
Use expert knowledge instead of data
– generating hints for Hour of Code exercises –
Milo Buwalda

Utrecht University
The Netherlands

m.a.buwalda@students.uu.nl

Johan Jeuring
Utrecht University,

Open University Netherlands
The Netherlands
j.t.jeuring@uu.nl

Nico Naus
Utrecht University
The Netherlands

n.naus@uu.nl

ABSTRACT
Within the field of on-line tutoring systems for learning pro-
gramming, such as Code.org’s Hour of code, there is a trend
to use previous student data to give hints. This paper shows
that it is better to use expert knowledge to provide hints in
environments such as Code.org’s Hour of code. We present a
heuristic-based approach to generating next-step hints. We use
pattern matching algorithms to identify heuristics and apply
each identified heuristic to an input program. We generate
a next-step hint by selecting the highest scoring heuristic us-
ing a scoring function. By comparing our results with results
of a previous experiment on Hour of code we show that a
heuristics-based approach to providing hints gives results that
are impossible to further improve. These basic heuristics are
sufficient to efficiently mimic experts’ next-step hints.

ACM Classification Keywords
Applied Computing: Interactive learning environments

Author Keywords
Hints, Student data, Expert knowledge, Learning
programming, Interactive learning environments

THE HOUR OF CODE
The Hour of code on Code.org’s Code Studio1 introduces com-
puter science to millions of novice learners by providing an
hour of learning programming. It introduces basic program-
ming concepts to a learner by means of two different kinds of
code blocks: basic movement blocks and control flow state-
ment blocks. Using these code blocks, a learner needs to direct
a character through a maze.

The Hour of code environment is similar to Scratch [2] and
Snap [4]. The interface consists of a game environment and
a visual coding environment. The game environment has a
2D grid with game elements such as a playable character

1http://www.code.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S 2018, June 26–28, 2018, London, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5886-6/18/06. . . $15.00

DOI: https://doi.org/10.1145/3231644.3231690

that is driven by the code blocks, walkable cells and various
different impassable obstacles (e.g. walls, exploding boxes).
The visual coding environment consists of a toolbox window
and a workspace window. The toolbox window shows various
draggable code blocks that a learner can use to build a program
by dragging them into the workspace and activating them by
chaining new blocks to the start event block. A program is
any sequence of activated code blocks in the workspace. A
learner is allowed to place any code block in the workspace,
in any order. When a learner presses the "Run" button, the
game environment will run the code that is activated in the
workspace.

In assignment 4, a learner is only provided with simple move-
ment and rotation blocks. In assignment 18, control flow
blocks such as loops and if-then-(else) statements are addition-
ally available as well. Solutions to these assignments can be
found in Figures 1 and 2, respectively.

Figure 1: The solution to assignment 4.

Figure 2: The solution to assignment 18.

http://www.code.org/
https://doi.org/10.1145/3231644.3231690

FEEDBACK IN THE HOUR OF CODE
A learner can get a small set of hints in the Hour of code
environment: a notification that a learner misses a code block,
a notification that a learner must fill a control flow block,
mentioning that a learner "is not quite there yet." These basic
hints however, do not provide a learner with a possible next
best step. This leads to the central theme of this paper: how can
we provide novice programming learners with step-by-step
hints on how to reach the goal from each possible program?

Feedback is important for learning [5]. Feedback can take
several forms, and one important such form is feed-forward,
or a hint: giving a learner information about how to proceed
with a partial or erroneous solution. Automatically generated
hints are particularly useful in situations where direct contact
with teachers or experts is not available, which is often the
case when learners are working with on-line assignments as
in the Hour of code.

Automatically generating hints for programming exercises is
challenging [1]. Recently, we have seen a trend in using previ-
ous student data to generate hints from programming exercises.
For example, Piech et al. [3] compare various algorithms that
all use learners’ input data but differ in the method of selecting
the best next-step. A next step is a program one step closer to
a correct program. Piech et al. apply multiple algorithms to
generate hints for two Hour of code assignments using over
one million partial programs per assignment. They obtain
an accuracy of 95.9% for the first assignment and 84.6% for
the second when comparing steps generated by the ‘Problem
Solving Policy’ they develop to a gold standard set produced
by human experts.

We think using data to provide hints in the Hour of code ex-
ercises is the wrong approach. The Hour of code exercises
are simple enough to describe all necessary feedback upfront,
without using any student data. Instead of calculating a Prob-
lem Solving Policy based on millions of student submissions,
we propose to use a number of simple heuristics to give hints
in the Hour of code exercises. Not only can heuristics provide
better hints, it also avoids the cold-start problem: generating
hints based on learner data requires a minimum amount of
data that is obtained from learners or an expert. In the case of
Piech et al. the best hint generation algorithm would need two
thousand learners to obtain the acquired accuracy.

This paper shows how to use a heuristic approach to auto-
matically generate hints for novice learners who learn how to
program using 2D grid based game assignments, such as the
Hour of code assignments. We evaluate our approach with the
same gold standard data set as Piech et al. and obtain an accu-
racy of 99.1% for assignment 4. Since we are still working on
assignment 18, this is a work-in-progress paper.

The optimal solution for assignment 4 is the shortest path
from the assignment’s starting location to the goal location. A
hint is a suggestion to use an edit to change a program to get
closer to the optimal solution. An edit action is an insertion,
a deletion or a substitution. For example, when the program
of a learner is a prefix of the optimal solution, we can give
as hint the next programming block in the optimal solution.

When a learner’s program results in the character running into
a wall, we direct the learner back to the optimal solution by
suggesting a single deletion of her last erroneous code block.
When a learner almost developed the optimal solution except,
for example, one code block, we can offer a suggestion to
substitute the erroneous block for the right block.

A learner is allowed to use three type of blocks: move for-
ward, turn right 90◦ and turn left 90◦. Hints consist of one
of these blocks with some accompanying text: "add [For-
ward] after position x", "delete [TurnRight] from the end",
or "substitute [Forward] at position x with [TurnLeft]".
For example, when a learner hands in the following pro-
gram for assignment 4: [Forward,TurnLeft,Forward]
we give add [TurnRight] after position 3 as a
hint (insertion-hint). This hint can be translated to match
the partial solution Piech et al. use in their paper: [For-
ward,TurnLeft,Forward,TurnRight].

THE GOLD STANDARD
The gold standard data set has been produced by experts par-
ticipating in the experiment from Piech et al. The data consists
of the experts’ suggested next step hints for two hour of code
assignments. The hint is also a program. The hints differ from
a learner’s program by one single edit, where an edit is either
an insertion, a deletion or a substitution of a code block. In
this section we describe our analysis of the data for assignment
4, and the patterns we can distinguish in the expert hints.

Assignment 4 hint analysis
We extract the relevant gold standard data from the
"groundtruth.txt" file made available by Piech et al. The gold
standard data for assignment 4 is a comma separated file where
each line contains a unique student program id and the id of
the program that the experts suggest. The gold standard data
consists of id’s of the 225 most occurring programs. Each
id corresponds to a similarly named file that is stored sepa-
rately. Each file contains a program, which is represented as
an Abstract Syntax Tree (AST). We translate all the ASTs
to sequences of Forward, TurnLeft and TurnRight motions,
which we represent as a string (e.g. "flr").

We use the following notation for describing an edit between
two programs. First, the kind of edit is denoted by a symbol:
Insertion is +, Deletion is - and Substitution is =. After the kind
of edit, we specify the position of the letter in the sequence,
where we start counting at 0. In the case of an insertion we
write the new character in capitals before the position. In the
case of a substitution, we write the substituted letter after the
position. For instance, +F2 is an Insertion turning "flr" into
"flfr". -1 is a Deletion turning "flr" into "fr", and =1R is a
Substitution turning "flr" into "frr".

We make a number of observations based on the gold standard
data. First, the experts restrict all hints to one single edit
inserting, deleting or substituting a code block. The experts
restrict substitutions to rotations only. As a consequence, the
number of hints to reach an optimal solution may be larger
than necessary. For example, the single edit distance between
the input program "fffrf" and the solution program "flfrf" is
one (=1L), but the experts suggest two paths to the solution

program. The first approach consists of two edits: -1 ("ffrf")
and +L1 ("flfrf"). The second approach consists of five edits:
-1 ("ffrf") -2 ("frf") =1L ("flf") +R3 ("flfr") and +F4 ("flfrf").
Both examples occur in the gold standard and show that not all
experts agree on what hint should be given in what situation.
A second observation is that there are sequences of rotations
that can either be left out or replaced by a single rotation. In
"rl" and "lr", the second rotation undoes the effect of the first
rotation. Such a sequence of code blocks can be removed. Two
sequences that are replaceable are "rrr" and "lll", where "rrr"
is replaceable with "l" and "lll" with "r". When the experts
handle input programs containing one of these sequences, they
sometimes ignore these sequences and handle them at the last
possible moment. Another observation is that in the case of
"frrflf" the experts suggest to apply +R3 to obtain "frrrflf",
which is the same as "flflf". The hint containing "rrr" instead
of "l" is closer to the solution path in terms of single edit
distance than applying =1L to obtain "flrflf" or -1 to obtain
"frflf".

HEURISTICS FOR HINTS
We model the patterns we find in the experts’ hints into sepa-
rate hint heuristics.

Experts suggest to delete erroneous forward movements and
never suggest to substitute forward movements by rotations.
When an input program contains multiple erroneous rotations,
the experts sometimes suggest to delete a rotation, and some-
times to substitute an erroneous rotation by another block. We
create a set of heuristics, where each heuristic is a procedure
that produces a hint when it is applied to an input program.
Each heuristic brings a student a step closer to the optimal
solution. For instance, for the input program "ff" we can give
a hint that deletes the erroneous forward movement through
-1 and obtain "f" or give a hint that inserts a left rotation +L1
to obtain the program "flf". Table 1 shows the general heuris-
tics we could distinguish, illustrated with example programs
containing substrings, marked in red, on which the heuristic
fires. Sometimes multiple heuristics can be applied to an input
program.

The heuristic OnTrack is identified when a player is on the
right path towards the solution. The heuristics DelErrStart
and InsStart are both identified when a student program
starts with the wrong code block. For assignment 4 this is the
case when a program starts with "l" or "r". If a program starts
with a rotation and contains at least one forward movement,
DelErrStart is identified. InsStart is identified when
there are only rotations in a student program. If there are
any erroneous forward movements, the heuristic DelErrFor-
ward is identified. For assignment 4, any sequence of multiple
forward movements is identified as incorrect because the op-
timal solution does not contain multiple successive forward
blocks. The heuristic DelErrRot is identified when a program
contains an erroneous rotation that needs to be deleted. For
example, in the input program "fllf" the second rotation needs
to be removed. SubstErrRot is identified when there is an
erroneous rotation that can be substituted by a correct rotation.
For example, in the input program "frf" the student made a
right turn instead of a left. SingleEdit is identified when the

Table 1: Heuristics

Heuristic Ratio Value Example programs
OnTrack 5/5 1.00 "flf", "flfr"
InsStart 8/8 1.00 "lrl", "rr"
SingleEdit 45/49 0.92 "flrf", "ffrfrf"
DelErrStart 35/50 0.70 "rf", "lf"
DelErrForward 55/110 0.50 "flff", "ffrfrf
DelErrRot 62/124 0.50 "fllf", "fflr"
SubstErrRot 15/219 0.07 "frf", "fflr"

program gets too lengthy or when the program is a single edit
distance away from the solution program.

Experts prefer certain heuristics over others when multiple
heuristics can be applied. We need a way to determine which
heuristic to choose when there are multiple possible heuristics.
We count how often experts apply each heuristic on the 225
input programs and how often we identify each heuristic in
the input programs based on the conditions mentioned in the
previous section. We divide these numbers to obtain a value
that determines how likely it is that an expert applies a heuristic
to an input program. Table 1 shows the resulting ratios.

For the input program "ffrf", our algorithm recognizes the
erroneous substring "ff" and identifies the heuristic DelEr-
rForward, which can be addressed by deleting one "f" by
-0. Additionally, the heuristic SingleEdit is identified, since
with +L1 we obtain the optimal solution "flfrf". In this case,
suggesting a hint to perform a single edit to obtain the solution
is better than suggesting to delete the second erroneous for-
ward step. Here our hint corresponds to the expert hint. How-
ever, the experts do not necessarily choose a heuristic in the
order of Table 1. For example consider the input program "fflr".
We identify the following heuristics: reduce the number of
erroneous forward motions "ff": -1 ("flr") (DelErrForward),
delete the wrong turn "r": -3 ("ffl") (DelErrRot), or substitute
an erroneous rotation "l": =R2 ("ffrr") (SubstErrRot). This
list is in order of preference based on the values taken from
Table 1. However, DelErrForward and DelErrRot have the
same values. In this case, experts suggest "flr" as a hint, indi-
cating that removing double forward movements has a higher
priority than reducing erroneous rotations or suggesting an in-
sertion. We introduce another metric, called a dynamic score,
to differentiate between the heuristics.

The dynamic score is based on three measures. The first mea-
sure calculates the length of the initial segment of blocks of
a program that also appears at the start of the solution. For
example, the program "fr" has a score of 1 since the solu-
tion starts with "fl". This scoring method favors programs
that start correctly. We ignore sequences of rotations that
cancel each other out when calculating this score, so "lr-
flf" becomes "flf" and has a score of 3. The second mea-
sure calculates how much longer a program is than the so-
lution. By subtracting this from the first, we favor deletion
over substitution or insertion for long programs. The third
measure calculates the location of the edit: the closer to the
beginning of the program the better. The dynamic score
is defined by: dynScore(i,h) = startSegmentLength(h)−

Table 2: DelErrRot deviating results

Input GS hint Our hint Comment Internal inconsistencies

frlr frl flr We give "flr" as a hint because it is faster to the goal solution.
The experts remove the last erroneous rotation.

frlrf -> flrf and flrrl -> flrl

frll fll frllf We ignore "rl" and build on "fl", whereas the experts suggest to delete
the first part of the erroneous rotation sequence.

flrl -> flrlf and fllr -> fllrf

programLength(h)− errorLocation(i,h), where i is the input
program and h is the hint obtained by applying the heuristic to
the input program. The higher the dynamic score, the better.

We use the order of the heuristic in Table 1, to define a static
score: OnTrack gets 0, and each subsequent heuristic one
more, ending with 6 for SubstErrRot. We define the total
score of a heuristic by: totalScore(h, i) = staticScore(h)−
dynamicScore(h, i), where h is the heuristic and i the input
program. We select the heuristic with the lowest score. We
now measure how well our heuristics-based selection performs
against the gold standard. We measure the accuracy of our
selection by determining the similarity between our hints and
the gold standard. We optimize the static scores by varying
the static score values for each heuristic both upward and
downward to determine the range in which the static score
values maximize the accuracy. It turns out that we only need
to adjust DelErrForward (to 4.6), DelErrRot (to 6.1), and
SubstErrRot (to 7.0) to obtain the highest accuracy.

RESULTS
For 223 out of 225 cases we give the same hint. For each of the
2 remaining cases, we can identify conceptually contradicting
expert hints, for example, suggesting an edit either at the
beginning or at the end of an erroneous program. All the
heuristics we suggest correspond to the expert hints, except
for DelErrRot, for which we are correct 58 out of 60 times.

Table 2 shows the hints that differ from the gold standard for
DelErrRot. In the gold standard data, successive rotations
that cancel each other out are handled differently than non-
cancelling erroneous successive rotations. For the input "flrl"
the experts suggest "flrlf", because the neutralizing effect of
"lr" turns the input into "fl" and the hint to "flf".

CONCLUSIONS
We have developed a heuristics-based approach to giving hints
for the Hour of code exercises. Analysing the gold data for
assignment 4 shows that our approach generates hints with a
high precision and is flexible enough to handle different forms
of input. We generate the same hint as the gold standard data
223 out of 225 times, leading to an accuracy of 99.1%. This
improves upon the best algorithm from the paper of Piech et
al., which has an accuracy of 95.9%. Because the expert hints
are internally inconsistent, a higher accuracy than ours on this
dataset is impossible.

We have demonstrated that using basic heuristics we can effi-
ciently mimic experts’ next-step hints. Our results shows that
you do not need a large quantity of student data to obtain a
high accuracy compared with the gold standard. Using expert
knowledge, and deriving heuristics from this knowledge, leads

to better feedback than using student data. Of course we are
fitting our method to expert data, but the resulting heuristics
are general, explainable, heuristics, which can also be used for
the other Code.org’s Hour of code exercises. A disadvantage
of our approach compared to an approach based on previous
student data is that you need to develop the heuristic for each
domain on which you want to provide feedback. However,
this extra work comes with the significant advantage that the
heuristics can also be used to explain hints. The required in-
vestment is negligible compared to the amount of time users
spend on the exercises.

REFERENCES
1. Hieke Keuning, Johan Jeuring, and Bastiaan Heeren.

2016. Towards a Systematic Review of Automated
Feedback Generation for Programming Exercises. In
Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. ACM,
41–46.

2. John Maloney, Mitchel Resnick, Natalie Rusk, Brian
Silverman, and Evelyn Eastmond. 2010. The Scratch
Programming Language and Environment. Trans.
Comput. Educ. 10, 4 (Nov. 2010), 16:1–16:15.

3. Chris Piech, Mehran Sahami, Jonathan Huang, and
Leonidas Guibas. 2015. Autonomously generating hints
by inferring problem solving policies. In Proceedings of
the Second (2015) ACM Conference on Learning@ Scale.
ACM, 195–204.

4. Thomas W Price, Yihuan Dong, and Dragan Lipovac.
2017. iSnap: Towards Intelligent Tutoring in Novice
Programming Environments. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer
Science Education. ACM, 483–488.

5. Valerie J Shute. 2008. Focus on formative feedback.
Review of educational research 78, 1 (2008), 153–189.

	The Hour of code
	Feedback in the Hour of code
	The gold standard
	Assignment 4 hint analysis

	Heuristics for hints
	Results
	Conclusions
	References

