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Highlights
In spite of the current proof of concept
that aboveground and belowground
(AG-BG) organisms interact, research
questions and experiments often focus
on only one level of interactions (e.g.,
individual, community, or ecosystem),
creating an incomplete picture of how
species between subsystems interact.

Advancing the field requires the ability to
incorporate AG-BG linkages between
all members and fluxes of a system into
our knowledge of presence/absence,
abundance, and community structure.

Networks analyses, which are used in
both above and belowground sys-
tems, offer a way to link between the
two subsystems.

These approaches are particularly rele-
vant for linking the microbial and macro-
bial world; for assessing the functional
consequences of AG-BG interactions in
changing ecosystems; and for predict-
ing effects of global changes.
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An understanding of above-belowground (AG-BG) ecology is important for
evaluating how plant interactions with enemies, symbionts, and decomposers
affect species diversity and will respond to global changes. However, research
questions and experiments often focus on only a limited number of interactions,
creating an incomplete picture of how entire communities may be involved in
AG-BG community ecology. Therefore, a pressing challenge is to formulate
hypotheses of AG-BG interactions when considering communities in their full
complexity. Here we discuss how network analyses can be a powerful tool to
progress AG-BG research, link across scales from individual to community and
ecosystem, visualize community interactions between the two (AG and BG)
subsystems, and develop testable hypotheses.

Linking Across Scales in AG-BG Ecology
Terrestrial ecosystems are structured by the many interactions between AG and BG sub-
ecosystems [1–3]. Plants are the link between the two subsystems, connecting herbivores,
pathogens, mutualistic symbionts, and their natural antagonists to the soil and rhizosphere
communities belowground. It is this myriad of linkages that altogether are expected to influence
biodiversity and ecosystem functioning under current and future environmental conditions [4–
8]. In the past, research was carried out with model species of herbivores and their antagonists.
But research is now moving from known species interactions between a few species to many
multiple species interactions where many species (especially microbial) remain unknown. In
order to make progress, it will be important to observe species assemblages to which plants
are exposed, both belowground and aboveground, in the field. These species assemblages
may contain thousands of taxa and in order to advance the field we must assess how the
composition of these assemblages may respond to environmental changes (e.g., CO2, N
deposition, climate warming, extreme events, land use changes, etc.). Here we argue that
network approaches may be helpful in characterizing not only the composition of the assemb-
lages, but also their structure.

For AG-BG interactions (see Glossary), the scale at which we study a system
strongly determines how we view those interactions (Figure 1A). At the individual level, direct
specific interactions are most often studied. For example, mutualistic symbiotic or
antagonistic relationships are often studied in relatively simplified systems (e.g., where a single
plant species is grown with a single or several AG and BG herbivores) [9,10]. Some studies have
additionally manipulated aboveground tritrophic or multitrophic interactions and the soil com-
munity in the greenhouse [11,12] or used biocide experiments in the field [13]. From these
small-scale, high-resolution experiments, much mechanistic knowledge has been gained on
herbivory and plant defenses [14], herbivory and decomposition [15,16], and multitrophic
interactions [12,17,18].
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Glossary
AG-BG interactions: relationships
between two or more species from
both the soil subsystem (e.g.,
microbes and soil animals) and
aboveground subsystem (e.g.,
herbivores and pollinators) and are
often mediated by the plant.
AG-BG network: representation of
the biotic and abiotic interactions
between both above and
belowground taxa and relevant
environmental variables, often
centered around a plant species or
community.
Edge: a connection (line) between
two objects (nodes), describing a
parameter such as correlation,
similarity, or function. Can link within
and between subsystems.
Network analysis: assessment of
network structure. Can also be used
to compare network structures to
determine differences in entire
systems.
Network structure (topology,
clustering, nestedness, density,
and connectedness): measures of
the layout of objects (nodes and
edges) in a network. Can be used to
describe ecological parameters (i.e.,
stability), assess relatedness of
groups/taxa, and describe species
interactions. Often can provide a
novel way to view AG-BG systems.
Network type: underlying
mathematical models used to assess
connections. This includes: flow,
correlation, and SEM (see Table 1).
Network visualization: visualizing
patterns in large data sets, by
connecting objects (nodes) by their
similarity (edges).
Node: an object in a network for
which a relation with other objects is
investigated (edges), such as an
animal species, plant trait, abiotic
factor, or sample site.
At the same time, community and ecosystem level approaches are more inclusive in scope.
Studies at these levels can include species interactions, resource flows, functional traits, and
large-scale processes that result from AG-BG interactions (e.g., carbon fluxes, nutrient cycling,
and decomposition) [3,19,20]. These studies highlight the importance of AG-BG interactions
for maintaining community structure and ecosystem functions, yet give little indication of the
nature of the underlying interactions occurring at the individual species level. Along the path
from individual to ecosystem-level study is a gradient of increasing system complexity (more
interactions and players), yet a decreasing ability to discern mechanisms. While much knowl-
edge has been gained from studying AG-BG interactions at individual [21], community [13,14],
and ecosystem [22–24] levels independently, progress in the field has slowed. The combined
knowledge is important for our basic understanding of terrestrial ecology and to predict
variations due to the ongoing change in global climate [19,25,26] and other global changes
in land use and species distribution patterns.

Network Analysis of AG-BG Interactions
There are a wide range of methods available to explore AG-BG interactions, and maybe the
most difficult step is choosing an analysis that accommodates both the research questions and
the data collected. Network analysis is only one type of analysis that allows for combining AG-
BG information, but we highlight it here because its versatility with complex data has potential
for advancing the field (Table 1). The most familiar network types used in terrestrial systems
are flow networks (such as food webs) and structural equation models (SEMs). Food webs are
used to show energy flows between individuals [27,28] while SEM-type networks are used to
test the strength of predicted interactions [29]. Both flow and SEM networks are targeted
approaches and have the ability to directly test relationships between organisms; they are
stronger if interactions between species are known a priori.

One specific network type which has recently gained popularity in ecological studies is based
on correlations [30,31]. Correlational networks are more flexible, allow for untargeted explora-
tion of the data, are particularly good at exploring unknown organisms or unknown functions,
and can accommodate many data points (such as molecular data from next-generation
sequencing) and data types [32]. At an even finer resolution, there has been much advance-
ment in using networks to study plant organization from the cell to the whole organism [33] and
to evaluate gene coexpression [34]. The application of correlation network analyses at the
interface of AG-BG research has the potential to identify species relevant to community
composition and functioning, and to indicate ecosystem transitions. We see correlational
networks as a new step in understanding species interactions from small to large scales.
To illustrate this point, we constructed a series of correlation networks from a well-known study
[35] (Box 1), but acknowledge that this could be illustrated with any number of datasets. For
instance, this could be used to further assess herbivore and nematode interactions in Arctic
systems [36,37] or to link ecosystem multifunctionality to network topology [38]. Overall
correlational network analyses can be used as a tool to link the many types of AG-BG species
data (morphological and molecular, relative and absolute abundance, taxonomic and functional
data) with environmental (abiotic) and process measurements.

A number of other network analyses have been developed in fields outside of ecology and have
potential to be applied to AG-BG interactions. For instance, stochastic networks explicitly
include the variation of interactions, and we envision this can be used to describe how
interactions between plants and soil biota change over the growing season. Bayesian net-
works, like SEM models, require a priori knowledge but have more predictive ability and make
them ideal for understanding resource dependencies. This can be helpful in conservation or
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Figure 1. Three Levels at Which Above-belowground (AG-BG) Interactions Can Be Studied. (A) There is often a tradeoff between what level AG-BG
interactions are studied and the resolution of information acquired. At the individual level, focus is generally on targeted interactions between few organisms in a
controlled study system; at the community level, studies are mostly more interested in many members of the community and interactions with the environment; and at
the ecosystem level, changes in fluxes and processes are commonly studied in broad field studies. Along the path from individual- to ecosystem-level study is a gradient
of increasing system complexity (more interactions and players), yet a decreasing ability to discern mechanisms, and it remains difficult to scale between these three
levels of research. (B) Network analyses have the potential to link the many types of data across levels, resulting in nested knowledge relating individuals through
community and ecosystems.
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Table 1. Potential for Network Analyses in AG-BG Ecologya

Network type Description Potential use in AG-BG ecology Advantages/caveats Refs

Correlation based Correlation analyses based on a matrix of
species abundances, diversity metrics, and/
or measurements of other environmental
variables.

To detect co-occurrences and to
view connectivity in unknown AG-BG
linkages.

Significance tested against
randomized networks.
Correlations are not
necessarily biologically
relevant.

[30,32,85]

Flow/transportation
networks

A weighted directed graph in which the
nodes are species, the edges are ‘who eats
whom’ relationships, and the weights are
rates of energy or nutrient transferred
between species.

Can be used to show energy flows in
food webs or nutrient transfers
between AG and BG systems.

Suitable for energy and
nutrient flows. Many
replicates required.

[29,35,86]

Structural equation
modelling (SEM)

The use of two or more structural [cause–
effect] equations to model multiple processes
operating in systems. Allows for an intuitive
graphical representation of complex networks
of relationships.

Can visualize how energy flows are
structured within a food web.

Some SEM methods require
many replicates.

[87–89]

Bayesian network For reconstructing species interaction
networks from observed field data. Enables
robust inference of species interactions
considering autocorrelation in species
abundances and allows for variation in
interactions across space.

To model environmental systems,
conservation, and management
when assessing influence of
environmental parameters on species
interactions. Could be highly relevant
in AG-BG global change studies.

Ideal for modelling resource
dependencies in a food web.
However, they can only solve
directed acyclic graphs.

[48,90,91]

Stochastic networks When assessing network topology allows for
inclusion of variation in known relationships.

Besides usage in metapopulation and
metacommunity calculations, it has
potential to include stochastic
interactions and processes in AG-BG
systems, such as mutualisms.

Can also be used for food
web analyses with random
dot-product graph models.

[27,54,92,93]

aNetwork analyses can be applied in many AG-BG scenarios. Choosing a network should be based on research questions. Here we highlight a few key examples and
indicate where the field can be developed. For example, there is much potential to use stochastic networks to predict how interactions change across space and time.
management of AG-BG systems as Bayesian methods can better predict how interactions
might change. In all cases, network analyses are a tool to bridge spatial and temporal scales to
assess species interactions, and this may be particularly relevant under climate change and
other global change factors.

Opportunities and Possible Caveats
The utility and versatility of networks explains why ‘network ecology’ has increased fivefold over
the past 20 years and is now a commonly applied technique in terrestrial ecology [39]. Network
analyses and visualization can include many types of data sources, are flexible at scaling across
space and time [40,41], and can accommodate the dynamic nature of biological interactions
[42]. Arguably, major advances in ecology could not have been made without some creative
uses of network analyses. For example network modularity was recently used in combination
with targeted indicator analyses to search for interacting functional groups, such as plant
pathogenic microorganisms [43]. Another emergent function is the use of network topology to
assess ecosystem resilience and stability. As explained by Thébault and Fontaine [44], net-
work structure, such as connectivity and nestedness, informs about community stability.
While results between studies are inconsistent, valuable information has been gained regarding
plant communities and nutrient use efficiency [41], as well as host–parasitoid relationships and
system functioning [45]. Similarly, networks can be used to reassess well-known ecological
concepts like species area relationships [46]. Networks can also be used to bridge disciplines,
as shown in a recent innovative use, to simultaneously assess ecological and evolutionary
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Box 1. The Versatility of Network Analyses

Here we visualize the data from Scherber et al. [35] using a nontargeted correlational network (Figure I). In that
experiment, plots were sown for five diversity levels, with species richness of 1, 2, 4, 8, and 16 plant species per plot.
Then a range of measurements were recorded, including abundance and diversity of both above- and belowground
organisms, plant traits, abiotic factors, and biological processes. This dataset was kindly shared as a means to visualize
possible network analyses that may be performed and is not intended as a reanalysis of the previous approach.

In AG-BG interactions where many unknowns persist, correlation networks are a potentially strong tool to explore
connections in a system [94]. The AG-BG network analysis gives an overview of the data that can be used to create a
priori hypotheses that are then tested with future experiments. A correlation network can also give evidence for known
ecological patterns and supports the idea that nodes with more connections are worthwhile to investigate [40]. Another
strength of this analysis is that we can clearly visualize gaps in data. For example, in this data we can see that there are many
more measurements collected aboveground than belowground. Likewise, many species abundance and diversity mea-
surements were collected, but much less data have been collected on plant traits, abiotic, or process measurements.

AG
diversity

BG
diversity

Aboveground

Belowground

Soil water
Abio cs

AG
abundance

BG
abundance

Processes

Plant traits

Figure I. Correlation Network for Visualizing Interactions between Above- and Belowground Systems. A
visualization of relationships within and between above- and belowground subsystems, including species abundance
and diversity, abiotic factors, plant traits, and other processes. Colored nodes represent the measurements taken in
both the aboveground and belowground systems: species abundance (green) and diversity (blue), plant traits (brown),
abiotic (grey), and process measurements (pink). The thickness and transparency of the edge designates the strength of
the correlation (darker, thicker edges have higher correlation values). Positive correlations are colored blue, and negative
correlations are red. Full names of parameters can be found in supplemental information online (Table S1).
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As a secondary step, explored linkages between species of a known function and those of unknown functions (Figure II).
Specifically, using the same Jena biodiversity data, we compared plots with (n = 43) and without legumes (n = 39)
(Figure II). Legumes have long been known to have different physiological properties than other plants, such as grasses
and therefore would also have different relationships with belowground communities [95] (and indeed in Scherber et al.
[35], legumes were treated as a separate covariate). Here legumes provide an example of how the absence and
presence of functionally different taxa can influence network connectivity.

Plots without legumes Plots with legumes

Figure II. Network Analyses for Exploring Function in Above-belowground (AG-BG) Interactions. Network
visualization of plots with (n = 43) and without (n = 39) legumes. Plots with legumes have many more ground–AG-BG
interactions when compared to plots with legumes. Plots without legumes had less connections (740 compared to 811),
and perhaps more biologically interesting was that plots without legumes had many more negative connections than
plots with legumes (without legumes, 254 negative out of 740; with legumes, 110 negative out of 811). As with Figure I,
positive correlations are colored blue, and negative correlations are red. The thickness and transparency of the lines
designate the degree of correlation (darker thicker lines have higher correlation values).
dynamics; by placing ecological and evolutionary information together in a single network, it can
be possible to view real-time species dynamics [47,48]. Finally, networks will likely play a large
role in management and sustainability of global systems. Most recently this was applied in
agricultural systems, in which searching for valuable microbial communities linked to the
growing plants [49].

While both AG and BG research disciplines are familiar with networks, analyses are rarely
applied at the interface of AG-BG environments, with a few exceptions [35,50]. In aboveground
systems, network analyses are frequently used to link across trophic levels, such as between
predators and prey, or plants and pollinators [44,51,52]. For example, Valverde et al. [53]
examined the temporal variation of pollinator communities using network topologies, and
concluded that plant reproduction can be better understood when assessing their interactions
with pollinators over the entire flowering season. Belowground, soil food webs may be the most
recognizable network type [27,54], yet the strength of co-occurrence networks to explore
community structure and functional potential of hyperdiverse communities has also been used
to connect microorganisms [30,32,55–57].
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As with most analyses, networks are not without caveats. For networks analyses, especially
when large datasets are used, the number of significant linkages that can appear with the
inclusion of many species can affect the structure of the network [58]. This will become a
greater challenge as large molecular datasets are included [6,59]. Therefore, in addition to using
informed, stringent cut-offs, networks are most suitable when compared between treatments
or over environmental gradients, where the basic biodiversity is comparable while species
assemblages, or correlations between species change. In those cases, comparisons between
network topology may enable hypothesis generation on causes and consequences of differ-
ences in network properties. For a more complete review of ecological networks we recom-
mend Pocock et al. [58] and Borrett et al. [39].

The Future of AG-BG Ecology
The future of AG-BG ecology research will involve large datasets collected from interdisciplinary
research teams, will explore potential functional roles of known (and unknown) species, and will
predict global change effects. When used properly, networks can be a powerful tool to scale
between research approaches and advance research of AG-BG systems. Here we point out
three areas where network ecology either has been used successfully or has potential to
expand the field.

Big Data and the Phytobiome
Traditionally, the organisms of AG-BG systems have been studied with classical isolation and
identification techniques such as extraction, culturing (in case of microbes) or rearing (in case of
insects), followed by morphological identification. However, in the past decades a wide range of
molecular techniques have been developed, most prominently high-throughput sequencing
(HTS) [60,61], which have greatly advanced our knowledge of belowground species and
genetic diversity both above- and belowground. For example, metabarcoding and other
HTS sequence based ‘omics’ approaches are frequently used to characterize belowground
microbial communities of bacteria, archaea, fungi, and protists [62–64]. While HTS is less
frequently applied aboveground, there has also been a number of developments using
molecular markers in insects [65] and the microbes of the phyllosphere [66,67]. Further, rapid
developments in phytobiome research demonstrates advances can be made when data is
merged across scales and subsystems [68]. Growth in novel molecular methods and large data
will only continue [58–60]. Thus, advances in our understanding of AG-BG interactions must be
interdisciplinary and must include input from many specialists in taxonomic groups and
expertise across many ecological systems.

Functional Information
Regardless of the number of interactions research can uncover, without taking functional
measurements these steps remain limited. Although few examples exist linking functional
data across AG-BG systems, much work has been done on single subsystems or
between individual plant and insect species [17] or plant and soils [69]. For example,
in belowground systems labelled tracers have been used to quantify soil feeding relation-
ships [70], and in aboveground systems, plant traits have been added to study pollinator
networks [71]. If functional data cannot be collected, then it might be possible to use
functional information already published and available, as done by García-Palacios et al.
[72], who used plant traits to model decomposition rates. Belowground sequence
information has been used to track traits and function [43,73]. Collection of functional
data must be made a priority in future AG-BG studies, and then with network analyses it
can be possible to link functions and known taxa to identify previously unknown functions
associated with organisms.
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Outstanding Questions
What research developments must be
made to increase functional knowl-
edge of AG-BG interactions?

How can a better understanding of AG-
BG interactions be used to improve
agriculture?

Which fields outside ecology (e.g., genet-
ics, engineering, and physics) can stimu-
late research of AG-BG interactions?

When can network analyses be used
to predict global change scenarios?

How can we ensure network analyses
are not used to overestimate interac-
tions between species?

How can observed connections in
hypercomplex and diverse systems
be scaled from the population to the
ecosystem level?
Global Change
Data collected from both experimental and observational studies can be used to predict how
changes will influence the spatial and temporal dynamics of a community, as well as con-
sequences for AG-BG interactions and for ecosystem processes [74,75]. Networks can be
used to indicate whether or not ecosystems are in transition [51,76,77] due to any number of
global change effects: climate change, land use, or changes in species diversity. There is also
potential scope for using network approaches for land management or for improving conser-
vation or restoration efforts [78,79]. The applied value of networks might be best exemplified in
agricultural systems where applied knowledge offer tangible outcomes like increased crop yield
and improved ecosystem services [80,81]. For example, Macfadyen [82] and van der Heijden
[83] observed differing network structures in organic versus conventional farming, suggesting
that the stability of organic systems might be stronger and more resilient than conventional
systems. Likewise, Pocock et al. [84] used a network approach to assess the fragility of
pollinator systems and to give insight into the strength of different agricultural systems for
restoration efforts. Networks will likely not provide linear solutions to the complex challenges
facing our ecosystems, but instead can motivate hypotheses and direct research for predicting
and responding to global changes.

Concluding Remarks
The integrity, stability, and functioning of terrestrial ecosystems is largely dependent on the
myriad of interactions among and between species, and with the physical and chemical
environment. Ecologists must walk a line between managing these large datasets and asking
ecologically relevant questions. We see network analyses as a research tool to go across scale
and time, connect organisms between aboveground and belowground subecosystems, to act
as a bridge between microorganisms and macroorganisms. Network approaches enable
exploring AB-BG interactions in their full complexity, thereby generating hypotheses that
may be tested under specified controlled conditions. Beyond expanding primary research,
we can use networks to explore and guide ecosystem restoration and sustainability, where a
‘network’ understanding will help to predict consequences of (human-induced) global changes
and facilitate conservation and adaptation responses (see also Outstanding Questions).
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