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SPATIAL AND TEMPORAL PATTERNS OF ANTHROPOGENIC INFLUENCE IN A LARGE RIVER BASIN. A MULTIDISCIPLINARY APPROACH

Estimation of the water quality of a large urbanized river
as defined by the European WFD: what is the optimal
sampling frequency?

Lauriane Vilmin1,2 ·Nicolas Flipo1 ·Nicolas Escoffier3,4 ·Alexis Groleau3

Abstract Assessment of the quality of freshwater bodies
is essential to determine the impact of human activities
on water resources. The water quality status is estimated
by comparing indicators with standard thresholds. Indica-
tors are usually statistical criteria that are calculated on
discrete measurements of water quality variables. If the
time step of the measured time series is not sufficient to
fully capture the variable’s variability, the deduced indica-
tor may not reflect the system’s functioning. The goal of the
present work is to assess, through a hydro-biogeochemical
modeling approach, the optimal sampling frequency for an
accurate estimation of 6 water quality indicators defined by
the European Water Framework Directive (WFD) in a large
human-impacted river, which receives large urban effluents
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(the Seine River across the Paris urban area). The optimal
frequency depends on the sampling location and on the
monitored variable. For fast varying compounds that orig-
inate from urban effluents, such as PO3−

4 , NH+
4 and NO−

2 ,
a sampling time step of one week or less is necessary. To
be able to reflect the highly transient character of bloom
events, chl a concentrations also require a short monitor-
ing time step. On the contrary, for variables that exert high
seasonal variability, as NO−

3 and O2, monthly sampling can
be sufficient for an accurate estimation of WFD indicators
in locations far enough from major effluents. Integrative
water quality variables, such as O2, can be highly sensitive
to hydrological conditions. It would therefore be relevant
to assess the quality of water bodies at a seasonal scale
rather than at annual or pluri-annual scales. This study
points out the possibility to develop smarter monitoring
systems by coupling both time adaptative automated moni-
toring networks and modeling tools used as spatio-temporal
interpolators.

Keywords European water framework directive · Optimal
sampling frequency · River water quality assessment ·
Orthophosphate · Inorganic nitrogen · Chlorophyll a ·
Oxygen · Hydro-biogeochemical modeling

Introduction

Freshwater represents a very small fraction of the Earth’s
total water resources. Preserving its quality, while meeting
the needs of human activities (drinking water production,
industry, irrigation, etc.), has been one of the main chal-
lenges of the last decades. Water quality is a broad term,
though, that can notably comprise the biological, physical
or chemical statuses of a water body. It is controlled by
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various environmental processes that can be affected by
human activities. It is therefore an important task to evaluate
the quality of water bodies, in order to assess the impacts of
human activities and the effects of remediation strategies.

The estimation of the quality status of water bodies is
based on the comparison of various indicators with fixed
thresholds. These indicators correspond to statistical cri-
teria calculated on measured time series of water quality
variables. For a given water body, the measured data may
be available at one or several locations, and at various
frequencies. It generally originates from the analysis of
grab/discrete samples, which are carried out at rather low
frequency (monthly).

In Europe, water quality standards are fixed by the
European Water Framework Directive (WFD, Parliament
Council of the European Union (2000)). The quality status
is assessed through both ecological and chemical statuses.
We focus here on variables of the ecological status. In
the scope of the WFD, the indicators used to evaluate the
quality of a water body in terms of PO3−

4 , NH+
4 , NO

−
2 ,

NO−
3 and chlorophyll a is the annual 90 % concentration

quantile, while the 10 % quantile is used for dissolved
O2. These indicators were chosen to traduce the environ-
ment’s sensitivity to concentration peaks (or O2 drops)
(Polus et al. 2010). The water quality standards define 5
quality classes (Table 1). It is worth noting that the thresh-
olds defining these classes may vary according to the type
of water body (i.e., natural water bodies versus water bodies
that are strongly modified by human activities). The qual-
ity status of a water body is then defined according to the
result of the most downgrading indicator. The initial objec-
tive of the WFD was to reach the good status of water
bodies by 2015. However, this deadline has been shifted to
2021 or 2027 for strongly modified water bodies (i.e., sub-
ject to strong anthropic pressures), for which good quality
was not achieved (Direction régionale de l’Environnement
Ile-de-France 2010).

One of the major challenges in the estimation of the qual-
ity of a water body is how to represent this water body
by a limited number of sampling points (Carstensen 2007),
and thus achieve a reliable assessment of its quality sta-
tus. This raises the question of which spatial and temporal

resolutions are necessary for a good assessment of the water
quality. The WFD provides no precise guidance to address
this question. However, it recommends to calculate the qual-
ity indicators for a minimum period of 3 years and with
a minimum of six measurements per year for each water
body. The French instructions followed these recommenda-
tions (Ministère de l’Écologie du Développement durable et
de l’Énergie 2013). Location of sampling is a critical step in
the design of monitoring networks (Dixon et al. 1999; Do
et al. 2012). Polus et al. (2010) have shown the importance
of spatial resolution for the estimation of different water
quality criteria. The data from two stations of a same water
body (as defined in the scope of the WFD) can lead to the
estimation of quality indicators, which correspond to differ-
ent water quality statuses. These spatial heterogeneities can
notably be due to anthropogenic effluents, which are not
taken into account for the spatial definition of water bodies
(Wasson et al. 2003).

Besides the spatial resolution of the monitoring data,
the temporal resolution is also important. The measure-
ment time step can indeed impact the estimation of the
various water quality indicators. The need for high fre-
quency monitoring dedicated to the understanding of
hydrological and biogeochemical processes—that often
occur in minute/hour rather than weekly/monthly
time scales (Tomlinson and De Carlo 2003)—is well recog-
nized (Kirchner et al. 2004; Harris and Heathwaite 2005;
Kirchner 2006; Hart and Martinez 2006; Horsburgh et al.
2010). A 60-day measurement time step is most often insuf-
ficient to fully capture the variability of one water quality
variable. Several authors have focused on the impact of the
sampling frequency on the estimation of fluxes (Ferrant
et al. 2012; Wade et al. 2012; Moatar et al. 2013). For
instance, Ferrant et al. (2012) showed that, for frequen-
cies over one day, NO−

3 fluxes were overestimated during
flood periods. Moatar et al. (2013) highlighted the fact
that suspended sediment fluxes calculated on time series
at a monthly sampling frequency could display ±100 %
uncertainties. The estimation of statistical criteria and of the
quality status of a water body from low frequency measure-
ments may also be flawed (Bernard-Michel and de Fouquet
2005; Bernard-Michel 2006). This may particularly be true

Table 1 Ranges of the
different water quality statuses
for the studied indicators
(Ministère de l’Écologie, du
Dèveloppement durable et de
l’Énergie 2012)

Indicator Unit Quality status

Very good Good Medium Poor Bad

[PO3−
4 ]90 mgPO3−

4 ·L−1 0–0.1 0.1–0.5 0.5–1 1–2 >2

[NH+
4 ]90 mgNH+

4 ·L−1 0–0.1 0.1–0.5 0.5–2 2–5 >5

[NO−
2 ]90 mgNO−

2 ·L−1 0–0.1 0.1–0.3 0.3–0.5 0.5–1 >1

[NO−
3 ]90 mgNO−

3 ·L−1 0–10 10–50 – – –

[chl a]90 μgchl a·L−1 0–10 10–60 60–120 120–240 >240

[O2]10 mgO2·L−1 >8 6–8 4–6 3–4 0–3

Environ Sci Pollut Res (2018) 25:23485–2350123486



in the case of strongly anthropized systems that are charac-
terized by frequent transient events, as summarized in the
context of the “urban stream syndrome” (Walsh et al. 2005).

Yet, given the high cost of environmental monitoring,
budgetary resources need to be considered in the design
of monitoring strategies (Lettenmaier 1979; Strobl and
Robillard 2008). The optimization of measurement strate-
gies is therefore essential, in order to maximize their cost-
effectiveness (Dixon and Chiswell 1996). The sampling
frequency is very important in the design of monitoring
strategies. Indeed, it affects not only the precision of the
information that is extracted from the collected data, but
also operational costs (Khalil and Ouarda 2009). Naddeo
et al. (2013) showed that it constitutes a promising parame-
ter to be optimized. As summarized by Sanders and Adrian
(1978), at first, sampling frequencies were mostly deter-
mined based on the ability to detect violations of water
quality standards or extreme events as pollution spills.
Requirements of surveillance networks were later oriented
toward the assessment of ambient water quality conditions.
In this goal, Sanders and Adrian (1978) proposed a method
to reach a confidence interval width for the mean of the
random component of a measured time series. Various stud-
ies on surface or groundwater monitoring were carried out
using similar statistical methods (Lo et al. 1996; Zhou
1996). More recently, the entropy theory method, which
quantifies the amount of transinformation within a dataset
(Yang and Burn 1994), was applied for the assessment and
the design of monitoring strategies (Karamouz et al. 2009;
Mahjouri and Kerachian 2011).

In the present work, we propose a new methodology,
based on the multiple re-sampling of high-resolution sim-
ulation results from a physically-based biogeochemical
model, to assess optimal sampling frequencies for the mon-
itoring of six variables: orthophosphate (PO3−

4 ), ammonium
(NH+

4 ), nitrite (NO
−
2 ), nitrate (NO

−
3 ), chlorophyll a (chl a),

and dissolved oxygen (O2) concentrations. The methodol-
ogy is applied to a large human-impacted river system: the
Seine River from the Paris urban area to the entrance of its
estuary. The hydro-biogeochemical functioning of this sys-
tem is simulated along this 220 km river stretch at a 15-min
time step over a 6-year period (2007–2012). A comparison
of model outputs with available high frequency data is per-
formed in order to ensure that the model is reliable at small
time scales and can be used as a “high frequency estimator”
of the water quality of the Seine River regarding the stud-
ied variables. The analysis of the modeled variables’ time
series allows for the quantification of the effect of the sam-
pling strategy on the estimation of the corresponding WFD
quality indicators, both in terms of sensitivity to spatial het-
erogeneities and to the temporal resolution of the sampling.
The hydro-biogeochemical modeling tool is used to assess
optimal sampling time steps for an accurate estimation of

the quality status of the river along the studied stretch as
defined by the WFD.

Simulation of the water quality of the Seine River
from the Paris urban area to the entrance of the
estuary

Assessment of concentrations and variability of water
quality variables

The hydro-biogeochemical PROSE model

The different studied variables (PO3−
4 , NH+

4 , NO
−
2 , NO

−
3 ,

chl a, O2) are assessed at fine spatial and temporal scales
(500 m cells, 15 min time step) with the PROSE model
(Even et al. 1998; 2004; 2007; Flipo et al. 2004; 2007).
The PROSE model simulates the hydro-biogeochemical
functioning of river networks and their response to anthro-
pogenic pressure in transient state. It is composed of three
modules:

– a hydrodynamic module, which solves the 1D shallow
water equations,

– a transport module, which simulates advection and
dispersion of particulate and dissolved compounds,

– a biogeochemical module.

The biogeochemical module is based on the RIVE con-
ceptual model (Billen et al. 1994; Garnier et al. 1995). It
simulates the processes affecting the cycles of carbon, major
nutrients, and dissolved oxygen in both benthic and water-
column compartments of the river system. The dissolved
and particulate exchanges between these compartments are
also simulated (Flipo et al. 2004). The simulation of hydro-
sedimentary processes, phosphorus sorption, and nitrogen
dynamics has been recently updated to take into account the
effect of recent improvements in waste water treatment plant
(WWTP) technologies (Raimonet et al. 2015; Vilmin et al.
2015b; 2015a).

Estimation of the annual variability of water quality
variables

The contribution of the seasonal variability to the total
variability is assessed for the different studied variables in
order to check if any link exists with the estimated optimal
sampling frequencies. This is done through a variographic
analysis. As described in Vilmin et al. (2015b), a multi-
component variographic model (Chilès and Delfiner 1999;
de Fouquet et al. 2007; Polus et al. 2011) is fitted to each
variable’s temporal variogram at different stations. This
allows for the description of the variable as a linear combi-
nation of different temporal structures, including a periodic
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component that represents seasonal variations. By fitting
variographic models to the variograms, the proportions of
the total variability due to each of the temporal structures
can be quantified. The proportion of the annual variability
in the total variabilities of the studied variables is thereby
assessed at several locations (Table 3).

Application to the Seine River

The Seine River’s hydro-biogeochemical functioning is
simulated along a 220 km stretch (Fig. 1), from the Paris
urban area to the entrance of the estuary (Poses), from Jan-
uary 2007 to December 2012. 17 km of the Marne River
are also represented. The study area is located downstream
from the large agricultural lands of the Seine and Marne
river basins, which constitute important diffuse sources of
nutrients. The Paris urban area exerts a high pressure on the
receiving environment, notably through its large effluents.
Indeed, this area bears almost one fifth of the total French
population on less than 3 % of the territory (Billen et al.
2007). The waste water of the urban area’s population is
collected in a combined sewer system and is treated in 5
WWTPs (see Fig. 1 for locations). Among these WWTPs,
Seine Aval (SAV), which is located 70 km downstream
from the Seine-Marne confluence in Paris, has the largest
treatment capacity and treats the effluents of over 5 mil-
lion equivalent inhabitants. It has a mean water discharge

of 19 m3·s−1 for 2007–2012, which corresponds to about
15 % of the Seine River discharge in Paris during low
flow periods. During large rain events, the combined sewer
system may be saturated and can overflow through many
stormwater discharge pipes (Even et al. 2004; 2007). These
overflows constitute large inputs of sediments, organic mat-
ter and nutrients to the Seine River. The major combined
sewer overflow (CSO) outlets are located 30-40 km down-
stream from Paris (Fig. 1). The Seine River’s mean daily
discharge in Paris downstream from the Seine-Marne con-
fluence is 310 m3·s−1. Along the studied stretch, the Seine
River has two major tributaries: the Marne River and the
Oise River. On average, each of these tributaries account
for one fifth to one fourth of the daily discharge at Poses
(440 m3·s−1). In addition to the Oise River, 3 smaller
tributaries are accounted for as lateral boundary conditions.

Upstream water quality data of the Seine, Marne, and
Oise rivers are provided at a daily time step by the public
drinking water company of the Paris urban area (SEDIF),
except for chl a concentrations. Weekly chl a measure-
ments, provided by the public sewage company of the Paris
urban area (SIAAP), are used as boundary conditions. 15-
min time step chl a concentrations, which were acquired by
the SEDIF, are also available at the upstream boundary of
the simulatedMarne River stretch for the 2011–2012 period.
The quality of the three smaller tributaries is monitored at
a lower frequency by the national river monitoring network

Fig. 1 Study area, modeled river stretch, main tributaries and anthropogenic effluents, and locations of the CarboSeine high frequency monitoring
stations
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(RCS). River daily discharges originate from the national
Banque HYDRO database (www.hydro.eaufrance.fr). Daily
measurements of the water flow and quality of the urban
area’s five WWTP effluents are provided by the SIAAP. 151
CSOs and 15 small dry weather effluents are also taken into
account as lateral boundary conditions.

Validation of the model at short time scales

The model has been validated and applied to numerous case
studies on the Seine River (Even et al. 1998; 2004; 2007;
Vilmin et al. 2015b; 2015a; Raimonet et al. 2015) or on
smaller streams of the Seine River basin (Flipo et al. 2004;
Flipo et al. 2007) at daily to pluri-annual time scales.

The recent implementation of high frequency monitor-
ing stations (CarboSeine research program, see Fig. 1)
allows for the validation of the model at shorter time steps.
The CarboSeine network was set up to deepen our under-
standing of the biogeochemical functioning of the Seine
river downstream from the Paris urban area at small time
scales (Escoffier 2014). Among other parameters, it pro-
vides PO3−

4 concentration measurements at a 4-h time step
and chl a and O2 concentration measurements at a 15-min
time step through optical sensing technologies (Escoffier
et al. 2015; 2016).

The model results are compared graphically to the avail-
able time series recorded at the Bougival and Andrésy
CarboSeine stations for the 2011–2012 period (Fig. 2). Sta-
tistical criteria—mean concentrations, standard deviations,
correlation between simulated and measured time series,
bias, and root mean square error (RMSE) 1—are also cal-
culated to assess the model’s accuracy (Table 2). Mean and
standard deviations of the simulated time series are calcu-
lated only for the values simulated at the measurement dates
in order to be directly comparable with the characteristics
of the measured time series. This validation is performed to
ensure that PROSE can provide consistent high frequency
time series to describe the pluri-annual water quality of the
Seine River.

PO3−
4 concentrations exhibit a high temporal variabil-

ity. Concentrations can vary by a factor of 2 to 3 in less
than 48 h. The PROSE model provides good estimates of
PO3−

4 concentrations at Bougival and Andrésy (Fig. 2a
and d). The mean PO3−

4 concentration is slightly overes-
timated at Bougival (mainly during the months of october
and november 2011). The average differences between
simulated and measured concentrations equal +21 % and -
1 % at Bougival and Andrésy, respectively (Fig. 2a and d,
Table 2). The simulated PO3−

4 concentration time series are

1bias= 1
N

∑N
i (Si − Oi) and RMSE=

√
1
N

∑N
i (Si − Oi)2, where S and

O are the simulated and observed time series and N is the number of
observations.

Fig. 2 Measured (gray dots) and simulated concentrations (red line)
of a) PO3−

4 , b) chl a and c) O2 at Bougival and of d) PO
3−
4 at Andrésy

(see Fig. 1 for locations of the monitoring stations)

fairly well correlated to the measurements, with correlation
coefficients of 0.77 (p value< 10−5) at Bougival and 0.54
at Andrésy (p value=0.09).

Despite the loose upstream concentration data on the
Seine River, the model outputs match the observed chl a
dynamics at Bougival (Fig. 2b). Mean concentration is over-
estimated by the model (5.78 versus 4.83 μgchl a·L−1),
while the standard deviation of chl a concentrations is prop-
erly assessed (8.16 versus 8.12 μgchl a·L−1). Measured and
simulated chl a concentrations are rather well correlated,
with a correlation coefficient of 0.51 (p value< 10−5).

Seasonal and short term O2 dynamics are also prop-
erly simulated (Fig. 2c). The increases in concentration
during algae blooms (March 2011 and July 2011) match
the measured time series. The simulated O2 drops (usu-
ally linked to CSO events) are also well synchronized with
the observed drops. Yet, the model tends to overestimate
the minimum concentration values during these drops. The
mean concentration and the standard deviation of the O2

concentrations are properly estimated by the model (9.83
versus 9.19 mgO2·L−1 and 1.99 versus 2.45 mgO2·L−1,
respectively). Simulated and measured concentrations at
Bougival in 2011–2012 are highly correlated, with a corre-
lation coefficient of 0.85 (p value< 10−5).
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Table 2 Statistical comparison
of simulated concentrations
and measured time series at the
CarboSeine monitoring stations

Criterion Bougival Andrésy

PO3−
4 chl a O2 PO3−

4

mgPO3−
4 ·L−1 μgchl a·L−1 mgO2·L−1 mgPO3−

4 ·L−1

N obs. 1982 60665 60902 1220

Mean sim. 0.37 5.78 9.83 0.42

Mean obs. 0.31 4.83 9.19 0.42

Std sim. 0.14 8.16 1.99 0.17

Std obs. 0.12 8.12 2.45 0.11

Correlation (adim.) 0.77 0.51 0.85 0.54

Bias 0.06 0.96 0.64 -0.01

RMSE 0.11 8.08 1.44 0.15

These results show that the model inputs and the for-
malisms used to represent the various biogeochemical pro-
cesses allow for the estimation of the variations in water
quality at short to seasonal time scales. Despite some iden-
tified discrepancies with the measured time series, we admit
in the remaining of the paper that the PROSE model outputs
can be used to mimic the high frequency functioning of the
Seine River for a pluri-annual period of time.

Seine River water quality from the Paris urban area to
the estuary

Estimation of water quality indicators along the studied
stretch

In the remaining of the paper, the different locations are
given as kilometer points (KP). This corresponds to curvi-
linear distances from the Seine-Marne confluence in Paris,
in the direction of the Seine River’s flow. For each variable
i (PO3−

4 , NH+
4 , NO

−
2 , NO

−
3 , chl a and O2), results are pre-

sented as graphs of longitudinal profiles of the correspond-
ing water quality indicator I (pluri-annual 90 % quantiles
of PO3−

4 , NH+
4 , NO

−
2 , NO

−
3 and chl a concentrations—

[PO3−
4 ]90, [NH

+
4 ]90, [NO

−
2 ]90, [NO

−
3 ]90 and [chl a]90—

and pluri-annual 10 % quantile of O2 concentrations—
[O2]10) calculated for daily and for the recommended
60-day time step samplings (Fig. 3). For statistical rele-
vancy, indicators are calculated over the whole 6-year time
window.

The daily indicators are calculated on the simulated time
series, which are re-sampled at a daily time step at noon
(see Effect of the sampling hour for justifications). To esti-
mate the ranges of the indicator values that can be obtained
for a 60-day sampling, the indicators are estimated for all
possible re-sampled time series (with a sampling at noon).
Calculations are therefore performed for 60 different time
series, which start on January 1, 2, 3, etc. For each indicator

I , the span of the range of all 60 estimated indicator values
(�I ) can be assessed along the whole studied stretch.

Meybeck and Moatar (2012) highlighted that quality
indicators can follow different trends, depending on the river
flow. Also, depending on the dilution capacity of the flow,
human effluents affect the downstream functioning in vari-
ous ways. To assess the effect of the flow characteristics on
the river’s water quality, the different water quality indica-
tors are also calculated for low flow and high flow periods
only (Fig. 3). As suggested by Vilmin et al. (2016), low flow
periods correspond to the 30 consecutive driest days (based
on the moving average of the daily discharge in Paris) of
each calendar year, and high flow periods to the wettest
consecutive 30 days of each hydrological year.

Numerical values are provided at 5 stations (Table 3):
Suresnes (KP 24), Sartrouville (KP 65), Conflans (KP 78),
Méricourt (KP 129) and Poses (KP 212). Suresnes is repre-
sentative of the upstream part of the studied stretch. Sartrou-
ville is located downstream from the major CSOs and
upstream from the main WWTP, SAV. Conflans is located
downstream from SAV and upstream from the Seine-Oise
confluence. Finally, Méricourt is representative of the down-
stream sector and Poses is upstream from the last navigation
dam at the entrance of the Seine River’s estuary, about
130 km downstream from the Seine-Oise confluence.

Orthophosphate

The quality status of the Seine River in terms of PO3−
4 is

good from the Paris urban area to the SAV WWTP and
shifts to medium downstream from the effluent (Figs. 3
and 4). In the study area, [PO3−

4 ]90 is mainly affected by
the WWTP effluents and the Oise River, downstream from
which [PO3−

4 ]90 decreases due to dilution. These discon-
tinuities (WWTP effluents and Oise River) also induce
changes in PO3−

4 variability and in the uncertainties in
the calculation of [PO3−

4 ]90 . The proportion of seasonal

Environ Sci Pollut Res (2018) 25:23485–2350123490



Fig. 3 Longitudinal profiles of the WFD indicators for the studied
variables (black solid line) and ranges of the calculated indicators for
a sampling time step of 60 days (gray area). The red and blue dashed
lines correspond to the indicators calculated for low flow and high flow
periods only

variability in the total variability of PO3−
4 concentrations

decreases from 39 % upstream from SAV, at Sartrouville, to
17 % downstream, at Conflans (Table 3). Also, for a 60-day
sampling, �[PO3−

4 ]90 increases from 0.18 mgPO3−
4 ·L−1

just upstream from SAV to 0.21 mgPO3−
4 ·L−1 immediately

downstream from the WWTP (Fig. 3).
During high flow periods, the quality in terms of PO3−

4 is
controlled by upstream agricultural inputs, and the [PO3−

4 ]90
indicator is constant along the studied stretch (Fig. 3). On
the contrary, during low flow periods, SAV has a signifi-
cant effect on the water quality in terms of PO3−

4 , which
becomes poor downstream from the effluent and before
dilution by the Oise River.

Ammonium

In terms of NH+
4 , the quality status of the Seine River is

good upstream from SAV (Figs. 3 and 4). The large NH+
4

inputs from this effluent, which account for 75 % of all
NH+

4 inputs along the studied stretch, induce a deterioration
of the downstream water quality that shifts to poor. After
dilution by the Oise River, the [NH+

4 ]90 values range within
the boundaries of the medium quality status. SAV induces
a small decrease in the proportion of seasonal variability in
the total variability of NH+

4 concentrations (from 8 to 6 %),
which is already low upstream (Table 3). However, both the
major CSOs, which contain large concentrations of NH+

4 ,
and the SAV WWTP lead to high increases in [NH+

4 ]90
and in the uncertainty in its estimation (Fig. 3). For a 60-
day sampling, �[NH+

4 ]90 increases from 0.52 mgNH+
4 ·L−1

just upstream from SAV to 1.37 mgNH+
4 ·L−1 immediately

downstream from the WWTP.
The quality of the Seine River in terms of NH+

4 is clearly
driven by anthropogenic effluents, whatever the hydrolog-
ical conditions (Figs. 3 and 4). At the estuary, low flow
[NH+

4 ]90 values are however lower than high flow or pluri-
annual values due to higher nitrification rates.

Nitrite

In terms of NO−
2 , the quality status of the Seine River is

good upstream from the Paris urban area’s major CSOs
(Figs. 3 and 4). Downstream from the CSOs, where NO−

2 is
produced by nitrification, the status shifts to medium. The
SAV effluent constitutes 64 % of all NO−

2 inputs along the
studied stretch and induces a shift of the quality status in
terms of NO−

2 frommedium to bad. 8 km downstream, NO−
2

concentrations are diluted by the Oise River and the status
becomes poor until the entrance of the estuary. As for PO3−

4
and NH+

4 , the different spatial heterogeneities induce sig-
nificant changes in both [NO−

2 ]90 values and uncertainties
in their estimation (Fig. 3). SAV induces a clear decrease
of the proportion of seasonal variability in the total vari-
ability of NO−

2 concentrations (from 23 % at Sartrouville
to 5 % at Conflans, see Table 3). For a 60-day sampling,
�[NO−

2 ]90 increases from 0.16 mgNO−
2 ·L−1 just upstream

from SAV to 0.56 mgNO−
2 ·L−1 immediately downstream

from the WWTP.
The quality of the Seine River in terms of NO−

2 is
controlled by anthropogenic effluents, but is also highly
affected by flow conditions (Figs. 3 and 4). CSOs and the
SAV effluent induce larger increases in [NO−

2 ]90 during low
flow periods due to higher NO−

2 production in the river sys-
tem. Indeed, low flow conditions coincide with periods of
higher temperatures, which promotes nitrification activity
(Raimonet et al. 2015).
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Table 3 Water quality status, optimal sampling time step, range of calculated indicator values for this optimal sampling time step and for a 60-day
time step, and proportion of seasonal variability in total variability (season. var.) for all studied variables at five stations

Suresnes Sartrouville Conflans Méricourt Poses

PO3−
4 Status Good Good Medium Medium Medium

�t
opt,PO3−

4
Days 9 12 10 7 11

[PO3−
4 ]90 (�topt ) mgPO3−

4 ·L−1 0.43–0.44 0.46–0.48 0.67–0.71 0.67–0.69 0.70–0.73

[PO3−
4 ]90 (60 days) mgPO3−

4 ·L−1 0.35–0.48 0.39–0.57 0.60–0.80 0.60–0.86 0.63–0.88

Season. var. % 34.8 39.3 16.8 26.4 30.5

NH+
4 Status Good Good Poor Medium Medium

�topt,NH+
4

Days 4 5 2 3 2

[NH+
4 ]90 (�topt ) mgNH+

4 ·L−1 0.22–0.23 0.45–0.45 2.06–2.09 1.35–1.40 1.10–1.15

[NH+
4 ]90 (60 days) mgNH+

4 ·L−1 0.16–0.37 0.29–0.64 1.59–2.90 1.04–1.73 0.83–1.48

Season. var. % 7.9 8.4 5.9 3.5 10.1

NO−
2 Status Good Medium Bad Poor Poor

�topt,NO−
2

Days 6 6 5 6 7

[NO−
2 ]90 (�topt ) mgNO−

2 ·L−1 0.17–0.18 0.34–0.36 1.15–1.18 0.89–0.93 0.81–0.84

[NO−
2 ]90 (60 days) mgNO−

2 ·L−1 0.15–0.22 0.29–0.44 0.94–1.45 0.74–1.13 0.63–1.08

Season. var. % 33.1 22.8 4.9 2.1 0.0

NO−
3 Status Good Good Good Good Good

�topt,NO−
3

Days 37 32 20 21 31

[NO−
3 ]90 (�topt ) mgNO−

3 ·L−1 26.1–27.4 26.2–27.5 34.1–35.4 29.9–31.4 30.3–31.8

[NO−
3 ]90 (60 days) mgNO−

3 ·L−1 25.7–27.9 25.5–28.1 32.6–37.2 28.3–31.9 28.0–31.9

Season. var. % 73.3 71.8 6.6 6.3 7.5

chl a Status Very good Very good Very good Very good Good

�topt,chla Days 5 4 4 4 2

[chl a]90 (�topt ) μgchl a·L−1 3.36–3.49 5.34–5.49 5.60–5.65 9.16–9.41 23.12–23.55

[chl a]90 (60 days) μgchl a·L−1 2.57–6.70 3.08–9.68 3.15–9.58 5.81–12.96 12.13–33.16

Season. var. % 23.4 23.7 23.8 28.0 20.5

O2 Status Very good Very good Medium Good Very good

�topt,O2 days 46 51 15 20 66

[O2]10 (�topt ) mgO2·L−1 7.96–8.36 7.94–8.34 5.76–6.00 6.56–6.89 8.45–8.86

[O2]10 (60 days) mgO2·L−1 7.77–8.43 7.53–8.42 5.40–6.55 6.36–7.12 8.30–8.88

Season. var. % 90.9 90.8 79.0 71.7 82.8

Nitrate

From the Paris urban area to the entrance of the estuary,
the Seine River’s quality status in terms of NO−

3 is con-
stantly good (Figs. 3 and 4). NO−

3 mainly originates from
the runoff from arable lands from the upstream agricul-
tural drainage basins, which explains the large proportion
of annual variability in the upstream sector (>70 % in
Suresnes and Sartrouville, see Table 3). NO−

3 concentrations
are therefore less affected by urban effluents than those
of the other nitrogen compounds (NH+

4 and NO−
2 ), even

though the SAV effluent induces a clear increase in [NO−
3 ]90

and a decrease in the proportion of seasonal variability of
NO−

3 concentrations (Fig. 3 and Table 3).
However, during low flow periods, when the runoff from

agricultural lands is lower, SAV has a more visible effect
on [NO−

3 ]90, which is multiplied by 2 downsteam the efflu-
ent outlet, but remains within the range of the good quality
status (Figs. 3 and 4).

Chlorophyll a

The water quality status in terms of chl a shifts progres-
sively from a very good status to a good status along the
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Fig. 4 Longitudinal profiles of the water quality status of the Seine
River estimated for a) the whole 2007-2012 period, b) low flows and
c) high flows

studied stretch (Figs. 3 and 4). Contrary to the other studied
variables, physical and anthropogenic heterogeneities do not
exert any direct impact on [chl a]90. [chl a]90 and �[chl a]90
both increase along the river stretch. This can be explained
by the fact that the intensity of the blooms increases, notably
due to longer residence times. Even though there is no
direct effect of anthropogenic effluents on [chl a]90, algal
growth is promoted by the large inflows of nutrients, which
contribute to the increase of the blooms’ intensity. The pro-
portion of seasonal variability in the total variability of chl a
concentrations does not seem to be affected by the different
anthropogenic heterogeneities and remains in the range of
20-30 % along the studied stretch (Table 3).

Hydrology has a clear effect on the water quality sta-
tus in terms of chl a , since algae blooms usually coincide
with periods of low discharge (Garnier et al. 1995; Garnier
and Billen 2007; Descy et al. 2012). During low flow peri-
ods, [chl a]90 can reach values corresponding to the medium
quality status in the downstream sector of the study area,

where high nutrient concentrations and long water residence
times promote high algal growth (Figs. 3 and 4).

Dissolved oxygen

In terms of O2 and based on the 10 % quantiles calculated
for the whole 2007–2012 period, the quality status of the
Seine River fluctuates between the very good and good sta-
tuses upstream from SAV (Figs. 3 and 4). Downstream from
SAV, the 10 % quantile drops rapidly and reaches the thresh-
old of the medium status. Downstream from the Seine-Oise
confluence, and after re-oxygenation at the Andrésy dam
just downstream from the confluence (KP 79), [O2]10 val-
ues return to the good status. In the downstream section, the
quantile values increase, and exceed the very good status
threshold downstream from the Notre Dame de la Garenne
dam (KP 170, see Fig. 1 for location). O2 concentrations
exert a high seasonal variability that accounts for more
than 70 % of their total variability along the studied stretch
(Table 3).

At high flow, which coincide with colder periods, the
water quality in terms of O2 is very little affected by anthro-
pogenic heterogeneities (Figs. 3 and 4). Indeed, the O2

saturation concentration is higher and the high water veloc-
ities induce high re-aeration rates at the surface. At low
flow, the O2 saturation concentration is lower, the flow has
a lower dilution capacity and biological activity (i.e., respi-
ration rates) is higher. During low flow periods, the quality
status in terms of O2 therefore shifts to medium in the reach
between SAV and the Seine-Oise confluence (Figs. 3 and 4).

Overall water quality for the 6 studied variables

Among the six studied variables, the overall water quality
of the Seine River from the Paris urban area to the estu-
ary is assessed in each model cell, based on the results
for the most downgrading variable (Fig. 4). This analysis
reveals that, among the studied variables, nitrogen com-
pounds degrade the water quality along this river stretch.
The overall quality is mostly driven by NO−

2 concentrations.
NO−

2 is indeed the most degrading variable on average for
2007–2012 (Fig. 4a), especially at low flow downstream
from the major CSOs (Fig. 4b). During high flow periods,
the quality status of the Seine River is controlled by NH+

4
and NO−

2 concentrations (Fig. 4c).
For the 2007–2012 period, the quality shifts from good

to medium downstream from the major CSOs. The most
sensitive stretch is the reach between SAV and the Seine-
Oise confluence, where the water quality status is bad. After
dilution by the Oise River, the quality status becomes poor
(Fig. 4a).

If we focus on low flow periods only, anthropogenic
effluents have an even larger effect on the water quality of
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the river. The water quality is already medium downstream
from the most upstream WWTP of the Paris urban area (KP
-5, see Fig. 1). It is then driven by NO−

2 concentrations
downstream from the major CSOs until the entrance of the
estuary (Fig. 4b).

Anthropogenic pressures have less effect on the water
quality during high flow periods, when the Seine River and
its tributaries have a greater dilution capacity, and when bio-
logical activity (notably nitrification) is lower. However, the
water quality still shifts from a good status in the upstream
area to a medium status downstream from SAV (Fig. 4c).
Even for these flow conditions, the good status as defined
by the WFD is not achieved downstream from the major
effluents of the Paris urban area.

These results show that the water quality status, as
defined by the WFD, is very sensitive to the fixed thresh-
old values separating the different quality statuses, espe-
cially for the most downgrading variable (NO−

2 in the
present case). In the objective of a 75 % drop of the nitro-
gen inputs to the coasts, a decrease of the limit of the
good quality status for NO−

3 from 50 to 18 mgNO−
3 ·L−1

is currently being considered in France. With this new
limit, the overall water quality status of the Seine River
would already be bad upstream from the Paris urban area,
due to the large upstream NO−

3 inputs from agricultural
lands.

Most water quality variables are also sensitive to the flow
conditions. It would therefore be relevant to estimate the
water quality indicators at a seasonal scale rather than at
annual or pluri-annual scales, and define seasonal quality
standards. Thereby, the effect of large anthropogenic efflu-
ents on important quality variables, such as O2, would be
better assessed.

Does an optimal sampling frequency exist?

Effect of the sampling hour

Even though for variables with high daily variability the
sampling hour can also affect the calculated statistical cri-
teria (Scholefield et al. 2005; Wade et al. 2012; Halliday
et al. 2012), its effect cannot be assessed through our mod-
eling approach. Indeed, the models’ boundary conditions
are informed at a daily time step, and the variability linked
to sub-daily variations of inputs may therefore be underes-
timated. In an attempt to further assess the effect of this
sub-daily variability, O2 high frequency (15 min) time series
recorded at Bougival in 2011 are re-sampled at a daily fre-
quency according to 12 different time stamps (every 2 h
from 00:00 to 22:00). Boxplots of the re-sampled time series
are calculated and compared in order to determine the effect
of the sampling time.

Fig. 5 Effect of the sampling timestamps on O2 variability at Bou-
gival in 2011. Horizontal markers inside the boxes indicate median
concentration; boxes represent the 25 % and 75 % quantiles; horizontal
markers outside the boxes indicate the entire ranges of daily O2 con-
centrations. Red dots represent the corresponding 10 % quantiles; the
red dashed line indicates the mean 10 % quantile for all timestamps

The daily re-sampling of the high frequency time series
of O2 concentrations at Bougival in 2011 provides an
overview of the daily trends in O2 concentrations in an
urbanized environment (Fig. 5). In 2011 at Bougival, [O2]10
is close to the threshold between the good and medium
water quality levels (6 mgO2·L−1). The comparison of the
[O2]10 values for the different sampling hours reflects the
effect of sub-daily biological dynamics (i.e., O2 primary
production during light periods), since the values obtained
for afternoon samplings are systematically higher than those
obtained in the morning. The maximum daily amplitudes
of [O2]10 can reach 0.5 mgO2·L−1, which corresponds to
25 % of the span of the interval defining the good quality
status (6-8 mgO2·L−1). The effect of the sampling hour can
thus be significant for the assessment of the water quality
status, especially since the [O2]10 values fluctuate around
the good/medium threshold. The effect of the sampling
time step would be even greater for more eutrophic rivers,
as the Loire River, that can exert daily amplitudes of O2

concentrations of several mgO2·L−1 (Minaudo et al. 2015).
The analysis of the daily O2 fluctuations indicates that

an average situation is reached around noon every day. For
the remaining of the paper, we therefore consider that the
water quality at noon is representative of the daily quality.
The current analysis of the effect of sub-daily fluctuations
indicates that our further estimate of O2 water quality status
will entail a small uncertainty of ±0.25 mgO2·L−1.

Assessment of optimal sampling frequencies

We assess the optimal sampling frequencies for the mon-
itoring of PO3−

4 , NH+
4 , NO

−
2 , NO

−
3 , chl a and O2 for an

accurate estimation of the 6 associated WFD water quality
indicators.

To quantify the effect of the sampling time step on the
estimation of water quality indicators, the total simulated
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Fig. 6 Ranges of the
uncertainties in the estimated
quality indicators for different
sampling time steps. The gray
area corresponds to the 5 %
confidence interval around the
daily reference value
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2007-2012 time series are numerically re-sampled at every
time step ranging from 1 to 90 days (at noon). The indica-
tors calculated on the daily time series are considered as the
reference (ref ). For each time step and for each indicator
I�t , the range of possible estimated values is assessed as
described in “Estimation of water quality indicators along
the studied stretch” for a 60-day time step. The ranges of
the calculated values of I�t /Iref are plotted at Suresnes,
Sartrouville, Conflans, Méricourt and Poses for different
sampling time steps (3, 7, 15, 30, and 60 days, see Fig. 6).
Not surprisingly, the uncertainty grows with the increase
of the sampling time step. Figure 6 indicates that the rela-
tive increase is linked to (i) the variable considered and (ii)
the sampling location. It also clearly indicates that the opti-
mal sampling frequency is not unique but rather depends on
more subtle criteria.

In the present study, we define as an accurate estimate
of the different WFD indicators, an estimate with less than
5 % error. We therefore assess the minimum frequency
(maximum time step) needed to obtain less than % error
on the indicator estimation (i.e., �I�t is inferior to 5 %
of Iref ). For the variable i, this time step is noted �topt,i .
Longitudinal profiles of the estimated �topt,i are plotted in
Fig. 7.

It is important to note that the efficiency of the present
method depends on the ability of the model to reproduce
the dynamics of the studied variables. In fact, discrepan-
cies between the simulated temporal variability of a variable
and its variability in the environment can lead to uncertainty
in the estimated optimal sampling frequency. For instance,
the simulated O2 time series at Bougival (standard deviation

Fig. 7 Longitudinal profiles of the optimal sampling time steps for
the studied variables: a) for all studied variables, b) zoom on the most
variable compounds

of 1.99 mgO2·L−1) is less variable than the observed one
(standard deviation of 2.45 mgO2·L−1, see Table 2). The
optimal sampling time step defined on the simulated time
series might therefore be overestimated. In the same way,
the model slightly overestimates the variability of PO3−

4
concentrations at Bougival and Andrésy (Table 2), which
can lead to a little underestimation of the optimal sampling
time step.

Also, the defined “optimality” may depend on the period
of the study. Kusmulyono and Goulter (1995) showed that,
depending on the length of the available record, the time
window for which the water quality indicators are estimated
can have a significant impact on the accuracy of the pre-
diction. Here, in order to limit this impact, we chose to
assess the water quality of the Seine over a 6-year period of
time, which comprises years that are contrasted in terms of
hydrology (Vilmin et al. 2015b).

Optimal sampling frequency depends on the monitored
variable and its drivers

Lázslo et al. (2007) showed that the optimal sampling
frequency depends on the sampling location (hydro-
morphological characteristics, presence of anthropogenic
effluents, etc.), and on the measured variable and its vari-
ability in the receiving environment. Our results confirm
these assertions. It is not possible to define one single opti-
mal sampling frequency for water quality monitoring as
defined by the WFD. However, it is possible to define for
each variable and at different locations an optimal sampling
time step, which allows to capture its variability in the envi-
ronment (Fig. 7). At this optimal sampling time step, the
acquired concentration time series is representative of the
system’s functioning and accurate statistical indicators can
then be calculated. The optimal time steps depend on the
temporal variability of each parameter, which is concomi-
tantly affected by natural processes and local anthropogenic
influences.

For variables, which mainly originate from urban sources
(PO3−

4 , NH+
4 , NO

−
2 ), optimal sampling time steps depend

on the location of the sampling site with respect to the major
anthropogenic effluents (i.e., CSOs, WWTPs). In fact, the
major effluents lead to a sharp increase of their variability in
the receiving environment and higher sampling frequencies
are thus needed downstream. Raimonet et al. (2015) already
highlighted the effect of the sampling frequency on river
environmental assessment. They showed that, downstream
from the major effluent of the Paris urban area, monthly
sampling does not permit to account for the high variabili-
ties of NH+

4 and NO−
2 . The present study confirms that a

60-day or even monthly sampling time step is not suffi-
cient to estimate the water quality indicators for the com-
pounds originating from urban effluents (Fig. 6). A weekly
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sampling allows for the assessment of [PO3−
4 ]90 along the

whole studied stretch. The median optimal sampling fre-
quency for an accurate estimation of [PO3−

4 ]90 is indeed 10
days upstream from SAV and 8 days downstream from the
WWTP (Fig. 7). Smaller sampling time steps are needed for
NH+

4 along the whole studied stretch and for NO−
2 down-

stream from SAV to completely account for these variables’
variabilities. For an estimation of [NH+

4 ]90 and [NO−
2 ]90

with less than 5 % error, sampling time steps of 1-8 and 2-
14 days are needed, depending on the location (Fig. 7). The
median optimal time step for NH+

4 monitoring is 3 days both
up- and downstream from SAV. It is 7 days upstream from
SAV and 5 days downstream from SAV for NO−

2 .
For the variables that display a larger seasonal variabil-

ity, the optimal sampling frequency is much lower. For these
variables, a monthly to 60-day time step is enough to accu-
rately assess WFD indicators in most locations that are far
enough from pollution sources. In the Seine River, this is
the case for NO−

3 and, to a lesser extent, for O2 concentra-
tions. NO−

3 mainly originates from the runoff over upstream
agricultural lands. NO−

3 concentrations are therefore highly
correlated to the hydrology, which explains the high pro-
portion of annual variability in the total variability of NO−

3
concentrations (>70 % upstream from SAV, see Table 3).
Along the studied stretch, optimal sampling time steps for
an accurate estimation of [NO−

3 ]90 range from 11 to 59 days
(Fig. 7). A 25-day sampling time step, which corresponds
to the median value, can be considered sufficient for a good
estimation of the [NO−

3 ]90 indicator. O2 variations are also
mainly seasonal, since they are strongly controlled by sat-
uration that is a function of temperature. Indeed, seasonal
variability accounts for more than 70 % of the total variabil-
ity of O2 concentrations at the five stations (Table 3). Along
the studied stretch, [O2]10 can be estimated with less than
5 % error with a 14–83-day sampling time step (Fig. 7).
Since SAV induces a higher variability of O2 concentra-
tions, more frequent measurements are necessary between
the effluent and the Seine-Oise confluence, where a median
time step of 15 days is needed.

Finally, the response of biotic variables, such as chl a,
to anthropogenic pollution is not direct. Therefore, the
[chl a]90 indicator does not directly reflect the impact of
human pressure, and major effluents do not directly affect
the optimal sampling frequency for chl a monitoring. Yet,
these heterogeneities certainly contribute to the slow lon-
gitudinal variations in [chl a]90 by inducing changes in
the environment’s characteristics (i.e., water flow, nutrient
concentrations). Along the studied stretch, an accurate esti-
mation of [chl a]90 requires sampling time steps inferior to
1 week (Fig. 7). The assessed optimal sampling time steps
range from 1 to 9 days, with a median value of 4 days.
Due to the highly transient character of algae blooms, which
occur maximum 2 to 3 times a year, the estimation of

[chl a]90 is very sensitive to the sampling frequency (Fig. 6)
and chl a concentrations need to be monitored at small time
steps to be sure to capture the peaks.

Optimal sampling frequency depends on the monitoring
goals

The optimal sampling frequency also depends on which
information is expected from the data. Formulating the spe-
cific objectives of the monitoring strategy is probably the
most important and most difficult step in the entire moni-
toring process (Lettenmaier 1979; Timmerman et al. 2000).
Monitoring networks can have a lot of various objectives
and they usually combine several of them. The present work
deals with water quality surveillance monitoring, which
aims at assessing long-term changes and providing base-
line data on river basins (Allan et al. 2006). Yet, when the
good status is not achieved, additional monitoring is neces-
sary to assess the causes of such failure and the effect of
remediation strategies (Allan et al. 2006).

The second element that constrains the design of moni-
toring strategies is data analysis (Timmerman et al. 2000).
It is important to determine how the information extracted
from the measurement data should be presented and the
level of precision to be included in this information
(Timmerman et al. 2000). Therefore, statistical design crite-
ria must be established and the variables under study need
to be characterized (variation in quality, seasonal impacts,
etc.) (Ward et al. 1986). In the present study, we focus on
the estimation of WFD water quality indicators. Yet, what
is considered as an accurate estimation of these indicators
also needs to be defined. We give here the example of an
acceptable 5 % error.

However, a less than 5 % error does not always guarantee
a good assessment of the quality status, when the vari-
able’s values are close to the threshold between two quality
classes. For example, upstream from SAV and immediately
downstream from the Seine-Oise confluence, [PO3−

4 ]90 val-
ues are close to the good/medium statuses threshold (Fig. 3).
A slight error in the estimation of [PO3−

4 ]90 can thus
lead to an error in the assessment of the water quality
status. In the same way, for an accurate estimation of
the water status regarding NH+

4 and NO−
2 , close atten-

tion should be paid to the reach downstream from the
major CSOs and upstream from SAV, where quantile values
are close to the good/medium statuses threshold (Fig. 3).
Regarding O2, 6 km downstream from the SAV WWTP,
a 14-day sampling is enough to assess [O2]10 with less
than 5 % error. Yet, a 3-day sampling time step is nec-
essary for a reliable estimation of the quality status, due
to the large drop of oxygen concentrations that causes the
[O2]10 values to reach the good/medium statuses thresholds
(Fig. 3).
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This analysis points out that an adaptative sampling
time step is needed for a proper survey of water quality.
The idea of a single optimal sampling time step for water
quality monitoring is obsolete, especially with the recent
improvements in sensor technologies, which allow for the
definition of various sampling frequencies for different vari-
ables at a single location without unrealistically increasing
the human constraint. For instance, the CarboSeine stations
record chl a at a 15-min time step and PO3−

4 at a 4-h time
step. The use of these new technologies increases flexibil-
ity and opens the door to the development of more powerful
monitoring networks. As discussed below, the design and
the operation of such monitoring networks can benefit from
the simultaneous development of high-resolution numerical
models.

Use of modeling tools to optimize and support
water quality assessment

The present study shows how a modeling tool can be used
to support the design of monitoring strategies. Beforehand,
the model must be validated as an acceptable representa-
tion of the system (based on the comparison with historical
data) (Radford and West 1986). As presented here, models
can be used to help in the definition of optimal sampling
time steps. Models can also provide information on the spa-
tial discontinuities and their distance of impact. Moreover,
they allow for the identification of river reaches, which
are the most sensitive to human pressure (from SAV to
the Seine-Oise confluence, in the present case). They can,
therefore, also be used to decide on the best sampling
locations.

The use of adequate sampling frequencies at relevant
sampling sites would minimize the uncertainties in the esti-
mated water quality indicators. With too low frequencies,
concentration peaks may not be well captured and the calcu-
lation of the indicators may be flawed. We showed that the
estimation of water quality indicators on data from 60-day
sampling can exert high uncertainties. However, monitoring
all water bodies at optimal resolution for an accurate estima-
tion of WFD indicators is unrealistic, because of logistical
and financial limitations. A validated model can provide
more accurate statistical criteria than too loose data. For
example, Radford and West (1986) showed that an estu-
arine predictive model produced better estimates of mean
pollutant concentrations than those obtained from observa-
tions alone. Therefore, the fine spatio-temporal resolution
that can be achieved by simulation models should be used to
complete the information contained in measured data. High
frequency calculated time series of highly variable com-
pounds could be used to complete data measured at a lower

frequency. This can be achieved with interpolation methods
such as co-kriging.

Our method also allows for the assessment of the uncer-
tainties in the statistical criteria derived from the data, which
are related to the sampling frequency. Indeed, it provides for
every time step a range of possibly assessed indicator val-
ues. The multiple re-sampling of high frequency simulated
time series we used could also be employed for a stochastic
analysis of the water quality, and density probability func-
tions of the water quality status could be derived at given
locations. In this way, instead of providing a unique qual-
ity status that can be erroneous, the likelihoods of the water
body’s different status classifications could be assessed
(Hering et al. 2010).

Finally, modeling tools can provide, in addition to high-
resolution concentrations, information on the interactions
between the different quality variables, on the river biogeo-
chemical transformations, on the system’s metabolism etc.
This information is essential to understand the drivers of
the health of water bodies. WFD indicators alone do not
permit such an understanding of the functioning of river sys-
tems. For fast varying variables that originate from urban
point sources, WFD indicators exhibit the impact of efflu-
ents on downstream quality if the sampling is performed
at an adequate frequency. For variables with high seasonal
variability, quantiles do not capture the effect of peaks
induced by human disturbances, since the seasonal vari-
ability may be larger than these peaks. Along the studied
stretch of Seine River, this is the case for O2, which is cer-
tainly one of the most integrative water quality variables. O2

concentrations are indeed affected by (and affect) many bio-
geochemical processes (Nimick et al. 2011). For example,
the effect of major CSOs, which can induce large drops of
O2 concentrations during highly transient events, is not vis-
ible on the pluri-annual [O2]10 longitudinal profile (Fig. 3).
For these variables, water quality indicators could be cal-
culated not on the variables themselves, but on transformed
variables that do not exert the natural variability anymore.
In the case of O2, several authors showed that river
metabolism could be used as a functional metric for the
assessment of river health (Fellows et al. 2006; Young et al.
2008; Trimmer et al. 2012). Yet, the monitoring of river
metabolism requires high frequency data (Escoffier et al.
2016) and may be too expensive to maintain over large spa-
tial scales. A validated modeling tool such as PROSE can
provide good estimates of these metrics and can be used to
complete the information obtained by monitoring networks.

All our results emphasize the fact that, around major
urban areas, the joint development of water quality model-
ing tools and high frequency monitoring networks should be
favored by water authorities in order to build up preservation
strategies for water resources.
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Summary and conclusion

In the present paper, we define, through a modeling
approach, optimal sampling time steps to accurately assess
different water quality indicators defined by the WFD. We
focus on the case of a highly human-impacted 220 km
stretch of the Seine River.

Our results show that, in large rivers that are subject to
high urban pressure, a 2-month time step is not sufficient for
the monitoring of variables that mainly originate from urban
effluents (PO3−

4 , NH+
4 and NO−

2 ). For the latter variables,
a sampling time step of 1 week or less, notably for NH+

4 ,
is needed. The monitoring of chl a also requires a sampling
time step inferior to one week, due to the highly tran-
sient character of bloom events. WFD indicators for NO−

3
and O2, which have significant seasonal variations, can be
assessed in an acceptable way with monthly data. Yet more
measurements may be needed for O2 concentrations down-
stream from major effluents. However, our results show that
these indicators are sensitive to the flow conditions. It might
therefore be relevant to assess the quality of water bodies at
a seasonal scale or, at least, in conjunction with hydrological
conditions.

The method we apply here can be used for the design
of monitoring strategies. Beforehand, in order to efficiently
meet the monitoring project’s expectations, it is essential to
identify (i) which questions need to be addressed and (ii)
how the answer should be presented (i.e., criteria and pre-
cision, Timmerman et al. (2000)). A modeling tool, which
provides reliable estimates of the variabilities of the stud-
ied variables, can then be used to assess the effect of the
sampling frequency on the estimation of the water quality
indicators and to select the optimal time step for each vari-
able. This optimal time step depends on the location of the
sampling and needs to be revised in case of changes in some
of the drivers of the water quality variables.

We focus here on six water quality variables of the eco-
logical status, whose values and variations are correctly
assessed by the used model. Our method could also be
applied to other pollutants, as long as a model that accu-
rately reproduces their dynamics in the environment is
available. For example, developments in the modeling of
nonylphenols or persistent organic pollutants in river sys-
tems (Cladière et al. 2014) will be helpful to support the
design of monitoring strategies for these contaminants.

This work highlights the important role that modeling
tools can play in monitoring network design and in provid-
ing additional information for a better quality assessment of
water bodies. It also suggests that the water quality survey in
urban areas could be significantly improved by the coupled
development of automated, adjustable time step monitoring
networks and numerical models, such as PROSE .
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des cours d’eau. PhD thesis, Ecole Nationale Supérieure desMines
de Paris

Bernard-Michel C, de Fouquet C (2005) Estimating indicators of river
quality by geostatistics. In: Geostatistics for environmental appli-
cations, Renard, P. and Demougeot-Renard, H. and Froidevaux,
R., pp 443–454

Billen G, Garnier J, Hanset P (1994) Modelling phytoplankton devel-
opment in whole drainage networks: the RIVERSTRAHLER
model applied to the Seine river system. Hydrobiologia 289:119–137

Billen G, Garnier J, Mouchel JM, Silvestre M (2007) The Seine sys-
tem: introduction to a multidisciplinary approach of the func-
tioning of a regional river system. Sci Total Environ 375:1–12

Carstensen J (2007) Statistical principles for ecological status classifi-
cation of Water Framework Directive monitoring data. Mar Pollut
Bull 55:3–15

Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncer-
tainty. Wiley, New-York

Cladière M, Bonhomme C, Vilmin L, Gasperi J, Flipo N, Habets F,
Tassin B (2014) Modelling The fate of nonylphenolic compounds
in the Seine River—part 2: assessing the impact of global change
on daily concentrations. Sci Total Environ 468–469:1059–1068,.
doi:10.1016/j.scitotenv.2013.09.029

Descy JP, Leitao M, Everbecq E, Smitz JS, Deliège JF (2012) Phyto-
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l’étude de la qualité de l’eau et de la quantification du fonction-

Environ Sci Pollut Res (2018) 25:23485–23501 23499

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.scitotenv.2013.09.029
http://dx.doi.org/10.1093/plankt/fbr085


nement trophique de la Seine. PhD thesis, Institut de Physique du
Globe de Paris

Escoffier N, Bernard C, Hamlaoui S, Groleau A, Arnaud C
(2015) Quantifying phytoplankton communities using spectral
fluorescence: the effects of species composition and physiological
state. J Plant Res 37(1):233–247. doi:10.1093/plankt/fbu085

Escoffier N, Bensoussan N, Vilmin L, Flipo N, Rocher V, David A,
Métivier F, Groleau A (2016) (this issue) Estimating ecosystem
metabolism from continuous multi-sensor measurements in the
Seine River. Environmental Science and Pollution Research

Even S, PoulinM, Garnier J, Billen G, Servais P, Chesterikoff A, Coste
M (1998) River ecosystem modelling: application of the PROSE
model to the Seine River (France). Hydrobiologia 373:27–37

Even S, Poulin M, Mouchel JM, Seidl M, Servais P (2004) Modelling
oxygen deficits in the Seine river downstream of combined sewer
overflows. Ecol Model 173:177–196

Even S, Mouchel JM, Servais P, Flipo N, Poulin M, Blanc S, Chabanel
M, Paffoni C (2007) Modeling The impacts of combined sewer
overflows on the river Seine water quality. Sci Total Environ
375(1–3):140–151. doi:10.1016/j.scitotenv.2006.12.007

Fellows CS, Clapcott JE, Udy JW, Bunn SE, Harch BD, Smith MJ,
Davies PM (2006) Benthic metabolism as an indicator of stream
ecosystem health. Hydrobiologia 572:71–87

Ferrant S, Laplanche C, Durbe G, Probst A, Dugast P, Durand P,
Sanchez-Pérez JM, Probst JL (2012) Continuous measurement
of nitrate concentration in a highly event-responsive agricultural
catchment in south-west of France: is the gain of information
useful? Hydrol Process 27(12):1751–1763

Flipo N, Even S, Poulin M, Tusseau-VuilLedoux MH, Améziane T,
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(2012) Guide technique, Évaluation de l’état des eaux de surface
continentales (cours d’eau, canaux, plans d’eau)
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JB, Barreteau O, Bousquet M, Chastan B (2003) What kind of
water models are needed for the implementation of the European
Water Framework Directive? examples from France. Intl J River
Basin Management 1(2):125–135

Yang Y, Burn DH (1994) An entropy approach to data collection
network design. J Hydrol 157:307–324

Young RG, Matthael CD, Townsend CR (2008) Organic matter
breakdown and ecosystem metabolism: functional indicators for
assessing river ecosystem health. J N Am Benthol Soc 27:605–625

Zhou Y (1996) Sampling requency for monitoring the actual state of
groundwater systems. J Hydrol 180:301–318

Environ Sci Pollut Res (2018) 25:23485–23501 23501

http://dx.doi.org/10.1007/s10533-014-0038-3
http://dx.doi.org/10.106/j.scitotenv.2014.08.110
http://dx.doi.org/10.1002/2015GB005271

	Estimation of the water quality of a large urbanized river as defined by the European WFD: what is the optimal sampling frequency?
	Abstract
	Introduction
	Simulation of the water quality of the Seine River from the Paris urban area to the entrance of the estuary
	Assessment of concentrations and variability of water quality variables
	The hydro-biogeochemical ProSe model
	Estimation of the annual variability of water quality variables

	Application to the Seine River
	Validation of the model at short time scales
	Seine River water quality from the Paris urban area to the estuary
	Estimation of water quality indicators along the studied stretch
	Orthophosphate
	Ammonium
	Nitrite
	Nitrate
	Chlorophyll a
	Dissolved oxygen
	Overall water quality for the 6 studied variables


	Does an optimal sampling frequency exist?
	Effect of the sampling hour
	Assessment of optimal sampling frequencies
	Optimal sampling frequency depends on the monitored variable and its drivers
	Optimal sampling frequency depends on the monitoring goals

	Use of modeling tools to optimize and support water quality assessment
	Summary and conclusion
	Acknowledgments
	Open Access
	References


