the latter is used in some datasets to derive the

former through division. Whereas Taylor (2015) applied a statistical
based upper limit for outliers, a fixed limit of 2000 kWh/kWp was used
in this paper. The fixed value was chosen to ensure a reliable filtering
even though the quality and range of values may differ for the various
datasets. A threshold value of 2000 kWh/kWp acknowledges the in-
creasing risk of erroneous data beyond this value and is a very cautious
limit with the aim of avoiding any erroneous filtering. In fact, this limit
was only exceeded in 2.65% of all systems that reported a yield value
from openpv.nrel.gov where we observed the largest values within the
study and only for 0.084% of all systems in this study.

Please note that, regarding the installed capacity, no pattern was
recognised that led us to believe that there were any systematic quality
issues. The same applies for the other parameters that were only
available for some datasets, such as information about the network
connection for Germany as visualised in Fig. 2. Hence, the data was
taken on an as-is basis in these cases.

A summary of the impact of our proposed quality control criteria is
provided in the appendix in Table A.5 where percentages of removed
data are presented. Data from pvoutput.org were strongly affected by
the filtering of the low tilt values and justify the need of such a quality
control. There is a significantly higher share of systems filtered by
<− °179 when compared to the filter for azimuths > °179 . This is because
south is defined as 180° in some datasets and are therefore transformed
by subtracting 180°. Invalid entries in the same datasets were defined as
0° and subsequently filtered post-transformation by the lower threshold
value for azimuth values. Insufficient information was given to derive
the exact location for PV systems, mostly from pvoutput.org. All valid

Table 1
Regions, parameters and data sources. “Rest of Europe” contains different European countries not already listed with less than 1000 systems each. The cumulated
capacity is given in MWp and, where available, as a relative share of the total installed capacity in a region (own calculations based on IEA (2018) with data from
2016 and National Grid UK (2018) in case of UK with data from 2018).

Region No. systems Tilt & azi. Capacity Spec. ann. yield Cumulated capacity Source
– – (°) (kW/kWp) (kWh/kWp) (MWp)/% of total –

Australia 4055 ✓ ✓ × 30/0.42 pvoutput.org
Austria 385 ✓ ✓ 2012–2016 4/0.33 solar-log.com

280 ✓ ✓ × 2/0.14 suntrol-portal.com
268 ✓ ✓ 2015–2017 2/0.17 sonnenertrag.eu
112 ✓ ✓ 2015–2017 1/0.04 pvoutput.org

Belgium 4535 ✓ ✓ 2012–2016 149/ 3.93 solar-log.com
3365 ✓ ✓ 2015–2017 17/0.45 bdpv.fr
541 ✓ ✓ 2015–2017 12/0.32 sonnenertrag.eu

Denmark 933 ✓ ✓ 2012–2016 7/0.80 solar-log.com
630 ✓ ✓ × 4/0.42 suntrol-portal.com
542 ✓ ✓ 2015–2017 2/0.27 pvoutput.org

France 20,935 ✓ ✓ 2015–2017 93/1.17 bdpv.fr
558 ✓ ✓ 2012–2016 8/0.10 solar-log.com

Germany 1,664,967 × ✓ 2012–2016 41,478/98.76 bundesnetzagentur.de
23,536 ✓ ✓ 2012–2016 547/1.30 solar-log.com
6561 ✓ ✓ × 124/0.29 suntrol-portal.com
6447 ✓ ✓ 2015–2017 112/0.27 sonnenertrag.eu

Italy 2506 ✓ ✓ 2012–2016 30/0.15 solar-log.com
1068 ✓ ✓ 2015–2017 9/0.04 pvoutput.org
358 ✓ ✓ 2015–2017 11/0.06 sonnenertrag.eu

Japan 5233 ✓ ✓ 2012–2017 42/0.09 jyuri.co.jp

Netherlands 7180 ✓ ✓ 2015–2017 31/1.08 pvoutput.org
1115 ✓ ✓ 2012–2016 14/0.49 solar-log.com
917 ✓ ✓ 2015–2017 9/0.31 sonnenertrag.eu
290 ✓ ✓ × 2/0.07 suntrol-portal.com

Rest of 1191 ✓ ✓ 2012–2016 23/– solar-log.com
Europe 566 ✓ ✓ 2015–2017 5/– pvoutput.org

133 ✓ ✓ 2015–2017 2/– sonnenertrag.eu

UK 18,543 ✓ ✓ 2015–2016 58/0.45 microgen-database.sheffield.ac.uk
2286 ✓ ✓ 2015–2017 9.5/0.07 pvoutput.org

USA 1,020,585 ✓ ✓ 2017 16,521/32.39 openpv.nrel.gov
2176 ✓ ✓ 2015–2017 17/0.03 pvoutput.org
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parameter entries that have passed the quality control are used for the
analysis in the next two sections.

3. Analysis of PV system metadata

3.1. Analysis of parameters and dependencies

The datasets presented in Section 2 are very inhomogeneous with
large differences in the number of systems in each region and the
availability of parameters. Before starting to explore individual clusters,
typical ranges of these parameters and potential dependencies between
them shall be studied on a global dataset. The general principle of the
global dataset is that every region has the same weight. Consider
Table 1, should all data be used to make global statistics, the results
would be biased towards the countries with more data (USA and Ger-
many). Therefore, a normalisation method must be employed to weight
countries equally. Its derivation follows the following procedure:(1)
Specific annual yield is the only parameter that exists multiple times for
each PV system. To evenly weight all systems, only one normalised
specific yield value per system is considered by randomly selecting a
year. This procedure was preferred to others such as e.g. taking the
mean value for all values of a system in order to conserve system spe-
cific variability between years. (2) For each combination of two para-
meters (e.g. tilt and specific annual yield) the algorithm counts the
number of couples per region that have valid reports in both parameters
that have passed the quality control in Section 2. Only regions with a
sample size of at least 500 complete couples are considered to ensure
statistical relevance. (3) The smallest number of complete couples from
all regions is taken to define the sample size for the global dataset. This
way, the same number of complete couples is taken from each region.
Therefore, all of the data is considered for the region with the smallest
number of complete couples. In all other regions, the same number of
couples is randomly selected. To avoid under-representation of larger
systems, the selection probability is linearly weighted with installed
capacity, not frequency.

The significant advantage of this procedure is that regional char-
acteristics are evenly weighted and the availability for each pair of
parameters is individually considered. The disadvantage is that many
systems are randomly banned due to the region with least availability.
We applied different methods of sub-sampling the data, however, the
resulting global data was quite insensitive to different sampling pro-
cedures indicating the robustness of our approach.

Results from the global dataset are displayed in Fig. 1 and the fol-
lowing observations can be made:

Latitude: To have a robust quantity of data, PV systems in latitudes
between 30° and 55° are studied. Latitude does not show any obvious
influence to the installed capacity or azimuth angle. The tilt angle
shows a tendency to increase with an increasing latitude, corroborating
the same observation by Pfenninger and Staffell (2016) between the
latitude ranges in the study. This finding agrees with studies showing
that systems should have a smaller tilt closer to the equator in order to
optimise their annual yield (Šúri et al., 2007). It is still surprising since
many systems in our analysis are installed on roofs and strongly depend
on the roofs’ inclination. It can be suggested that the roof pitch has a
tendency to be steeper at higher latitudes in our datasets and agrees
with similar observations in Europe (McNeil, 1990, p. 883). Further-
more, a linear decline in the specific annual yield is observed with an
increasing latitude. This occurs in accordance to the tendency of a
higher solar potential in regions closer to the equator (Šúri et al., 2007).

Installed capacity: Within the plot, only systems < 100 kWp are
displayed for ease of visualisation. Even though the sampling weights in
preference of larger systems, there is a clear concentration of smaller
system sizes. There is a visual trend towards smaller tilts with an in-
creasing installed capacity. Furthermore, there is a clear observation
that larger capacity systems are consistently oriented towards the
equator whereas smaller systems have a much broader range of

orientation. A dependency between the installed capacity and the
specific annual yield cannot be observed in the global dataset. Despite
that, we would expect that the efficiency of larger systems is usually
higher and systems better maintained. Most likely, this trend is invisible
here since data from many geographic regions were sampled. This hy-
pothesis is checked in Section 4. The finding that PV system size has
interdependencies on the other parameters can be reaffirmed with ev-
eryday observations; smaller systems are in most cases mounted on the
roof of residential buildings, medium systems are typically found on
farming houses or industrial buildings, and large systems are mounted
on a rack on the ground.

Tilt: Tilt in the dataset mainly occurs in a range up to 50° and is
often reported in steps of 5°, though reporting steps of 10° are also
common. No discernible trend between tilt and azimuth is observed,
however the 2D-histogram shows a significant density peak around the
most frequent combination of azimuth and tilt with a radially de-
creasing probability, this was also observed by Saint-Drenan (2015),
Killinger et al. (2017c). A decrease in the specific annual yield can be
seen with an increasing tilt. This might be caused by the finding that tilt
is usually smaller for decreasing latitudes which occur in combination
with an increased specific annual yield.

Azimuth: There is a significant peak of azimuth angles pointing
south (north in Australia). It is probable that this distinct peak is due to
the targeted approach of solar installers who favour equatorial or-
ientated rooftops due to performance benefits. Indeed, azimuth angles
tend towards reaching a higher specific annual yield with systems or-
iented towards 0°. In general, outliers reach a range of +/- 100° with
discrete reporting intervals being visible in the 1D-histogram and
scatter plot, e.g. databases only requiring azimuth reported to nearest
15°.

Specific annual yield: The 1D-histogram of yield shows the most
distinct shape of all parameters with a peak around 1,000 kWh/kWp.
Furthermore, there is a small peak at 1,650 kWh/kWp which is caused
by PV systems in southern regions of the USA. It is not possible with the
limited latitude study area to infer that the regression of specific yield
with latitude will extend towards the equator; climatic regions are ex-
pected to be far more influential on the specific yield whereby around
the equator there is a significant presence of clouds, and around the
tropics there tends to be desert. It is probable that the secondary peak
above 1650 kWh/kWp is for systems installed in particularly arid re-
gions found in southern USA, however, climatic influence is outside the
scope of this paper and is reserved for future study. The specific annual
yield has the most visually recognisable trends to all other parameters,
demonstrating the strong inter-relationship. There is a need for a more
detailed multi-variable analysis between specific annual yield and the
other parameters. However, due to its extra complexity it falls outside
the scope of this paper.

3.2. Representativeness of clusters

In the previous section, important characteristics of PV systems and
their dependencies were derived. With exception of the annual specific
yield and installed capacity in Germany, metadata of all the installed
systems within the different regions is not known (e.g. we have access
to 4055 systems from Australia when there are an estimated 1.8 million
installed). This restriction questions the representativeness and re-us-
ability of our observations when using the statistics of a subset of sys-
tems to infer the statistics of the remainder because some character-
istics could be over- or underrated in our datasets. To achieve
representation, a solution is to sub-categorise metadata from the PV
systems into smaller and more homogeneous clusters. By doing so, an
end-user can use the statistics of the clusters and weight them in-
dividually by the probability of occurrence. Prior to an approximation
of metadata in Section 4, it is the objective within this section to define
groupings or clusters of PV system that allow the derivation of re-
presentative characteristics.
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The interdependency analysis reveals two dominating parameters
which show multiple dependencies to others: (1) The installed capacity
and (2) a geographical influence (c.f. absolute latitudes are used to
account for hemispheres). These two findings are in accordance with
Kühnert (2016), Saint-Drenan (2015), Saint-Drenan et al. (2017) who
analysed azimuth and tilt for different classes of installed capacity and
multiple regions. Such a separation has the benefit to acknowledge the
impact from these two dominating parameters on others, while still
allowing us to derive meaningful statistics within a chosen cluster. As
Kühnert (2016) evaluates, a balance must be found between the
number and size of the clusters, in order to guarantee that each class
includes a sufficient number of data to be representative.

The left plot in Fig. 2 provides further insights into the system size
and its relative share for different countries in this paper. Differences
can be observed between countries but all show a heightened con-
centration towards small scale systems with a relative share between
60% (Germany) and 99% (UK) of systems <10 kWp. Whereas most
datasets only cover a selection of systems within a country, the dataset
in case of Germany (bundesnetzagentur.de) covers the vast majority of
systems and is detailed on the right plot. Almost one million out of the

1.6 millions German systems are smaller than 10 kWp but in total, with
an aggregated capacity of ≈5 GWp, they only represent ≈12% of the
installed capacity. Another 650,000 systems occur in a range between
10 and 100 kWp and cover additional ≈17.5 GWp. Only 35,000 systems
are >100 kWp yet are responsible for half of the total installed capacity.

On the search of a threshold value to split the datasets into re-
presentative clusters, a system size of 25 kWp was chosen by con-
sidering: (1) An installed capacity of 25 kWp is an adequate size be-
tween typical roof mounted systems and larger plants, particularly as
larger capacities are linked to larger physical space requirements. (2) So
even though the number of larger systems is rather low in most coun-
tries, their strong contribution to the total power generation and the
knowledge that characteristics change with the system size justify a
consideration in a separate cluster. The threshold value of 25 kWp is
displayed as a dashed vertical line in Fig. 2. If the threshold value were
higher, only a small number of systems would be left in the upper
cluster and the derivation of representative statistics impeded. (3)
Several threshold values were trialled in our analysis. A value of 25
kWp was finally decided upon as it satisfied the aforementioned criteria
and passed visual inspection by producing distinct distribution curves.

Fig. 1. Hybrid graphic with plots of the different parameter pairs from the global dataset. The plots below the diagonal are scatter plots with the 25%, 50% and 75%
quantiles as coloured lines. Plots on the diagonal are 1D-histograms of that parameter. Plots above the diagonal are 2D-histograms of the parameter pairs; the change
in colour from white to red is an indication of probability and its distribution. The 2D-histograms and scatter plots have the parameter of their column on the x-axis
and the parameter of their row on the y-axis. Note that each scatter and 2D-histogram pair have opposite axes but are identical data. 1D-histograms are the only
exception with having displayed the density on the y-axis. For reasons of simplification the absolute value of the latitude is taken in these plots to make results from
the northern and southern hemisphere comparable. The bold number in each plot shows the number of countries (n) which are considered in the plot as well as the
sampling size (si). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Both the impact of system size and the geographical influence can
be studied in respect to the tilt angle of systems in Figs. 3 and 4. All
regions show a tendency towards smaller tilt angles for system sizes
>25 kWp. Especially for systems ⩽25 kWp in Europe, the dependency
between latitude and tilt can be observed by an increasing tilt angle
from Italy to Denmark. However, it should be noted that the spatial
influence is not only limited to a pure geographical relationship; the
spatial impact depends on regulations and incentives which often occur
on a national level. The policy situation in France leads to a high
number of 3 kWp systems (see Leloux et al. (2012b) in Section 1.1). In
Germany, there are changing regulations and feed-in tariffs for systems
>30 kWp resulting in an increase in the black line of the right plot in

Fig. 2. Furthermore, the UK had a higher feed-in tariff for systems ⩽ 4
kWp up until January 2016 and has since moved to ⩽ 10 kWp (ofgem,
2018). These are such examples of significant policy-specific regional
influence that can impact upon the characteristics of PV systems.

There are many opportunities as to how we sub-categorise the data
into clusters. Many of which could be explored in order to derive
meaningful information depending on the approach. Options include
separating by climatic region or grouping by policy similarities.
However with respect to the aforementioned aspects, a clustering at a
country level seems advisable for the following reasons: (1) National
regulations and incentives have a visually evident impact on the oc-
currence of different system sizes which may itself influence other

Fig. 2. The installed capacity and its relationship to the relative share of systems for different countries (left). The line width and colours vary to simplify the
differentiation. The cumulative installed capacity in case of Germany is shown in the right plot represented by the coloured line (colouration indicating the network
connection) whereas the black line represents the cumulative number of systems. The dashed line indicates 25 kWp, which is used to sub-categorise the data in
Section 3.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Maps for Australia (top) and Europe (bottom). The left column shows systems ⩽25 kWp and the right column systems >25 kWp. Systems which do not report
tilt are in grey colour.
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metadata. (2) A geographical influence was observed on multiple
parameters. Countries limit this influence by their size. The only ex-
ception of this strategy is the USA. The enormous geographic area of
this country results in a inhomogeneous pattern of the specific annual
yield. This is a direct consequence of the heterogeneity of the solar
resource within a country. The USA was thus split at 37.5° N into a
northern and a southern component. The same approach could be ap-
plied to Australia, however, the sample size of available data is too low.
Further subdivisions e.g. by the latitude for systems ⩽25 kWp in France
(see tilt in Fig. 4), could be considered but exceed the scope of this
paper and is a focus of future work. (3) There is a certain convenience
to clustering by countries. Many of the studies previous focused mainly
on a single country, this is indicative of a researchers interests and data
availability. We feel that, whilst there are many options of clustering
that can be explored, a preliminary study at a country level is of most
interest.

The region “Rest of Europe” is not be considered further due to its
inhomogeneous portfolio of systems across different countries in
Europe. The clusters, defined by their belonging to a region and system
size, are used in the next section to derive representative distributions
for the metadata.

4. Approximation of parameters in clusters

The intentions of parametrisation are twofold. Firstly, we want to
discover whether or not the parameters (tilt, azimuth, capacity and
yield) can be represented with simple parametric distributions.
Secondly, we want to explore the relative differences between clusters
through comparison between probability distributions. We concede
that simple distribution fitting has weaknesses such as not appro-
priately capturing a more complex relationship offered by non-para-
metric fitting, however, reproducibility of the statistics is encumbered

with added complexity. For our first presentation of the substantial
volume of PV system data collected, we focus on simple distribution
fitting as interesting comparisons and individual cluster insights can be
drawn, and we are able to comment on the ability for these complex
parameters to be represented as such.

4.1. Methodology of fitting the distributions

In order to enable the utilisation of the aggregated statistics of each
cluster (defined in Section 3.2) and for each parameter (defined in
Section 3.1), individual distributions are fitted to the real-world prob-
ability density histograms. The results are presented in Fig. 5 (⩽ 25
kWp) and Fig. A.10 (>25 kWp). The total number of available data
varies between clusters and parameters; there is no further processing
beyond the criteria described in Section 2; all possible data available is
used. Differences in data within a cluster are due to some PV sites not
reporting one or more parameters. There are up to 6 years of reported
specific annual yield (2012–2017). The normalised value within each
year is taken as an individual sample and so there are up to n6 more
samples for this parameter.

For each cluster and for each parameter, many different distribution
types were fitted to the probability density. Distributions were fit using
the inbuilt FITDIST function of the software Matlab®(Matlab, 2018). There
are 23 parametric distribution types available, of which all are fitted to
the data. Where distribution types require only positive values (for
parameters with negative bins) or values between 0 and 1, the data is
scaled to satisfy the distribution requirements and allowed to re-scale so
that as many distributions could be tested; note that no distribution
requiring this treatment was found to be best fitting, and so no further
discussion is made regarding this normalising process. Probability
density functions are then scaled to only exist between the x-axes limits
as indicated in the figure, for example, the tilt distributions are only

Fig. 4. Maps for Japan (top) and the USA (bottom). The left column shows systems ⩽25 kWp and the right column systems >25 kWp. Systems which do not report tilt
are in grey colour.
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Fig. 5. Histograms of real data (bar) with approximated probability distributions (line) for the different clusters (columns) and parameters (rows), where capacity is
the installed capacity and yield is the specific annual yield. All systems reported within this figure have a capacity ⩽ 25 kWp, see appendix for the same plot for
>25 kWp. Within each of the axes is reported the name of the best fitting distribution type (see Section 4.1 for detail), the root mean squared error (RMSE) between
the scatter of real data in the histogram against the fitted probability density distribution, the number of data points considered for that cluster (n), and the Pearson
correlation coefficient (ρ) of the linear regression. The mean value μ is shown in place of ρ for Yield. All y-axes are scaled between 0% and 50% probability except
where a bold red value is assigned to the .individual axis.
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relevant between 0° and 90°. This means that the sum of all prob-
abilities between the prescribed x-axis range must be equal to 1. This is
important as some distributions facilitate values way outside of the bin
limits resulting in the sum of probabilities between the bins of interest
≠ 1, and so would not fit the histogram. The disclaimer is, therefore,
that these distributions must be scaled before use and not be extra-
polated beyond the specified bin ranges else risk persisting an under/
overestimation about the scaling factor, defined as

∑
=s

p

1 ,

a

b

a b:
(1)

where s is the scaling factor, p is the probability at each bin between the
lower and upper bin limit, a and b, respectively. The resultant fitted
distribution is then plotted against the real probability density and
tested for linear fit; the root mean squared error (RMSE, percentage)
and Pearson correlation coefficient (ρ, dimensionless) are derived. A
perfectly fitted distribution would result in =y x with =ρ 1 and an
RMSE= 0%. The distribution type with the lowest RMSE was selected
for the plot. Should there be more than one distribution type that has
the same RMSE, then the type with lowest ρ is selected. Should there
still be more than one distribution type after this, one of the remaining
types is selected at random.

The exact parameterisation for each distribution presented in Figs. 5
and A.10 are detailed in Table A.4. Each distribution has up to 4
coefficients and are employed using different equations, not all 23
parametric distributions are detailed, only those that featured within
the study. Whilst Table A.4 details the parameterisation of the coeffi-
cients, it is Table A.3 that explains how to use those values to form the
distribution. Furthermore, the mean or median values of the whole
dataset, exclusive of the 25 kWp separation, are presented in Table 2.

4.2. Discussion of the distributions

The following discussion about clusters and distributions mainly
refers to Fig. 5 with systems⩽ 25 kWp unless explicitly noted otherwise.
The reason for this is that the vast majority of systems are within the
⩽ 25 kWp category, and so are of most interest. However, important
differences to system sizes >25 kWp are mentioned and can be observed
in Fig. A.10.

It is important to note that only rough dependencies between
parameters, regions and system sized can be considered with this
clustering approach. The more intricate and established inter-
dependencies have not been explored within this paper as it is beyond
the scope of the initial objective. The authors reserve this for future
work.

4.2.1. Azimuth angle
The most noticeable feature of the azimuth observations is the sig-

nificant probability of an equatorial facing PV system. This is un-
surprising as it offers the best annual specific yield by receiving max-
imum system efficiency at peak solar position. The topic of extreme
probability of an equatorial orientated system was discussed in Section
3.1; the prevalence of 0° is true of all sites for both <25 and >25 kWp.
The Japan and Netherlands clusters have exaggerated angles of−45° or
+45°, assumed to be a result of overly simplified reporting.

The distributions could not capture the probability of 0° with ex-
ception of the Netherlands where a Stable distribution fitted best. Even
with large sample sizes for the USA North and south clusters, a dis-
tribution could not be fitted that satisfied the observed probability for
an azimuth angle of 0°. Perhaps a more complex or bespoke distribution
type is needed to suitably express the probability distribution of azi-
muth angle with reproducible accuracy. This large proportionality of 0°
was also observed by Saint-Drenan et al. (2018), who fitted a normal
distribution in similar magnitudes to the logistical distribution fitted in
this article. That said, there is an argument that the significant °0 azi-
muth feature is exaggerated when considering the UK cluster. The
majority of the data within the UK cluster is from Sheffield Solar. Their
users report the system metadata, however, there is a feedback to the
user reporting system performance analysis on a monthly basis, in-
clusive of a nearest-neighbour performance analysis of a system of si-
milar metadata. Users are encouraged to verify their reported metadata
and is often double checked with satellite imagery; the result is much
more accurate reporting of metadata for the UK cluster leading to the
smoothness of distribution fit. With improved PV system metadata re-
porting, we see a wider spread of azimuth about 0°.

4.2.2. Tilt angle
The tilt angle across all clusters is rather unique per cluster with 7

different distribution types being found as the best fitting among 10
clusters. We previously discussed the gentle increase of tilt angle with
latitude. Solar installers can mount the PV panels with a steeper tilt
angle to that of the roof at higher latitudes through arrangement of the
mounting brackets; this is not expected to be overly common practise.
The predominant factor for smaller roof integrated systems is expected
to be the physical roof angle, which is influenced by local architectural
styles. We suspect this is the case, particularly when considering France
in Fig. 3 where there exists a distinct change in the tilt for the ⩽ 25 kWp
systems at roughly 47.5° latitude. Note that France and Denmark have
similar distributions despite France having a significant number of
systems south of that 47.5° roof tilt feature. Furthermore, Belgium and
the Netherlands share similar climate and latitude yet feature dis-
tinctive distributions.

Interestingly, the Australian cluster consisting of the second lowest
number of observations has the second most accurate fit after USA
South. This is in part due to the smoothness of the distributions and
accuracy of method in which the tilt is obtained (see Section 2). The
USA cluster has excellently fitted distributions suggesting accurate
measurement, particularly for the USA South cluster where the tilt
distribution is fitted with =ρ 1 and RMSE=0.7%. The Japan cluster
evidently suffers from reporting to the nearest 10°, and so we suggest to
avoid using a best-guess approach to collecting metadata as it leads to
biased distributions. The tendency for larger system sizes having
smaller tilt angles, introduced in Section 3.1, can be confirmed when
comparing Figs. 5 and A.10. The only exception is Denmark, which
reports only a small number of systems >25 kWp.

Within the distributions, the smallest mean tilt angles were reported
in Australia (16.07°), Italy (19.81°) and USA South (19.89°). The largest
mean tilt values were reported in Belgium (35.58°) and closely followed
by the UK, Germany and Austria (31°).

4.2.3. Installed capacity
The most obvious observation from the installed capacity is the

Table 2
Mean or median value extracted from entire data set (without separation by
capacity size) for each of the parameters of tilt angle, azimuth angle, system
capacity and specific annual yield.

Tilt Azi. Cap. Yield
Country (°) (°) (kWp) (kWh/kWp)

mean mean median mean

Australia 16.1 8.58 5.00 –
Austria 31.1 −0.34 5.15 1040
Belgium 35.6 −1.69 5.20 921.5
Denmark 30.0 0.48 6.00 786.0
France 28.7 −0.28 2.96 1101
Germany 31.6 −2.46 8.96 870.2
Italy 19.8 −15.9 5.88 1142
Japan 23.8 −1.20 4.92 1222
Netherlands 32.5 0.77 3.30 855.2
UK 31.8 −1.07 2.94 896.7
USA North 25.2 0.42 5.81 1005
USA South 19.9 9.33 5.26 1426
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extreme peak within the French cluster. Of all 20.6k systems (⩽ 25 kWp
and >25 kWp), 73.74% of them report an installed capacity of 3 kWp
when rounded to nearest integer, though note that the French dataset
reported to a high decimal precision. The best fitting distribution
cannot appropriately represent this extreme despite a very high

=ρ 0.99; the RMSE value of 5% is indicative of the Stable distribution
assigning 100% probability to 3 kWp. This distribution is, therefore,
very limited even if it does most accurately capture the data for France.
As discussed when defining the clusters, this peak in capacity is a direct
response to regulations within that country. This is further observed in
the UK database, with the vast majority of systems being ⩽ 5 kWp due
to the nature of the feed-in tariff rate. The north and south USA clusters
demonstrate the power of a larger and consistent sample size reporting
RMSE 0.5% and 0.3%, respectively, with both reporting =ρ 1.
Interestingly, the distribution type between USA clusters are distinct
from each other, with a slightly increased probability of smaller systems
in the south. This is expected to be a result of more rooftop solar in the
sunnier States, though this is speculation.

The shape of the distribution functions for system sizes >25 kWp
(Fig. A.10) differ to systems ⩽ 25 kWp and show an heightened con-
centration of systems <50 kWp. Australia is an exception and reports
many systems with an installed capacity of ≈100 kWp.

The mean values of capacity are too heavily influenced by the
presence of large systems (cf. Fig. 2b), and so the median value is re-
ported to reduce bias. From the distributions, the country with smallest
capacity median is the UK (2.94 kWp) and the largest is Germany (8.96
kWp). The fact that the German data reveals such a high median is
reflective of the thorough nature of data collection whereby nearly all
systems are reported; we have very few large systems reported from the
UK as the database is primarily used for rooftop solar and so this sta-
tistic is not overly representative.

4.2.4. Specific annual yield
The most noticeable detail of the specific annual yield distribution

fits is the smoothness of the histograms of raw data. This is perceived to
be of two reasons. Firstly, the sample size is typically much larger
( =n 5.885m for the German cluster). Secondly, the data is digitally
recorded and not reliant on human reporting. The mean μ is presented
in place of the correlation coefficient so as not to over busy the plot,
though for completeness, all sites reported ⩾ρ 0.98 except USA South
with =ρ 0.93. Recall that the specific annual yield is normalised for
inter-annual differences and so we can directly compare clusters. Each
cluster exhibits reasonably unique subtle traits, it is expected that the
larger the share of equatorial orientated systems with more optimal
tilts, the larger the specific yield, however, it is also a function of local
meteorology and climate local to the systems and not just latitude,
orientation and tilt. More questions can be derived from these dis-
tributions than are really answered. For example, consider the German
cluster. There is a substantial tail towards lower specific annual yields
that is not observed in other clusters. Germany is known to be a mature
market when it comes to PV, and so is this tail indicative of ageing
systems, or perhaps all clusters would present this pattern given as large
a sample size? The USA South cluster has an unexplainable peak at
exactly 1650 kWp/kWh. The only other country within our study that is
comparable to southern USA in terms of climate and land availability is
Australia, alas, we have no data for this cluster to gain insight to this
peak. We would expect to observe much higher yields in Australia akin
to southern USA.

Leloux et al. (2012a) found that of 158 systems in Belgium,the mean
specific annual yield was 836 kWh/kWp. Our analysis of 15k specific
annual yields finds the mean to be 921.5 kWh/kWp. Leloux et al.
(2012b) applied the same approach for 1635 systems in France re-
sulting in a mean of 1163 kWh/kWp. Our analysis of 23.3k systems
places the mean value at 1101 kWh/kWp. When comparing Figs. 5 and
A.10, the expected trend towards higher specific annual yield values for
larger systems (see Section 3.1) can be confirmed for Denmark, France,

Germany, Japan, Netherlands, UK and USA North. The other four
countries instead show a decrease in the mean specific annual yield for
systems >25 kWp.

From the distributions, we find the smallest mean specific annual
yield is in Denmark (786.0 kWh/kWp) and largest in USA south (1,426
kWh/kWp).

4.3. Using the distributions

As we have observed that each cluster and parameter can be gen-
erally represented by a probability distribution, our discussion can shift
towards the usage of these statistics in regional PV power modelling
approaches. Generally, the cited publications in Section 1.1 (category
1) not only emphasize the practical relevance of statistical distributions
in regional PV power modelling approaches, but also sketch the pro-
cedure of how these statistics can be used and therefore serve as good
examples. One of these publication is Saint-Drenan et al. (2018), which
provides detailed information about how fitted distributions can be
applied in a regional power simulation and therefore serves as a good
example.

We foresee that the fitted distributions from the previous section
can be used to randomly sample the desired metadata of a portfolio of
systems in a specific cluster. As pointed out in Section 3.2, this cluster
can then be weighted individually by the probability of occurrence (as
can be derived e.g. from Fig. 2. To reproduce the distributions, one
must extract the appropriate distribution variables from Table A.4,
apply them in the expression from Table A.3, and scale the result ac-
cording to Eq. (1). We state that the data we have is not representative
enough to derive global distributions as there are too many features
that can influence the PV system characteristics from regions we do not
have access to. The derived distribution functions should only be used
for their specific clusters, or for clusters with particularly similar cli-
mates and policies.

The usage of the fitted distributions is sketched in a practical ex-
ample, assuming that the PV power generation in Germany is of in-
terest.

(1) In Germany, the installed capacity, geographic location and specific
annual yield of all PV systems is known (see Section 2) and should
not been sampled if one wishes realistic outputs, though may be
sampled for theoretical purposes.

(2) For each PV system, tilt and azimuth is assigned by sampling the
fitted distribution from the relevant cluster. E.g. a system with 10
kWp will use the distributions from the cluster for systems ⩽25
kWp. In this example we can extract the data from Table A.4 such
that the German cluster has a Logistic distribution for azimuth with
location coefficient of −0.1366 and scale parameter of 20.6455.
The distribution can be recreated using the logistic function defined
in Table A.3. Please note that there is a high risk that the sampled
characteristics won’t accurately predict the metadata for a specific
PV system. It is the objective to use these distributions to simulate
larger PV portfolios and we expect to derive representative char-
acteristics for that application.

(3) The direct usage of yield is more complicated for two reasons.
Firstly, in contrary to azimuth, tilt and installed capacity, it is not
an input parameter in the simulation chain but instead indicates the
power generation, which is the typical output of a simulation.
Secondly per definition, the specific annual yield sums the PV
power generation over a whole year. In many application however,
simulations may cover a different time span. How can yield be used
in simulating the regional PV power generation then? When making
the simplifying assumption that the meteorological conditions are
relatively similar within a cluster, the observed specific annual
yield can be interpreted as a measure that expresses relative per-
formance differences between PV systems. For instance, a PV
system with a yield of 600 kWh/kWp can be said to be less efficient
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than a PV system with a yield of 800 kWh/kWp. For usage in a
simulation, a conversion from yield into an performance factor is
therefore necessary. A potential method of conversion is to take the
range of yields (0–2000 kWh/kWp) and align it to typical ranges of
the performance ratio, though taking care to centre the mean yield
against the mean performance ratio (said to have a wide distribu-
tion centred about 0.74 as derived from 5,000 systems in the
Netherlands (Tsafarakis et al., 2017; Reich et al., 2012)). A direct
linear conversion could then be applied. For example, a system in
Germany with yield 870.2 kWh/kWp (the mean for this cluster)
could be assigned a performance ratio of 0.74. This performance
ratio can then be applied as a correction factor to either the output
power or the system capacity, and therefore facilitating re-
presentative differences between systems.

(4) The individual PV power generation for each system can be simu-
lated by considering the sampled system characteristics as well as
the known installed capacity, efficiency of the specific system and
its geographic location. Within such a simulation, other inputs will
be needed such as the local irradiance or ambient temperature.
Please note, if considering such a large number of systems is too
computational intense, instead a smaller number could be ran-
domly chosen and then used within an upscaling approach.
(5) Finally, the total power in Germany can then be derived by
aggregating the simulated power from all systems.

5. Shading on roofs

5.1. Methodology of the shading analysis

An objective in this paper is to derive generalised findings of how to
consider the impact of shading. We aim to achieve that in a more so-
phisticated manner than the overly simplified manner presented in
category 3 from Section 1.1. It is, however, not the aim to study dif-
ferences of shading in rural or urban areas all over the world in this
paper. This shading analysis is performed on ≈48,000 buildings in the
city of Uppsala, Sweden (N59.9°, E17.6°). Uppsala provides a variety of
different buildings (44% residential, 2.2% industries, 5.7% commercial
and services, 49% other) and therefore allows studying differences in
the impact of shading. The average height of the buildings studied here
are ±6.4 4.1 m, which may be compared to a study on 12 US cities of
various size (29,498–1,066,354 buildings) with average building height
ranging from 4.1 to 9.7m (Schläpfer et al., 2015). The analysis is not
limited to any country specific influences because all combination of
solar angles are considered; climate does not influence this shading
study. The above reasons emphasise the general representativeness of
Uppsala and were reason for its selection.

The shading analysis is realised by using the method in Lingfors
et al. (2017), which was cross-validated in Lingfors et al. (2018). Inputs
to the model are low-resolution LiDAR data (0.5–1 pts/m2) and
building footprints, provided by the Swedish (2015, 2016). The model
does the following:

1. Finds a simple roof shape from a template of roof types using linear
regression on LiDAR data;
(a) within the footprint of the examined building and,
(b) within building footprints of similar shape in its proximity,

2. Each roof now consists of 1–4 facets depending on the roof type (1
for flat or shed, 2 for gabled and 4 for hipped or pyramidal). If
LiDAR data are insufficient, the roof type cannot be determined and
the building is excluded from further analysis. The number of roof
facets are >90,000 (cf. number of buildings). However, around
1,000 facets which are > 20m above ground are excluded, as there
is an increased risk of these roofs being misrepresented due to noise
in the LiDAR data.

3. After some filtering of the LiDAR data surrounding the building, a
triangulated irregular network (TIN) is produced representing

objects, predominantly trees and other buildings that may shade the
roof.

4. Using the TIN as input, a viewshed (a map showing what parts of the
sky are visible from the perspective of a point on the roof) at every
0.5m × 0.5 m section of the roof is calculated to determine whether
there are objects blocking the direct solar path. The resolution of the
viewshed is limited to solar elevation angles, αs, of 2.5, 7.5,…, 87.5°,
and solar azimuth angles, γs, of −180, −170, …, 170° where 0° is
due south. Since the sky sectors are angular-equal, they are not
equal in size (see dotted lines in Fig. 6). Hence, the contribution of
diffuse irradiance from each sky sector depends on its size and the
angle-of-incidence of the irradiance from the sky sector onto the
plane.

5. For each combination of αs and γs the mean shading of the whole
roof facet is calculated, noting that roofs can be partially shaded.
This is illustrated in the viewsheds of Fig. 6. For a discrete point of
the roof, each element of the sky would be either shaded or not
shaded corresponding to black or white (0 or 1), respectively, in the
left panel of Fig. 6. However, if the mean of all points of the roof are
considered, the viewshed would be blurred (grey) as illustrated in
the right panel of Fig. 6. The mean viewshed displayed on the right
of Fig. 6 is only for illustrative purposes and can be considered to
gain understanding as to how the beam, diffuse and reflected irra-
diance subcomponents are affected by shading for the general re-
gion of all facets within this study. Results of the shading analysis
are presented in Section 5.2.

5.2. Deriving a simplified shading model

The main results from the shading analysis on ≈48,000 buildings in
Uppsala, Sweden, are presented in Fig. 7. The colour of each bin in the
left panel of Fig. 7 represents the average ratio of all roof facets being
visible to a sky sector, defined by the corresponding solar elevation
angle and solar azimuth intervals. This visibility is here referred to as
the beam shade index, ∈k [0, 1]sB (see Fig. 6), where 0 means the roof
facet is fully shaded. The dashed lines illustrate the solar path for Up-
psala, Sweden. However, the corresponding solar path could be over-
layered for an arbitrary site to visualise the implication of shading for
that site. From the left panel of Fig. 7 it is also clear that the solar
azimuth has very little importance, which is logical as shading should
be as likely from any direction when a large portfolio of buildings is
considered.

In the right panel of Fig. 7, the average (×-marked) and percentiles
(dashed) of ksB for all roofs are presented as a function of only the solar
elevation angle, hence it differs from the left panel by not considering
the azimuth angle. The thin red lines represent 10,000 individual roofs.

Fig. 6. Polar diagrams of viewsheds, where the displayed angles represent the
azimuth angle, and the radius the elevation angle. (Left) illustrates the view-
shed of a single point on the roof. (Right) the mean viewshed of all the points on
the roof is illustrated. The dotted lines mark the sky sectors for which the
viewshed analysis was conducted from their respective centre points. Note that
the right plot is purely illustrative and not used within any of the modelling
stages.
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Many of these lines jumps from 0 to 1 when going from one elevation
angle to the next, meaning that from being entirely obscured, the roof
becomes entirely visible when the elevation angle is increased by 5°.
The mean beam shade index, ksB, of all the roof facets can be re-
presented by a fitted curve (dotted), derived as a function of the solar
elevation angle, αs:

= − −k e1 .sB
α /17.5s (2)

The average beam irradiance that will fall on a tilted roof, if shading
is considered, could then be calculated as:

=B k θ
θ

Bcos
cos

,T sB
Z

H (3)

where BH is the unshaded beam irradiance on the horizontal plane, θ is
the angle between the incident irradiance and the normal of the roof
plane and θZ is the solar zenith angle.

Assuming similar shading properties, i.e., vegetation and urban
density, as in Uppsala, this function may be used in any area to de-
termine the impact of shading on roofs as a function of the solar ele-
vation angle. It gives a better estimation than solely assuming a cut-off
solar elevation angle for the beam irradiance, which is a method
commonly used for PV potential studies.

On the other hand, the red lines of figure in the right panel, re-
presenting individual buildings, reveals the variation in shading among
the buildings. Thus, studies of higher detail where, for instance, the
implications in a low-voltage grid due to shading on PV modules are
studied require a method that reproduces these variations.

If the global irradiance on a shaded roof is of interest, one also needs
to consider the diffuse (DT) and reflected (RT) irradiance sub-
components on the tilted plane, which both depend on the view factor
(visible fraction of the sky, ∈f [0, 1]sky ) from the perspective of the
roof. I.e., the viewshed of the roof should be considered (see Fig. 6). The
view factor fsky represents the ratio of the isotropic diffuse irradiance
from the sky hemisphere and reaches a value of 1 for a horizontal
surface if there are no shading objects.

The values of fsky for >90, 000 studied roof facets are presented in
Fig. 8. A fitted curve (with an RMSE of 0.043 with respect to the means,
indicated by black crosses) was derived with the function:

=
+

−f
β

C
1 cos( )

2
,sky (4)

where the first term is the view factor for a free sky and C is a constant
representing the contribution from shading objects, here found to be
0.162. This equation may be used to calculate the diffuse and reflected
irradiance following Eqs. (6) and (10) in Lingfors et al. (2017),

respectively.
In Fig. 9 the losses due to shading are presented for the three irra-

diance subcomponents (calculated individually for each roof facet),
sorted with respect to decreasing diffuse irradiance losses. In this ana-
lysis, hourly instantaneous Global Horizontal Irradiance (GHI) and

Fig. 7. To the left, the mean shade index of all studied roof facets are presented at bins of a viewshed defined by the solar elevation angle and solar azimuth. To the
right, the shade index is plotted against the solar elevation angle. Every shade index profile from each studied facet are indicated with a red solid line. The mean
shade index of all facets is indicated with crosses, with fitted curve represented by a dotted line as presented in Eq. (2). The RMSE between the means and fitted curve
is 0.021. The dashed lines represent the different percentiles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. The mean fsky as a function of the roof tilt (marked with x) and a fitted
curve (dotted) presented in Eq. (4). The solid line represents the first term of Eq.
(4).

Fig. 9. Beam and diffuse irradiance losses and the added contribution from
reflected irradiance to the global irradiance considering shading on the
>90, 000 studied roof facets. The in-folded figure illustrates the negative cor-
relation between the losses of diffuse and reflected irradiance when shading is
considered.
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Direct Normal Irradiance (DNI) data from 2014 for Uppsala were used
(SMHI, 2015). BT was calculated through Eq. (3), if we let ksB here
represent the mean value of ksB for all points on the individual roof
facet. DT , as well as RT , were calculated through Eqs. (6) and (10) in
Lingfors et al. (2017), respectively, using the fsky derived for each roof
facet. These equations, adapted for the conventions used in the present
paper, can be expressed as:

= ⎡
⎣⎢

− + ⎤
⎦⎥

D D A f θ
θ

A(1 ) cos
cos

,T H i sky
Z

i
(5)

and

= + −R B D ρ f( ) (1 ),T H H sky (6)

where Ai is the anisotropy index and ρ is the surface albedo, here as-
sumed to be 0.2 for all surfaces (i.e., ground, trees, buildings etc.).

Hence, Eqs. (2) and (4) in the present paper were not used here, but
could be valuable in future studies where, for instance, the level of
detail of the building topography in a city is unknown or the time for
making detailed simulations is limited, yet the impact of shading on
solar power generation is of interest. The in-fold figure illustrates the
negative correlation between diffuse (DT) and reflected (RT) irradiance.
The diffuse irradiance decreases (i.e., the losses increase) with a de-
creasing fsky, while instead the reflected irradiance increases (i.e., ne-
gative losses in Fig. 9). From Fig. 8, it is clear that fsky decreases with an
increasing roof tilt, leading to a higher contribution of reflected irra-
diance for a highly tilted roof. The mean losses due to shading (ex-
pressed in relation to the unshaded global irradiance) for the whole
building portfolio are 7.3%, 3.6%, 6.3% and −2.7% for the global, beam,
diffuse and reflected irradiance, respectively, where the minus sign is
indicative of an added contribution to the total irradiance, since trees,
buildings etc. adds to the total reflective area seen by the roof when
shading is considered. Hence, diffuse losses contribute the most for
Uppsala, which has an annual clear-sky index of 0.63 (calculated as the
global horizontal irradiation for 2014 divided by the clear-sky irra-
diation for the same period (Ineichen and Perez, 2002)). One should
also remember that all roofs in Uppsala were considered. If only roofs
with installed PV systems on them were considered, the losses would
most likely be lower. It is likely that the present method over-estimates
the reflected irradiance at clear conditions as all trees and buildings
seen by a roof could also be themselves shaded, therefore, offering re-
duced reflected irradiance. To consider this is a complex matter and
needs extensive research. For instance ray-tracing could be in-
corporated in the model but at a computational cost.

6. Future advancements beyond the scope of this work

The main objective of the paper was to fit distributions to selected
metadata and approximate functions that describe the impact of
shading. This enables replication of these characteristics and allows a
usage in regional PV power modelling approaches with suitable re-
presentativeness. The underlying basis for the approximations are nu-
merous datasets with metadata and simulated results from a model in
the case of shading. Background information and references for further
reading are provided in the related sections. Furthermore, the level of
accordance of the fitted distributions and functions with the original
data is expressed by error metrics and limitations of the procedure are
critically discussed. Naturally, with such a considerable and detailed
database of information, we cannot cover all aspects in a single paper.
We have opted to present an overview in a manner that enables the user
to engage with the findings. That said, we have identified several in-
teresting topics during our work that we would like to study in more
detail, however are beyond the scope of this paper’s objectives.

• Focus on specific parameters: The whole dataset offers so much
information that it is impossible to evaluate all specific parameters

in detail within one paper. This data could potentially be used to
study various performance indicators, e.g. by including irradiance
information in specific regions and the age of the systems (provided
for most systems).

• Dependencies between parameters: In this paper we have quali-
tatively discussed pairwise dependencies between parameters.
Furthermore, we have applied a quantitative approach to individual
parameters by fitting distribution functions. The next step will be to
quantitatively incorporate dependencies between multiple (two and
more) parameters, e.g. by joint distributions, multivariate models,
etc. By that, the complex relations should be better represented.

• Complex distributions: The azimuth angle presented irregularities
with a wide base and tall 0° peak and on occasion presented a tri-
modality that is certainly not-able to be captured by standard
parametric distribution types with satisfaction. Whilst we dispute
the validity of much of the measured data due to reporting simpli-
fications, there is scope to analyse the distributions in a more sta-
tistically rigorous manner. There is scope to combine distributions
and to enable multi-modal, non-parametric definition of the non-
conformal parameters, notably the tilt and azimuth. We intend to
make available the actual probability distribution for the reader to
draw their own conclusions, see our invitation for collaboration
below.

• Cluster refinement: Influence of climatic region may influence
certain parameters, particularly the specific annual yield. It is
probable that the specific annual yield is not only a function of la-
titude (as we have demonstrated with a general regression between
30° and 50° of latitude), however, it is a function of the climatic
region where those sites are situated. There is a lack of data within
the 0° to 30° latitude band with which to successfully analyse this
hypothesis. Further steps could be to replace the clusters by country
with clusters by climate region using maps such as the Köppen-
Geiger classifications, or perhaps by mean irradiance using a dataset
such as NASA SSE.

• Shading: As mentioned in Section 5.2 the results on shading from
the present study can be used on a large portfolio of buildings, while
for smaller areas one may want to produce realistic viewsheds for a
few buildings to study the impact from shading. One simple ap-
proach would be to provide a database of viewsheds such as the one
produced in this study, from which samples could be randomly
drawn. To avoid the need of a database, another approach could be
to design a model that can reproduce the distribution of shading
profiles, perhaps stochastically using Markov chains to create sta-
tistically appropriate skylines. While the solar elevation angle is
probably the most influential parameter, other factors such as the
type of roof or height of the building would most likely also have an
impact. Hence, a set of building specific parameters would satisfy as
inputs to such a model.

• Invitation for collaboration and data access: This work would
not have been possible without support from many sides mentioned
in the acknowledgements. Gathering this data has proven difficult at
times, and finding the correct person to approach was not straight
forward. Therefore, we would like to extend an invitation to the
reader. Should you have good ideas of how to use this data, or have
large data itself, particularly in countries that we have not detailed,
we encourage you to get in contact with either Sven Killinger
(sven.killinger@ise.fraunhofer.de, svnkllngr@gmail.com), Jamie
Bright (jamie.bright@anu.edu.au, jamiebright1@gmail.com) or
Nicholas Engerer (nicholas.engerer@anu.edu.au). Much of the data
is confidential and so we cannot share it, however, the aggregated
statistics are available. Should you wish to have access to the real
distributions presented in the work, they are available on request,
should they be publicly released, all communications will be made
through our ResearchGate project. You are encouraged to follow
that project for updates and communications (Bright et al., 2018).
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7. Summary

Knowledge of PV system characteristics is needed in the different
regional PV modelling approaches but are either unknown or only ac-
cessible for a small number of stakeholders. The aim of this paper was
to provide knowledge of PV system characteristics through data col-
lection, analysis and distribution fitting of PV system characteristics.
The structure presented was twofold and focused on (1) metadata (tilt
and azimuth of modules, installed capacity and specific annual yield) as
well as (2) the impact of shading.

We considered 2,802,797 PV systems located in Europe, USA, Japan
and Australia, which represented a total capacity of 59 GWp (14.8% of
installed capacity worldwide). Interdependencies of the installed ca-
pacity and the geographic location to the other parameters tilt, azimuth
and specific annual yield were observed. To acknowledge the impact
from these two dominating parameters (installed capacity and geo-
graphic location) on others and to allow a derivation of meaningful
statistics, a clustering of systems on a country-basis with additional
separation by systems sizes ⩽25 kWp and >25 kWp was introduced. For
eased future utilisation of the analysed metadata, each parameter in a
cluster was approximated by a distribution function. Results show
strong characteristics unique to each cluster, however, there are some
commonalities across all clusters. The smallest mean tilt values were
reported in Australia (16.1°), USA South and Italy (19.8 and 19.9°,
respectively). The largest mean tilt values were reported in Belgium
(35.6°), the UK (31.8°) and Germany (31.6°). We find the smallest mean
specific annual yield is in Denmark (786.0 kWh/kWp) and largest in
south USA (1,426 kWh/kWp), this corresponds well to the climatic
differences between 30 and 50° latitude within the study. The region
with smallest median capacity was UK (2.94 kWp) and the largest was
Germany (8.96 kWp). Almost all countries had a mean azimuth angle
normal to the equator. The number of equatorially-orientated systems
was significantly higher than any other orientation, such that no dis-
tribution type could appropriately capture this characteristic. That said,
it is expected that the number of systems with azimuth of °0 are ex-
aggerated due to lacking precision of PV system metadata reporting,
and perhaps the statistical distributions are more realistic than the data
suggests, particularly when considering the reduced peak from higher
accuracy metadata, such as that from the UK. Capacity demonstrated
the most cluster-unique characteristics. As each cluster represented a
country, it also captures national policy incentives that clearly influ-
ence the overall capacity distributions. The feed-in tariffs of France,
Germany and the UK have clear impact on the PV system size. The
shape of the distributions of specific annual yield offered the most si-
milarity between clusters, with the location/mean being primarily a
function of climate through latitude. Dissemination of clusters by cli-
mate may reveal more insightful differences. All of the distributions
that are presented in the paper can be obtained from the tables in the
appendix.

Shading was considered by computing the viewshed of individual
roof facets of ≈ 48,000 buildings in Uppsala, Sweden, which meant that
>90, 000 facets were analysed. Two empirical equations were derived
and presented. The first represents the beam irradiance subcomponent,

describing the mean ratio of a roof that is shaded as a function of the
solar elevation angle. The second determines the view factor as a
function of the roof tilt including the impact from shading and can be
used to estimate the losses of diffuse and reflected irradiance. These
equations are believed to better take shading into consideration than
the coarse estimates used today. For the specific meteorological con-
ditions of Uppsala, we also showed in this study that losses of diffuse
irradiance due to shading are higher than that of beam on an annual
basis and should not be neglected for sites of similar cloudiness as in
Uppsala (annual clear-sky index of 0.63).

Several interesting research topics beyond the scope of this paper
were sketched and the offer for future collaborations expressed.
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Appendix A. Approximation of parameters in clusters: continued

The appendix is a continuation of Section 4 and provides histograms together with fitted distributions of azimuth, tilt, specific annual yield and
installed capacity for system sizes >25 kWp in Fig. A.10. Table A.4 presents the coefficients of the fitted distributions, while distinguishing between
systems ⩽ 25 kWp and >25 kWp. All distribution functions are defined in Table A.3 and can be replicated with help of the parametrised coefficients.
It is important that the user reads carefully Section 4 in order to appropriately use the distributions. A summary of the impact of our proposed quality
control criteria from Section 2 is provided in the appendix in Table A.5 where percentages of removed data are presented.
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Fig. A.10. Histograms of real data (bar) with approximated probability distributions (line) for the different clusters (columns) and parameters (rows), where capacity
is the installed capacity and yield is the specific annual yield. All systems reported within this figure have a capacity >25 kWp, see Section 4 for complete derivation.
Within each of the axes is reported the name of the best fitting distribution type, the root mean squared error (RMSE) between the scatter of real data in the histogram
against the fitted probability density distribution, the number of data points considered for that cluster (n), and the Pearson correlation coefficient (ρ) of the linear
regression. The mean value μ is shown in place of ρ for Yield. All y-axes are scaled between 0 and 50% probability except where a bold red value is assigned to the
individual axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table A.4
The distribution coefficients corresponding to the definitions in Table A.3. The left side is for capacities ⩽ 25 kWp and the right side is for >25 kWp.

Cluster Parameter Dist. Type Coeff. 1 Coeff. 2 Coeff. 3 Coeff. 4 Dist. Type Coeff. 1 Coeff. 2 Coeff. 3 Coeff. 4

Australia Azimuth Logistic 8.3472 34.2603 Nakagami 28.0028 0.2537
Tilt Logistic 15.0891 6.0136 Normal 14.6875 8.4183
Capacity tLocationScale 4.9355 1.4855 3.2434 Lognormal 4.3491 0.8328

Austria Azimuth Logistic 0.4566 17.6159 Logistic 0.6107 19.9366
Tilt Weibull 34.6425 3.6381 Weibull 26.2683 2.7083
Capacity GeneralizedExtremeValue 0.1633 2.9111 4.8713 GeneralizedExtremeValue 0.4337 8.5691 33.5998
FLH tLocationScale 1.0668 0.0971 2.0439 Logistic 1.0144 0.1090

Belgium Azimuth Logistic −1.2365 24.3969 Logistic −3.5828 19.3034
Tilt ExtremeValue 39.8100 7.8703 Logistic 29.6932 5.1091
Capacity Stable 1.4734 0.9578 1.3688 4.8772 Loglogistic 3.3900 0.0905
FLH Burr 0.5814 9.2775 5.8277 tLocationScale 0.8570 0.1623 3.8904

Denmark Azimuth Logistic 1.5526 20.6455 GeneralizedExtremeValue −0.3684 49.6733 −13.0930
Tilt Loglogistic −1.1441 0.2256 Stable 0.9410 −1.0000 6.5572 41.6962
Capacity tLocationScale 5.7414 1.5014 2.3622 Stable 0.9767 1.0000 2.8140 28.6026
FLH Stable 1.2818 −0.8035 0.0948 0.8767 Logistic 0.9500 0.0778

France Azimuth tLocationScale 0.3346 34.5161 5.4215 Logistic −2.2831 19.1336
Tilt Lognormal −1.2139 0.4144 Burr 16.5673 5.0314 0.6793
Capacity Stable 0.4000 0.5250 0.0345 3.0118 Burr 27.9585 19.1798 0.0934
FLH tLocationScale 1.1011 0.1416 7.6129 tLocationScale 1.1194 0.1111 2.9295

Germany Azimuth Logistic −0.1366 23.0048 Stable 1.0309 −0.0002 9.9430 −0.2506
Tilt ExtremeValue 38.0648 9.6547 Nakagami 1.1890 0.0887
Capacity GeneralizedExtremeValue 0.1143 3.5745 6.2413 Stable 0.7373 1.0000 5.2331 30.8089
FLH Stable 1.6611 −0.9423 0.1152 0.9086 Stable 1.5803 −0.8322 0.0902 0.9530

(continued on next page)

Table A.3
Definition of the probability density distributions used in the research. The coefficients correspond to those presented in Table A.4. The distribution name corre-
sponds to the same Matlab®distribution names and readers are encourage to read the detailed descriptions at WWW.MATHWORKS.COM/HELP/STATS/CONTINUOUS-DIS-
TRIBUTIONS.HTML. Each coefficient is defined. The equation is provided from the Matlab®documentation. Note that the Stable distribution is not explicitly a probability
density function, but a characteristic function.

Distribution name Coeff. 1 Coeff. 2 Coeff. 3 Coeff. 4 Probability density function, …f x( | )
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Table A.5
Percentages of reported (Rep.) and filtered data due to the quality control procedure sketched in Section 2 for tilt, azimuth, installed capacity (Capa.), geographic
location (Loca.) and specific annual yield. Numbers are given as percentage and in relation to the total number of systems that were available in each dataset.

Region Tilt Azimuth Capa. Loca. Yield Source

Rep. ⩽1° > °89 Rep. <− °179 > °179 Rep. Rep. Rep. =0 >2000

Australia 26.95 0.00 0.00 26.95 0.00 0.00 100.00 96.40 0.00 0.00 0.00 pvoutput.org

Austria 100.00 2.34 0.00 100.00 2.60 0.00 100.00 100.00 27.64 0.00 0.00 solar-log.com
100.00 0.71 1.07 100.00 0.00 0.71 100.00 100.00 0.00 0.00 0.00 suntrol-portal.com
100.00 1.87 0.00 100.00 1.12 0.00 100.00 100.00 95.65 39.93 0.00 sonnenertrag.eu
83.04 28.57 0.89 93.75 6.25 0.00 100.00 67.86 24.11 0.60 0.30 pvoutput.org

Belgium 100.00 1.65 0.44 100.00 0.99 0.00 100.00 95.77 49.36 0.00 0.00 solar-log.com
100.00 0.48 0.06 100.00 0.48 0.00 100.00 100.00 98.08 67.74 0.03 bdpv.fr
100.00 1.48 0.00 100.00 0.74 0.00 100.00 99.63 97.41 41.47 0.00 sonnenertrag.eu

Denmark 100.00 2.25 0.11 100.00 2.57 0.00 100.00 100.00 25.70 0.00 0.00 solar-log.com
100.00 0.63 0.00 100.00 0.00 1.27 100.00 100.00 0.00 0.00 0.00 suntrol-portal.com
93.54 11.62 0.00 98.34 4.43 0.00 100.00 68.45 54.98 0.74 0.00 pvoutput.org

France 100.00 0.25 0.10 99.99 0.61 0.17 100.00 100.00 97.38 60.23 0.16 bdpv.fr
100.00 4.84 0.36 100.00 5.02 0.00 100.00 63.44 23.26 0.00 0.00 solar-log.com

Germany 0.00 0.00 0.00 0.00 0.00 0.00 100.00 99.78 90.75 0.26 0.01 bundesnetzagentur.de
100.00 2.30 0.49 100.00 2.77 0.10 100.00 100.00 39.31 0.00 0.00 solar-log.com
100.00 0.76 0.06 100.00 0.00 1.01 100.00 100.00 0.00 0.00 0.00 suntrol-portal.com
100.00 1.72 0.09 100.00 1.13 0.03 100.00 99.97 98.89 39.36 0.00 sonnenertrag.eu

Italy 100.00 3.63 0.56 100.00 4.71 0.00 100.00 86.91 33.49 0.00 0.00 solar-log.com
86.42 26.12 0.09 96.35 4.59 0.00 100.00 78.84 28.40 1.03 0.06 pvoutput.org

100.00 1.40 0.00 100.00 0.56 0.00 100.00 100.00 98.14 41.15 0.00 sonnenertrag.eu

Japan 100.00 0.00 0.00 100.00 0.32 0.00 100.00 100.00 35.56 0.00 0.00 jyuri.co.jp

Netherlands 92.08 18.44 0.10 97.09 7.08 0.00 100.00 55.06 13.43 0.35 0.03 pvoutput.org
100.00 1.26 0.45 100.00 1.79 0.09 100.00 100.00 43.14 0.00 0.00 solar-log.com
100.00 0.55 0.22 100.00 0.55 0.00 100.00 100.00 96.04 52.02 0.00 sonnenertrag.eu
100.00 0.69 0.34 100.00 0.00 0.34 100.00 100.00 0.00 0.00 0.00 suntrol-portal.com

(continued on next page)

Table A.4 (continued)

Cluster Parameter Dist. Type Coeff. 1 Coeff. 2 Coeff. 3 Coeff. 4 Dist. Type Coeff. 1 Coeff. 2 Coeff. 3 Coeff. 4

Italy Azimuth tLocationScale −5.2371 32.9151 2.1254 ExtremeValue 4.4388 46.3326
Tilt Stable 1.8917 1.0000 5.5359 19.0462 Nakagami 0.6147 0.0448
Capacity Stable 0.9088 0.9411 1.5334 4.4130 Burr 37.2635 8.0048 0.1480
FLH tLocationScale 1.1774 0.1415 2.5624 Logistic 1.1096 0.1246

Japan Azimuth Logistic −0.7254 15.9481 Stable 0.4045 0.0010 0.2121 0.0007
Tilt ExtremeValue 27.6791 6.4206 Weibull 18.9055 2.6245
Capacity Stable 1.3094 0.9774 1.0384 4.4144 tLocationScale 48.0538 7.9913 1.4353
FLH Burr 1.3730 11.1707 2.7755 Burr 1.4833 13.7688 5.1025

Netherlands Azimuth Stable 1.0309 0.0001 11.2285 0.0294 Logistic −0.3912 15.7031
Tilt ExtremeValue 38.8465 11.6153 Loglogistic 3.0459 0.2311
Capacity tLocationScale 3.2381 1.3462 1.6898 Stable 0.6078 1.0000 3.7179 28.2348
FLH Stable 1.3553 −0.8354 0.0893 0.9334 Stable 1.4819 −0.9477 0.0760 0.9577

UK Azimuth Logistic 0.2461 26.0886 Logistic −0.8287 16.4894
Tilt tLocationScale 31.5952 4.6591 3.3818 Gamma 3.9484 4.5939
Capacity Stable 1.8937 −0.0544 0.5898 2.9504 GeneralizedExtremeValue 0.5210 10.8742 35.6490
FLH Stable 1.6851 0.0000 0.0776 0.9035 Stable 1.3744 −0.8038 0.0638 0.9395

USA North Azimuth Logistic 0.4600 28.1468 tLocationScale 0.1686 12.6681 1.2295
Tilt Loglogistic −1.2944 0.2061 Stable 1.3001 1.0000 4.8192 10.6480
Capacity GeneralizedExtremeValue 0.0868 2.5493 4.6450 GeneralizedExtremeValue 1.1806 31.0335 45.3525
FLH Stable 1.3201 −0.7411 0.0666 1.0628 Logistic 1.0679 0.0575

USA South Azimuth Logistic 8.5676 29.3711 Stable 0.4000 0.4410 0.2829 0.0822
Tilt tLocationScale 20.4150 3.8106 3.0306 Weibull 0.1647 1.3876
Capacity Burr 0.3092 2.5724 2.2109 GeneralizedExtremeValue 1.2834 38.6717 49.6038
FLH ExtremeValue 1.4898 0.0963 Logistic 1.4035 0.0579
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Region Tilt Azimuth Capa. Loca. Yield Source

Rep. ⩽1° > °89 Rep. <− °179 > °179 Rep. Rep. Rep. =0 >2000

Rest of 100.00 7.30 1.76 100.00 13.18 0.00 100.00 72.88 18.19 0.00 0.00 solar-log.com
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