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Abstract

Sum-product networks are a relatively new and increasingly popular family
of probabilistic graphical models that allow for marginal inference with poly-
nomial effort. They have been shown to achieve state-of-the-art performance
in several tasks involving density estimation. Sum-product networks are typ-
ically learned from data; as such, inferences produced with them are prone
to be unreliable and overconfident when data is scarce. In this work, we
develop the credal sum-product networks, a generalization of sum-product
networks that uses set-valued parameters. We present algorithms and com-
plexity results for common inference tasks with this class of models. We
also present an approach for assessing the reliability of classifications made
with sum-product networks. We apply this approach on benchmark clas-
sification tasks as well as a new application in predicting the age of stars.
Our experiments show that the use of credal sum-product networks allow
us to distinguish between reliable and unreliable classifications with higher
accuracy than standard approaches based on (precise) probability values.
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1. Introduction

Probabilistic graphical models such as Bayesian networks and Markov
networks allow for the compact specification of uncertain knowledge through
a graphical language that represents variables as nodes and dependences
as graph connectivity [17, 30]. Not only this graphical approach facilitates
knowledge elicitation and communication, but is key to achieving efficient in-
ference. For example, while marginal inference in Bayesian and Markov net-
works is #P-hard [54], networks of low treewidth (roughly meaning that their
graphs resemble trees) admit polynomial-time inference [21, 34]. Moreover,
the most popular approximate inference algorithms are based on passing mes-
sages through the graph structure, and their properties depend heavily on the
graph topology [32, 62, 64]. In spite of that, many event-level independences
are not properly captured by this graphical representation: these are vari-
ously called local structure [9], causal independence [67] and context-specific
independence [6]. For example, consider a Boolean variable X1 defined as
the disjunction of Boolean variables X2 and X3. Knowing that X2 = 1 (or,
alternatively, that X3 = 1) renders X1 independent of X3 (alternatively, of
X2). However, the standard representation as a Bayesian network or Markov
network hides away this independence inside a conditional probability table
or factor.1

Sum-Product Networks (spns) are a relatively new class of (precise) prob-
abilistic graphical models that allow for the explicit representation of context-
specific independence [48]. They have received increasing popularity in ap-
plications of machine learning due to their ability to represent complex and
highly multidimensional distributions while enabling linear time marginal
inference [2, 10, 43, 49, 50, 52, 57, 70] (but see [11] for a discussion on the
complexity of most probable explanation inference). An spn encodes an
arithmetic circuit whose evaluation produces a marginal inference [15, 18, 53].
The internal nodes of an spn perform (weighted) sums and multiplications,
while the leaves represent variable assignments. The sum nodes can be in-

1Despite the fact that such event-level independences are “hidden” in the representa-
tion, they can still be harvested to speed up computations [9, 14, 28, 33, 55, 56, 60, 61].
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terpreted as latent variables, while the product nodes can be interpreted as
encoding (context-specific) probabilistic independences. Thus, spns can be
seen as a class of (very complicated) mixtures of univariate distributions with
tractable inference [27, 46, 69].

In spite of its relative success, and on par with standard probabilistic
graphical models, spns learned from data can generalize poorly on regions
with insufficient statistical support, and produce unreliable and overconfident
conclusions.

Imprecise probability models extend precise probabilistic models to ac-
commodate the representation of incomplete and indeterminate knowledge
[3, 63]. For example, (separately specified) credal networks extend Bayesian
networks by allowing sets of conditional probability measures to be associ-
ated with nodes in lieu of conditional probability measures [12, 13]. This
addition in representation power comes at an increased computational cost
for inferences, and best exact and approximation algorithms can only be used
in small settings [20, 40, 41].

In this work, we seek to robustify spns by developing the Credal Sum-
Product Networks (cspns), a class of imprecise probability models which
extend spns to the imprecise case. A cspn is simply an spn where the weights
associated with sum nodes (i.e., the numerical parameters of the model) are
allowed to vary inside a closed and convex set. Among other things, cspns
can be used to analyze the robustness of conclusions supported by spns.

The rest of this document is organized as follows. We begin by pre-
senting some basic facts about spns in Section 2. Then in Section 3 we
derive polynomial-time algorithms for computing upper and lower bounds
on the marginal (unconditional) probability of an event; we also present
a polynomial-time algorithm for computing upper and lower expectations
when the structure is constrained so that every internal node has at most
one parent. As many learning algorithms produce networks of this type
[27, 53, 59], this result is quite important and useful. We show that per-
forming credal classification (i.e., verifying whether a class value dominates
another value under maximality) is coNP-complete when the number of class
values is unbounded. Since this task can be posed as the computation of a
lower expectation, this result also shows hardness of computing expectation
bounds on arbitrary (multivariate) functions. We show empirically in Sec-
tion 7 that cspns are effective in assessing the reliability to classifications
made with spns learned from data. We perform experiments using bench-
mark datasets from the UCI repository, as well as an application regarding
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the prediction of the age of stars, where data is inherently scarce (due to its
cost) and reliability of results are essential. Finally, we conclude the paper
with a review of our contributions and some ideas for future work in Section
8. This work extends previous work presented at the International Sympo-
sium on Imprecise Probability: Theory and Applications [39] with a more
gently introduction to spns, complete proofs of the theoretical results and
more extensive experimental analysis.

2. Sum-Product Networks

Before formally defining spns, let us define some notation and terminol-
ogy. We write integers in lower case (e.g., i, j, k), and sets of integers using
capital calligraphic letters (e.g., V , E). A collection of random variables in-
dexed by a set V is denoted by XV = {Xi : i ∈ V}. When the index set is
not important, we denote a collection of variables simply by X. There is no
ambiguity since random variables are denoted always with a subscript (e.g.,
X1, Xi). As usual, we write a realization of a collection of random variables
as, for example, XV = xV or XV = z. The set of all realizations of a collection
of random variables XV is denoted as xV ∈ XV , or simply as xV , when clear
from the context (e.g., as in the range of sums).

In this work, we assume that random variables take only on a finite num-
ber of values. This allows us to associate every (finite-valued) random vari-
able Xi taking values in {0, . . . , |Xi| − 1} with a set of indicator variables
{λi,j : j = 0, . . . , |Xi| − 1}, each taking on values 0 and 1. If Xi is binary, we
also write xi (resp., x̄i) to denote λi,1 (resp., λi,0). We denote an arbitrary
specification of the indicator variables associated with random variables XV
as λ. For any realization XV = xV we write λxv to denote the configuration
of indicator variables such that λi,xi = 1 and λi,j = 0 for all j 6= xi. For
reasons that shall become clear later, when the realization mentions only a
subset of all the variables, say XE = e for E ⊂ V , we write λe to denote the
configuration of indicator variables that assigns λi,j = 0 if i ∈ E and ei 6= j
and λi,j = 1 otherwise. That is, λe is the configuration of indicator variables
that is consistent with the realization and assigns 1 to indicator variables
associated to unrealized random variables.

Any discrete probability measure P induced by random variables XV can
be represented as a multilinear polynomial on the corresponding indicator
variables by P (λ) =

∑
xV

P(XV = xV)
∏

i∈V λi,xi . The probability of a re-
alization X = x of the variables can thus be recovered by evaluating the
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polynomial P at λx. For example, a Bernoulli distribution can be written
as P (x, x̄) = P(X = 1)x + P(X = 0)x̄. The probabilities of X = 1 and of
X = 0 are given, respectively, by P (1, 0) and P (0, 1).

An spn is a concise graphical representation of the multilinear polynomial
specifying a (discrete) probability measure [16]. More formally, an spn is a
weighted, rooted and acyclic directed graph where internal nodes are labeled
as either sum or product operations and leaves are associated with indicator
variables. We assume that every indicator variable appears in at most one
leaf node. Every arc from a sum node i to a child j is associated with a
nonnegative weight wij; the remaining arcs have weight one. Given an spn
S and a node i, we denote Si the spn obtained by rooting the network at i,
that is, by discarding any non-descendant of i (other than i itself). We call
Si the subnetwork rooted at i. If w are the weights of an spn S and i is a
node, we denote by wi the weights in the subnetwork Si rooted at i, and by
wi the vector of weights wij associated with arcs from i to its children j.

The value of an spn S at a given configuration λ of its indicator variables,
written S(λ), is defined recursively in terms of its root node i. If i is a leaf
node associated with indicator variable λi,xi then S(λ) = λi,xi . Else, if i is a
product node, then S(λ) =

∏
j S

j(λ), where j ranges over the children of i.

Finally, if i is a sum node then S(λ) =
∑

j wijS
j(λ), where again j ranges

over the children of i. For example, the value of the spn in Figure 1 at the
configuration λ = (x1, x2, x̄1, x̄2) = (1, 0, 0, 1) is 0.15.

The scope of an spn with a single node (hence, a leaf associated with
an indicator variable) is the respective random variable. The scope of an
spn with a root node which is not a leaf is the union of the scopes of the
subnetworks rooted at every child of the root. Figure 1 shows an example of
an spn with scope {X1, X2}, where X1 and X2 are Boolean variables.

Every joint distribution over categorical random variables can be rep-
resented by an spn. In order to ensure that any spn computes a valid
distribution and its marginals, we impose the following properties:2

Completeness: The scopes of children of a sum node are identical;

Decomposition: The scopes of children of a product node are disjoint;

2Poon and Domingos originally required only that spns satisfy completeness and con-
sistency, a seemingly weaker condition than decomposition [48]. Perhaz et al. [47] later
showed that any consistent spn over discrete random variables can be transformed in an
equivalent decomposable and normalized spn with polynomial effort.
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Figure 1: A sum-product network over Boolean random variables X1 and X2.

Normalization: The sum of the weights of arcs leaving a sum node is one.

Under the requirements above, every spn specifies a probability measure
P such that P(X = x) = S(λx). More importantly, a marginal probability
can be computed from an spn by setting all indicator variables of the summed
out variables to one. That is, let E ⊆ V and consider some evidence XE = e.
Then P(XE = e) can be computed as S(λe) [48]. In other words, it follows
that S(λe) =

∑
x∼e S(λx), where the sum is performed over all realizations

X = x that agree with evidence e.
The evaluation of an spn (i.e., the computation of its value) for a given

configuration λ of the indicator variables can be performed by a bottom-up
message propagation scheme where each node sends to its parent its value.
The whole procedure takes linear time and space. Conditional probabilities
can also be obtained in linear time either by evaluating the network at query
and evidence (then dividing the result) or by applying Darwiche’s differential
approach, that propagates messages up and down through the network [16,
46]. Other inferences such as maximum-a-posteriori inference are however
NP-hard to compute or even to approximate [11, 46].

The sum nodes in an spn can be interpreted as hidden (latent) variables
in a mixture model, and the product nodes can be seen as defining context-
specific independences [46, 48]. The number of values of the hidden variable
corresponding with a sum node is the number of outgoing arcs. For example,
the spn in Figure 1 can be interpreted as specifying a mixture distribution
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over observed variables X1, X2, and hidden variables H1, H2, H3, H4, H5. Ac-
cording to the probability measure induced by the network, when conditioned
on H1 = 1, X1 is (probabilistically) dependent on H2 while independent of
H3, H4, H5 and X2; similarly, conditional on H1 = 3, X1 is dependent on
H3 while independent of H2, H4, H5 and X2. This is an example of context-
specific independence being represented by an spn.

Alternatively, an spn can be interpreted as a bilevel bipartite Bayesian
network with an upper layer of latent variables H1, . . . , Hm corresponding to
sum nodes of the spn, and a bottom layer of leaf variables X1, . . . , Xn corre-
sponding to (scopes of) indicator variables. There is an arc Hj → Xi if and
only if Xi is in the scope of the sum node (associated with) Hj. Each variable
Hj has as many values as children, and its (unconditional) probabilities are
specified as the associated weights. The (conditional) probabilities associ-
ated with a node Xi are specified as the weights entering the corresponding
indicator variable (which depend on the value of the respective latent vari-
ables) [69]. Note that a variable Xi can have a large number of parents, so
that obtaining this Bayesian network is usually impracticable.

A range of algorithms have been devised to “learn” spns from data
[1, 22, 23, 27, 35, 44, 45, 51, 53, 59]. Most learning algorithms employ a
greedy search on the space of spns augmenting an spn in either a top-
down or bottom-up fashion. For instance, Gens and Domingos’s algorithm
starts with a single node representing the entire dataset, and recursively adds
product and sum nodes that divide the dataset into smaller datasets until a
stopping criterion is met [27]. Product nodes are created using group-wise
independence tests, while sum nodes are created performing clustering on
the row instances. The weights associated with sum nodes are learned as the
proportion of instances assigned to a cluster. Alternatively, a fixed structure
can be specified (e.g., a random structure), and the weights can be learned
to optimize the data log-likelihood, for example, by gradient-based methods
or by Expectation-Maximization [26, 46, 48].

3. Credal Sum-Product Networks

Recall that in this work we consider only spns that are complete, decom-
posable and normalized. Let Sw denote an spn whose weights are w. We can
investigate the robustness of the network to perturbations in the parameters
(or analogously, to the data from which the parameters were learned) by
varying the weights w inside some fixed space, subject to the constraint that
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Figure 2: A credal sum-product network over variables X1 and X2.

they still define a (normalized) spn. To this aim, we define a Credal Sum-
Product Network (cspn) as a set {Sw : w ∈ C}, where C is the Cartesian
product of probability simplexes, and each probability simplex constrains
only the weights associated with a single sum node. It is clear that an spn
is a cspn where weights take values in a singleton C, and that every choice
of weights w inside C specifies an spn. Since each spn induces a probability
measure, the cspn induces a credal set, that is, a (not necessarily convex)
set of probability measures [36].

For any real value 0 ≤ ε ≤ 1, the ε-contamination of a vector u is given
by

Cu,ε =

{
(1− ε)u+ εv : vj ≥ 0,

∑
j

vj = 1

}
. (1)

For example, if u = (u1, 1 − u1) is a point in the one dimensional simplex,
then ε-contamination of u is given by Cu,ε = {(w1, 1− w1) ≥ 0 : (1− ε)u1 ≤
w1 ≤ (1 − ε)u1 + ε}. The simplest form of obtaining a cspn out of a spn
is by independently ε-contaminating each vector of local weights associated
with sum nodes. Figure 2 shows a cspn obtained by ε-contamination of the
spn in Figure 1, with ε = 0.1.

Just as with spns, the sum nodes in an cspn can be interpreted as latent
variables, so that the whole model can be seen as a set of mixture models.
Alternatively, we can interpret sum nodes as the latent variables in a bipartite
credal network whose leaves are the observable variables. This network is
obtained exactly as the Bayesian network for spns, except that conditional
probability distributions are replaced by conditional credal sets. Note that
credal networks obtained in this way form a very special case (and as before
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the conversion is usually computationally expensive).

4. Likelihood

The simplest robustness analysis that one can perform with cspns is
arguably to compute the minimum and maximum values obtained by an in-
duced spn for a given value λ of the indicator variables: minw Sw(λ) and
maxw Sw(λ) subject to w ∈ C. For the sake of readability, we often omit the
constraint on the weights when they are optimized; these should always be
considered constrained in the appropriate space. When λe is consistent with
some realization XE = e, this computation corresponds to computing the
lower/upper likelihood of evidence optwPw(XE = e) with opt ∈ {min,max}.
In any case, the computation of minimum and maximum values can be per-
formed in much the same way as the computation of marginal probabilities
in spns, with the additional extra effort of solving a linear program at each
sum node. That is, visit nodes in reverse topological ordering, evaluating
the corresponding expressions based on the type of node. So let Li(λ) be the
value computed by the algorithm for node i with children (if any) indexed
by j. Then,

Li(λ) =


λi,x if i is a leaf with indicator variable λi,x,∏

j L
j(λ) if i is a product node,

minwi∈Ci
∑

j wijL
j(λ) if i is a sum node.

To see why the above procedure finds the correct value, first consider the
simpler case of a tree-shaped cspn {Sw : w ∈ C} with root i. Since the
structure is a tree, the subnetworks S1, . . . , Sk rooted at the children of node
i do not share any weights with each other. Hence, we have that

min
w∈C

Sw(λ) = min
wi

k∑
j=1

wij min
wj

Sjwj
(λ)

when i is a sum node, and

min
w∈C

Sw(λ) =
k∏
j=1

min
wj

Sjwj
(λ)

when i is a product node. In either case, the problem of computing the
minimum or maximum of a value λ decomposes into the smaller equivalent
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problems of computing minwj
Sjwj

(λ) for each child j of i. A much similar
argument applies to cspns with cycles; simply break the cycles by duplicating
nodes until the structure is a tree, and perform optimizations from the leaves
toward the root. Every duplicated network receives the same values from the
(duplicated) children; thus the optimizations are the same whether we “tie”
the weights of identical parts or not. A more formal argument is given next.

Theorem 1. Consider a cspn {Sw : w ∈ C}, where C is the Cartesian prod-
uct of finitely-generated polytopes Ci, one for each sum node i. Computing
minw Sw(λ) and maxw Sw(λ) takes O(|S|C) time, where |S| is the number
of nodes and arcs in the network, and C is an upper bound on the cost of
solving a linear program of the form minwi

∑
j cijwij subject to wi ∈ Ci.

Proof. Consider the computation of minw Sw(λ) (the case for max is analo-
gous). We will derive an algorithm that solves the problem by propagating
messages upward in time O(|S|C). Write L(λ) to denote the value computed
by this algorithm for a cspn {Sw : w ∈ C}, that is, the value of Lr(λ) where
r is the root of the network S. Start at the leaves; there are no weights asso-
ciated, so these nodes simply propagate the value of the associated indicator
variable in λ as in spns. Now consider an internal node i. If i is a product
node, then propagate Li(λ) =

∏
j L

j(λ), where j ranges over the children of

i. Otherwise, suppose i is a sum node, and propagate minwi

∑
j wijL

j(λ).
Note that this denotes a linear program of the form minwi

∑
j cijwij subject

to wi ∈ Ci, where Ci is a finitely-generated polytope.
To prove that the algorithm is correct, we first show that minw Sw(λ) ≥

L(λ) by induction on the height h of S. The base case for h = 0 is immediate.
Assume that the result holds for networks of height h ≥ 0 or smaller, and
consider a network of height h+ 1 whose root is i. If i is a sum node, then

min
w

∑
j

wijS
j
wj

(λ) ≥ min
wi

∑
j

wij min
wj

Sjwj
(λ) ≥ min

wi

∑
j

wijL
j(λ) = Li(λ) ,

where j ranges over the children of i. Similarly, we can show that if i is a
product node then

min
w

∏
j

Sjwj
(λ) ≥

∏
j

min
wi

Sjwj
(λ) ≥

∏
j

Lj(λ) = Li(λ) .

The value computed by the algorithm is also an upper bound on minw Sw(λ),
since every sum node i selects weights wi ∈ Ci, and the propagated value is
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the value of the corresponding spn. Thus L(λ) = minw Sw(λ). If we cache
the values of each node during propagation, then computing the value of a
node takes at most time O(kC), where k is the number of nodes and arcs in
the spn rooted at that node. Hence the total cost of this computation takes
time O(|S|C).

Since linear programs can be solved in polynomial time, the upper and
lower bounds can be computed in time polynomial in the size of the input
(which includes a description for the local polytopes). This leads to the
following result:

Corollary 1. Computing minw Sw(λ) and maxw Sw(λ) takes at most polyno-
mial time in cspns specified by finitely-generated polytopes. If local polytopes
Ci are specified by (finitely many) constraints of the form lij ≤ wij ≤ uij for
reals lij ≤ uij, then the problem can be solved in time O(|S|2 log |S|).

Proof. When local polytopes take the form lij ≤ wij ≤ uij, then the local
optimizations minwi

∑
j wijL

j(λ) are equivalent to fractional knapsack prob-
lems [31], which can be solved in time O(k log k), where k is the number of
children of node i. The overall running time is thus O(|S| · |S| log |S|).

In fact, O(|S|2 log |S|) is usually a very loose bound if the network has a
small number of children per node.

5. Conditional Expectations

A more sophisticated analysis one can carry out with cspns is to obtain
upper and lower bounds minw Ew(f |XE = e) and maxw Ew(f |XE = e) on
the expected value of some function f of X, conditional on evidence XE = e.
Recall that each choice of the weights w of a cspn {Sw : w ∈ C} defines an
spn and hence induces a probability measure Pw. We can therefore use the
cspn to compute bounds on the conditional expectations of a function:

min
w

Ew(f |XE = e) = min
w

∑
x

f(x)Pw(X = x|XE = e) . (2)

The equations above are only defined if minw P(XE = e) > 0. We will as-
sume here that if this is not the case then the computation fails with some
arbitrary value being returned. Note that as explained in Section 4, verify-
ing whether minw P(XE = e) = 0 takes polynomial time. Note also that we
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can focus on the computation of the lower expectation, as the upper expec-
tation can be obtained from maxw Ew(f |e) = −minw Ew(−f |e). Provided
that minw Pw(XE = e) > 0, computing the lower conditional expectation in
Equation (2) is equivalent to finding the unique value of µ that solves the
equation:

min
w

∑
x∼e

[f(x)− µ]Sw(λx) = 0 , (3)

where the sum is performed only over assignments x that agree with the
evidence e. It turns out that computing such type of inference is intractable
(under the common assumptions in complexity theory):

Theorem 2. Assuming that f is encoded succinctly (e.g., sparsely by its
non-zero terms only), computing lower/upper conditional expectations of f
in cspns is NP-hard.

We defer the proof to Section 6, where we address the case of credal classi-
fication (that can be posed as the computation of a conditional expectation).
The requirement of a succinct representation for f is necessary because an
exponentially large input would give too much power to any algorithm (since
polynomial time in the input would allow exponential time computations
with respect to the network size).

While the general case is NP-hard, there is a polynomial-time algorithm
to compute lower conditional expectations when the network obtained by
discarding the leaves is a tree and f : Xq → Q is a univariate function of a
random variable Xq (q 6∈ E). This type of network topology is particularly
common, since it is generated by the most popular family of spn structure
learning algorithms [27, 53, 59]. The algorithm performs a binary search for
the value of µ that solves Equation (3). For each step of the binary search,
the algorithm traverses the network from the leaves towards the root, and

computes the values V i(λ) and V
i
(λ) for each node i as follows. If i is a leaf

node associated with indicator variable λi,j, then

V i(λ) = V
i
(λ) =

{
λi,j if j 6= q ,

f(j)− µ if j = q .
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If i is a product node then

V i(λ) =



∏
j V

j(λ) if Xq is not in the scope of i, or if Xq is

in the scope of both i and its child k

and V k(λ) ≥ 0 ,

V k(λ)
∏

j 6=k V
j
(λ) if Xq is in the scope of i and child k,

and V k(λ) < 0 ;

and

V
i
(λ) =



∏
j V

j
(λ) if Xq is not in the scope of i, or if Xq is

in the scope of both i and its child k

and V
k
(λ) ≥ 0 ,

V
k
(λ)
∏

j 6=k V
j(λ) if Xq is in the scope of i and child k,

and V
k
(λ) < 0 .

Finally, if i is a sum node then

V i(λ) = min
wi∈Ci

∑
j

wijV
j(λ) and V

i
(λ) = max

wi∈Ci

∑
j

wijV
j
(λ) .

The soundness of this algorithm leads to the following result:

Theorem 3. Computing lower and upper conditional expectations of a uni-
variate (rational-valued) function in cspns takes at most polynomial time
when each internal node has at most one parent.

Proof. As before, let λe be the assignment of indicator variables that is consis-
tent with evidence. By Theorem 1, we can efficiently compute maxw Sw(λe) =
maxw Pw(XE = e) and minw Sw(λe) = minw Pw(XE = e), and decide what to
return in case any of these is zero. So assume that minw Pw(XE = e) > 0, and
let gµ(xq) = f(xq) − µ. By Equation (3), the lower conditional expectation
of f is the unique µ such that

min
w

∑
x∼e

gµ(xq)Sw(λx) = min
w

∑
xq

gµ(xq)Sw(λxq ,e) = 0 ,

where λxq ,e denotes the configuration of the indicator variables that is con-
sistent with both xq and e. Since all numbers in the cspn and in f are
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(by assumption) rational, if we can compute minw

∑
xq
gµ(xq)Sw(λxq ,e) effi-

ciently, then we can also compute µ efficiently by performing a binary search
in the interval [minxq f(xq),maxxq f(xq)]. So consider a fixed rational µ, and
a cspn whose internal nodes have at most one parent. Call the root of the
network 0, and let 1, . . . , k denote the children of the root node. We prove
the correctness of the algorithm by induction on the height of the network.
That is, assume that for height h ≥ 0, we have that

V 0(λe) = min
w

∑
xq

gµ(xq)Sw(λxq ,e) and V
0
(λe) = max

w

∑
xq

gµ(xq)Sw(λxq ,e) ,

if Xq is in the scope of 0, else

V 0(λe) = min
w

Sw(λe) and V
0
(λe) = max

w
Sw(λe) .

Assume also (without loss of generality) that if Xq is in the scope of 0 and 0
is a product node, then only node 1 has also Xq in its scope. If 0 is a product
node (of height h+ 1) then, because the scopes of children of product nodes
are disjoint, we have that

min
w

∑
xq

gµ(xq)Sw(λxq ,e) = min
w

∑
xq

gµ(xq)S
1
w1

(λxq ,e)

 k∏
j=2

Sjwj
(λe) ,

which equalsmin
w1

∑
xq

gµ(xq)S
1
w1

(λxq ,e)

 k∏
j=2

min
wj

Sjwj
(λe) = V 1(λe)

k∏
j=2

V j(λe)

when V 1(λe) = minw1

∑
xq
gµ(xq)S

1
w1

(λxq ,e) ≥ 0 (where we have used the

inductive hypothesis), and equalsmin
w1

∑
xq

gµ(xq)S
1
w1

(λxq ,e)

 k∏
j=2

max
wj

Sjwj
(λe) = V 1(λe)

k∏
j=2

V
j
(λe) ,

if V 1(λe) = minw1

∑
xq
gµ(xq)S

1
w1

(λxq ,e) < 0. If node 0 is a sum node (of

height h + 1) with Xq in its scope, then because the internal graph of the
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cspn is a tree,

min
w

∑
xq

gµ(xq)Sw(λxq ,e) = min
w0

k∑
j=1

w0j min
wj

∑
xq

gµ(xq)S
j
wj

(λxq ,e) ,

which by the inductive hypothesis

= min
w0

k∑
j=1

w0jV
j(λe) .

If Xq is not in its scope, then the inductive step is trivial. The base case for
h = 0 is obtained when 0 is a leaf node associated with indicator variable
λj,xj . Then,

min
w

∑
xq

gµ(xq)Sw(λxq) = f(xq)− µ = V 0(λ) ,

if Xq is in the scope of 0 (i.e., j = q), and otherwise

min
w

Sw(λe) = λej,xj = V 0(λe) = V
0
(λe) .

All these computations can be performed in polynomial time by scheduling
computations so that children are computed before their parents.

Note that the values of V
i
(λ) need only be computed for nodes that do not

contain Xq in its scope, and that in this case they equal the values produced
by the upper likelihood algorithm (left implicitly in Section 4).

6. Credal Classification

One of the most frequent uses of spns is in building probabilistic classi-
fiers, that is, in estimating a probability distribution over class and attribute
values, which can then be used to classify objects into classes by maximiz-
ing the class conditional probability. For example, Poon and Domingos [48]
learned spns to predict the missing pixels of an image. Amer and Todorovic
[2] used spns to classify video snippets according to actions being performed.
Villanueva and Mauá [38] learned spns for multi-label classification (when
an object can be assigned to several class labels).
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In order to obtain more robust classifiers, we can replace spns with cspns.
However, since cspns define not a single but a set of probability measures,
there is no clear criterion to issue a classification. Many criteria have been
devised for decision making with imprecise probability models; examples
include interval dominance, maximality, e-admissibility and maximin [29].
Here we adopt a very popular criterion, based on the principle of maximality,
often called credal classification in the context of probabilistic classifiers [65].
We leave the study of robustness analysis under other criteria for future work.

Given a distinguished set of class variables XC, evidence XE = e, and a
set of probability measuresM, we say that an assignment c1 for XC credally
dominates another assignment c2 if [65]

min
P∈M

[
P(XC = c1, XE = e)− P(XC = c2, XE = e)

]
> 0 .

To put it differently, class c1 credally dominates class c2 if P(XC = c1|XE =
e) > P(XC = c2|XE = e) for all P ∈M where these conditional probabilities
are defined.3 Note that a class is defined as an assignment of a possibly multi-
dimensional vector of class variables (so that in our definition the standard
single-label classification is a special case).

In the setting of cspns, credal dominance amounts to establishing whether

min
w

[
Sw(λc1,e)− Sw(λc2,e)

]
> 0 , (4)

for any two given classes c1 and c2, and evidence e. The following two results
establish the complexity of this task:

Theorem 4. Deciding if a class c1 credally dominates a class c2 is in coNP.

Proof. To prove membership, consider the complementary problem of decid-
ing if

min
w

[Sw(λc1,e)− Sw(λc2,e)] ≤ 0 .

If the inequality above is true, then there is a polynomial certificate w for
which Sw(λc1,e) − Sw(λc2,e) ≤ 0. Since we can compute this difference in
polynomial time, the problem is in NP. Membership in coNP follows by
noticing that class c1 credally dominates c2 if and only if the inequality above
is false.

3If minw P(XE = e) = 0, then no class credally dominates another class.
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Theorem 5. Deciding if a class c1 credally dominates a class c2 is coNP-
hard.

The proof of the above result is obtained by a polynomial-time reduction
from the partition problem: given a list of positive integers, determine if
there is a partition into two sets with equal sum. The reduction consists
in encoding any instance of partition as the minimization of a multilinear
function over the weights of the network, where each weight takes either value
0 or 1 corresponding to the inclusion of a certain integer in the first or in the
second set of the partition. The multilinear function, obtained as the result
of a credal dominance query, is convex with respect to the difference of the
sums of the partitions, and attains its minimum value of zero if and only if
the corresponding partition problem has a solution. We postpone the full
proof until the Appendix, as it is lengthy and rather technical.

Credal classification usually consists in finding all non-dominated classes.
As the previous result shows, if the number of classes is unbounded (as in
multilabel classification tasks), computing the set of non-dominated classes
is coNP-hard. When the number of classes is small, we can perform credal
classification by deciding Equation (4) for every pair of classes. The next
result shows that when the number of classes is bounded and the network
topology is constrained, credal classification can be achieved efficiently:

Theorem 6. Credal classification (i.e., computing the set of non-dominated
classes) can be done in polynomial time in cspns when each internal node
has at most one parent and the number of classes in bounded.

Proof. Credal classification can be cast as the decision of

max
w

∑
λ

f(λ)Sw(λ) > 0 ,

where f(λ) = 1 if λ = λc1,e, f(λ) = −1 if λ = λc2,e and f(λ) = 0 otherwise.
This equation describes the computation of an expectation, hence the result
follows from Theorem 3.

7. Assessing Robustness of Classifications

In many real applications of classifiers, practitioners are often interested
in a confidence estimate of each classification being issued; this can be used
for instance to motivate additional data gathering, to resort to alternative
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methods, or simply to suspend judgment and prevent possible catastrophic
failures. When using probabilistic classifiers, a commonly adopted approach
is to measure the difference between the probability of the most probable and
the second most probable class labels. Large differences are used to support
a “confident classification”, while small differences can support alternative
behavior. This approach however cannot distinguish between aleatory un-
certainty – that is, when the data supports the thesis that the respective
instance is associated with more than a single class with high probability –
and vagueness – that is, when there is no sufficient statistical support for
issuing a classification.

Following the ideas from De Bock et al. [19], we now provide an alter-
native, arguably more principled, approach to measure the robustness of
classifications made with spn-based classifiers using cspns. So assume an
spn has been learned from data, and used to issue a classification based on
the maximum probability class label. Given a value ε > 0, we say that a clas-
sification is ε-robust if the respective class label is not credally dominated by
any other class label in the cspn obtained by ε-contamination of the spn. We
define the robustness of a classification as the largest value of ε for which the
maximum probability class is robust.4 Intuitively, robustness measures the
amount of perturbation that would be necessary to cause the spn to change
its current classification. Note that the same value for robustness would be
obtained if we used e-admissibility in lieu of credal dominance [19]. Accord-
ing to Theorem 6, when the number of classes is bounded and the internal
graph of the spn is a tree, we can determine whether the classification is
robust in polynomial time; thus we can perform a linear search to find the
robustness value in polynomial time.

In the rest of this section, we present empirical results showing that ro-
bustness provides a better estimate of classification accuracy than the differ-
ence of probabilities for spn-based classifiers.

7.1. Benchmark Datasets

We first evaluate the ability of using robustness to predict the accuracy
of classifications in a collection of benchmark datasets from the UCI Machine
Learning Repository [37]. Table 1 contains the characteristics of the datasets
used.

4De Bock et al. [19] have termed this value the critical perturbation threshold; we prefer
the smaller and easier to remember name of robustness.
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Data Sum Product Networks
Dataset Instances Features Classes Nodes Sum Prod Height

Cars 1728 6 4 74 7 8 8
Chess 28056 6 18 3416 187 186 19
Connect4 67557 42 3 42120 105 104 42
Flare 1389 12 3 141 22 21 8
Mushrooms 8416 22 2 1224 40 39 22
Nursery 12960 8 5 885 39 38 19

Table 1: Left: Characteristics of the datasets used in the experiments. Right: Character-
istics of the learned spns using the corresponding datasets (these are median values over
all the experiment repetitions): Number of nodes, sum nodes, product nodes and height.

For each dataset, we run the experiment as follows. We randomly select
10% of the data for testing and use the remaining 90% for training. An spn
is then learned by the LearnSPN algorithm [27] using the training data, and
a robustness value is computed for each testing instance (this is performed by
generating a cspn by ε-contamination from increasingly larger values of ε into
small discrete steps until the most probable class is not robust). Note that
LearnSPN learns networks whose internal nodes have at most one parent,
hence satisfying the conditions of Theorem 6. This procedure is repeated 30
times for each dataset and averages are presented. Only robustness values
with at least 10 instances below that value are displayed (this is the reason
why some curves do not start at zero).

To verify if robustness distinguishes between accurate and inaccurate pre-
dictions, we computed the mean and standard deviation of the distributions
of the robustness values grouped according to correct and incorrect classifi-
cations. The results are shown in Table 2. We then performed a Wilcoxon
rank-sum test to verify if the difference in the groups is statistically signif-
icant (i.e., whether the chance of a value of a group being greater than the
value of the other group is 1/2 or not). All results are significant (i.e., very
small p-values), except for the Flare dataset, where the differences in each
group are approximately the same, and standard deviation is relatively high.
As we will see from the following experiments, assessing reliability in this
dataset is particularly difficult. For comparison, we also applied the same
analysis for the difference between the probability of the most probable and
second most probable classes. The results are in Table 3. All differences are
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Correct Incorrect Rank-sum
Dataset Mean ± Std.dev. Mean ± Std.dev. P-value

Cars 0.08± 0.04 0.02± 0.02 ≈ 0
Chess 0.01± 0.01 0.01± 0.01 ≈ 0
Connect4 0.03± 0.02 0.02± 0.01 ≈ 0
Flare 0.46± 0.07 0.48± 0.06 0.994
Mushrooms 0.21± 0.05 0.04± 0.08 5 · 10−5

Nursery 0.04± 0.02 0.02± 0.02 ≈ 0

Table 2: Mean and standard deviation for the distribution of robustness values grouped
by correctly and incorrectly classifications. The last-column informs the p-values for a
Wilcoxon rank-sum test.

Correct Incorrect Rank-sum
Dataset Mean ± Std.dev. Mean ± Std.dev. P-value

Cars 0.67± 0.29 0.22± 0.16 ≈ 0
Chess 0.16± 0.13 0.10± 0.10 ≈ 0
Connect4 0.54± 0.21 0.35± 0.21 ≈ 0
Flare 0.98± 0.02 0.96± 0.04 8 · 10−5

Mushrooms 0.98± 0.04 0.33± 0.21 5 · 10−7

Nursery 0.62± 0.25 0.28± 0.22 ≈ 0

Table 3: Mean and standard deviation for the distribution of the difference between the
probability of the most probable and the second most probable classes, grouped by cor-
rectly and incorrectly classifications. The last-column informs the p-values for a Wilcoxon
rank-sum test.

statistically significant (even for the Flare dataset).
We then compared the ability to predict accuracy as a function of the

robustness value. The curves in Figure 3 show the accuracy (no. of cor-
rectly classified instances/no. of instances) of the spn for instances whose
robustness is at most a given value (x-axis). The same idea is applied to
create the curves of Figure 4, but instead of the robustness value produced
by the cspn, the difference between the probability of most probable and
second most probable classes is used (so the curve shows the accuracy over
the instances that have at most that given difference). The values for ro-
bustness and probability difference have been normalized (i.e., subtracted
from the minimum and divided by its amplitude) to allow for comparison
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Figure 3: Relation of robustness and accuracy: each point shows the average accuracy of
instances that have up to the given robustness.

across datasets. Arguably, the curves obtained with the robustness value are
superior to those using the difference in probability in predicting accuracy.

We also computed the determinacy versus the threshold of each approach,
that is, the proportion of classifications considered unreliable by each method.
The results appear in Figures 5 and 6. Overall, robustness is more deter-
minate than probability difference. This is particular so for the datasets
Mushrooms and Flare, where using probability difference leads to consider
nearly all instances as robust. Recall that robustness values were not able
to distinguish accurate and inaccurate instance in the Flare dataset. Note
that the correlation of probability difference and accuracy is worse exactly in
these datasets. Robustness fairs much better than probability difference in
the Mushrooms dataset according to both determinacy and correlation with
accuracy. The Flare dataset is particularly challenging. Both methods are
highly indeterminate and correlate weakly with accuracy.

It is difficult to use the previous results to directly compare the abil-
ity to assess the reliability of classifications of both approaches, since they
use different scales. In order to have a direct and more quantitative mea-
sure of the relative performance of both approaches, we employed a betting
scheme where either robustness or probability difference were used to decided
whether or not to enter a bet that rewards the number of classes if the in-
stance is correctly classified by the spn-based classifier and zero otherwise.
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Figure 4: Relation between difference in probability of the best minus second best class
and accuracy: each point shows the accuracy over all instances that have up to that given
value in difference.
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Figure 5: Proportion of instances with robustness less than given threshold.
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Figure 6: Proportion of instances with probability difference less than given threshold.

A similar scheme has been proposed by Zaffalon et al. [66] to evaluate credal
classifiers (i.e., classifiers that can output multiple classes to indicate inde-
terminacy). We slightly deviate from their approach as our goal here is not
to output a credal classification (i.e., a set of non-dominated classes), but to
distinguish between reliable and unreliable classifications. Table 4 shows the
performance of the different betting strategies. The total profit and number
of bets accepted by each method is given in the respective columns Profit
and Bets. Since we wanted to remain agnostic to the data, we set thresholds
for betting based on the interpretation of each method. For the robustness-
based strategy, we adopted a threshold of 5% corresponding to robustness in
betting when the parameters are subject to an at most 5% perturbation. For
probability difference, we adopted a threshold similar to the uniform class dis-
tribution (i.e., one over the number of classes). We have tested with slightly
different thresholds (e.g., 1% and 10% for robustness and one over twice the
number of classes for probability difference) and the results were qualita-
tively the same. For the sake of clarity of presentation we do not present the
results for the alternative thresholds. For each dataset, the winning strategy
(i.e., the one with higher profits) are highlighted in bold. We see from these
results that using a threshold-based strategy based on robustness obtained
higher or equal profits than either the threshold-based strategy using proba-
bility difference and the always bet strategy on all datasets but Nursery. For
the Nursery dataset, the strategy based on probability difference obtained a
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Robustness > 0.05 Prob. Diff. > 1/C Always Bet
Dataset Profit Bets (%) Profit Bets (%) Profit

Cars 98.1 60.5 90.3 78.1 79.4
Chess 353.7 0.2 214.7 64.7 179.0
Connect4 59.3 11.9 47.0 73.2 38.9
Flare 66.3 100.0 66.3 100.0 66.3
Mushrooms 33.4 99.8 33.4 99.9 33.3
Nursery 125.2 28.8 125.3 88.4 119.4

Table 4: Results of the betting scheme comparison for different strategies. Profit is the
total profit of each classifier, Bets is the proportion of bets accepted by each method, and
C is the number of classes.

slightly higher profit with a much higher number of bets, while one might
prefer to bet fewer to reach the (almost) same profit. In fact, the threshold-
based strategy using probability difference accepted a much higher number
of bets in nearly all datasets, suggesting that robustness is a more cautious
approach.

We have also tested with a slightly different configuration, where gamblers
can bet proportional to the probability of the most probable classification.
The conclusions were essentially the same and are omitted here.

7.2. Ages of Stars

We also evaluate the use of cspns to establish robustness of classifications
in the more involved task of predicting stellar age based on stellar spectra
features.

Accurately determining the age of a star, for example by asteroseismol-
ogy, is a time consuming process which takes typically more than a month of
(usually) space-based observations [8]. Stellar age can instead be estimated
more quickly but less accurately using more easily acquired data such as stel-
lar high-resolution spectra. By establishing the reliability of age predictions
based on stellar spectra, we can thus guide the collection of more costly data
and improve the effectiveness of stellar age determination.

We repeat the same methodology used in the previous experiments with
a dataset of 102 stars (instances) taken from a previous study [7]. The
stellar spectra have been recorded via observations using the NARVAL [4]
and ESPaDOnS [24] spectrographs as appropriate for each star, and the ages
of the stars have been determined through the work of the Kepler mission [5].
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Figure 7: Absorption lines in stellar spectrum from 6020 to 6030 Ångström.

To simplify the task, we discretize the ages into young and old by the median
age value (thus, the age labels are uniformly distributed in the dataset, that
is, 50% of stars are labeled young/old).

After standard pre-processing to align the spectra, the software ARES
(Automatic Routine for line Equivalent widths in stellar Spectra) [58] was
used to locate and measure sets of commonly found absorption lines for each
star. Absorption lines, visible as steep decreases in the spectrum, give infor-
mation about trace elements in the stellar atmosphere and other properties
such as the atmospheric temperature and pressure. Figure 7 depicts and
example of a fragment of a stellar spectrum with three clear absorption lines.

We use the equivalent width or area of each absorption line found in a
star’s spectrum to produce a vector of 4947 features for each star [58]. The
features were selected because of their importance – their wavelengths can
be predicted from atomic physics. Each feature was then discretized into
four quartiles (so our resulting dataset contains 4947 discrete features and a
binary class).

The spn learned from (the training dataset portion) had in median 17266
nodes, of which 38 were sum nodes and 39 were product nodes; the median
height of the networks was 11. The spn-based classifier achieves an accuracy
of 67%, which is comparable to previous results using this dataset and differ-
ent classifiers. The relatively low accuracy suggests that even distinguishing
between young and old stars is already a difficult problem.
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Figure 8: Accuracy against maximum robustness value and maximum difference between
the probability of most probable and second most probable classes.

We compare robustness as defined previously and the difference in proba-
bility of the most probable and the second most probable classes in predicting
accuracy of a classification (i.e., labeling a star as either young or old). The
result is shown in Figure 8. As can be seen from the plots, there is a much
stronger correlation of small robustness value and low accuracy than a small
difference between best and second best probabilities. Higher values of ro-
bustness on the other end of the scale did not display a clear correlation with
accuracy, and this also the case with the probability difference. This might
be justified by the particular composition of dataset not having enough in-
stances beyond a certain threshold to make a fair conclusion. As we see in
the figure, the relation of robustness and accuracy is monotonic, while the
relation of the difference in probabilities and accuracy is not, which also indi-
cates that the former is a better estimate of classification accuracy than the
latter. For this dataset, robustness values on instances that were correctly
classified have mean 0.05 with standard deviation 0.04, while mean is 0.04
with the same standard deviation for incorrectly classified instances. In spite
of that, the Wilcoxon rank-sum test produces a p-value of 7 ·10−5, indicating
a strong difference between the two groups. The same is not observed with
the probability difference, which has mean 0.37 (standard deviation 0.19)
for correctly classified instances and mean 0.34 (standard deviation 0.22) for
incorrectly classified instances, and p-value 0.151 for the same test (hence
not as significant a difference between correctly and incorrectly classified
instances).

We also used the betting scheme to compare the different approaches. The
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strategy to bet only if robustness is greater than 0.05 obtains a gain of 20.0
and participates in approximately 37.3% of the instances (gambles), while the
strategy to bet only if the probability difference is higher than 0.5 obtains
a gain of 11.0 and participates in 21.7% of the gambles. For comparison,
taking all bets leads to a total gain of 11.8. Unlike the experiments with
datasets from UCI, the robustness-based threshold for this data was able to
obtain a higher gain participating in a higher number of bets. This might
be caused by the high dimensionality of the problem relative to the dataset
size (4947/150), suggesting that robustness is particularly more effective than
probability difference in situations of severe scarceness of data (which is after
all our main motivation here).

8. Conclusion

Sum-product networks are tractable probabilistic graphical models that
have shown competitive results in many machine learning tasks. As with
other probabilistic models, conclusions draw from sum-product networks are
often sensitive to small perturbations in the numerical parameters, indicating
lack of statistical support. In this work we developed the credal sum-product
networks, a new class of imprecise probabilistic graphical models that ex-
tend sum-product networks to accommodate imprecision in the numerical
parameters. We described algorithms and complexity results for common in-
ference tasks such as computing upper and lower bounds on the probability
of evidence, computing conditional expectations and performing credal clas-
sification. We performed experiments that showed that credal sum-product
networks can distinguish between reliable and unreliable classifications of
sum-product networks, thus providing an important tool for the analysis of
such models. We also showed in a realistic task of predicting star age how
credal sum-product networks can improve classification accuracy.

There are many open questions. We showed that verifying maximality
is coNP-hard when the query involves multiple variables, but the problem
admits an efficient solution if the internal nodes have at most one parent
and the test is over a single variable. In fact, we presented a polynomial-
time algorithm for computing conditional expectations in networks of that
structure, which subsumes maximality. There remains to establish the com-
plexity of verifying maximality and computing conditional expectations for
single variables in general structures, and for multiple variables in tree-shaped
networks.
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Of course, there are other type of inferences that we have not addressed
here. For example, one might be interested in obtaining bounds for the
likelihood of a dataset induced by a credal sum-product network. This might
be used to select more robust structures during learning from data. One
might also be interested in obtaining the most likely configuration (given
some evidence) under the most pessimistic scenario (i.e., following a maximin
strategy).

We have only considered discrete random variables. Sum-product net-
works have already been extended to allow for continuous random variables
[27]. In principle, we could extend the current framework to cope with con-
tinuous variables if we assumed that imprecision only appears on weights,
so that precise densities are associated with the leaves. Exploiting such a
strategy is left for the future.

Our experiments here, however promising, are still preliminary. In the
future, we intend to perform a more thorough examination of the credal
sum-product networks applied to robust analysis of sum-product networks.

Finally, an alternative to the imprecise probabilistic approach taken here
would be to adopt a full Bayesian approach, by integrating out the numerical
parameters (weights) given a suitable prior distribution [68]. This creates an
undesired dependency on the choice of prior distribution. In fact, one could
argue that our approach consists in a sensitivity analysis of the Bayesian
approach, one that is more robust to the specification of priors. It remains
as future work an empirical comparison with a Bayesian approach.
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Appendix A. Proof of coNP-hardness of credal classification

We now present the proof of coNP-hardness of credal classification, stated
in Section 6.

Proof of Theorem 5. We prove hardness by a reduction from the NP-hard
problem partition: Given a set of positive integers z1, . . . , zn, decide if
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there is a set S ⊆ {1, . . . , n} such that
∑

i∈S zi =
∑

i 6∈S zi. First note that
we can scale the integers to become rationals in the unit interval without
affecting the complexity of the problem. So let vi = 2zi/z, where z =

∑
i zi.

Then set S solves the original problem if and only if
∑

i∈S vi = 1.
The strategy of the reduction is to encode an instance of partition as

the minimization of a multilinear function over the weights of the network,
where each weight corresponds to a choice of selecting or not an integer zi
to be part of the set S. The multilinear function, obtained as the result of a
credal dominance query, is convex with respect to the quantity

∑
i∈S vi, and

attains its minimum value of zero if and only if the corresponding partition
problem has a solution.

So given an instance of partition, construct a cspn as in Figure A.9. To
avoid cluttering, we depict every leaf duplicated in the figure (so the network
is not really a tree, but only its internal graph). The variables X1, . . . , Xn

denote binary class variables, and the variables Xn+1, . . . , X2n denote binary
evidence variables fixed at Xn+i = 1, for i = 1, . . . , n. The network has a
sum node as root, with two sub-networks. The left subnetwork Sth models
a fully independent distribution over all variables, with a uniform distribu-
tion over X1, . . . , Xn and a degenerate distribution over Xn+1, . . . , X2n. This
subnetwork is used to impose an additive constant to the overall value of the
network, for reasons that will become clear later. So focus on the right sub-
network S0 for the moment. This network encodes the partition problem
as the product of subnetworks S1, . . . , Sn. Each one of these subnetworks Si,
with i = 1, . . . , n, has scope {Xi, Xn+i} and encodes the trade-off between
adding item zi to the set S or adding it to the complement of S. The weights
wi1 vary in [0, 1] (with wi2 = 1 − wi1) and represent such a choice: wi1 = 1
adds zi to S. The nodes labeled as ei denote two-layer sub-networks with a
sum node as root and indicators xn+i and x̄n+i. The weights of these sub-
networks are specified such that their value when evaluated with evidence
Xn+i = 1 is the number associated with the edge from the product node to
the respective node ei in the figure (which is 2−2vi , 2−vi or 1). This way, when
zi ∈ S then the network Si contributes with a value of (2−2vixi + 2−vix̄i)/2
to the product in S0; and when zi 6∈ S then Si contributes with (xi + x̄i)/2.

Let c1 be the class that assigns Xi = 1 for i = 1, . . . , n, and c2 be the class
that assigns Xi = 0 for i = 1, . . . , n. One can easily check that Si1(λc1,e) =
2−2vi/2, Si1(λc2,e) = 2−vi/2 and Si2(λc1,e) = Si2(λc2,e) = 1/2. Thus, we have
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Figure A.9: Fragment of the sum-product network used to solve partition. We duplicate
leaves for the sake of clarity.

that

min
w

(
S0
w(λc1,e)− S0

w(λc2,e)
)

=

1

2n
min
w

(
n∏
i=1

[
wi12

−2vi + (1− wi1)
]
−

n∏
i=1

[
wi12

−vi + (1− wi1)
])

.

The last term in the equation above defines a multilinear program over the
weights; hence the solution lies at the boundary of the feasible set [25, Propo-
sition 2.1]. In our case, this is achieved by setting each weight wi1 to either
0 or 1. Hence,

min
w

(
S0
w(λc1,e)− S0

w(λc2,e)
)

= min
w

2−n[2−2
∑

i wi1vi − 2−
∑

i wi1vi ]

Define t = 2−
∑

i wi1vi . Then, the objective of the minimization on the right
can be rewritten as the second-order polynomial on t:

2−n(t2 − t) = 2−nt(t− 1) .

This polynomial is convex and achieves its minimum at t = 1/2, which
corresponds to

∑
iwi1vi = 1, or equivalently, to

∑
i∈S vi = 1, where S = {i :
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wi1 = 1} (see Figure A.10 for an example of such a polynomial). Thus, if
such a set exists (i.e., the partition problem is a yes-instance), then

min
w

(
S0
w(λc1,e)− S0

w(λc2,e)
)

= −2−(n+2) .

Now if no such set S exists, then |
∑

i∈S zi −
∑

i 6∈S zi| ≥ 1 for any set S,
because zi are integers. Hence, in this case, the minimum is obtained at the
w such that |1−

∑
iwi1vi| ≥ 1/z. It follows that

min
w

(
S0
w(λc1,e)− S0

w(λc2,e)
)
≥

2−n min{2−(1+1/z)(2−(1+1/z) − 1), 2−(1−1/z)(2−(1−1/z) − 1)}
= 2−n2−(1−1/z)(2−(1−1/z) − 1) > −2−(n+2) .

The first inequality follows from the integer gap in the sum of the numbers.
The equality can be obtained by analyzing the derivative of the difference
of 2−(1−1/z)(2−(1−1/z) − 1) and 2−(1+1/z)(2−(1+1/z) − 1); one can check that
this derivative is monotonically increasing, hence the difference is always
positive.5 Finally, the last inequality follows since 2−(1−1/z)(2−(1−1/z) − 1) is
monotonically decreasing and achieves its minimum at z → ∞. Therefore,
deciding whether minw (S0

w(λc1,e)− S0
w(λc2,e)) ≤ −2−(n+2) solves partition.

There are two issues to be fixed in order to turn this result into a proof
of coNP-hardness of credal dominance. First, credal dominance is defined as
verifying if the minimum difference between the values of two classes is non-
positive, but our threshold is currently −2−(n+2). Second, the encoding of the
weights 2−vi requires exponential space/time in the size of the encoding of
partition (which requires only the representation e.g. in binary if integers
z1, . . . , zn), so the reduction is not polynomial. We start by addressing the
latter issue.

So approximate each number 2−vi by a rational ri ≥ 2−vi such that ri −
2−vi ≤ ε and r2i − 2−2vi ≤ ε, for some small ε > 0 (we will explain how to
specify such rationals in polynomial time later). Call this new network S̃r,

5Let h(x) = 2−(1−x)(2−(1−x) − 1)− 2−(1+x)(2−(1+x) − 1). Then h′(x) = 2−1−2x(−1 +
2x)2(1 + 2x + 22x) ln(2), which is positive for any value of x 6= 0. Also, we have that
h(1/2) > 0. The argument follows by taking x = 1/z ∈ [0, 1/2].
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Figure A.10: The polynomial used in the proof of Theorem 5 for a random instance of
partition with 10 numbers. Each point plots the value of t for a subset S of the integers.

and its subnetworks similarly (e.g., S̃0, S̃i, S̃i1). We have that

0 ≤ S̃0
w(λc1,e)− S0

w(λc1,e) =
1

2n

(∏
i

r2wi1
i − 2−2

∑
i wi1vi

)

≤ 2−n

(∏
i

[2−2wi1vi + ε]− 2−2
∑

i wi1vi

)
= 2−n

∑
k∈{0,1}n,k 6=1

∏
i

2−2kiwi1viε1−ki < ε .

Similarly, one can show that

0 ≤ S̃0
w(λc2,e)− S0

w(λc2,e) < ε .

Hence,∣∣∣[S̃0
w(λc1,e)− S̃0

w(λc2,e)]− [S0
w(λc1,e)− S0

w(λc2,e)]
∣∣∣

=
∣∣∣[S̃0

w(λc1,e)− S0
w(λc1,e)]− [S̃0

w(λc2,e)− S0
w(λc2,e)]

∣∣∣ < ε .

Thus, to decide partition we need to select ε such that

2−n2−(1−1/z)(2−(1−1/z) − 1)− ε > −2−(n+2) + ε ,

32



or, equivalently, that

ε < 2−n−1[2−(1−1/z)(2−(1−1/z) − 1) + 2−2] .

The Taylor expansion of the term inside the square brackets around 1/z → 0
is
∑∞

i=1(2
i − 2) ln(2)i/(4i!)z−i. Hence, by truncating the series at i = 3 and

using 1/2 < ln(2), we get

2−4z−2 + 2−8z−3 < 2−(1−1/z)(2−(1−1/z) − 1) + 2−2 .

Let b denote the size of a reasonable binary encoding of partition (e.g.,
as the one described in the Footnote 5 in [42]). Assuming b encodes each
number using at least dlog zie bits, we have that z < 2b and b > 2 (note that
z ≤ nmaxi zi). Thus,

2−8b < 2−4−2b + 2−8−3b < 2−4z−2 + 2−8z−3 .

Thus, by selecting e.g. ε = 2−10b we can decide partition in polynomial
time by checking whether minw S̃

0
w(λc1,e) − S̃0

w(λc2,e) ≤ −2−(n+2) + ε. The
specification of values ri can be done in polynomial time by Taylor expanding
2−vi , since the required bit precision (10b) is polynomial in the input size b.

It remains to solve the first issue, that is, to decide by comparing only
the sign of the difference. To fix that, we can do a simple manipulation of
the result of our network using node root Sr and the left sub-tree:

S̃0
w(λc1,e)− S̃0

w(λc2,e) > −2−(n+2) + ε ⇐⇒

wr1 + wr2

[
S̃0
w(λc1,e)− S̃0

w(λc2,e)
]
> wr1 + wr2(−2−(n+2) + ε) ⇐⇒

S̃rw(λc1,e)− S̃rw(λc2,e) > wr1 + wr2(−2−(n+2) + ε)

Thus, in order to check only the sign and since wr1 = 1− wr2, we need

1− wr2 + wr2(−2−(n+2) + ε) = 0 ⇐⇒ wr2 =
1

1− (−2−(n+2) + ε)
.

Hence, we can decide partition by verifying if minw S̃
r
w(λc1,e)− S̃rw(λc2,e) >

0, and returning “yes” if the latter is false and “true” otherwise.
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utility-discounted predictive accuracy, International Journal of Approx-
imate Reasoning 53 (8) (2012) 1282–1301.

[67] N. L. Zhang, D. Poole, Exploiting causal independence in Bayesian net-
work inference, J. Artif. Intell. Res. 5 (1996) 301–328.

[68] H. Zhao, T. Adel, G. Gordon, B. Amos, Collapsed variational inference
for sum-product networks, in: Proceedings of The 33rd International
Conference on Machine Learning, vol. 48 of Proceedings of Machine
Learning Research, 2016, pp. 1310–1318.

[69] H. Zhao, M. Melibari, P. Poupart, On the relationship between sum-
product networks and Bayesian networks, in: Proceedings of the 32nd
International Conference on Machine Learning, 2015, pp. 116–124.

[70] K. Zheng, A. Pronobis, R. P. N. Rao, Learning graph-structured sum-
product networks for probabilistic semantic maps, in: Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp.
4547–4555.

40


	Introduction
	Sum-Product Networks
	Credal Sum-Product Networks
	Likelihood
	Conditional Expectations
	Credal Classification
	Assessing Robustness of Classifications
	Benchmark Datasets
	Ages of Stars

	Conclusion
	Proof of coNP-hardness of credal classification

