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a b s t r a c t 

Document fraud constitutes a growing problem in international shipping. Shipping documentation may 

be deliberately manipulated to avoid shipping restrictions or customs duties. Well-known examples of 

such fraud are miscoding and smuggling. These are cases in which the documentation of a shipment 

does not correctly or entirely describe the goods in transit. In an attempt to reduce the risks of docu- 

ment fraud, shipping companies and customs authorities typically perform random audits to check the 

accompanying documentation of shipments. Although these audits detect many fraud schemes, they are 

quite labor intensive and do not scale to the massive amounts of cargo that is shipped each day. This pa- 

per investigates whether intelligent fraud detection systems can improve the detection of miscoding and 

smuggling by analyzing large sets of historical shipment data. We develop a Bayesian network that pre- 

dicts the presence of goods on the cargo list of shipments. The predictions of the Bayesian network are 

compared with the accompanying documentation of a shipment to determine whether document fraud 

is perpetrated. We also show how a set of discriminative models can be derived from the topology of 

the Bayesian network and perform the same fraud detection task. Our experimental results show that 

intelligent fraud detection systems can considerably improve the detection of miscoding and smuggling 

compared to random audits. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Trade liberalization and technological innovation have consid-

rably changed the international shipping industry over the last

entury. Nowadays, on average 350 thousand TEU’s 1 of container-

zed cargo is shipped across the world each day ( World Ship-

ing Council, 2004 ). Such excessive demand is detrimental to ship-

ing companies and customs authorities to guarantee safe and

ompliant operations. Shipping companies often need to process

hipments without knowing the exact nature of the goods inside

 box or container ( Hesketh, 2010 ), while customs authorities can

nly physically inspect a fraction of the shipments that cross the

orders of a country. This leaves room for fraudsters to perpetuate

ll kinds of fraudulent activities. 

Fraud in international shipping occurs in many forms and on

ifferent scales, ranging from local cargo theft to international
∗ Corresponding author. 

E-mail addresses: r.j.m.a.triepels@uvt.nl (R. Triepels), h.a.m.daniels@uvt.nl (H. 

aniels), a.j.feelders@uu.nl (A. Feelders). 
1 Twenty-foot Equivalent Unit (TEU) is a measure used within the international 

hipping industry to denote the capacity of a cargo container. One TEU equals a 

0-foot-long intermodal container. 
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muggling. Either way, tracks of a fraud scheme must be covered

n the documentation of a shipment. This form of fraud is also

nown as document fraud. Document fraud is the act of manip-

lating facts in contracts or agreements with the intent to benefit

y commercial gain ( Hill & Hill, 2009 ). The most common types of

ocument fraud in international shipping are miscoding and smug-

ling. 

Miscoding refers to the act of providing incorrect information

bout goods in transit. Knowing the exact nature of goods that

ross the borders of a country is essential for customs authorities,

s this information constitutes the basis for enforcing shipping re-

trictions and levying customs duties. Therefore, contracting par-

ies in a shipment are obliged to classify goods in transit according

o an internationally accepted coding scheme called the Harmo-

ized System (HS). 2 Based upon this classification, customs agents

ecide under which conditions goods are allowed to be transported

cross countries and how much customs duties the importer or

xporter needs to pay. Miscoding occurs when a party specifies
2 The Harmonized System is an international product nomenclature introduced 

y the World Customs Organization. It captures about five thousand commodity 

roups which are identified by six-digit codes. 
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3 Transhipment is the process of shipping goods to an intermediate location from 

which they proceed their journey. Usually, transshipment is performed to change 

between vessels with pre-defined routes or to change the mode of transport. 
HS-codes of other goods with similar properties but which are not

prohibited or require to pay lower customs duties. 

In contrast, smuggling refers to the act of secretly shipping

goods under conditions that are against the law by any coun-

try that is crossed by the shipment. Smuggled goods are usually

put inside a shipment somewhere along the supply chain while

making sure that they are not listed on any official documenta-

tion provided to local customs authorities. Once the shipment has

been cleared in the destination country, the smuggled goods are

secretly removed from the shipment to avoid any customs reg-

ulations. Drugs, weapons, cigarettes, and alcohol are examples of

goods that are frequently smuggled because they are prohibited or

require to pay higher amounts of customs duties. 

To mitigate the risks of document fraud, shipping companies

and customs authorities perform random audits to check the ac-

companying documentation of shipments. For example, shipping

companies have experienced customs officers that check whether

the bills of lading and trade certificates issued for a shipment are

valid and consistent. Also, customs authorities perform physical in-

spections and x-ray scans at customs borders to check whether a

box or container contains those goods listed on the corresponding

customs declaration. Although many fraud schemes are detected

by such audits, they do not scale well to the vast amount of cargo

that is processed on a daily basis. 

It is believed that intelligent systems can significantly im-

prove the detection of fraud in international supply chains

( Gordhan, 2007 ). Intelligent systems are systems that emulate the

decision-making ability of human experts by analyzing large sets of

data using statistical techniques and, more recently, machine learn-

ing techniques ( Aronson, Liang, & Turban, 2005 ). Instead of choos-

ing shipments randomly, intelligent systems can be employed to

analyze the vast amount of data that is generated by supply chains

and select only potential fraudulent shipments for further fraud

analysis. In this way, supply chain participants can better allocate

their limited resources for fraud detection. Several systems have

been proposed for this purpose. However, it is unclear to which

extend such systems do indeed improve the detection of document

fraud. 

In this paper, we investigate the extend to which intelligent

fraud detection systems can improve the detection of miscoding

and smuggling compared to random audits. We first develop a

Bayesian network that detects miscoding and smuggling by an-

alyzing trade patterns and itinerary patterns in shipment data.

Bayesian networks are probabilistic generative models that have

been successfully applied in many fraud detection tasks, see e.g.

Ezawa and Schuermann (1995) , Taniguchi, Haft, Hollmén, and

Tresp (1998) and Kirkos, Spathis, and Manolopoulos (2007) . Ac-

cordingly, we discuss how different probabilistic discriminative

models can be derived from the topology of the Bayesian network.

We evaluate the performance of the models and compare their

predictions with a set of random audits that generate the same

amount of alarms. Our results confirm that intelligent fraud detec-

tion systems can select shipments for further fraud analysis much

better than random audits. 

2. Related research 

In this section, we provide a brief overview of related research

on the detection of document fraud in international shipping. We

discuss how document fraud is detected by analyzing trade pat-

terns ( Section 2.1 ) and itinerary patterns ( Section 2.2 ). Further-

more, we introduce a hybrid approach based on the analysis of

both types of patterns ( Section 2.3 ) and compare its main features

with existing fraud detection models in the literature ( Section 2.4 ).
.1. Trade-based fraud detection 

One way to detect document fraud is to analyze deviations in

he cargo that is traded between importers and exporters. We will

efer to this approach as trade-based fraud detection. The objective

f trade-based fraud detection is to find deviating trade patterns,

.e. cases were countries or organizations engage in trade that de-

iates from the type of goods that are usually traded, or involves

oods with extraordinary properties like their price or weight. 

Several models have been proposed to detect deviating

rade patterns in historic customs declarations. Filho and

ainer (2007) built a hierarchical Bayesian classifier to pre-

ict document fraud. The main idea behind their classification

odel is to model combinations of binary features, e.g., an HS-

ode and country of origin, in a hierarchical structure such that

here is strong independence between the feature combinations

hile the most specific ones dominate the classification. Yaqin and

uming (2010) built a classification model based on association

ule mining. Association rule mining is performed separately on

he set of fraudulent and non-fraudulent declarations while keep-

ng the class as the antecedent. Their model classifies declarations

y determining the class of the association rule that matches

he declaration and has the highest confidence and support.

igiampietri et al. (2008) proposed a visual anomaly detection

ystem to detect document fraud. Their system compares features

f declared goods with features of similar goods declared by the

mporter in the past. When similar goods are found, combinations

f features, e.g., price and weight, are retrieved and highlighted in

iagrams. These diagrams need to be visually inspected to deter-

ine the extent to which goods deviate from the expected norm.

inally, Hua, Li, and Tao (2006) proposed a classification model

ased on clustering and logistic regression. Their model groups

eclarations into approximately homogeneous clusters based on

he prices and weights of the goods declared. Accordingly, for

ach cluster, a logistic regression function is fitted that predicts

ocument fraud based on a set of highly correlated features. 

.2. Itinerary-based fraud detection 

Another way to detect document fraud is to analyze deviations

n the way that cargo is shipped through the global shipping net-

ork. We will refer to this approach as itinerary-based fraud de-

ection. The objective of itinerary-based fraud detection is to find

eviating itinerary patterns, i.e. cases where goods are shipped via

tineraries that are not very economically beneficial. Such patterns

re often found by analyzing digital shipping messages. Shipping

essages are created by shippers and shared across a shipping net-

ork to inform others about the status and movement of a ship-

ent. These messages typically include details about the location

f a shipment at a given moment in time and its status, e.g., arrival

r transshipment. 3 

Several studies have investigated how we can find deviating

tinerary patterns in shipping messages. Chahuara et al. (2014) ad-

ress the problem of the heterogeneous nature of container events

nd its negative impact on the analysis of itineraries. Shipping

essages are collected from various sources and can be ambigu-

us, incomplete, imprecise or redundant. To deal with this noise,

he researchers built a conditional random field to classify the

tatus of container messages based on a set of spatiotemporal

eatures. Villa and Camossi (2011) built an ontology of the mar-

time container domain. Their ontology defines objects such as a
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g2

l1g3 ln. . .

g3

g1 g2

g4 g5

Fig. 1. A schematic overview of the model proposed in Triepels et al. (2015) . The 

left graph is a Markov random field on a set of goods. The right graph is a Bayesian 

network classifier that is constructed for good g 2 having the Markov blanket of the 

good in the Markov random field and a set of itinerary (location) variables as ex- 

planatory variables. 
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ontainer or vessel, processes such as import or export, and re-

ationships between these objects and processes. These seman-

ics are applied in combination with logical predicates to per-

orm reasoning on anomalous itinerary patterns. Camossi, Dim-

trova, and Tsois (2012) showed how to detect deviating itinerary

atterns by a support vector machine in one-class classification.

heir model uses spatiotemporal features to model the way ship-

ents normally find their way through the global shipping net-

ork. Deviating itineraries are identified by determining the extent

o which recent itineraries deviate from the expected norm. Finally,

imitrova, Tsois, and Camossi (2014) developed a web-based sys-

em to visualize global shipping traffic. Their system retrieves ship-

ing messages from historically taken itineraries and plots the co-

rdinates of locations that are crossed in the itineraries on a geo-

raphical map. Filter and aggregation functions can be applied to

tudy frequently reoccurring patterns in the itineraries. 

.3. Hybrid approach 

Trade patterns and itinerary patterns constitute a valuable

ource of information to detect potential cases of document fraud.

owever, fraud detection models usually analyze these patterns

eparately, while they are closely related to each other in many

raud cases. For example, a common fraud practice is to use trans-

hipment to conceal the origin of cargo ( World Customs Organi-

ation, 2012 ). Such fraud is difficult to detect. Trade patterns alone

ill not highlight the deviance in the itinerary, while itinerary pat-

erns alone will highlight the deviance but lack the information to

etermine whether the transshipment is justifiable 4 For this rea-

on, combining both types of patterns poses an important chal-

enge for fraud detection models in international shipping. 

In Triepels, Feelders, and Daniels (2015) , we proposed a model

hat detects miscoding and smuggling by simultaneously analyzing

rade patterns and itinerary patterns in shipment data. Fig. 1 pro-

ides an overview of the model construction. The model is con-

tructed in two steps. First, feature selection is performed to de-

ermine the types of goods which are statistically independent of

he presence of other goods in a shipment. These independencies

re identified by constructing a Markov random field on a set of

inary variables indicating the presence of a particular good in a

hipment, and for each good, determine its Markov blanket in the

arkov random field. Accordingly, a Bayesian network classifier is

onstructed for each good that predicts the presence of the good

n a shipment based on the presence of other dependent goods

nd a set of itinerary (location) variables. Finally, miscoding and

muggling incidents are detected by determining whether there is

 mismatch between the goods predicted by the classifiers and the

oods listed on the cargo lists of shipments. 

This paper provides an alternative solution to address the same

roblem. We model shipments directly in a Bayesian network
4 Transshipment may, for example, be more likely for small and cheap goods (e.g. 

hone accessories) than for large and expensive goods (e.g. furniture). s
y a set of variables representing both cargo details as well as

tinerary details. The advantage of this approach is that it makes

he separate feature selection step redundant. Instead, we apply

he Bayesian network to automatically perform feature selection

or all goods at once. Moreover, we can derive discriminative clas-

ifiers for each good from the topology of the network and use

hese to perform the fraud detection task instead. Experimental

ests reveal that these discriminative classifiers tend to generate

larms for miscoding and smuggling with higher precision and re-

all compared to the Bayesian network. 

.4. Model features 

The main innovation of our Bayesian network is that it ana-

yzes both trade patterns and itinerary patterns to detect document

raud. Besides this feature, the network offers several additional

eatures that are relevant to the international shipping industry.

irst, the network can predict miscoding and smuggling based on

ncomplete shipment data and update its predictions when addi-

ional information about a supply chain becomes available. Many

redictive models do not support this feature. Second, the net-

ork allows expert knowledge of customs agents to be incorpo-

ated into the fraud predictions. Domain experts can help con-

tructing the conditional independence structure of a Bayesian net-

ork ( Cowell, Dawid, Lauritzen, & Spiegelhalter, 2006 ) or provide

nformation about the quantitative influences of the nodes to im-

rove the model estimation ( Feelders, 2012 ). Third, the conditional

ndependence structure of the network can visually aid the tasks

f customs agents. Finally, the network can be applied to perform

robabilistic reasoning on shipment behavior and generate fraud

larms that are easy to interpret. Table 1 summarizes these fea-

ures and shows the extent to which they are supported by exist-

ng models in the literature. 

. Detection of document fraud by Bayesian networks 

In this section, we elaborate on the details of our fraud de-

ection model. We introduce some concepts of international ship-

ing ( Section 3.1 ) and formalize the detection problem of miscod-

ng and smuggling ( Sections 3.2 and 3.3 ). Furthermore, we define

 Bayesian network and discuss how it can be applied to detect

hese forms of fraud ( Sections 3.4 and 3.5 ). Finally, we show how

 set probabilistic discriminative models can be derived from the

opology of the Bayesian network and applied to perform the same

raud detection task ( Section 3.6 ). 

.1. Shipping concepts 

Let G be the set of all internationally standardized commodity

odes 5 Moreover, let L be the set of all locations between which

oods are transported. An important shipping concept is the cargo

ist. 

efinition 1. A cargo list C = { g 1 , . . . , g k } is a subset of G, where

ach g i ∈ C is a good with commodity code i that is conveyed by a

hipment, and k is an integer denoting the size of the cargo list. 

Goods on the cargo list are transported via an itinerary through

he global shipping network. The itinerary usually involves multi-

le shipping companies that each takes care of a specific part of

he itinerary, possibly by a different mode of transportation. We

efine an itinerary as a set of locations that are crossed by a ship-

ent in the global shipping network. 
5 Currently, only the first six-digits of the HS nomenclature are internationally 

tandardized. 
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Table 1 

A comparison of features supported by the model proposed in this paper and existing models in the literature. 

Model Features 

Analyzes: Supports: Provides: 

Trade patterns Itinerary patterns Missing data Expert knowledge Fraud probabilities Visual aid 

Filho and Wainer (2007) Yes No Yes No Yes No 

Yaqin and Yuming (2010) Yes No Yes No No No 

Digiampietri et al. (2008) Yes No No No No Yes 

Hua et al. (2006) Yes No No Yes Yes No 

Chahuara et al. (2014) No Yes Yes No No No 

Villa and Camossi (2011) No Yes Yes Yes No No 

Camossi et al. (2012) No Yes No No No Yes 

Dimitrova et al. (2014) No Yes Yes Yes No Yes 

Proposed model Yes Yes Yes Yes Yes Yes 

Origin . . . Leave
Terminal

Country of Origin

. . . Entry
Terminal

. . . Destination

Destination Country

Fig. 2. The general structure of an itinerary in international shipping. 
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Definition 2. An itinerary I = < l 1 , . . . , l n > is a ordered subset of L ,

where each l i ∈ L represents a location that is crossed by a ship-

ment, and n denotes the length of the itinerary. We denote the set

of all itineraries by I . 

The order in which locations in the itinerary are crossed mat-

ters, so < l 1 , l 2 > � = < l 2 , l 1 > . Furthermore, itineraries may be of

variable length. They usually consist of a sequence of locations cor-

responding to shipping terminals that are crossed during the jour-

ney, like ports, airports, truck terminals, or railway stations. 

Itineraries in international shipping have a general structure

as shown in Fig. 2 . They consist of at least three smaller trans-

portation parts. First, cargo is picked up at the origin and dis-

tributed within the country of origin by in-land transportation. Ac-

cordingly, the cargo is moved to the destination country by cross-

border transportation. This part is typically performed by sea or air

transport and consists of multiple transports that move the cargo

across intermediate countries. Finally, when the cargo reaches its

destination country, it is distributed to its final destination by in-

land transportation. Some locations in the itinerary have a spe-

cial interpretation. Usually, the first and last location represent the

origin and destination, while the locations connecting the in-land

and cross-border transportation are respectively the leave and en-

try terminals. 

A shipment consists of a specific cargo list and itinerary, along

with an indication of the shipment duration. It reflects the con-

ditions under which goods are transported from the origin to the

destination. 

Definition 3. A shipment s = (C s , I s , T s ) is a triple, where C s ∈ G de-

notes the cargo list of the shipment, I s ∈ I the itinerary of the ship-

ment, and T s the shipment duration. We denote the set of all ship-

ments by S . 

3.2. Fraud detection task 

Miscoding and smuggling can be detected by looking at the

probability of goods being listed on the cargo list of a shipment.

If it is improbable that a shipment conveys a good on the cargo

list, then it might be subject to miscoding. Similarly, if it is prob-

able that a good is conveyed by a shipment but missing on the

cargo list, then it might be subject to smuggling. 
We denote the probability of goods being conveyed by a ship-

ent by function P : 

 : S → [0 , 1] |G| (1)

 ( s ) is a vector of probabilities where each P ( s ) i denotes the proba-

ility that good i is conveyed by s . Furthermore, let ψ 1 : S → { 0 , 1 }
nd ψ 2 : S → { 0 , 1 } be two functions that assign a binary value to

 shipment that indicates whether they are likely subject to mis-

oding and smuggling respectively. Shipments are classified as po-

entially fraudulent if the goods on their cargo list deviate from

he expected goods estimated by P . Function ψ 1 classifies s as be-

ng subject to miscoding when it contains a good i on the cargo

ist for which P ( s ) i is low: 

 1 (s ) = 

{
1 if ∃ g i ∈ C s (P (s ) i ≤ α) 
0 otherwise 

(2)

ere, α ∈ (0, 1) is a risk threshold close to zero. Likewise, function

 2 classifies s as being subject to smuggling when there exists a

ood that is not on the cargo list but for which P ( s ) i is high: 

 2 (s ) = 

{
1 if ∃ g i / ∈ C s (P (s ) i ≥ β) 
0 otherwise 

(3)

ere, β ∈ (0, 1) is a risk threshold close to one. α and β determine

he confidence level at which ψ 1 and ψ 2 respectively infer that

raud is perpetuated. They can be adjusted to meet the level of

isk tolerance. 

.3. Estimation of P 

We want to estimate the probability that a shipment conveys

pecific types of goods given its cargo list, itinerary, and shipment

uration. For an individual good g i , this probability can be defined

s a conditional probability: 

 (s ) i = P (g i | s ) = P (g i | C s \ g i , I s , T s ) (4)

here, P ( s ) i is the probability that g i is present in C s given all other

oods C s �g i on the cargo list, the locations in the itinerary I s , and

he shipment duration T s . We estimate P from a dataset of histor-

cal shipments D ⊂ S, under the assumption that the majority of

he shipments in D are correctly declared and are not fraudulent. 

Estimating P directly from D is problematic. This problem arises

rom the fact that shipment data is high dimensional. It compro-

ises a vast amount of ways in which goods can be shipped from

ne location to another. To quantify the probability of goods be-

ng conveyed by a shipment, we would need an enormous sample

o observe the exact shipment multiple times and count the goods

isted on its cargo list. In practice, however, the number of ship-

ents in data is usually not large enough to get reliable estimates

y a simple counting approach. To avoid this problem, we model

hipments in a Bayesian network and apply inference to deduce

he conditional probabilities of P . 
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.4. Bayesian networks 6 

A Bayesian network (BN) over a set of random variables X =
 x 1 , . . . , x m 

} can be defined as a tuple BN = (N , �) where, N =
(V, E) is a directed acyclic graph whose nodes V index X and edges

 represent dependencies among the variables, and � is a set of

arameters such that θ v ∈ � defines the conditional probability of

 v given its parents in N ( Koller & Friedman, 2009 ). A nice prop-

rty of a BN is that it allows to estimate the joint probability distri-

ution P ( X ) efficiently. Instead of estimating the probability of each

ossible configuration of the variables in X , a BN assumes condi-

ional independence structure N on X and estimates P ( X ) as the

roduct of each x v conditioned on its parents: 

 (X ) = 

∏ 

v ∈ V 
P (x v | PA (x v )) (5)

here PA( x v ) is the set of parents of x v in N . When N is a good

epresentation of the independence structure of X , a BN can pro-

ide a better estimate of P ( X ) through the estimation of less and

ore reliable (conditional) probabilities. 

The Markov blanket plays an important role to understand in-

ependence structure N . The Markov blanket of x v , denoted as

B ( x v ), is the set of x v ’s parents, its children, and the parents of

ts children ( Pearl, 1988 ). Because a BN estimates P ( X ) by the fac-

orization in Eq. (5) , it can be shown that each x v is condition-

lly independent of the rest of the variables in the network given

B ( x v ). In other words, MB ( x v ) defines the boundary that shields

 v from the probabilistic influence of the remaining variables in

he network. 

.5. A Bayesian network of shipments 

There are multiple ways to represent shipments in a BN. We

iscuss two possible options which we call the Mixed Shipment

etwork (MSN) and Binary Shipment Network (BSN). In the MSN,

hipment are represented by a combination of binary and multino-

ial variables. This includes a binary variable g i for each good de-

oting whether it is present on the cargo list, a multinomial vari-

ble l j for each j th position of the itinerary denoting the location

rossed at this particular position in the itinerary, 7 and a multino-

ial variable t s denoting the shipment duration. The BSN is similar

o the MSN except that it also represents the itinerary and ship-

ent duration by a set of binary variables. This includes a binary

ariable g i for each good, a binary variable l i 
j 

for each location i at

he j th position of the itinerary, 8 and a binary variable t i for each

hipment duration. Figs. 3 and 4 highlight these differences. They

epict the Markov blanket corresponding the same good in respec-

ively an MSN and BSN constructed from real-world shipment data.

Both types of networks model the same information about a

hipment but may provide a different estimate of P due to the dif-

erent granularity at which they model conditional independencies.

ecause of the independence property of the Markov blanket, we

an estimate the presence of each good on the cargo list as: 

 (s ) i = P (g i | MB (g i )) (6)

he BSN captures conditional independencies at the instance level

between individual goods, itinerary locations, and shipment du-

ations) and, consequently, may estimate P ( s ) i more accurately.

o make this more concrete, consider the Markov blanket of the
6 For an extensive treatment of Bayesian networks, see Koller and Fried- 

an (2009) . 
7 When modeling itineraries of variable length, each variable l j includes an addi- 

ional state to denote that no location is crossed at the j th position in the itinerary. 
8 Similarly, the network may contain an additional variable l 0 

j 
for each j th posi- 

ion of the itinerary to denote that no location is crossed at this position. 

3

 

s  

B

SN and BSN in Figs. 3 and 4 respectively. An important differ-

nce between these networks is that the MSN does not contain

he origin (ORG) and port of loading (POL), while in contrast, the

SN does contain several binary variables representing specific lo-

ations crossed at these positions in the itinerary. This example

emonstrates that, although a good may be independent of a posi-

ion in the itinerary, there might still exist dependencies between

he good and specific locations at the position. By binarizing all

ocations, we can learn these dependencies and estimate the pres-

nce of goods more accurately. 

We should note that binarizing all variables in a BSN may cause

ome of its conditional probability tables to be structurally in-

omplete. The reason for this problem is that the locations of an

tinerary position are mutually exclusive. Only one location can be

rossed at an itinerary position. Moreover, a shipment can have

nly one shipment duration. When, for example, a good is con-

itioned on two locations that are crossed at the same itinerary

osition, then this probability is undefined according to Maximum

ikelihood. This problem does, however, not affect the estimates

f P that we deduce from the network because configurations in-

olving conflicting mutual exclusive variables will not occur in the

ata. We may specify a prior for each probability of the BSN to

void undefined entries in the conditional probability tables. 

.6. Derivation of a discriminative model from a Bayesian network 

A BN is a particular type of generative model. It estimates the

oint probability distribution P ( X ) of X , and in turn, can be applied

o infer P ( x i | x j � = i ) indirectly by Bayes’ theorem. P ( x i | x j � = i ) can also

e estimated by a probabilistic discriminative model. A probabilis-

ic discriminative model estimates P ( x i | x j � = i ) directly. It has been

hown that this approach tends to give more accurate estimates in

ractice ( Ng & Jordan, 2002; Roos, Wettig, Grünwald, Myllymäki, &

irri, 2005 ). 

We construct a set of discriminative sub-models, one for each

ood, that each estimate P ( s ) i using Eq. (6) . These sub-models are

erived from the topology of the MSN or BSN. We do this in two

teps. First, we determine the Markov blanket of each good in the

hipment network. Then, we construct a discriminative sub-model

or each good that predicts the presence of the good based on the

ariables in its Markov blanket. 

The sub-models that we derive in this way from an MSN can

e unnecessarily complex. Because many discriminative models,

ike logistic regression or neural networks, require numerical in-

uts, we have to binarize all features. This requirement yields sub-

odels that are constructed on many features that are irrelevant to

redict the good under consideration. Consider again the Markov

lanket of the MSN in Fig. 3 . Here, l DES ∈ MB( g 39 ) would result in

45 binary location features of which only 14 are relevant to pre-

ict g 39 . 

In contrast, a BSN models individual (binary) locations and can

lter out locations that are irrelevant to predict a good. This fea-

ure yields sub-models that are much less complex and faster to

rain. For this reason, we only consider discriminative models that

re derived from the topology of a BSN. We discuss two variations,

ased on logistic regression and multi-layer perceptron networks, 9 

hich we will refer to as BSN-LR and BSN-NN respectively. 

.6.1. BSN-LR 

BSN-LR models the presence of goods on the cargo list of a

hipment by a set of logistic regression models. The regression
9 For an extensive treatment of logistic regression and neural networks, see 

ishop (1995) . 
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HSC = 39

HSC = 32

HSC = 44

HSC = 56

HSC = 70

HSC = 72 HSC = 73

HSC = 82

HSC = 83 HSC = 87 HSC = 90

HSC = 91

HSC = 94

POD

DES

DUR

Fig. 3. The Markov blanket corresponding to a good with HS-code 39 (plastics and articles thereof) in a MSN estimated from real-world shipment data. The network consists 

of a set of binary nodes (HSC) representing goods, four multinomial itinerary positions (origin (ORG), port of loading (POL), port of discharge (POD) and destination (DES)), 

and a multinomial node (DUR) representing the shipment duration. Notice that not all of these nodes are shown in the Markov blanket depicted. 

HSC = 39

HSC = 42

HSC = 48

HSC = 69HSC = 72

HSC = 73

HSC = 85

HSC = 87

HSC = 95

ORG = CCP

ORG = CHI

ORG = CLE ORG = MSP

ORG = NGB

ORG = SZX

POL = HKG

POL = MTR

POL = NYCPOL = VAP POD = RTM

DES = MAADES = MAL

DES = ROE

DES = TIL

DES = VEE

DES = WEW

DUR = 3

Fig. 4. The Markov blanket corresponding to a good with HS-code 39 (plastics and articles thereof) in a BSN estimated from real-world shipment data. The network is 

estimated from the same data as the MSN in Fig. 3 except that all nodes are binarized. Some nodes have been deliberately removed to make the graph easier to read. 
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model of a single good g i can be defined as: 

P (s ) i = σ

( 

m i ∑ 

j=1 

w j · MB (g i ) j + b 

) 

(7)

where, m i is the number of features in MB ( g i ), MB ( g i ) j is the j th

element of the Markov blanket of g i , w j ∈ R is a weight, b ∈ R is

a bias term, and f (x ) = 1 / (1 + e −x ) is the sigmoid function. The

sigmoid function rescales the linear combination between zero and

one. The output of the model can be interpreted as P ( g | MB ( g )). 
i i 
.6.2. BSN-NN 

BSN-NN models the presence of goods on the cargo list of a

hipment by a set of Multi-Layer Perceptron (MLP) networks. These

LP networks operate similarly as the logistic regression models

f a BSN-LR, except they process the Markov blank of each good

hrough multiple layers of hidden neurons. 

Suppose the MLP network of good g i consists of a single hid-

en layer. The activation of the k th neuron, h k , of this layer can be
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Table 2 

Four shipments of the sample. The itinerary of each shipment consists 

of four locations. These include the origin (ORG), port of loading (POL), 

port of discharge (POD), and destination (DES). The duration represents 

the time elapsed between the departure at the port of loading and the 

arrival at the port of discharge. 

Cargo list Itinerary Duration 

(HS-codes) < ORG,POL,POD,DES > (Hours) 

{73, 84, 85} < MEM,CHS,RTM,GEI > 10.60 < x ≤ 19.00 

{33, 34} < TOR,MTR,RTM,SAS > 1.89 < x ≤ 10.60 

{35, 39, 87} < MSP,MTR,ANR,BES > 1.89 < x ≤ 10.60 

{39, 40, 73, 84, 85} < CLE,NYC,OMD,TIE > 10.60 < x ≤ 19.00 
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efined as: 

 k = f 

( 

m i ∑ 

j=1 

w 

(1) 
jk 

· MB (g i ) j + b (1) 
k 

) 

(8) 

here, w 

(1) 
jk 

is the weight associated with the connection between 

B ( g i ) j and the k th hidden neuron, b (1) 
k 

is the bias of the neuron,

nd f ( x ) is an activation function, e.g. the sigmoid function or hy-

erbolic tangent function. Accordingly, the output of the network

an be defined as: 

 (s ) i = σ

( 

l ∑ 

j=1 

w 

(2) 
j 

· h j + b (2) 

) 

(9) 

here, l is the number of neurons in the hidden layer, w 

(2) 
j 

is

he weight associated with the connection between the j th hidden

euron and the output g i , and b (2) is the bias of the output. 

. Experimental setup 

In this section, we discuss a series of experiments in which the

erformance of the BSN and two probabilistic discriminative mod-

ls were evaluated on real-world shipment data. We elaborate on

he characteristics of the shipment data ( Section 4.1 ), the model

mplementations ( Section 4.2 ), and the methodology by which the

erformance of the models was measured ( Section 4.3 ). 

.1. Shipment data 

We extracted a sample of shipments from the supply chain

epository of an international freight forwarder. The sample con-

ains details of shipments that were transported overseas to the

etherlands between April 2012 and June 2013. It includes de-

ails of the goods that were conveyed by the shipments as spec-

fied on the import declaration, together with itinerary details that

ere specified on the bill of lading corresponding the cross-border

ransportation. 

Some pre-processing was applied to prepare the data for analy-

is. Because of the relatively small sample size, most six-digit HS-

odes were shipped only a few times. To prevent over-fitting, we

xtracted the first two digits (chapter codes) of the HS-codes. Fur-

hermore, the sample included three locations that were crossed

n the itinerary of the shipments: the origin (ORG), port of load-

ng (POL), and port of discharge (POD). Data of the exact desti-

ation (DES) was not available. Therefore, we used the location

f the customer who imported the goods as an approximation to

here the goods were most likely shipped 

10 Finally, we calculated

he shipment duration from the port of loading to the port of dis-

harge based on the ATD (Actual Time of Departure) and ATA (Ac-

ual Time of Arrival). Equal width binning ( Dougherty, Kohavi, &

ahami, 1995 ) was applied to transform the shipment duration to

 discrete feature consisting of ten approximately equally spaced

ime intervals. 

Not all shipments in the sample could be used for model evalu-

tion. Because of the high dimensionality of the data, some combi-

ations of goods and trajectories are very rare. We removed these

are combinations by applying the following filter rules: 

1. Goods that have been shipped less than 15 times are removed. 

2. Shipments with trajectories that have been taken less than 3

times are removed. 

he remaining sample included 10,149 shipments, 50 different

ypes of goods, and 625 unique itineraries. Table 2 shows a small

ubset of the sample. 
10 We retrieved this location by querying the Google Maps API by the company 

ame of each customer. 

d  

T  

h  

f

.2. Model implementation 

The sample was partitioned into two separate sets for train-

ng and evaluation purposes. Approximately 75% of the shipments

ere sampled by stratified sampling with the itinerary as strata

nd put in a training set. The remaining 25% of the shipments were

ut in a test set. 

We applied R package bnlearn ( Scutari, 2010 ) to construct a

SN on the shipments in the training set. The structure of the

etwork was estimated by a hill-climbing search. The search algo-

ithm started with the mutual independence model (empty graph),

hen tried to find a better network by iteratively adding, removing

r reversing edges, and finally stopped when no further improve-

ents to the current network could be made. To avoid over-fitting,

e scored candidate networks by: 

( BN , D ) = log L ( BN , D ) − cp (10)

here, L ( BN , D ) is the likelihood function of the candidate net-

ork, p is the number of parameters of the network, and c is a

enalty coefficient that controls how strongly the complexity of

he network is penalized. We experimented with different penal-

ies c ∈ { 0 . 01 , 0 . 009 , . . . , 0 . 001 } . In our case, c = 0 . 002 gave the

est results. The probabilities of the network were estimated by

ayesian parameter estimation. We performed this estimation pro-

edure with a Beta(5, 5) distribution as prior for each probabil-

ty of the network. Inference in the network was performed by

ikelihood-weighting ( Fung & Chang, 1989 ). 

Moreover, we derived a BSN-LR and BSN-NN from the BSN

ccording to the procedure described in Section 3.6 . The regres-

ion models of BSN-LR were constructed by the glm function in

 package stats ( R Core Team, 2013 ). It estimated the weights

nd bias terms of the models by the iterative re-weighted least

quare algorithm ( Nelder & Wedderburn, 1972 ). The neural net-

orks of BSN-NN were constructed by R package nnet ( Venables &

ipley, 2002 ) and contained one hidden layer with sigmoid activa-

ions. The weights and bias terms of the networks were estimated

y minimizing the cross-entropy using the BFGS algorithm in con-

unction with back-propagation ( Werbos, 1982 ). 

The neural networks of BSN-NN have some hyper-parameters

hat need to be tuned. The most important ones are the number of

eurons l in the hidden layer and the amount of weight decay λ.

e tuned these parameters by performing holdout cross-validation

 Kohavi, 1995 ) with R package caret ( Kuhn, 2008 ). During the

ross-validation procedure, approximately 10% of the shipment in

he training set were randomly removed and put in a separate

oldout set. Accordingly, a set of neural networks were constructed

n the remaining training set having a different number of hid-

en neurons l ∈ {10, 20, 30, 40} and weight decay λ ∈ { 10 −2 , 10 −3 } .
he classification accuracy of these networks was evaluated on the

oldout set. The configuration that achieved the highest accuracy

or each good on the holdout set was selected. 
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Table 3 

The elements of a confusion matrix for a binary classification problem. 

Actual 

True (1) False (0) 

Model / Audit True (1) True Positive Rate (TPR) False Positive Rate (FPR) 

False (0) False Negative Rate (FNR) True Negative Rate (TNR) 
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4.3. Evaluation metrics 

The sample was unlabeled and did not contain information

about which shipments involved document fraud. Therefore, we

evaluated the models by generating artificial fraud incidents and

determining how many incidents the models were able to detect.

We generated these fraud incidents in a separate miscoding set

and smuggling set. The miscoding set and smuggling set are iden-

tical to the test set except that they contain a small random subset

of approximately 10% of the shipments whose cargo list is artifi-

cially manipulated. Miscoding in the miscoding set was generated

by randomly adding a good to the cargo list of a shipment. Simi-

larly, smuggling in the smuggling set was generated by randomly

removing a good from the cargo list of a shipment. 

We evaluated the ability of the models to distinguish between

shipments with an original cargo list and those with a manipu-

lated cargo list by constructing a confusion matrix. Table 3 shows

a confusion matrix for this binary classification problem. It con-

sists of two rows and two columns. The rows of the matrix denote

the cases were the model produced an alarm or not, whereas the

columns denote the cases were shipments involved fraud or not.

Given these cases, the matrix defines four prediction rates. 

The prediction rates of the confusion matrix are computed as

follows. Suppose A ( s ) and F ( s ) are defined as: 

A (s ) = 

{
1 if an alarm is produced for s 
0 otherwise 

(11)

F (s ) = 

{
1 if s is fraudulent 
0 otherwise 

(12)

Then, for model m we have: 

TPR m 

= 

1 

| D | 
∑ 

s ∈ D 
A (s ) F (s ) (13)

FPR m 

= 

1 

| D | 
∑ 

s ∈ D 
A (s )(1 − F (s )) (14)

FNR m 

= 

1 

| D | 
∑ 

s ∈ D 
(1 − A (s )) F (s ) (15)

TNR m 

= 

1 

| D | 
∑ 

s ∈ D 
(1 − A (s ))(1 − F (s )) (16)

We estimated these prediction rates ten times while each iteration

had a different partition of shipments into training and testing ex-

amples, and different incidents in the miscoding set and smuggling

set. Accordingly, we computed the average prediction rates. 

From these average prediction rates, we derived the average

precision, recall and F 1 . Precision and recall are defined as ( Olson

& Delen, 2008 ): 

Precision = 

TPR 

TPR + FPR 

(17)

Recall = 

TPR 

TPR + FNR 

(18)
recision is the fraction of correctly identified shipments contain-

ng miscoding or smuggling compared to all shipment with mis-

oding or smuggling. Recall is the fraction of shipments for which

 correct alarm was produced. Combining both measures yields the

 1 score ( Olson & Delen, 2008 ): 

 1 = 2 · Precision · Recall 

Precision + Recall 
(19)

he F 1 score is the harmonic mean of precision and recall. It con-

titutes a single measure to evaluate the performance of a set of

ompeting models. 

Besides the data-driven models, we also measured the perfor-

ance of a set of random audits which generated the same num-

er of alarms as the models but produced alarms randomly. This

rocedure allows us to compare the models with the case of ap-

lying random audits to detect document fraud. The expected val-

es for the prediction rates of these random audits can be easily

erived. For example, the expected true positive rate of random

udit r is: 

 ( TPR r ) = E 

( 

1 

| D | 
∑ 

s ∈ D 
A (s ) F (s ) 

) 

(20)

= 

1 

| D | 
∑ 

s ∈ D 
P A P F (21)

= P A P F (22)

ere, A ( s ) and F ( s ) are replaced by respectively the alarm rate P A
nd fraud rate P F of the random audit. Similarly, we have: 

 ( TPR r ) = P A P F E ( FPR r ) = P A (1 − P F ) (23)

 ( FNR r ) = (1 − P A ) P F E ( TNR r ) = (1 − P A )(1 − P F ) (24)

urthermore, from Eqs. (17) , (18) , and (19) it follows that: 

 ( Precision ) = P F E ( Recall ) = P A E (F 1 ) = 2 · P F · P A 
P F + F A 

(25)

e compared the average precision, recall, and F 1 of the models

ith a random audit that generates the same number of alarms.

e did this by setting the alarm rate of the random audit equal

o the average alarm rate of the corresponding model, i.e. P A =
P̄R m 

+ 

¯FPR m 

. Fraud rate P F = 

¯TPR m 

+ 

¯FNR m 

≈ 0 . 1 is constant in all

ur experiments. 

. Results 

Tables 4 and 5 summarize the results of the experiments. All

xperiments were performed with a risk threshold of α = 0 . 1 and

= 0 . 9 . These thresholds imply that the models produced miscod-

ng alerts for goods which were listed on the cargo list but had an

robability of being present 10% or less. Moreover, they produced

muggling alerts for goods which were not listed on the cargo list

ut had an probability of being present 90% or higher. 

Overall, the results show that the data-driven models provide

raud alarms of much better quality than the corresponding ran-

om audits. The models achieved consistently higher F scores.
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Table 4 

The results of the miscoding experiments averaged over ten evaluation iterations. 

Miscoding 

BSN Random audit BSN-LR Random audit BSN-NN Random audit 

Precision 0.3469 0.0999 0.3803 0.0999 0.4383 0.0999 

Recall 0.9920 0.2857 0.9858 0.2589 0.9923 0.2262 

F1 0.5140 0.1480 0.5489 0.1442 0.6080 0.1386 

Table 5 

The results of the smuggling experiments averaged over ten evaluation iterations. 

Smuggling 

BSN Random audit BSN-LR Random audit BSN-NN Random audit 

Precision 0.5094 0.0999 0.5463 0.0999 0.6073 0.0999 

Recall 0.6847 0.1343 0.5234 0.0957 0.8854 0.1456 

F1 0.5842 0.1146 0.5346 0.0977 0.7204 0.1185 
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oreover, the precision and recall reveal that the models are on

verage far more likely to generate a correct alarm and detect a

onsiderably larger portion of the fraud incidents in the miscoding

et and smuggling set. Consider the results of the BSN. The model

as an average precision and recall of respectively 35% and 99% for

iscoding, and 51% and 69% for smuggling. In contrast, the ran-

om audit that generates the same number of alarms as the BSN

chieved only an average precision and recall of respectively 10%

nd 29% for miscoding, and 10% and 13% for smuggling. 

Closer examination of the results also reveals that BSN-NN per-

ormed even better than the BSN. BSN-NN achieved an average

recision and recall of respectively 44% and 99% for miscoding. In

ontrast, the BSN achieved the same recall but with lower preci-

ion. The alarms for smuggling are of slightly better quality. BSN-

N achieved an average precision and recall of respectively 61%

nd 89% for smuggling. Again, this is better than the precision and

ecall of the BSN. These results seem to be in line with earlier work

f Ng and Jordan (2002) and Roos et al. (2005) who showed that

iscriminative models typically give better performance than gen-

rative models. 

. Conclusions 

We conclude from our experiments that intelligent fraud detec-

ion systems can considerably improve the detection of miscoding

nd smuggling in the international shipping industry. By leverag-

ng the shipment data generated by supply chains, these systems

an make a better selection of shipments that require further fraud

nalysis than random audits. Our results suggest they are on av-

rage far more likely to select a fraudulent shipment and overall

etect a much more significant portion of the fraud cases. This ob-

ervation indicates that intelligent fraud detection systems are an

mportant addition to the risk management practices of shipping

ompanies and customs authorities. 

Regarding the design of the fraud detection system, there is

 trade-off between model performance and flexibility. Discrimi-

ative models tend to perform better than generative models. In

ur experiments, BSN-NN outperformed the BSN on both miscod-

ng and smuggling. However, a drawback of discriminative models

s that they usually cannot handle incomplete data, while this is

n important requirement in this particular application. Shipment

ocumentation consists of a set of documents that are collected

hen a shipment moves through the supply chain. Therefore, the

ocumentation is in most cases only complete when a shipment

as already passed the customs borders of the destination country,
nd physically inspecting the cargo is no longer possible. In con-

rast, generative models, such as Bayesian networks, can deal with

issing data very well and perform fraud detection at any stage of

he supply chain. 

We recognize that our method of generating artificial fraud

ncidents is somewhat oversimplified. In practice, miscoding and

muggling are typically committed in a more sophisticated matter

han merely adding or removing a random good from the cargo

ist of a shipment. Unfortunately, it is difficult to measure the ex-

ent to which fraud detection systems can detect real fraud cases.

ustoms authorities are reluctant to share any data about which

hipments turned out to be fraudulent because of privacy and se-

urity reasons. Even if such data would be available, then it would

robably not include a correct label for each shipment because

ustoms authorities cannot physically inspect each shipment that

rosses the borders of a country. Still, it would be interesting to

nvestigate how intelligent fraud detection systems would perform

n this case. We leave this open for future research. 

Moreover, in future research, our work can be further improved

n several aspects. First, we predict miscoding and smuggling based

n the goods conveyed by a shipment and basic information of its

tinerary. Better predictions may be obtained when modeling more

etails about goods, like their prices and weights, and the itinerary.

econd, we evaluated our models on data of shipments that were

hipped to the Netherlands and for which only four itinerary loca-

ions were available. Future research should evaluate if the same

esults are obtained on global shipment data containing more de-

ailed itineraries. 

cknowledgment 

This research did not receive any specific grant from funding

gencies in the public, commercial, or not-for-profit sectors. We

hank the anonymous reviewers for their helpful comments. 

eferences 

ronson, J. E. , Liang, T.-P. , & Turban, E. (2005). Decision support systems and intelli-
gent systems . Pearson Prentice-Hall . 

ishop, C. M. (1995). Neural networks for pattern recognition . Oxford university press .

amossi, E. , Dimitrova, T. , & Tsois, A. (2012). Detecting anomalous maritime con-
tainer itineraries for anti-fraud and supply chain security. In European intelli-

gence and security informatics conference (eisic) (pp. 76–83). IEEE . 
hahuara, P. , Mazzola, L. , Makridis, M. , Schifanella, C. , Tsois, A. , & Pedone, M. (2014).

Inferring itineraries of containerized cargo through the application of condi-

http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0004


202 R. Triepels et al. / Expert Systems With Applications 99 (2018) 193–202 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K  

K  

N  

N  

 

O  

P  

R  

R  

 

S  

T  

 

 

T  

 

 

V  

V  

 

W  

W

W  

Y  

 

tional random fields. In Ieee joint intelligence and security informatics conference
(jisic) (pp. 137–144). IEEE . 

Cowell, R. G. , Dawid, P. , Lauritzen, S. L. , & Spiegelhalter, D. J. (2006). Probabilistic
networks and expert systems: exact computational methods for bayesian networks .

Springer Science & Business Media . 
Digiampietri, L. A. , Roman, N. T. , Meira, L. A. , Ferreira, C. D. , Kondo, A. A. , Con-

stantino, E. R. , et al. (2008). Uses of artificial intelligence in the brazilian cus-
toms fraud detection system. In Proceedings of the 2008 international confer-

ence on digital government research (pp. 181–187). Digital Government Society

of North America . 
Dimitrova, T. , Tsois, A. , & Camossi, E. (2014). Development of a web-based geograph-

ical information system for interactive visualization and analysis of container
itineraries. International Journal of Computer and Information Technology, 3 (01),

1–8 . 
Dougherty, J. , Kohavi, R. , & Sahami, M. (1995). Supervised and unsupervised dis-

cretization of continuous features. In Machine learning: Proceedings of the twelfth

international conference: 12 (pp. 194–202) . 
Ezawa, K. J. , & Schuermann, T. (1995). Fraud/uncollectible debt detection using a

Bayesian network based learning system: A rare binary outcome with mixed
data structures. In Proceedings of the eleventh conference on uncertainty in artifi-

cial intelligence . In UAI’95 (pp. 157–166) . San Francisco, CA, USA 
Feelders, A. (2012). A new parameter learning method for Bayesian networks with

qualitative influences. arXiv: 1206.5245 . 

Filho, J. J. , & Wainer, J. (2007). Using a hierarchical Bayesian model to handle high
cardinality attributes with relevant interactions in a classification problem. In

International joint conference on artificial intelligence IJCAI (pp. 2504–2509) . 
Fung, R. , & Chang, K.-C. (1989). Weighing and integrating evidence for stochastic

simulation in Bayesian networks. In Proceedings of the fifth conference on uncer-
tainty in artifical intelligence (uai-89) (pp. 475–482) . 

Gordhan, P. (2007). Customs in the 21st century. World Customs Journal, 1 (1), 49–54 .

Hesketh, D. (2010). Weaknesses in the supply chain: Who packed the box. World
Customs Journal, 4 (2), 3–20 . 

Hill, G. N. , & Hill, K. (2009). Nolo’s plain-english law dictionary . Nolo . 
Hua, Z. , Li, S. , & Tao, Z. (2006). A rule-based risk decision-making approach and

its application in China’s customs inspection decision. Journal of the Operational
Research Society, 57 (11), 1313–1322 . 

Kirkos, E. , Spathis, C. , & Manolopoulos, Y. (2007). Data mining techniques for the

detection of fraudulent financial statements. Expert Systems with Applications,
32 (4), 995–1003 . 

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. In International joint conference on artificial intelligence IJ-

CAI: 14 (pp. 1137–1145) . 
oller, D. , & Friedman, N. (2009). Probabilistic graphical models: Principles and tech-
niques . MIT press . 

uhn, M. (2008). Building predictive models in r using the caret package. Journal of
Statistical Software, 28 (1), 1–26 . 

elder, J. A. , & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of
the Royal Statistical Society. Series A (General), 135 (3), 370–384 . 

g, A. , & Jordan, M. (2002). On discriminative vs. generative classifiers: A compar-
ison of logistic regression and naive bayes. In Advances in neural information

processing systems 14 (pp. 841–848) . 

lson, D. L. , & Delen, D. (2008). Advanced data mining techniques . Springer Science
& Business Media . 

earl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible in-
ference . San Francisco, CA, USA: Morgan Kaufmann Publishers Inc . 

 Core Team (2013). R: A language and environment for statistical computing . R Foun-
dation for Statistical ComputingVienna, Austria. 

oos, T. , Wettig, H. , Grünwald, P. , Myllymäki, P. , & Tirri, H. (2005). On discrimina-

tive Bayesian network classifiers and logistic regression. Machine Learning, 59 (3),
267–296 . 

cutari, M. (2010). Learning Bayesian networks with the bnlearn r package. Journal
of Statistical Software, 35 (3), 1–22 . 

aniguchi, M. , Haft, M. , Hollmén, J. , & Tresp, V. (1998). Fraud detection in commu-
nication networks using neural and probabilistic methods. In Proceedings of the

1998 ieee international conference on acoustics, speech and signal processing: 2

(pp. 1241–1244). IEEE . 
riepels, R. , Feelders, A. , & Daniels, H. (2015). Uncovering document fraud in mar-

itime freight transport based on probabilistic classification. In Computer infor-
mation systems and industrial management . In Lecture Notes in Computer Science:

9339 (pp. 282–293). Springer . 
enables, W. N. , & Ripley, B. D. (2002). Modern applied statistics with s (4th ed.).

New York: Springer . 

illa, P. , & Camossi, E. (2011). A description logic approach to discover suspicious
itineraries from maritime container trajectories. In Geospatial semantics . In Lec-

ture Notes in Computer Science: 6631 (pp. 182–199). Springer . 
erbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. In

System modeling and optimization (pp. 762–770). Springer . 
orld Customs Organization (2012). Illicit trade report. 

orld Shipping Council (2004). Trade statistics. http://www.worldshipping.org/

about- the- industry/global- trade/trade-statistics . 
aqin, W. , & Yuming, S. (2010). Classification model based on association rules in

customs risk management application. In International conference on intelligent
system design and engineering application (isdea): 1 (pp. 436–439). IEEE . 

http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0009
http://arxiv.org/abs/1206.5245
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0011
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0011
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0011
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0011
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0019
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0019
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0029
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0030
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0030
http://www.worldshipping.org/about-the-industry/global-trade/trade-statistics
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30008-3/sbref0031

	Data-driven fraud detection in international shipping
	1 Introduction
	2 Related research
	2.1 Trade-based fraud detection
	2.2 Itinerary-based fraud detection
	2.3 Hybrid approach
	2.4 Model features

	3 Detection of document fraud by Bayesian networks
	3.1 Shipping concepts
	3.2 Fraud detection task
	3.3 Estimation of P
	3.4 Bayesian networks66For an extensive treatment of Bayesian networks, see Koller&#x00A0;and Friedman&#x00A0;(2009).
	3.5 A Bayesian network of shipments
	3.6 Derivation of a discriminative model from a Bayesian network
	3.6.1 BSN-LR
	3.6.2 BSN-NN


	4 Experimental setup
	4.1 Shipment data
	4.2 Model implementation
	4.3 Evaluation metrics

	5 Results
	6 Conclusions
	 Acknowledgment
	 References


